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ABSTRACT

Flow matching has emerged as a compelling generative modeling approach that
is widely used across domains. During training, flow matching learns to model a
velocity field. At inference, to generate samples, an ordinary differential equation
(ODE) is numerically solved via forward integration of the modeled velocity field.
To better capture the multi-modality that is inherent in typical velocity fields,
hierarchical flow matching was recently introduced. It uses a hierarchy of ODEs
that are numerically integrated when generating data. Each level of the hierarchy of
ODEs captures the distribution of the next level, just like vanilla flow matching uses
the velocity field to capture a multi-modal data distribution. While this hierarchy
enables to model multi-modal distributions at any hierarchy level, the complexity
of the modeled distributions remains identical across levels of the hierarchy. In this
paper, we study how to gradually adjust the complexity of the distributions across
different levels of the hierarchy via mini-batch couplings. We show the benefits of
mini-batch couplings in hierarchical rectified flow matching via compelling results
on synthetic and imaging data.

1 INTRODUCTION

Flow matching (Lipman et al., 2023; Liu et al., 2023a; Albergo & Vanden-Eijnden, 2023) has gained
significant attention across computer vision (Esser et al., 2024; Liu et al., 2023b), robotics (Zhang
& Gienger, 2024), computational biology (Yim et al., 2023; Jing et al., 2023), and time series
analysis (Chen et al., 2024; Zhang et al., 2024). This is largely due to its ability to generate high-
quality data and due to its simple simulation-free learning of a data distribution. For this, it uses 1) an
intermediate state, which is computed by (linearly) interpolating between a sample from a known
source distribution and a randomly drawn data point, and 2) the velocity at this intermediate state.
This velocity controls a neural ordinary differential equation (ODE), which governs the transformation
of the samples from the source distribution to the target data distribution. Note, the distribution of
velocities at an intermediate state is multimodal (Zhang et al., 2025).

In classic flow matching, velocities at interpolated states are modeled via a parametric deep net
using a mean squared error (MSE) objective. It is known that the MSE objective used in classic
flow matching does not permit to capture the multimodal velocity distribution. Instead, training in
classic flow matching leads to a velocity model that captures the mean of the velocity distribution.
Capturing the mean of the velocity distribution is sufficient for characterizing a multimodal data
distribution (Liu et al., 2023a). However, it inevitably results in curved forward integration paths,
making the sampling process inefficient. Recently, hierarchical flow matching (Zhang et al., 2025)
was suggested as an approach to model the multimodal velocity field via coupled ODEs.

To model the multimodal velocity field, hierarchical flow matching essentially applies a flow matching
formulation in the velocity space by matching ‘acceleration.’ It was also suggested to expand the
idea further towards an arbitrary hierarchy level. While this enables to model multimodal velocity
distributions, and also distributions at arbitrary hierarchy levels, the complexity of the modeled
distributions remains identical across all levels of the hierarchy. Said differently, the velocity
distribution that hierarchical flow matching models across levels of its hierarchy is no easier than the
original data distribution, potentially limiting benefits.

We hence wonder: can we gradually simplify the complexity of the distributions across hierarchy
levels? For simplicity, in this paper, we focus on two hierarchy levels. Interestingly, we find mini-
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batch couplings to provide a compelling way to control the “ground-truth” velocity distribution.
Instead of computing intermediate states by interpolating between samples independently drawn from
both the known source distribution and the dataset, we draw a mini-batch of samples from both the
source distribution and the dataset, and subsequently couple them, e.g., via a procedure like optimal
transport. Intuitively, considering as an extreme situation a mini-batch containing the entire dataset
leads to a velocity distribution that is unimodal.

Empirically, we find that hierarchical flow matching with mini-batch coupling in the data space
consistently improves the generation quality of vanilla hierarchical flow matching and vanilla flow
matching with optimal transport coupling. Jointly coupling mini-batch samples in data and velocity
space leads to further benefits if the number of neural function evaluations (NFEs) is low.

2 PRELIMINARIES

Rectified Flow (RF). A rectified flow models an unknown target data distribution ρ1 given a dataset
D = {x1}, where we assume data points x1 ∼ ρ1. Given a known source distribution ρ0 (e.g.,
standard Gaussian), at inference time, source samples x0 ∼ ρ0 evolve from time t = 0 to time t = 1
following the ordinary differential equation (ODE)

dzt = v(zt, t)dt, with z0 ∼ ρ0, t ∈ [0, 1]. (1)

Here, v(zt, t) is a velocity field that depends on time t and the current intermediate state zt. This
ODE-based sampling enables to capture multimodal data distributions.

At training time, flow matching learns the velocity field v(zt, t) by minimizing the ℓ2-loss between
the predicted velocity v(xt, t) and a ground-truth velocity vgt(xt, t). To obtain the ground-truth
velocity we first define an intermediate state xt which, in a rectified flow formulation, is obtained by
linearly interpolating between a randomly drawn source sample x0 and a randomly drawn data point
x1, i.e.,

xt = (1− t)x0 + tx1, wherex0 ∼ ρ0, x1 ∼ D. (2)

Interpreting the intermediate state xt as a location, we obtain the ground-truth velocity vgt(xt, t) =
∂xt/∂t = x1 − x0. Combined, training addresses

inf
v
Ex0∼ρ0,x1∼D,t∼U [0,1]

[
∥x1 − x0 − v(xt, t)∥22

]
, (3)

where the infimum is over all measurable velocity fields. In practice, v(xt, t) is parameterized by a
deep net with trainable parameters θ, i.e., v(xt, t) ≈ vθ(xt, t). The optimization minimizes over θ.

However, for a given t and xt, different pairs (x0, x1) will yield different ground-truth velocities.
The ground-truth velocity distribution at a given time t and intermediate state xt is hence multimodal.
However, the ℓ2-loss averages these velocities, resulting in the ‘optimal’ velocity field: v∗(xt, t) =
E{(x0,x1,t):(1−t)x0+tx1=xt}[vgt(xt, t)]. According to Theorem 3.3 by Liu et al. (2023a), using v∗ in
Equation (1) ensures that the stochastic process has marginal distributions consistent with the linear
interpolation in Equation (2).

To capture multimodal velocity distributions, hierarchical flow matching (Zhang et al., 2025) was
introduced. It explicitly models the multimodal velocity distributions at each time t and intermediate
state xt, enabling a more expressive generative framework.

Hierarchical Rectified Flow (HRF). To model the “ground-truth” velocity distribution more ac-
curately, hierarchical rectified flow extends the classic rectified flow framework by focusing on
velocities rather than locations. This approach effectively involves learning acceleration. In a classic
rectified flow, the time-dependent location xt is computed from pairs (x0, x1), and the ground-truth
velocity vgt(xt, t) = ∂xt/∂t is used to train a velocity model vθ(xt, t).

In hierarchical rectified flow, a source velocity sample v0 ∼ π0 is drawn from a known velocity
distribution π0, while a target velocity sample v1(xt, t) ∼ π1(v;xt, t) is defined at each time t and
location xt = (1 − t)x0 + tx1. For rectified flow, v1(xt, t) is computed via x1 − x0, and these
samples follow the ground-truth velocity distribution π1(v;xt, t).

To learn acceleration, a new time axis τ ∈ [0, 1] is introduced, and a time-dependent velocity
vτ (xt, t) = (1− τ)v0 + τv1(xt, t) is constructed. The ground-truth acceleration is then obtained as
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a(xt, t, vτ , τ) = ∂vτ/∂τ = v1(xt, t)− v0 = x1−x0− v0. For a fixed (xt, t), this leads to the ODE:

duτ (xt, t) = a(xt, t, uτ , τ)dτ, with u0 ∼ π0. (4)

Here, a(xt, t, uτ , τ) is the expected acceleration vector field: a(xt, t, uτ , τ) = Eπ0,π1(v;xt,t)[V1 −
V0|Vτ = u]. The acceleration vector field is learned by addressing

inf
a
Ex0∼ρ0,x1∼D,t∼U [0,1],v0∼π0,τ∼U [0,1]

[
∥(x1 − x0 − v0)− a(xt, t, vτ , τ)∥22

]
. (5)

In practice, the acceleration is parameterized via a deep net aθ(xt, t, vτ , τ), and the model is trained
by minimizing this objective over the parameters θ.

During sampling, coupled ODEs are used:{
duτ (zt, t) = a(zt, t, uτ , τ)dτ, u0 ∼ π0, τ ∈ [0, 1],

dzt = u1(zt, t)dt, z0 ∼ ρ0, t ∈ [0, 1].
(6)

These ODEs map z0 ∼ ρ0 to z1 ∼ ρ1. Sampling involves drawing v0 ∼ π0 and x0 ∼ ρ0, integrating
forward to obtain v1(x0, 0), and then performing location updates iteratively until reaching x1. This
procedure can be implemented using the vanilla Euler method and the trained aθ.

Considering the training objective for acceleration matching (Equation (5)) and the coupled ODEs for
sampling (Equation (6)), both can be naturally extended to any depth. In this paper, we focus solely
on depth-two HRF (HRF2) models.

Minibatch Optimal Transport. Optimal Transport (OT) seeks to find an optimal coupling of two
distributions that minimizes an expected transport cost (Villani, 2009). Suppose α and β are two
distributions in Rd, and c : Rd × Rd → R is some distance. Then OT aims to find the solution of the
following optimization problem:

inf
γ∈Γ

∫
Rd×Rd

c2(x, y)dγ(x, y), (7)

where Γ is the set of all joint distributions with marginals α and β. When α and β are both empirical
distributions, OT reduces to linear programming, which is computationally expensive when the
data size is large (Peyré et al., 2019). While OT is computationally expensive for large datasets,
mini-batch OT (Fatras et al., 2020; 2021) was introduced as an alternative: a small batch of the data
is used to calculate the coupling, obtaining an unbiased estimator of the underlying truth (Fatras
et al., 2020). Although mini-batch OT incurs an error compared to the exact OT, it has found use in
practice (Deshpande et al., 2018; 2019; Pooladian et al., 2023; Tong et al., 2024; Cheng & Schwing,
2025). Tong et al. (2024); Pooladian et al. (2023) showed that training and inference are more efficient
with mini-batch OT.

3 APPROACH

In Section 3.1, we use 1D data to illustrate how mini-batch couplings in data space and velocity space
affect the velocity distribution and the generation of velocity samples. This motivates the development
of HRF with mini-batch coupling and extension of its theory. In Section 3.2, we introduce the training
of HRF2 with mini-batch coupled data points. In Section 3.3, we explain how mini-batch coupling
for velocity is achieved by leveraging a pre-trained model. In Section 3.4, we introduce a two-stage
approach that combines mini-batch data coupling and velocity coupling.

3.1 VELOCITY DISTRIBUTION

For vanilla HRF2, the source and target distributions are independent, meaning γ(x0, x1) =
ρ0(x0)ρ1(x1). Consequently, as derived by Zhang et al. (2025), at time t = 0, the velocity distribu-
tion becomes π1(v;xt, t) = ρ1(xt + v), making it a shifted version of the data distribution. Hence,
learning this distribution is as challenging as directly modeling the data distribution.

To control the complexity of the velocity distribution, we study couplings in data space and velocity
space. Concretely, for couplings in data space, we sample from a distribution γ(x0, x1), which
doesn’t factorize. This can be achieved by coupling samples within each mini-batch, i.e., samples

3
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Figure 1: The generated velocity distributions at (xt, t) = (−1, 0) for the dataset 1D N → 2N using
HRF2, (a) without couplings, (b)-(c) with data coupling (batch sizes: 5 and 100), (d) with velocity
coupling (batch size: 100), (e)-(f) with velocity coupling (batch size: 100) and data coupling (batch
sizes: 5 and 100). Data coupling simplifies the velocity distribution (cf. (a)-(c)), while velocity
coupling reduces the number of sampling steps.

x0 and data points x1 are no longer combined randomly into pairs (x0, x1). We find that this
controls multimodality of the distributions, making them easier to learn and improving overall model
performance. Notably, coupling at one hierarchy level simplifies the distributions at all lower levels,
thereby facilitating the matching process at the current level. Importantly, the complexity of the
learned distribution can be controlled by adjusting the batch size in the mini-batch coupling process.

To illustrate the aforementioned distribution simplification, we provide an example with 1D data.
In this example, the source distribution is a standard Gaussian, while the target distribution is a
mixture of two Gaussians with means located at −1 and 1. As shown in Figure 1(a-c), after applying
data coupling (depth 1), the velocity distribution (depth 2) collapses into a single-mode Gaussian as
the coupling batch size (bs) increases, effectively simplifying the velocity layer’s distribution. The
number given in the legend refers to the number of used velocity ODE integration steps.

From Figure 1(d), we observe that velocity coupling on its own does not simplify the velocity
distribution. Instead, it simplifies the distribution at the next level (acceleration, not shown in the
figure). Simplifying the acceleration distribution straightens the paths for velocity samples, reducing
the number of integration steps needed to model the velocity distribution, as shown in the figure:
5 steps is almost as good as 100 steps. Figure 1(e,f) demonstrates that data coupling and velocity
coupling are not mutually exclusive. They can be applied simultaneously to complement each other.

Formally, HRF was designed with independently sampled x0 and x1. In this paper, we first show
that the underlying theory can be generalized to an arbitrary joint distribution over x0 and x1, i.e.,
γ(x0, x1), which has the correct marginal distributions, i.e.,∫

γ(x0, x1)dx1 = ρ0(x0) and
∫

γ(x0, x1)dx0 = ρ1(x1). (8)

The following theorem characterizes the distribution of the velocity at a specific space-time location
(xt, t) if an arbitrary joint distribution γ is used instead of a product of two independent distributions.
Theorem 3.1. The velocity distribution π1(v;xt, t) at the space-time location (xt, t) induced by the
linear interpolation in Equation (2) for (x0, x1) ∼ γ(x0, x1) is

π1(v;xt, t) =
γ(xt − tv, xt + (1− t)v)

ρt(xt)
, (9)
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Algorithm 1: HRF2 with Data Coupling
Input :The source distributions ρ0 and π0,

the dataset D, and the batch size B.
1 while stopping conditions not satisfied do
2 Sample {x(i)

0 }Bi=1 ∼ ρ0,
{x(i)

1 }Bj=1 ∼ D, and {v(i)0 }Bk=1 ∼ π0;
3 Sample {t(i)}Bi=1∼U [0, 1] and

{τ (i)}Bi=1∼U [0, 1];
4 Use optimal transport to construct a set

of coupled source and target pairs
{(x(i)

0 , x
(σ(i))
1 )}Bi=1;

5 Compute loss following Equation (11);
6 Perform gradient update on θ;
7 end

Output :θ

Algorithm 2: HRF2 with Velocity Coupling
Input :The source distributions ρ0 and π0,

and the dataset D
1 while stopping conditions not satisfied do
2 Sample x0 ∼ ρ0, x1 ∼ D, and v0 ∼ π0;

3 Sample t ∼ U [0, 1] and τ ∼ U [0, 1];

4 Compute coupled v0 and v1(xt, t) using
Algorithm 3;

5 Compute loss using Equation (12);
6 Perform gradient update on θ;
7 end

Output :θ

where
ρt(xt) =

∫
γ(xt − tv, xt + (1− t)v)dv, (10)

and ρt(xt) ̸= 0. The distribution π1(v;xt, t) is undefined if ρt(xt) = 0.

The proof of Theorem 3.1 is deferred to Appendix A. In Appendix B, we provide theoretical analysis
on 1D Gaussian mixtures to illustrate how the mini-batch OT with data coupling is able to simplify
the original multimodal velocity distributions. In addition, Appendix C shows the distribution of the
acceleration under velocity couplings. Combining these two results, we show that data coupling and
velocity coupling can gradually simplify the acceleration distribution.

Next, we detail how data coupling and velocity coupling can be achieved.

3.2 HRF2 WITH DATA COUPLING

To simplify the velocity distribution by reducing its multimodality, it is crucial to understand the cause
of multimodality. During training, if source data x0 and target data x1 are sampled independently, the
multimodality inherent in the data is preserved in the velocity distribution at t = 0. As mentioned in
Section 3.1, Zhang et al. (2025) showed this. Breaking this independence is hence key to simplifying
the velocity distribution. We find that couplings that restrict flexibility, e.g., mini-batch OT, provide
an opportunity to do this. Intuitively, using mini-batch OT results in a coupling of source and target
data that is no longer arbitrary, which inherently simplifies the velocity distribution.

Following Tong et al. (2024); Pooladian et al. (2023), we apply mini-batch OT on the data used for
HRF2 training. Let {x(i)

0 }Bi=1 ∼ ρ0 and {x(i)
1 }Bi=1 ∼ D. The OT problem in Equation (7) can be

solved exactly and efficiently on a small batch size using standard solvers, e.g., POT (Flamary et al.,
2021). The resulting coupling from the algorithm gives us a permutation matrix that pairs x(i)

0 with
x
(σ(i))
1 for i ∈ {1, . . . , B}. Instead of sampling x0 and x1 independently from ρ0 and the dataset D

during training, we jointly sample pairs (x0, x1) from the joint distribution γ(x0, x1) characterized
by the mini-batch OT result. Using these samples, the training objective reads as follows:

min
θ

E(x0,x1)∼γ,t∼U [0,1],v0∼π0,τ∼U [0,1]

[
∥(x1 − x0 − v0)− aθ(xt, t, vτ , τ)∥22

]
. (11)

The optimization procedure is detailed in Algorithm 1.

3.3 HRF2 WITH VELOCITY COUPLING

Similar to data coupling, velocity coupling also aims to eliminate the independence between v0
and v1(xt, t). With mini-batch coupled velocity samples that are drawn from an underlying joint
distribution κxt,t(v0, v1(xt, t)), the corresponding objective function is defined as follows:

min
θ

Ex0∼ρ0,x1∼D,(v0,v1)∼κxt,t,t∼U [0,1],τ∼U [0,1]

[
∥(v1(xt, t)− v0)− aθ(xt, t, vτ , τ)∥22

]
. (12)
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Algorithm 3: Velocity Coupling via Mini-Batch OT
Input :Location (xt, t), source distribution π0, batch size B, and a pre-trained HRF2 model aθ.

1 Sample {v(i)0 }Bi=1 ∼ π0 ;
2 Generate v

(i)
1 (xt, t) from v

(i)
0 via numerically solving Equation (4) with a pre-trained aθ for

i=1,. . ., B;
3 Use OT to couple source and target points;

Output :Coupled samples {(v(i)0 , v
(σ(i))
1 (xt, t))}Bi=1.

Algorithm 2 summarizes the optimization procedure, for which we study the following coupling.

Velocity Coupling via Batch OT. Different from the data coupling, where the target data samples
are readily available, obtaining velocity samples for a fixed (xt, t) requires simulation. Note that the
target velocity samples v1(xt, t) ∼ π1(v;xt, t). To correctly couple v0 and v1(xt, t), it is essential
to fix the space-time location (xt, t), ensuring that the samples v1(xt, t) are drawn from the same
velocity distribution. Thus, the first step of velocity coupling is to obtain a batch of v1(xt, t) at a
fixed (xt, t). We achieve this by using a pre-trained HRF2 model aθ(xt, t, vτ , τ), which transport v0
to v1(xt, t) according to Equation (4). We then use the 2-Wasserstein optimal transport to sample
coupled pairs (v0, v1(xt, t)). This is detailed in Algorithm 3.

3.4 HRF2 WITH HIERARCHICAL DATA & VELOCITY COUPLINGS

As shown before, data and velocity coupling complement each other. To use both couplings we need
(x0, x1) ∼ γ and (v0, v1(xt, t)) ∼ κxt,t. To achieve this, we apply a two-stage training. First, we
use data coupling to train the model aθ according to Algorithm 1. In the second stage, using this
pre-trained model, we generate paired samples (v0, v1(xt, t)) according to Algorithm 3. We then
train our network using the following objective:

min
θ

E(x0,x1)∼γ,(v0,v1)∼κxt,t,t∼U [0,1],τ∼U [0,1]

[
∥(v1(xt, t)− v0)− aθ(xt, t, vτ , τ)∥22

]
. (13)

Importantly, note that the coupling of the velocities depends on the coupling of the data.

3.5 MARGINAL PRESERVING PROPERTY

The consistency of the velocity distribution with mini-batch velocity coupling directly follows prior
works that use mini-batch coupling and reflow for data generation (Tong et al., 2024; Pooladian et al.,
2023).

In addition, we can prove that the generation process according to Equation (6) with trained aθ using
mini-batch data coupling preserves the target data distribution and leads to correct marginals for all
times t ∈ [0, 1].

Theorem 3.2. The time-differentiable stochastic process Z = {Zt : t ∈ [0, 1]} generated by
Equation (6) has the same marginal distribution as the time-differentiable stochastic process X =
{Xt : t ∈ [0, 1]} generated by the linear interpolation in Equation (2) with the joint distribution γ
induced by mini-batch coupling.

The proof of Theorem 3.2 is deferred to Section D.

4 EXPERIMENTS

In this section, we explore how data coupling and velocity coupling influence the velocity distribution
and assess whether simplifying it leads to performance improvements. For all experiments, we
report the total neural function evaluations (NFEs), which represents the product of the number of
integration steps across all HRF levels.
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Figure 2: Results on 8N → moon dataset. Three rows are HRF2, HRF2 with data coupling, HRF2
with data & velocity coupling. (a) and (c) are trajectories (green) of sample particles flowing from
source distribution (grey) to target distribution (blue) with total NFEs 1 and 100. (b) and (d) are
velocity distributions at the center of the bottom left Gaussian mode at t = 0. Data coupling simplifies
the velocity distribution and velocity coupling reduces the required sampling steps.

4.1 SYNTHETIC DATA

We conduct experiments on four synthetic datasets used by Zhang et al. (2025) to ensure a fair
comparison with HRF2. These datasets include two 1D cases (N → 2N , N → 5N ), and two 2D
cases (N → 6N and 8N → moon-shaped data). We use the Wasserstein and sliced 2-Wasserstein
distances to evaluate 1D and 2D experiments, respectively. A complete description of the model
architecture, parameter settings, and training details is provided in Section F.1.

Recall Figure 1: for the 1D N → 2N dataset we observed that data coupling simplifies the velocity
distribution. Now, we extend this analysis to 2D datasets. We denote HRF2 with data coupling as
HRF2-D and HRF2 with joint data and velocity coupling as HRF2-D&V. As shown in Figure 2, the
2D results corroborate the 1D findings. For the original HRF2, the velocity distribution at t = 0 is
simply a shifted version of the data distribution. After applying data coupling, the velocity distribution
at a given space-time location (xt, t) becomes more unimodal, effectively aligning with a portion of
the target distribution. For example, in Figure 2(d), we observe that the velocity distribution primarily
consists of the region of the target distribution closest to xt.

In contrast, velocity coupling does not modify the velocity distribution itself but significantly reduces
the number of required sampling steps. As shown in Figure 2(b), a single integration step already
produces a reasonable velocity distribution with joint data and velocity couplings. The results in
Figure 3 demonstrate that joint data and velocity couplings effectively enhance the model performance,
particularly when NFEs are low. Additional results on synthetic data are provided in Section E.1.

4.2 IMAGE DATA

For high-dimensional image data, we conduct experiments on MNIST (LeCun et al., 1998), CIFAR-
10 (Krizhevsky, 2009), and CelebA-HQ 256 (Karras et al., 2018), using Fréchet Inception Distance
(FID) as the evaluation metric. For MNIST and CIFAR-10, we directly operate in the pixel space,
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(a) 1D N → 2N (b) 1D N → 5N (c) 2D N → 6N (d) 2D 8N → moon

Figure 3: Results on synthetic datasets: (a) 1D N → 2N (b) 1D N → 5N (c) 2D N → 6N (d) 2D
8N → moon. Top row: HRF2-D&V generated data distributions. Bottom row: performance vs. total
NFEs. We use Wasserstein and sliced 2-Wasserstein distances for 1D and 2D data, respectively.
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Figure 4: Results on MNIST, CIFAR-10 and CelebA-HQ 256 datasets. (a) HRF2-D with total NFE=1.
(b) HRF2-D with total NFE=500. (c) HRF2-D&V with total NFE=1. Here we report the results with
HRF2-D&V-OT. (d) FID scores with respect to total NFEs. With joint data coupling and velocity
coupling, HRF2-D&V can generate reasonably good results with only 1 step.

with input dimensions of 1× 28× 28 and 3× 32× 32, respectively. For CelebA-HQ, we first encode
the original 3× 256× 256 images into a 4× 32× 32 latent space using a pretrained VAE encoder,
and conduct training and inference in the latent space. The experiments on CelebA-HQ demonstrate
that the methods scale well on higher-dimensional data.
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We compare our method to RF (Liu, 2022), HRF2 (Zhang et al., 2025) and OT-CFM (Tong et al.,
2024) baselines. HRF2 is the base pre-trained model for our HRF2-D and HRF2-D&V. OT-CFM
is essentially equivalent to HRF1-D. As shown in Figure 4(d), data coupling significantly improves
performance across both low and high total NFEs. However, applying velocity coupling on top of
data coupling only yields substantial improvements in the low-NFE regime. From Figure 4(a)-(c), we
observe that data coupling alone enhances performance at low NFEs, but HRF2-D still struggles in
extreme cases. Notably, incorporating velocity coupling enables the model to generate compelling
results even under the extreme condition of total NFE = 1. More results are presented in Section E.2.

The details of the model architectures are deferred to Section F.2. Since the model architecture
remains unchanged, HRF2-D and HRF2-D&V have the same memory usage and inference time as
HRF2. For training, we apply data coupling and velocity coupling following Algorithms 1 and 2. To
obtain accurate velocity pairs (v0, v1) for velocity coupling, more integration steps are required here
than for synthetic data. More details are provided in Section F.2.

5 RELATED WORK

Flow Matching: Concurrently, Liu et al. (2023a); Lipman et al. (2023); Albergo & Vanden-Eijnden
(2023) presented learning of the ODE velocity that governs the generation of new data through a
time-differentiable stochastic process defined by interpolating between samples from the source and
data distributions. This provides flexibility by enabling precise connections between any two densities
over finite time intervals. Liu et al. (2023a) concentrated on a linear interpolation, which provides
straight paths connecting points from the source and the target distributions. Lipman et al. (2023)
introduced the interpolation through the lens of conditional probability paths leading to a Gaussian.
Albergo & Vanden-Eijnden (2023); Albergo et al. (2023) introduced stochastic interpolants with
more general forms. They all learn the expected velocity field, which leads to curved sampling paths
for data generation. Flow matching has been extended to handle discrete data (Gat et al., 2024; Stark
et al., 2024) and manifold data (Chen & Lipman, 2024).

Straightening Flows: Liu et al. (2023a) proposed an iterative method called reflow, which connects
points from the source and target distributions using a trained rectified flow model to smooth the
transport path. They demonstrated that repeating this process results in an optimal transport map.
However, in practice, errors in the learned velocity field can introduce bias. Other related studies
address this by adjusting how noise and data are sampled during training, rather than using iterations.
For instance, Pooladian et al. (2023); Tong et al. (2024) computed mini-batch optimal transport
couplings between the source and data distributions to reduce transport costs and flow variance.
Park et al. (2024) address the curved paths in flow matching by learning both initial velocity and
acceleration, such that the sampling paths can cross. However, it requires a pre-trained diffusion
model to acquire noise-data pairs. Cheng & Schwing (2025) study conditional data.

Distribution of flow fields: Zhang et al. (2025) capture the distribution of the random flow fields
induced by the linear interpolation of source and target data. The sampling process is governed by
coupled ODEs, which allows sampling paths to cross. Guo & Schwing (2025) model the flow field
distribution using a variational autoencoder.

Building upon work by Zhang et al. (2025), we show that modeling the velocity distributions after the
mini-batch coupling in data space improves the performance of HRF2 and OT-CFM. Hierarchically
coupling the data and velocity leads to significantly improved results at low NFEs.

6 CONCLUSION

We study ways to control the complexity of the multimodal velocity distribution and their impact
on capturing this distribution with hierarchical flow matching. We find hierarchical flow matching
with mini-batch coupling in the data space consistently improves the generation quality compared
to vanilla hierarchical rectified flow matching and vanilla flow matching with mini-batch optimal
transport. Joint coupling in the data space and the velocity space leads to further improvements if few
function evaluations are used. Code will be released for reproducibility of the results.

Limitations and broader impacts: Our proposed methods offer faster and more accurate data
generation. It can help advance scientific modeling and simulations, contributing to advances in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

areas like physics, healthcare, and drug discovery. For the limitations: the current velocity coupling
approach requires simulated target velocity samples during training. Simulation-free velocity coupling
is an interesting direction for future research.
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APPENDIX: HIERARCHICAL RECTIFIED FLOW MATCHING WITH MINI-BATCH
COUPLINGS

This appendix is structured as follows: in Section A, we provide the proof of Theorem 3.1; in
Section B, we show how mini-batch OT simplifies the 1D velocity distributions; in Section C, we
assess acceleration distributions under couplings; in Section D we provide the proof of Theorem 3.2;
in Section E we provide additional results for both synthetic and image data; in Section F we discuss
implementation details.

A PROOF OF THEOREM 3.1

Proof of Theorem 3.1: For simplicity, we show the proof for 1D random variables x0 and x1 drawn
from a joint distribution γ(x0, x1). The joint distribution of v(xt, t) and xt is π1(v;xt, t)ρt(xt), since
π1(v;xt, t) corresponds to the conditional distribution of the velocity given location xt. According
to the linear interpolation in Equation (2), we have[

v(xt, t)
xt

]
=

[
1 −1
t (1− t)

] [
x1

x0

]
= A

[
x1

x0

]
, (14)

where the matrix A has determinant 1. Since [v(xt, t), xt]
T is a linear transformation of [x1, x0]

T ,
we have the following expression for the joint distribution of v(xt, t) and xt:

π1(v;xt, t)ρt(xt) =
1

det(A)
γ

(
A−1

[
v(xt, t)

xt

])
= γ(xt − tv, xt + (1− t)v). (15)

After rearranging, we get π1(v;xt, t) =
γ(xt−tv,xt+(1−t)v)

ρt(xt)
. For the higher dimensional case, the

relation in Equation (15) still holds. This completes the proof. ■

B MINI-BATCH OT ANALYSIS

Here we use 1D distributions to illustrate how mini-batch OT in the data space simplifies the velocity
distributions. We have the following result:

Theorem B.1. Let ρ0 be a standard 1D Gaussian distribution, and ρ1 be a mixture of two well-
separated Gaussians, i.e., ρ1 = 1

2N (−1, σ2) + 1
2N (1, σ2) and σ ≪ 1. Let B denote the batch size,

with B = 2k for some positive integer k. Let δ1 and δ2 be non-negative functions of k such that
δ1k → 0 and δ22k → 0 when k → ∞. Then there exist positive constants c1, c2 with probability at
least 1− 2 exp(−c1δ

2
1k)− 2 exp(−c2δ

2
2k), such that the velocity distribution π1(v;x, t) is unimodal

after mini-batch OT matching for x /∈ [l, u],where l and u depend on k, δ1, δ2, and t. The probability
that x ∈ [l, u] is

∫ u

l
ρt(x)dx. As k → ∞, l = u and the velocity distributions are unimodal almost

surely.

Proof of Theorem B.1:

Let {xi
0}Bi=1 and {xi

1}Bi=1 be a mini-batch of data points drawn independently from the source
distribution ρ0 and the target ρ1 respectively. Without loss of generality, we assume that the target
mixture distribution is well-separated such that for each batch the largest sample drawn from the left
mode N (−1, σ2) is smaller than the smallest sample drawn from the right mode N (1, σ2) with high
probability.

Let {x(i)
0 }Bi=1 and {x(i)

1 }Bi=1 be the respective ordered statistics. That is x(1)
0 ≤ x

(2)
0 ≤ · · · ≤ x

(B)
0

and x
(1)
1 ≤ x

(2)
1 ≤ · · · ≤ x

(B)
1 . Thus the optimal transport maps x

(i)
0 to x

(i)
1 for all i ∈ [B]. We

define a jump as J = min{i ∈ [B] : x
(i)
1 ∼ N (−1, σ2), x

(i+1)
1 ∼ N (1, σ2)}.

We first consider velocity v at t = 0. Note that for each mini-batch, v(b)(x(i)
0 , 0) = x

(i)
1 − x

(i)
0

is always unimodal after an OT match, as it is deterministic. However, multimodality takes place
if {v(b)(x0, 0)}b∈[M ] points to different GMM modes in a neighborhood of x0. In other words,
multimodality of π(v;x0, 0) is in fact caused by randomness among different batches. For example

12
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Batch_1 1
2N (−1, σ2) + 1

2N (1, σ2)

t = 1

t = 0

× × × × ×

×× ×××
Batch_2

N (0, 1)

t = 1

t = 0

×× ×××

×××× ×

Figure 5: OT mapping of points between t = 1 and t = 0 for two mini-batches in red line. The
green-circled samples are x(J1)

0 and x
(J2+1)
0 . The velocity distribution is π(v;x, 0) is multimodal for

x ∈
[
x
(J2+1)
0 , x

(J1)
0

]
.

in two different batches, whenever x(J1)
0 > x

(J2+1)
0 , π(v;x0, 0) is multimodal in this region, see

Figure 5 for an intuitive graphical illustration. Thus, we aim to control x(J)
0 to restrict the region of x0

that have multimodal velocity distributions. To control x(J)
0 , we start with providing a concentration

bound on J in the following lemma.
Lemma B.2. For δ1 > 0 there exists c1 > 0 such that with probability at least 1− 2 exp(−c1δ

2
1k),

|J − k| ≥ δ1k. (16)

Proof. By definition, J is essentially the number of samples drawn from the first Gaussian mode,
which follows a Binomial(B, 1/2). Thus, EJ = k. By Chernoff’s inequality (Vershynin, 2018), we
have for δ1 ∈ (0, 1],

P(|X − µ| ≥ δ1µ) ≤ 2 exp(−c1µδ
2
1),

where X is binomial and µ = EX . Thus, with probability at least 1 − 2 exp(−c1δ
2
1k), we have

|J − k| ≥ δ1k.

The above lemma suggests that we lower bound x
((1−δ1)k)
0 and upper bound x

((1+δ1)k)
0 respectively,

where we utilize the following lemma.
Lemma B.3. Let X1, . . . , XN be i.i.d. random variables with CDF F . Let X(1), . . . , X(N) be the
ordered statistics. Then ∀r ∈ [N ],

F (X(r)) ∼ Beta(r,N + 1− r). (17)

Proof. Let F and f be the CDF and PDF of X . We first show the CDF of the r-th ordered statistic
X(r).

F(r)(x) = P(at least r Xi ≤ x) =

N∑
j=r

(
N

j

)
F (x)j [1− F (x)]N−j .

Hence the PDF is

f(r)(x) =
d

dx
F(r)(x) =

N !

(r − 1)!(N − r)!
F (x)r−1[1− F (x)]N−rf(x).

Let U = F (X(r)), so that U ∈ [0, 1]. Using change of variable, u = F (x), the PDF fU is

fU (u) = f(r)(x)

∣∣∣∣∣dxdu
∣∣∣∣∣
x=F−1(u)

∝ F (x)r−1[1− F (x)]N−rf(x)
1

f(x)

∝ ur−1(1− u)N−r,
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which is a Beta(r,N + 1− r) distribution.

Lemma B.3 shows that P(X(r) ≥ a) = P(F (X(r)) ≥ F (a)), where the later tail probability could
be bounded using concentration of the Beta distribution. We state it in the following lemma, which is
a direct result of (Skorski, 2023).
Lemma B.4. Let F be the CDF of a continuous random variable x. For some δ1 ∈ (0, 1) and
δ2 > 0, let l = F−1(E(F (x((1−δ1)k)))−δ2) and u = F−1(E(F (x((1+δ1)k)))+δ2). Then there exist
positive constants C1, C2 such that with probability at least 1−exp(−C1δ

2
2k) and 1−exp(−C2δ

2
2k):

x((1−δ1)k) > l and x((1+δ1)k) < u respectively. Further, limk→∞ l = limk→∞ u if δ1, δ2 are chosen
such that δ1k → 0 and δ22k → 0 when k → ∞.

Proof. The proof is an application of Theorem 1 in (Skorski, 2023). Without loss of generality, we
assume (1± δ1)k are integers. Now U1 = F (x((1−δ1))k) ∼ Beta((1− δ1)k, (1 + δ1)k + 1). Thus

P(U1 < EU1 − δ2) ≤ exp(−δ22/2θ),

where θ = (1−δ1)k[(1+δ1)k+1]
(2k+1)2(2k+2) ≃ C1/k for some absolute constant C1 > 0. Denoting l =

F−1(E(F (x((1−δ1)k)))− δ2), we have with probability at least 1− exp(−C1δ
2
2k), x

((1−δ1)k) > l.
A similar proof leads to the upper bound u.

If δ1, δ2 are chosen such that δ1k → 0 and δ22k → 0 when k → ∞, then δ2 → 0 and (1± δ1)k ∼ k.
Thus l = u = F−1(E(F (xk))) = Ex in the limit.

Combining Lemma B.2 and Lemma B.4, the multimodal region of π1(v;x0, 0) is bounded by [l, u]
with probability at least 1− 2 exp(−c1δ

2
1k)− 2 exp(−c2δ

2
2k) for some absolute constant c1, c2. The

probability that x0 ∈ [l, u] is
∫ u

l
ρ0(x)dx. By further choosing δ1, δ2 such that δ1k → 0 and δ22k → 0

when k → ∞, l = u in the limit, eliminating all multimodality almost surely.

Since there is a bijection between (x0, x1) and (xt, x1) for all t ∈ (0, 1), OT matching has the same
effect on (xt, x1) as on (x0, x1). The joint distribution of (xt, x1) is uniquely determined by (x0, x1).
Thus the proof on (x0, x1) can be used for (xt, x1), completing the proof of Theorem B.1.

A direct extension of Theorem B.1 is as follows.
Corollary B.5. Let the target ρ1 be a uniform mixture of K well-separated Gaussians, i.e., ρ1 =
1
K

∑K
i=1 N (µi, σ

2). Under the same settings as in Theorem B.1, let δ1 and δ2 be non-negative
functions of k such that δ1k → 0 and δ22k → 0 wehn k → ∞. Then there exist positive constants
c1, c2, with probability at least 1 − 2(K − 1) exp(−c1δ

2
1k) − 2(K − 1) exp(−c2δ

2
2k), such that

after mini-batch OT matching the velocity distribution π1(v;x, t) is unimodal for x /∈
⋃K−1

i=1 [li, ui],
where {li}K−1

i=1 and {ui}K−1
i=1 depend on k, δ1, δ2, and t. The probability that x ∈

⋃K−1
i=1 [li, ui]

is
∑K−1

i=1

∫ ui

li
ρt(x)dx. As k → ∞, li = ui for all i ∈ [K − 1], and the velocity distributions are

unimodal almost surely.

Proof. In view of Theorem B.1, we prove the Corollary by induction. We first view N (µ1, σ
2)

as one mode and the rest jointly as another. Applying Theorem B.1, we have with probability at
least 1− 2 exp(−c1δ

2
1k)− 2 exp(−c2δ

2
2k) the multimodal region of v is bounded by (l1, u1). We

then consider the left two modes N (µ1, σ
2) and N (µ2, σ

2) jointly as one mode, and the rest jointly
as another. Again applying Theorem B.1 we have with probability at least 1 − 2 exp(−c1δ

2
1k) −

2 exp(−c2δ
2
2k) the multimodal region of v is bounded by (l2, u2). Thus by induction,

P(v is multimodal) ≤ P

(
xt /∈

K−1⋃
i=1

(li, ui)

)

≤
K−1∑
i=1

P (xt /∈ (li, ui))

≤ (K − 1)[2 exp(−c1δ
2
1k) + 2 exp(−c2δ

2
2k)].

In the above derivation, the second inequality uses the union bound, and the third uses the result
of Theorem B.1. Similar to the proof of Lemma B.4, li = ui when k → ∞.
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C DISTRIBUTION OF ACCELERATION a

In this section, we derive the acceleration distribution induced by linearly interpolating source and
target data samples x0, x1 and by linearly interpolating source and target velocity samples v0 and
v(xt, t). Here, (v0, x0, x1) are drawn from an underlying joint distribution γ. In addition, we consider
the acceleration distribution under the velocity coupling κxt,t at (xt, t).
Theorem C.1. The acceleration distribution p(a;xt, t, vτ , τ) is

p(a;xt, t, vτ , τ) =
γ (vτ − τa, xt − t(vτ + (1− τ)a), xt + (1− t)(vτ + (1− τ)a))

pt,τ (xt, vτ )
, (18)

given a location (xt, t, vτ , τ) induced by linearly interpolating data and velocity from (v0, x0, x1) ∼
γ drawn from a joint distribution γ that satisfies∫

γ(v0, x0, x1)dx0dx1 = π0(v0),

∫
γ(v0, x0, x1)dv0dx1 = ρ0(x0),

∫
γ(v0, x0, x1)dv0dx0 = ρ1(x1).

(19)
Here,

pt,τ (xt, vτ ) =

∫
γ (vτ − τa, xt − t(vτ + (1− τ)a), xt + (1− t)(vτ + (1− τ)a)) da. (20)

The distribution p(a;xt, t, vτ , τ) is undefined if pt,τ (xt, vτ ) = 0.

Proof. For simplicity, we show the proof for 1D random variables v0, x0 and x1 drawn from a joint
distribution γ(v0, x0, x1). The joint distribution of aτ , vτ , and xt is p(a;xt, t, vτ , τ)pt,τ (xt, vτ ),
since p(a;xt, t, vτ , τ) corresponds to the conditional distribution of the acceleration given locations
xt and vτ . According to the linear interpolation in Equation (2), we have[

vτ
a
xt

]
=

[
1− τ τ 0
−1 1 0
0 0 1

][
v0

v(xt, t)
xt

]
=

[
1− τ τ 0
−1 1 0
0 0 1

][
1 0 0
0 −1 1
0 1− t t

][
v0
x0

x1

]

=

[
1− τ −τ τ
−1 1 1
0 1− t t

][
v0
x0

x1

]
= A

[
v0
x0

x1

]
, (21)

where the matrix A has determinant 1. Since [vτ , a, xt]
T is a linear transformation of [v0, x0, x1]

T ,
we have the following expression for the joint distribution of a and (xt, vτ ):

p(a;xt, t, vτ , τ)pt,τ (xt, vτ ) =
1

det(A)
γ

(
A−1

[
vτ
aτ
xt

])
= γ(vτ − τa,−tvτ − t(1− τ)a+ xt, (1− t)vτ + (1− t)(1− τ)a+ xt).

(22)

After rearranging we get p(a;xt, t, vτ , τ) =
γ(vτ−τa,−tvτ−t(1−τ)a+xt,(1−t)vτ+(1−t)(1−τ)a+xt)

pt,τ (xt,vτ )
. For

the higher dimensional case, the relation in Equation (22) still holds. This completes the proof.

Theorem C.1 is stated for a general form of coupling among three random variables V0, X0, and X1.
In practice, we focus on hierarchically coupling the data and the velocity, for which we have the
following corollary.
Corollary C.2. The acceleration distribution p(a;xt, t, vτ , τ) is

p(a;xt, t, vτ , τ) =
κxt,t(vτ − τa, vτ + (1− τ)a)

ρτ (vτ )
, (23)

given location (xt, t, vτ , τ) induced by linearly interpolating between v0 and v1 from (v0, v1) ∼ κxt,t

drawn from a joint distribution κ that satisfies∫
κxt,t(v0, v1)dv1 = π0(v0) and

∫
κxt,t(v0, v1)dv0 = π1(v1;xt, t). (24)

Here, ρτ (vτ ) =
∫
κxt,t(vτ − τa, vτ + (1− τ)a)da. The distribution p(a;xt, t, vτ , τ) is undefined if

ρτ (vτ ) = 0.
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Proof. The proof strategy is similar to the proof of Theorem 3.1, replacing xt with vτ , v(xt, t) with
a(xt, t, vτ , τ), and γ with κxt,t.

Combining the results in Appendix B and Corollary C.2, we can see that the data coupling results in
simpler (less multimodal) target velocity distributions. In addition, with the velocity coupling κxt,t,
we further simplify the acceleration distributions.

D PROOF OF THEOREM 3.2

Proof of Theorem 3.2: We consider the characteristic function of Zt+∆t = Zt + V∆t for t ∈ [0, 1]
and ∆t ∈ [0, 1− t], assuming that Zt has the same distribution as Xt. If the characteristic functions
of Zt+∆t and Xt+∆t agree, then Zt+∆t and Xt+∆t have the same distribution.

To show this, we evaluate the characteristic function of Zt+∆t,

E
[
eı⟨k,Zt+∆t⟩

]
= Eρt,π1

[
eı⟨k,Xt+V∆t⟩

]
=

∫ ∫
eı⟨k,xt+v∆t⟩π1(v;xt, t)ρt(xt)dvdxt

a
=

∫ ∫
eı⟨k,xt+v∆t⟩ γ(xt − vt, xt + (1− t)v)

ρt(xt)
ρt(xt)dvdxt

=

∫ ∫
eı⟨k,(xt+v∆t)⟩γ(xt − tv, xt + (1− t)v)dvdxt

b
=

∫ ∫
eı⟨k,(1−t−∆t)x0+(t+∆t)x1⟩γ(x0, x1)dx0dx1

= Eρt+∆t

[
eı⟨k,Xt+∆t⟩

]
. (25)

We use the notation ⟨·, ·⟩ to denote the inner product. Equality a is valid due to Theorem 3.2. Equality
b holds because x0 = xt − tv and x1 = xt + (1− t)v due to the linear interpolation. Therefore, we
find that Zt+∆t and Xt+∆t follow the same distribution. In addition, since Z0 and X0 follow the
same distribution ρ0, we can conclude that Zt and Xt follow the same marginal distribution at t for
t ∈ [0, 1]. This completes the proof. ■

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SYNTHETIC DATA RESULTS

We present more results on synthetic data: Figure 6 for 1D N → 2N data, Figure 7 for 1D N → 5N
data, and Figure 8 for 2D N → 6N data. Across all these experiments, we consistently observe that
data coupling simplifies the velocity distribution, while velocity coupling significantly reduces the
required sampling steps. This corroborates the findings discussed in the main paper.

E.2 IMAGE DATA RESULTS

We present more results on image data: Table 1 for MNIST, Table 2 for CIFAR-10, and Table 3
and Figure 9 for CelebA-HQ 256. Again, we consistently observe that data coupling enhances
sampling quality for both low and high total NFEs, but collapses when total NFE is reduced to 1,
while velocity coupling produces high-quality samples even under this extreme case.

E.2.1 PERFORMANCE GAINS ACROSS DATASETS OF INCREASING COMPLEXITY

We evaluate performance gains across datasets of increasing complexity (MNIST → CIFAR-10
→ CelebA-HQ). As shown in Table 4, HRF2-D consistently improves generation quality, with
no clear diminishing trend as the evaluation resolution increases. Moreover, as shown in Table 5,
HRF2-D&V significantly boosts performance at fixed low NFE, achieving up to 74.3% improvement
on CelebA-HQ. These results demonstrate that our method scales well and remains effective on
high-dimensional datasets.
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Figure 6: Results on 1D N → 2N data. The three rows correspond to HRF2, HRF2 with data
coupling, HRF2 with data & velocity coupling. (a) and (b) are generated data distribution with total
NFEs 1 and 100. (c) is velocity distribution at (xt, t) = (−1, 0).
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Figure 7: Results on 1D N → 5N data. The three rows correspond to HRF2, HRF2 with data
coupling, HRF2 with data & velocity coupling. (a) and (b) are generated data distribution with total
NFEs 1 and 100. (c) is velocity distribution at (xt, t) = (0, 0).
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Figure 8: Results on 2D N → 6N data. The three rows correspond to HRF2, HRF2 with data
coupling, HRF2 with data & velocity coupling. (a) and (c) are trajectories (green) of sample particles
flowing from source distribution (grey) to target distribution (blue) with total NFEs 1 and 100. (b)
and (d) are velocity distributions at (0, 1) at t = 0.

Table 1: FID performance on MNIST under different total NFE settings. Bold for the best.
Total NFEs RF (1.08M) OT-CFM (1.08M) HRF2 (1.07M) HRF2-D (1.07M) HRF2-D&V (1.07M)

5 19.187 ± 0.188 13.977 ± 0.166 15.798 ± 0.151 10.167 ± 0.136 5.519 ± 0.112
10 7.974 ± 0.119 4.477 ± 0.099 6.644 ± 0.076 3.823 ± 0.038 3.861 ± 0.089
20 6.151 ± 0.090 2.763 ± 0.036 3.408 ± 0.076 2.318 ± 0.053 3.720 ± 0.045
50 5.605 ± 0.057 2.321 ± 0.038 2.664 ± 0.058 1.929 ± 0.031 3.604 ± 0.016

100 5.563 ± 0.049 2.346 ± 0.023 2.588 ± 0.075 1.847 ± 0.011 3.423 ± 0.003
500 5.453 ± 0.047 2.296 ± 0.007 2.574 ± 0.121 1.913 ± 0.043 3.546 ± 0.107

E.2.2 SUB-OPTIMAL CHECKPOINTS

Since HRF2-D is used to generate the training set for HRF2-D&V, one should expect that the quality
of HRF2-D impacts the performance of HRF2-D&V. Our empirical results show that HRF2-D&V is
relatively robust to the specific checkpoint, as long as the result quality is reasonable. In Table 6, we
report the FID of the generated CIFAR-10 images at different training stages. It shows that using
a suboptimal HRF2-D checkpoint yields similar performance to using the best checkpoint. This
suggests that the second-stage training is robust to such variations.

E.2.3 VELOCITY COUPLING WITH REFLOW

In our velocity coupling setting, if we directly use (v0, v1) pairs generated from HRF2-D, it will be
similar to the reflow process proposed by Liu (2022). We test and show in Table 7 that for CIFAR-10,
using reflow for velocity coupling is slightly worse compared to velocity coupling with batch OT.
Similar trends were observed on MNIST and CelebA-HQ data.
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Table 2: FID performance on CIFAR-10 under different total NFE settings. Bold for the best.
Total NFEs RF (35.75M) OT-CFM (35.75M) HRF2 (44.81M) HRF2-D (44.81M) HRF2-D&V (44.81M)

5 36.209 ± 0.142 23.111 ± 0.010 30.884 ± 0.104 22.817 ± 0.072 6.315 ± 0.057
10 14.113 ± 0.092 12.564 ± 0.016 12.065 ± 0.024 10.969 ± 0.025 5.739 ± 0.017
20 8.355 ± 0.065 8.553 ± 0.002 7.129 ± 0.027 6.860 ± 0.022 5.332 ± 0.009
50 5.514 ± 0.034 5.911 ± 0.005 4.847 ± 0.028 4.739 ± 0.006 5.142 ± 0.024

100 4.588 ± 0.013 4.952 ± 0.012 4.334 ± 0.054 4.301 ± 0.022 5.078 ± 0.044
500 3.887 ± 0.035 4.184 ± 0.086 3.706 ± 0.043 3.578 ± 0.028 5.095 ± 0.032

Table 3: FID performance on CelebA-HQ 256 under different total NFE settings. Bold for the best.
Total NFEs RF (457.06M) OT-CFM (457.06M) HRF2 (616.20M) HRF2-D (616.20M) HRF2-D&V (616.20M)

5 38.641 ± 0.126 29.646 ± 0.093 34.246 ± 0.107 32.918 ± 0.085 7.612 ± 0.015
10 16.876 ± 0.088 12.879 ± 0.083 15.391 ± 0.074 13.424 ± 0.022 6.931 ± 0.038
20 10.027 ± 0.060 7.426 ± 0.042 9.291 ± 0.042 7.048 ± 0.033 6.560 ± 0.039
50 7.395 ± 0.021 5.545 ± 0.023 6.927 ± 0.041 5.529 ± 0.021 6.330 ± 0.022

100 6.850 ± 0.064 5.236 ± 0.034 6.450 ± 0.062 4.961 ± 0.019 6.248 ± 0.023
500 6.418 ± 0.026 5.094 ± 0.019 6.188 ± 0.056 4.624 ± 0.029 6.225 ± 0.015

F IMPLEMENTATION DETAILS

F.1 SYNTHETIC DATA

For synthetic data experiments, we employ a neural network architecture with two distinct stages. The
first stage separately encodes spatial and temporal inputs with linear layers and Sinusoidal Positional
Embeddings. The second stage concatenates the processed features and refines them through multiple
linear layers to produce the final output. The model consists of 304,513 parameters, totaling 0.30M
in size.

For data coupling, we train the model from scratch following Algorithm 1 strictly. A key consideration
is the choice of batch sizes, as two different batch sizes are involved – one for batch OT and another
for training. In 1D and 2D experiments, a large batch size is necessary for stable training, but using
an excessively large batch size for batch OT is computationally inefficient. To address this, we set
the batch size for batch OT to 100 while using a batch size of 1,000 for gradient computation. This
means that in each training iteration, we perform batch OT on 100 data points 10 times to accumulate
a full batch for gradient updates.

For velocity coupling, we use the HRF2-D model from the previous step as the base model to
generate (v0, v1) pairs at a fixed space-time location (xt, t), following Algorithm 2. During training,
we observed that the performance depends on the quality of the base model. To mitigate this, we save
multiple checkpoints of HRF2-D and select the best-performing checkpoint via a validation dataset
as the base model for velocity coupling.

Computational requirements during training are shown in Table 8. In the low-dimensional setting,
batch OT becomes more time-consuming than the training itself. As a result, HRF2-D trains
significantly slower than HRF2. In contrast, HRF2-D&V uses precomputed velocity pairs and
therefore does not require batch OT during training. Moreover, it operates with a smaller batch size
(1000) than HRF2 (5000), resulting in lower memory usage and faster training.

During the evaluation, we select the best checkpoint from a validation set for all models (HRF2,
HRF2-D, HRF2-D&V). For each seed, we conduct the experiment three times, yielding three best
models per seed. Each model is then evaluated three times, resulting in nine experimental results
per seed. Finally, we report the mean and standard deviation over three different seeds, totaling 27
experimental results.

F.2 IMAGE DATA

We adapt and modify the model architectures from Zhang et al. (2025) for MNIST and CIFAR-10
data and the model architecture from Dao et al. (2023) for the CelebA-HQ data.
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(a) RF (b) OT-CFM (c) HRF2 (d) HRF2-D (e) HRF2-D&V

Figure 9: Examples of the generated images for CelebA-HQ starting from the same noise for all
models. The 5 rows from top to bottom correspond to total NFEs = 1, 5, 10, 50, 500.

Table 4: Best FID comparison of baseline and HRF2-D on different datasets. HRF2-D achieves
consistent improvements over the baseline.

Dataset Image Size Baseline (best) HRF2-D (best) HRF2-D Improv.

MNIST 1×28×28 2.296 1.847 19.6%
CIFAR-10 3×32×32 3.706 3.578 3.5%
CelebA-HQ 3×256×256 5.094 4.624 9.2%

MNIST. For MNIST, we use the standard UNet. The ResNet blocks in the UNet function similarly
to the model used for synthetic data. They process spatial and temporal inputs separately using
convolutional and linear layers, respectively. The processed features are then concatenated and passed
through a series of linear layers to capture space-time dependencies. The model consists of 1.07M
parameters.

CIFAR-10. For CIFAR-10, the model consists of two UNets: a large UNet for processing vτ and τ ,
and a smaller UNet (one-fourth the size) for processing xt and t. The outputs of each ResNet block
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Table 5: FID comparison of baseline and HRF2-D&V at NFE=5. Our HRF2-D&V model significantly
outperforms the best baseline with large relative improvements.

Dataset Image Size Best Baseline@NFE=5 HRF2-D&V@NFE=5 HRF2-D&V Improv.

MNIST 1×28×28 13.977 5.519 60.5%
CIFAR-10 3×32×32 23.111 6.315 72.7%
CelebA-HQ 3×256×256 29.646 7.612 74.3%

Table 6: Evaluation of HRF2-D&V model using HRF2-D at different training stages (steps). Reported
values are the corresponding metric scores with NFE set to 100 and 5, respectively.

Training Stage (steps) HRF2-D NFE=100 HRF2-D&V NFE=5

Very early checkpoint (100k) 6.935 9.326
Later checkpoint (300k) 4.672 6.833
Latest checkpoint (400k) 4.301 6.315

Table 7: Performance comparison with and without OT for velocity coupling across different NFE
values. Our OT-based method consistently improves results over the velocity coupling with reflow.

NFE 5 10 20 50 100 500

w/o OT (reflow) 6.632 ± 0.074 5.929 ± 0.057 5.669 ± 0.036 5.398 ± 0.007 5.273 ± 0.017 5.261 ± 0.027
w/ OT (ours) 6.315 ± 0.057 5.739 ± 0.017 5.332 ± 0.009 5.142 ± 0.024 5.078 ± 0.044 5.095 ± 0.032

in the smaller UNet are input to the corresponding ResNet blocks in the larger UNet, facilitating
information exchange between different scales. The model consists of 44.81M parameters.

CelebA-HQ. For CelebA-HQ, we first encode images into a latent space using the pretrained VAE
encoder from Stable Diffusion (Rombach et al., 2022). We then use DiT (Peebles & Xie, 2023) as the
backbone to process vτ in this latent space. To condition the velocity prediction on xt, we inject xt

into each DiT block via cross-attention layers, while keeping the main DiT architecture unchanged.
The time embedding is also modified by replacing embedding(t) with embedding(t)+embedding(τ)
to incorporate time information in both time axes.

For training RF and OT-CFM on MNIST and CIFAR-10, we follow the procedures and hyperpa-
rameter settings from Tong et al. (2024) and Lipman et al. (2023). For HRF2 on the same datasets,
we adopt the training setup from Zhang et al. (2025). For all models on CelebA-HQ, we follow the
procedures and hyperparameters from Dao et al. (2023).

For data coupling, we train the model from scratch following Algorithm 1. Both the batch OT and
training batch sizes are set to 128 for MNIST and CIFAR-10 and 256 for CelebA-HQ.

For velocity coupling, we start from the HRF2-D model obtained in the previous step. Following the
synthetic data experiments, we select the best-performing model on the validation dataset to ensure
training quality. The training speed for velocity coupling is primarily limited by the velocity sample
generation. Therefore, we generate velocity pairs before training and perform the training offline.

We train the UNet for MNIST and CIFAR-10 on 1 NVIDIA L40S GPU and the DiT for CelebA-HQ
on 8 NVIDIA L40S GPUs. Computational requirements, including training time and memory usage,
are shown in Tables 9 to 11.

For each model, we conduct five evaluation runs, and report the means and standard deviations.

We use the emd function from the Python Optimal Transport (pot) library to compute exact OT.
While the theoretical worst-case complexity is O(n3), we empirically observe much lower runtime
scaling. As shown in Table 12, on CIFAR-10 data, the OT time grows sub-quadratically over batch
sizes from 32 to 256, and remains negligible compared to a single training step (<2%).
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Table 8: Computational requirements during training on synthetic datasets.
Training 1D data 2D data

HRF2 (0.30M) HRF2-D (0.30M) HRF2-D&V (0.30M) HRF2 (0.32M) HRF2-D (0.32M) HRF2-D&V (0.32M)
Time (s/iter) 0.0028 0.0581 0.0025 0.0029 0.0588 0.0027

Memory (MB) 658 658 566 660 660 568
Param. Counts 304,513 304,513 304,513 321,154 321,154 321,154

Table 9: Computational cost and model size for different methods on MNIST.
MNIST RF (1.08M) OT-CFM (1.08M) HRF2 (1.07M) HRF2-D (1.07M) HRF2-D&V (1.07M)
Time (s/iter) 0.045 0.046 0.046 0.046 0.046
Memory (MB) 2546 2546 2546 2546 2546
Param. Counts 1,075,361 1,075,361 1,065,698 1,065,698 1,065,698

Table 10: Computational cost and model size for different methods on CIFAR-10.
CIFAR-10 RF (35.75M) OT-CFM (35.75M) HRF2 (44.81M) HRF2-D (44.81M) HRF2-D&V (44.81M)
Time (s/iter) 0.166 0.169 0.196 0.202 0.200
Memory (MB) 7480 7480 9220 9220 9220
Param. Counts 35,746,307 35,746,307 44,807,843 44,807,843 44,807,843

G INTEGRATING SHORTCUT MODELS INTO HIERARCHICAL RECTIFIED FLOW

Our data coupling and velocity coupling formulation provides a general framework that can be
combined with any flow matching (FM) model. This is because the inner hierarchy of our coupled
ODE in Equation (6) is a standard flow matching process, so any alternative parameterization of the
acceleration field can be plugged in without modifying the hierarchical structure.

In this section, we use the ShortCut model (Frans et al., 2025) as an example to illustrate how
distillation and one/few step FM algorithms can be incorporated into our setting. The ShortCut model
introduces a desired step size d. The step size allows the model to anticipate future curvature and
jump to the correct next point rather than drifting off the true trajectory. The one step update becomes

xt+d = xt + sθ(xt, t, d) d,

where the model sθ(xt, t, d) learns shortcuts for all combinations of xt, t, and d.

The training objective contains two terms: a standard flow matching loss and a self-consistency loss:

Ex0∼N (0,I), x1∼D, t∼U [0,1] d∼p(d)

[
∥sθ(xt, t, 0)− (x1 − x0)∥22 + ∥sθ(xt, t, 2d)− starget∥22

]
,

where starget = sθ(xt, t, d)/2 + sθ(xt+d, t+ d, d)/2.

To integrate this formulation into our hierarchical rectified flow, we replace the inner flow matching
update of Equation (6) with the shortcut parameterization. The one step update becomes

vτ+d = vτ + sθ(xt, t, vτ , τ, d) d.

The corresponding objective is then

Ex0∼ρ0, x1∼D , t∼U [0,1], v0∼π0, τ∼U [0,1], d∼p(d)[
∥sθ(xt, t, vτ , τ, 0)− (x1 − x0 − v0)∥22 + ∥sθ(xt, t, vτ , τ, 2d)− starget∥22

]
,

where starget = sθ(xt, t, vτ , τ, d)/2 + sθ(xt, t, vτ+d, τ + d, d)/2.

Following the ShortCut model, the step size d is drawn uniformly from the set
{1/128, 1/64, · · · , 1/2, 1}.

We evaluate this integration on the CIFAR-10 dataset. As shown in Table 13, Shortcut alone gives
relatively high FID at one step, and combining the two consistently improves upon ShortCut. This
confirms that the data and velocity coupling and shortcut-based distillation can be jointly used within
our framework.
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Table 11: Computational cost and model size for different methods on CelebA-HQ.
CelebA-HQ 256 RF (457.06M) OT-CFM (457.06M) HRF2 (616.20M) HRF2-D (616.20M) HRF2-D&V (616.20M)
Time (s/iter) 0.418 0.420 0.688 0.688 0.688
Memory per GPU (GB) 26.65 26.65 39.89 39.89 36.79
Param. Counts 457,062,416 457,062,416 616,197,186 616,197,186 616,197,186

Table 12: Comparison of OT computation time and training step time across different batch sizes. OT
time remains negligible compared to the cost of one training step.

Batch Size 32 64 128 256

OT time (s) 0.00078 0.00117 0.00215 0.00670
One train step time (s) 0.07 0.09 0.18 0.37

H ADAPTIVE SOLVERS

Our sampler consists of two nested integrations, and the inner integration follows a standard flow
matching update. Since this inner step is independent of the hierarchical coupling structure, it can be
replaced by any higher-order or adaptive ODE solver without modifying the formulation. This makes
our framework compatible with existing adaptive solvers such as dopri5.

To illustrate this compatibility, we compare fixed step Euler sampling and adaptive dopri5 sampling
on CIFAR-10 data (see Table 14). The results confirm that the hierarchical formulation does not
restrict the choice of numerical solver and that adaptive solvers like dopri5 can be applied directly
to the inner update. When an adaptive solver is used, HRF2-D continues to achieve the lowest FID
among the compared methods. This shows that the benefits of hierarchical coupling are preserved
regardless of the numerical solver.

I LLM USAGE

While preparing this work, we used a large language model (LLM) to assist with language editing.
The LLM’s contributions were limited to improving the clarity of the text. The core research,
experimental design, and all scientific claims remain our original work.
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Table 13: FID comparison on CIFAR-10 for the Shortcut model, HRF2-D&V, and the combined
HRF2-D&V with Shortcut. The results show that Shortcut distillation and hierarchical coupling
are complementary. Shortcut alone gives relatively high FID at one step, and combining the two
consistently improves upon Shortcut.

NFE ShortCut HRF2-D&V HRF2-D&V + ShortCut

1 41.60 15.17 16.95
4 15.78 6.78 11.35
8 12.68 6.06 10.45

Table 14: FID performance comparison between fixed step Euler sampling and adaptive dopri5
sampling on CIFAR-10 under different total NFE settings. Bold for the best.

Total NFEs RF (35.75M) OT-CFM (35.75M) HRF2 (44.81M) HRF2-D (44.81M) HRF2-D&V (44.81M)
100 4.588 ± 0.013 4.952 ± 0.012 4.334 ± 0.054 4.301 ± 0.022 5.078 ± 0.044
500 3.887 ± 0.035 4.184 ± 0.086 3.706 ± 0.043 3.578 ± 0.028 5.095 ± 0.032

Adaptive 3.688 ± 0.077 3.601 ± 0.042 3.412 ± 0.058 3.410 ± 0.027 5.152 ± 0.009
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