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Abstract
One favors decision trees (DTs) of the smallest
size or depth to facilitate explainability and inter-
pretability. However, learning such an optimal DT
from data is well-known to be NP-hard. To over-
come this complexity barrier, Ordyniak and Szei-
der (AAAI 21) initiated the study of optimal DT
learning under the parameterized complexity per-
spective. They showed that solution size (i.e., num-
ber of nodes or depth of the DT) is insufficient
to obtain fixed-parameter tractability (FPT). There-
fore, they proposed an FPT algorithm that utilizes
two auxiliary parameters: the maximum difference
(as a structural property of the data set) and maxi-
mum domain size. They left it as an open question
of whether bounding the maximum domain size is
necessary.
The main result of this paper answers this question.
We present FPT algorithms for learning a smallest
or lowest-depth DT from data, with the only param-
eters solution size and maximum difference. Thus,
our algorithm is significantly more potent than the
one by Szeider and Ordyniak as it can handle prob-
lem inputs with features that range over unbounded
domains. We also close several gaps concerning the
quality of approximation one obtains by only con-
sidering DTs based on minimum support sets.

1 Introduction
Decision Trees (DTs) have proved to be extremely use-
ful tools for describing, classifying, and generalizing
data [Larose and Larose, 2014; Murthy, 1998; Quinlan,
1986]. Because of their simplicity, DTs are particularly
attractive for providing interpretable models of the under-
lying data, an aspect whose importance has been strongly
emphasized over recent years [Darwiche and Hirth, 2023;
Doshi-Velez and Kim, 2017; Goodman and Flaxman, 2017;
Lipton, 2018; Monroe, 2018]. In this context, one prefers
small trees (trees of small size or small depth), as they are
easier to interpret and require fewer tests to make a classi-
fication. Small trees are also preferred in view of the par-
simony principle (Occam’s Razor) since small trees are ex-
pected to generalize better to new data [Bessiere et al., 2009].

However, learning small trees is computationally costly: it
is NP-hard to decide whether a given data set can be repre-
sented by a DT of a certain size or depth [Hyafil and Rivest,
1976]. In view of this complexity barrier, several methods
based on branch & bound algorithms, constraint program-
ming, mixed-inter programming, or satisfiability solving have
been proposed for learning small DTs [Avellaneda, 2020;
Bessiere et al., 2009; Aglin et al., 2020a; Aglin et al., 2020b;
Bertsimas and Dunn, 2017; Demirovic et al., 2022; Hu et al.,
2020; Janota and Morgado, 2020; Narodytska et al., 2018;
Shati et al., 2021; Schidler and Szeider, 2021; Verhaeghe et
al., 2020; Verwer and Zhang, 2017; Verwer and Zhang, 2019;
Zhu et al., 2020]. This bulk of recent empirical work under-
lines the importance of computing optimal decision trees.

In this paper, we investigate the problem of finding small
decision trees (w.r.t. size or depth) under the framework
of Parameterized Complexity [Downey and Fellows, 2013;
Gottlob et al., 2002; Niedermeier, 2006]. This framework
allows us to achieve a more fine-grained and qualitative anal-
ysis, revealing properties of the input data in terms of prob-
lem parameters that provide run-time guarantees for decision
tree learning algorithms. The key notion of Parameterized
Complexity is fixed-parameter tractability (FPT) which gen-
eralizes the classical polynomial time tractability by allowing
the running time to be exponential in a function of the prob-
lem parameters while remaining polynomial in the input size
(we provide more detailed definitions in Section 2). Fixed-
parameter tractability captures the scalability of algorithms to
large inputs as long as the problem parameters remain small.
Several fundamental problems that arise in AI have been stud-
ied in terms of their fixed-parameter tractability, including
Planning [Bäckström et al., 2012], SAT and CSP [Bessière et
al., 2008; Gaspers et al., 2017], Computational Social Choice
[Bredereck et al., 2017], Machine Learning [Ganian et al.,
2018], and Argumentation [Dvorák et al., 2012].

For DT learning, we consider parameterizations of the fol-
lowing two fundamental NP-hard problems:

MINIMUM DECISION TREE SIZE (DTS): we are given a
set of examples, labelled positive or negative, each over a
set of features; each feature f ranges over a linearly ordered
range of possible values (by choosing an arbitary ordering
this also captures categorical data), and an integer s (for size).
The task is to find a DT of minimum size or report correctly
that no decision tree with at most s nodes exists. Here we



parameters complexity

solution size maximum difference FPT †

solution size - W[2]-hard‡, in XP‡

- maximum difference para-NP-hard‡

- - para-NP-hard‡

Table 1: † this paper, Theorem 4; ‡ are results by Ordyniak and
Szeider [2021].

consider DTs where each node tests whether a certain feature
is below a certain threshold or not.

MINIMUM DECISION TREE DEPTH (DTD) is defined
similarly, where instead of the bound s on the total number
of nodes, a bound d (for depth) on the number of nodes on
any root-to-leaf path is provided.

For both problems, it is natural to include the solution size
(i.e., s for DTS and d for DTD, respectively) as a parame-
ter since our objective is to learn DTs where these values are
small. However, Ordyniak and Szeider’s [2021] complexity
analysis revealed that solution size is not sufficient to obtain
fixed-parameter tractability. They, therefore, proposed two
additional problem parameters: (i) the maximum domain size,
i.e., the largest number of different values a feature ranges
over, and (ii) the maximum difference, i.e., the largest number
of features two examples with a different classification can
disagree in. With these two additional parameters at hand, Or-
dyniak and Szeider could show that DTS and DTD are fixed-
parameter tractable. They showed that without including the
maximum difference in the parameterization, one loses fixed-
parameter tractability. However, they left it open whether the
maximum domain size is indeed needed as a parameter.

In this paper, we answer this open problem, obtaining
fixed-parameter tractability of DTS and DTD just with the
two parameters solution size and maximum difference. Our
main result can be stated as follows.

• DTS and DTD are fixed-parameter tractable parame-
terized by solution size and maximum difference (Theo-
rem 4).

This result completes Ordyniak and Szeider’s parameter-
ized complexity classification, as shown in Table 1.

Our result is surprising, as for similar problems, the
domain size must be included in the parameterization.
For instance, the Constraint Satisfaction Problem (CSP) is
fixed-parameter tractable by the combined parameter primal
treewidth and domain size [Gottlob et al., 2002; Samer and
Szeider, 2010], and by the combined parameter strong back-
door size and domain size [Gaspers et al., 2017]; in both cases
the problem becomes W[1]-hard (and hence fixed-parameter
intractable) when domain size is dropped from the parame-
terization.

Our result has a beneficial algorithmic impact. As we do
not need to parameterize by maximum domain size, we have a
significantly more powerful algorithm that allows us to com-
pute optimal DTs (in terms of smallest depth/size) even for
instances where features range over a large set of possible
values. What makes our result further appealing is that the
maximum difference, the only additional parameter we need

in addition to solution size, is quite small in real-world data
sets. Ordyniak and Szeider [2021] list values for various stan-
dard benchmark sets from the UCI Machine Learning Repos-
itory (http://archive.ics.uci.edu/ml). In some cases, the max-
imum difference is two orders of magnitude smaller than the
number of examples or features.

A subset of the features that suffices to correctly classify a
classification instance is called a support set. Ordyniak and
Szeider [2021] observed that, in general, a small or low-depth
DT would not necessarily use a smallest support set. Indeed,
this property of small or low-depth DTs provides a challenge
to algorithmically finding such DTs, as we cannot first min-
imize the feature set in a preprocessing phase if we want to
find DTs of the smallest size or lowest depth. In the sec-
ond part of this paper, we quantify the impact on the size and
depth of DTs when minimizing first the feature set. It turns
out that regarding this question, it is significant whether the
considered data is over features with unbounded domain size
or if the domain size is bounded. For the unbounded domain
case we obtain the following result.

• The smallest size (depth) of a DT for a classification in-
stance (with unbounded domain) using only features of
a smallest support set can be arbitrarily larger than the
size (depth) of an optimal DT for that classification in-
stance (Theorem 18).

For the bounded domain case (all features are binary), we
obtain the following results.

• The smallest size (depth) of a DT for a binary classifi-
cation instance using only features of a smallest support
set is at most by an exponential factor larger than the
size (depth) of an optimal DT for that classification in-
stance (Theorem 16).

• There exist binary classification instances where this ex-
ponential factor is unavoidable (Theorem 17).

These separation results are relevant to practitioners who
develop algorithms for DT minimization. It is tempting to
first minimize the set of features to achieve a smaller instance
size, so that the input to a SAT or CP encoding is easier to
handle. However, our separation results establish that one has
to consider that the result will be significantly worse than the
optimum.

2 Preliminaries
We give some basic definitions of Parameterized Complexity
and refer for a more in-depth treatment to other sources [Cy-
gan et al., 2015; Downey and Fellows, 2013]. PC consid-
ers problems in a two-dimensional setting, where a problem
instance is a pair (I, k), where I is the main part and k is
the parameter. A parameterized problem is fixed-parameter
tractable if there exists a computable function f such that in-
stances (I, k) can be solved in time f(k)∥I∥O(1).

2.1 Classification Problems
An example e is a function e : feat(e) → Z defined on a finite
set feat(e) of features, where each feature f comes with a
possibly infinite linearly ordered domain dom(f) ⊆ Z, which

http://archive.ics.uci.edu/ml


we assume to be, w.l.o.g., a subset of the integers. For a set
E of examples, we put feat(E) =

⋃
e∈E feat(e). We say that

two examples e1, e2 agree on a feature f if f ∈ feat(e1), f ∈
feat(e2) and e1(f) = e2(f). If f ∈ feat(e1), f ∈ feat(e2)
but e1(f) ̸= e2(f), we say that the examples disagree on f .

A classification instance (CI) (also called a partially de-
fined Boolean function [Ibaraki et al., 2011]) E = E+ ⊎ E−

is the disjoint union of two sets of examples, where for all
e1, e2 ∈ E we have feat(e1) = feat(e2). The examples in
E+ are said to be positive; the examples in E− are said to
be negative. A set X of examples is uniform if X ⊆ E+ or
X ⊆ E−; otherwise X is non-uniform. We say that a CI E is
binary if all features in feat(E) are binary, i.e., e(f) ∈ {0, 1}
for every f ∈ feat(e).

Given a CI E, a subset F ⊆ feat(E) is a support set of
E if any two examples e1 ∈ E+ and e2 ∈ E− disagree in
at least one feature of F . Finding a smallest support set, de-
noted by MSS(E), for a classification instance E is an NP-
hard task [Ibaraki et al., 2011, Theorem 12.2].

2.2 Decision Trees
A decision tree (DT) is a rooted binary tree T with vertex set
V (T ) and edge set A(T ) such that each leaf node is either a
positive or a negative leaf and the following holds for each
non-leaf t of T :

• t is labelled with a feature denoted by featT (t) or simply
feat(t) if T is clear from the context,

• t is labelled with an integer threshold denoted by λT (t)
or simply λ(t) if T is clear from the context,

• t has 2 children, i.e., a left child and a right child.
We write feat(T ) = { feat(t) | t ∈ V (T ) } for the set of all
features used by T . The size of T is its number of nodes,
i.e. |V (T )|.We denote by dep(T ) the depth of T , i.e., the
maximum number of nodes on any root-to-leaf path on T .

Let E be a CI and let T be a DT with feat(T ) ⊆ feat(E).
We say that a node tA is a left (right) ancestor of t if t is con-
tained in the subtree of T rooted at the left (right) child of tA.
For each node t of T , we define ET (t) as the set of all exam-
ples e ∈ E such that for every left (right) ancestor tA of t in
T , it holds that e(feat(tA)) ≤ λ(tA) (e(feat(tA)) > λ(tA)).
T classifies an example e ∈ E if e is a positive (negative)
example and e ∈ ET (l) for a positive (negative) leaf l of T .
We say that T classifies E (or T is a DT for E) if T classifies
all examples in E. See Figure 1 for an illustration of a CI and
a DT that classifies E.

We will consider the following optimization problems.

E f1 f2 f3 f4

e1 ∈ E− 0 5 1 -2
e2 ∈ E− 1 -1 3 0
e3 ∈ E− 1 0 -1 1
e4 ∈ E− 3 1 0 -1
e5 ∈ E+ 4 -2 2 0
e6 ∈ E+ 2 1 1 1

f1 ≤ 1

f4 ≤ −1−

+−

Figure 1: A CI E = E+ ⊎ E− with six examples and four features
(left), a decision tree with 5 nodes that classifies E (right).

MINIMUM DECISION TREE SIZE (DTS)

Input: A CI E and an integer s.
Question: Find a DT of size at most s for E or re-

port correctly that there is no DT for E
of size at most s.

MINIMUM DECISION TREE DEPTH (DTD)

Input: A classification instance E and an inte-
ger d.

Question: Find a DT of minimum depth (or height)
for E or report correctly that there is no
DT for E of depth d.

For two examples e and e′ in E, we denote by δ(e, e′) the
set of features where e and e′ disagree and we denote by
δmax(E) = maxe+∈E+∧e−∈E− |δ(e+, e−)| the maximum
difference between any non-uniform pair of examples.

Let T be a DT for E and t ∈ V (T ) be an inner node of T .
We denote by Tt the (sub-)DT of T rooted at t. We say that
t is redundant if either: (1) t is the root of T and either Tcℓ
or Tcr is a DT for E, where cℓ and cr are the left and right
children of t in T , or (2) t is the left (right) child of its parent
p and t has a child c such that the tree obtained from T after
removing Tc and t and making the other child of t the left
(right) child of p is a DT for E. Intuitively, t is redundant if it
is not required to distinguish any examples and can therefore
be removed from T . We say that T is non-redundant if it does
not contain any redundant node.

For the complexity analysis we set the input size ∥E∥ of a
CI E to |E| · (|feat(E)| + 1) · logDmax, where Dmax is the
maximum size of dom(f) over all features f of E. We now
give some simple auxiliary lemmas that are required by our
algorithms.

Observation 1 ([Ordyniak and Szeider, 2021, Obs. 1]). Let
T be a DT for a CI E, then feat(T ) is a support set of E.

Lemma 2 ([Ordyniak and Szeider, 2021, Cor. 9]). Let E be
a CI and let k be an integer. Then there is an algorithm
that in time O(δmax(E)k|E|) enumerates all (of the at most
δmax(E)k) minimal support sets of size at most k for E.

The following lemma follows naturally from [Ordyniak
and Szeider, 2021, Lem. 5], we include a proof for complete-
ness.

Lemma 3 ([Ordyniak and Szeider, 2021]). Let A be a set of
features of size a. Then the number of DTs without thresholds
of size at most s that use only features in A is at most a2s+1

and those can be enumerated in O(a2s+1) time.

Proof. We start by counting the number of trees T with n
nodes that can potentially underlie a DT with n nodes. Note
that there is one-to-one correspondence between trees T that
underlie a DT with n nodes and unlabelled rooted ordered bi-
nary trees with n nodes (where ordered refers to an ordering
of the at most 2 child nodes). Since it is known that the num-
ber of unlabelled rooted ordered binary trees with n nodes
is equal to the n-th Catalan number Cn and that those trees
can be enumerated in O(Cn) time [Stanley and Weisstein,
2015], we already obtain that we can enumerate all of the at



most Cn possible trees T underlying a DT of size n in O(Cn)
time. Therefore, there are at most sCs possible trees of size at
most s that can underlie a DT with at most s nodes and those
can be enumerated in O(sCs) time. It now remains to bound
the number of possible feature assignments feat(f) for these
trees as well as the number of possibilities for the leave nodes
that can be either labelled positive or negative. Since we can
assume that a ≥ 2, we obtain that the number of possible
feature assignments (and label lings of leaf-nodes) of a tree
T with n nodes is at most an. Taking everything together, we
obtain that there are at most sCsa

s ≤ s4sas ≤ a2s+1 many
DTs of size at most s using only features in A and those can
be enumerated in O(a2s+1) time.

3 FPT-algorithm
This section is devoted to a proof of our main result provided
in the following theorem.
Theorem 4. DTS and DTD are fixed-parameter tractable
parameterized by the solution size and δmax.

To simplify the presentation and taking into account that
the proof for DTD is almost identically to the proof for DTS,
we will start by showing the result for DTS.

The overall structure of our algorithm is very similar to Al-
gorithms 3 and 4 given in [Ordyniak and Szeider, 2021] and
is illustrated in Algorithms 1 and 2. Namely, Algorithm 1
contains the main routine minDT, which given a CI E and
an integer s outputs a minimum DT, i.e., a DT of minimum
size, for E among all DTs of size at most s. To achieve this,
the routine minDT first iterates over all minimal support sets
of size at most s using Lemma 2. It then calls the routine
minDTS, given in Algorithm 2, for every such minimal sup-
port set S to find a minimum DT T for E of size at most s
such that S ⊆ feat(T ). Note that provided the correctness of
minDTS, the correctness of minDT follows from Observa-
tion 1, because every DT for E must contain some minimal
support set. Given E, s and a minimal support S, the routine
minDTS computes a minimum DT T for E of size at most
s such that S ⊆ feat(T ). The starting point (recursion start)
of minDTS is the following lemma that allows to compute a
minimum DT T for E of size at most s such that S = feat(T ).
Lemma 5 ([Ordyniak and Szeider, 2021, Theorem 4]). Let
E be a CI, S ⊆ feat(E) be a support set for E, and let
s be an integer. Then, there is an algorithm that runs in
time 2O(s2)∥E∥1+o(1) log ∥E∥ and computes a minimum DT
among all DTs T with feat(T ) = S and |T | ≤ s if such a DT
exists;otherwise nil is returned. Similarly, there is an algo-
rithm that runs in time O((2d)2

d

n1+o(1) log n) and computes
a DT of minimum depth among all DTs T with feat(T ) = S
and dep(T ) ≤ d if such a DT exists;otherwise the algorithm
return nil.

After applying the above lemma to find a minimum DT T
for E of size at most s such that S = feat(T ), the routine
minDTS tries to find a minimum DT for E of size at most
s that uses at least one feature outside of S. To achieve this
the algorithm first computes a so-called (S, s)-branching set
H , which informally is a “small” set of features such that ev-
ery DT T for E of size at most s with S ⊊ feat(T ) has to

Algorithm 1 Main method for finding a DT of minimum size.
Input: CI E and integer s
Output: DT for E of minimum size (among all DTs of size at most

s) if such a DT exists, otherwise nil
1: function MINDT(E, s)
2: S ← ”set of all minimal support sets for E of size at most s

using Lemma 2”
3: B ← nil
4: for S ∈ S do
5: T ← MINDTS(E, s, S)
6: if (T ̸= nil) and (B = nil or |B| > |T |) then
7: B ← T
8: if B ̸= nil and |B| ≤ s then
9: return B

10: return nil

use at least one feature in H (see Subsection 3.1 for a for-
mal definition of (S, s)-branching set). It then branches on
every feature h in H and calls itself recursively for E, s, and
S ∪ {h}. The main ingredient of our algorithm compared to
the algorithm given in [Ordyniak and Szeider, 2021], i.e., the
FPT-algorithm for DTS if one additionally parameterizes by
the maximum domain size of any feature, is the computation
of the (S, s)-branching set, which we describe next.

Algorithm 2 Method for finding a DT of minimum size using
at least the features in a given support set S.

Input: CI E, integer s, support set S for E with |S| ≤ s
Output: DT of minimum size among all DTs T for E of size at

most s such that S ⊆ feat(T ); if no such DT exists, nil
1: function MINDTS(E, s, S)
2: B ← “a minimum size DT for E of size at most s that uses

exactly the features in S using Lemma 5”
3: H ← “a (S, s)-branching set B(S, s) using Theorem 6”
4: for f ∈ H do
5: T ← MINDTS(E, s, S ∪ {f})
6: if T ̸= nil and |T | < |B| then
7: B ← T
8: if |B| ≤ s then
9: return B

10: return nil

3.1 Computing Branching Sets
Here, we will show that we can compute a small branching
set, which is the main novel and crucial ingredient for our
FPT-algorithm. Before we formally define branching sets,
we need the following notions.

Let E be a CI. We denote by ■ a new feature, which we call
the unknown feature, i.e., ■ /∈ feat(E). A DT pattern is a DT
T without thresholds that is allowed to use the unknown fea-
ture, i.e., feat(T ) ⊆ feat(E)∪{■}. We say that an inner node
t of T is known if feat(t) ∈ feat(E) and unknown otherwise.
A DT pattern T ′ is an extension of a DT pattern T if T = T ′

and featT ′(t) = featT (t) for every known node t of T . We
say that T ′ is complete if feat(T ′) ⊆ feat(E). A threshold
assignment for a DT pattern T is a function λ : KN(T ) → Z
that provides a threshold assignment for every node of T in
the set KN(T ) of all known nodes of T .



In the following, let T be a DT pattern for a CI E. Note
that we assume that if t is a node of T with feat(t) = ■, then
any example that ends up in t is sent to both its left and its
right child in T . In particular, we generalize ET (t) to DT
patterns T with a threshold assignment λ by setting ET (t)
to be the set of all examples e ∈ E such that for every left
(right) ancestor tA of t in T , it holds that either feat(tA) = ■
or e(feat(tA)) ≤ λ(tA) (e(feat(tA)) > λ(tA)).

We say that a node t of T is valid for a set E′ ⊆ E of
examples if there is threshold assignment λ : KN(T ) → Z
such that either:

• t is a negative (positive) leaf of T and E′ ⊆ E− (E′ ⊆
E+), or

• t is an unknown node of T and t has a child t′ that is
valid for E′, or

• t is a known node of T with feature f = feat(t) and the
two children cl and cr of t in T are valid for E′[f ≤
λ(t)] and E′[f > λ(t)], respectively.

We also say that T is valid for E′ if the root r of T is valid
for E′. Intuitively, T is valid for E′ if it can be completed to
a DT for E′ that does not use of any of the unknown nodes.

Let E be a CI and let T be an invalid DT pattern for E. We
say that a set B ⊆ feat(E)\feat(T ) is a branching set for T if
B∩ (feat(T ′)\ feat(T )) ̸= ∅ for every proper extension T ′ of
T that is valid for E. Let s be an integer and let S be a support
set for E with |S| ≤ s. We say that a set B ⊆ feat(E) \ S is
an (S, s)-branching set if B∩(feat(T )\S) ̸= ∅ for every non-
redundant DT T for E of size at most s with S ⊊ feat(T ).

The remainder of this subsection is devoted to a proof of
the following theorem, which constitutes the main novel tech-
nical contribution of this paper and we believe is interesting
in its own right.

Theorem 6. Let s be an integer, E be a CI and S be a support
set for E with |S| ≤ s. Then, an (S, s)-branching set of size
at most (s + 3)2s+1δmax(E) and can be computed in time
O((s+ 1)2s+12s

2/2∥E∥1+o(1) log ∥E∥).
The main ideas behind the proof of Theorem 6 are as fol-

lows. Given s, E, and S as defined in Theorem 6 our aim is
to find a small set B of features, i.e., an (S, s)-branching set,
such that B ∩ (feat(T ) \ S) ̸= ∅ for every non-redundant DT
T for E of size at most s such that S ⊊ feat(T ). Let T be any
such non-redundant DT for E, then replacing every feature in
feat(T )\S with the new feature ■ and ignoring the threshold
function gives rise to an invalid DT pattern T ′ for E; T ′ is
invalid because T is non-redundant. The main ingredient be-
hind our algorithm is now a routine that given any invalid DT
pattern T ′ computes a small branching set for T ′. Because
an (S, s)-branching set can be obtained from the union of all
branching sets for every possible invalid DT patterns for E of
size at most s that uses only features in S ∪ {■}, this now
allows us to compute an (S, s)-branching set as follows. First
we use the following corollary of Lemma 3 to enumerate all
possible DT patterns T ′ for E of size at most s using only
features in S ∪ {■}.

Corollary 7. Let A be a set of features of size a with ■ ∈ A.
The number of DTs patterns of size at most s that use only

features in A is at most a2s+1 and those can be enumerated
in O(a2s+1) time.

We then use Lemma 10 to decide whether T ′ is valid
for E. Finally, if this not the case we use our routine to
compute a branching set for T ′. The (S, s)-branching set is
then obtained as the union of all branching sets computed in
this manner. Therefore, our main task now is to compute a
branching set for a given invalid DT pattern for E.

Let E be a CI and let T be an invalid DT pattern for E.
Our algorithm to compute a branching set for T proceeds in
two main steps. First we compute a set EXPt of expected
examples for every node t of T , which intuitively contains
all examples that: (1) will end up at t if no unknown node
is replaced with a real feature and (2) is the smallest set of
examples showing that T is invalid. Second, given EXPt

we compute an even smaller subset of examples, i.e., a so
called pool set P (r) for the root r of T , satisfying (1) and (2).
We then show that any valid extension of T has to replace
at least one unknown feature with a feature that distinguishes
between two examples in the pool set. This then allows us to
show that the set of all features

⋃
e,e′∈P (r) δ(e, e

′) is a branch-
ing set for T . We start by showing how we compute the set
of expected examples.

Computing the Set of Expected Examples
Let E be a CI and T be an invalid DT pattern for E. For
every t ∈ V (T ), we define the set of expected examples EXPt

together with the left and right thresholds, denoted by λL(t)
and λR(t), respectively, recursively as follows:

• if t is the root of T , then EXPt = E;

• if t is the left child of a known node p, then EXPt =
EXPp[f ≤ λL(p) + 1], where f = feat(p) and λL(p) is
the maximum value in dom(f) such that Tt is valid for
EXPt[f ≤ λL(p)];

• if t is the right child of a known node p, then EXPt =
EXPp[f > λR(p)− 1] where f = feat(p) and λR(p) is
the minimum value in dom(f) such that Tt is valid for
EXPt[f > λR(p)];

• if t is a child of an unknown node p, then EXPt =
EXPp.

Before proving in Theorem 11 that we can efficiently com-
pute EXPt, λL(t), and λR(t) for every (fixed) node t of T ,
we need to show some simple but crucial properties.

Lemma 8. Let T be an invalid DT pattern for E. For every
node t of T it holds that Tt is not valid for EXPt.

Proof. Let T be an invalid DT pattern for E. We show the
statement by induction on the depth of the node t, i.e., the dis-
tance of t to the root of T , in T . The statement clearly holds
if t has depth 0, i.e., t is the root of T , by the definition of
validity. Therefore, towards showing the induction step, sup-
pose that the statement holds for the parent p of t in T , i.e.,
Tp is not valid for EXPp. We need to show that Tt is not valid
for EXPt. We distinguish the following cases: (1) p is an un-
known node of T and (2) p is a known node of T with feature
f = feat(p). In the former case, assume for a contradiction



that Tt is valid for EXPt. Therefore, by the definition of va-
lidity for p, we obtain that Tp is valid for EXPt and therefore
also for EXPp (because EXPt = EXPp by the definition of
EXPt). However, this contradicts our assumption that Tp is
invalid for EXPp.

In the latter case (i.e., case (2)), suppose that t is the left
child of p (the case that t is the right child of p is anal-
ogous) and suppose for a contradiction that Tt is valid for
EXPt = EXPp[f ≤ λL(p) + 1] and let λ : KN(Tt) → Z be
the threshold assignment for Tt witnessing this. But then, be-
cause of the definition of λL(p), it holds that λL(p) is equal to
the maximum domain value of f and therefore, it holds that
Tt is also valid for EXPp. However, this implies that Tp is
valid for the threshold assignment obtained from λ after set-
ting λ(p) to the maximum domain value of f contradicting
our assumption that p is invalid for EXPp.

Lemma 9. Let T be an invalid DT pattern for E. For every
known node t of T it holds that λL(t) < λR(t).

Proof. Let T be a DT pattern that is not valid for E. Sup-
pose for a contradiction that there is a known node t with
feature f = feat(t) such that λL(t) ≥ λR(t). Let cl and
cr be the left and right child of t in T . By the definition of
λL(t) Tcl is valid for EXPt[f ≤ λL(t)] and therefore there is
a threshold assignment λL : KN(Tcl) → Z for Tcl witness-
ing this. Similarly, by the definition of λR(t) Tcr is valid for
EXPt[f > λL(t)] and therefore there is a threshold assign-
ment λR : KN(Tcr ) → Z for Tcr witnessing this. But then
then threshold assignment λ : KN(TT ) → Z obtained from
λL ∪ λR after setting λ(t) to λL(t), shows that Tt is valid
for EXPt, contradicting the fact that t is invalid for EXPt by
Lemma 8.

Algorithm 3
Input: CI E, DT pattern T for E
Output: TRUE if T is valid for E, FALSE otherwise
1: function ISVALID(E, T )
2: r ← “root of T ”
3: if r is a leaf then
4: if r is negative (positive) and E ⊆ E− (E ⊆ E+) then
5: return TRUE
6: return FALSE
7: cℓ, cr ← “left child and right child of r”
8: if r is unknown then
9: if ISVALID(E, Tcℓ ) or ISVALID(E, Tcr ) then

10: return TRUE
11: return FALSE
12: f ← feat(r)
13: (λL, λR)← BINARYSEARCH(E, T , f , cℓ, cr)
14: if λL ≥ λR then
15: return TRUE
16: return FALSE

The following lemma, which is a precursor for the com-
putation of the expected examples in Theorem 11, is a rel-
atively straightforward extension of [Ordyniak and Szeider,
2021, Lemma 6]; the algorithm behind the lemma is also il-
lustrated in Algorithms 3 and 4.

Algorithm 4 Algorithm to compute the pair (λL(r), λR(r))
for the root r of T
Input: CI E, DT pattern T , feature f of the root of T , left child cℓ

of the root of T , right child cr of the root of T
Output: the pair (λL(r), λR(r))
1: function BINARYSEARCH(E, T , f , cℓ, cr)
2: D ← “array containing all elements in domE(f) in

ascending order”
3: L← 0; R← |D| − 1;
4: while L ≤ R do
5: m← ⌊(L+R)/2⌋
6: if ISVALID(E[f ≤ D[m]], Tcℓ ) then
7: L← m+ 1;
8: else
9: R← m− 1;

10: λL ← D[m− 1] ▷ where D[−1] = D[0]− 1
11: L← 0; R← |D| − 1;
12: while L ≤ R do
13: m← ⌊(L+R)/2⌋
14: if ISVALID(E[f > D[m]], Tcr ) then
15: R← m− 1;
16: else
17: L← m+ 1;
18: λR ← D[m+ 1] ▷ where D[|D|] = D[|D| − 1] + 1
19: return (λL, λR)

Lemma 10. Let E be a CI and T be a DT pattern of
depth at most d. There is an algorithm with run-time
O(2d

2/2∥E∥1+o(1) log ∥E∥) deciding whether T is valid
for E.

Proof. Let E be a CI and let T be a DT pattern of depth at
most d. In order to verify whether T is valid for E we have
to attempt to find a threshold assignment λ : KN(T ) → Z
that is a witness to the validity of T . We prove that we can
verify the validity of the root r of T by induction on the depth
of T . Let us consider the base case, i.e., r is also a negative
(positive) leaf (and the unique node) of T . By definition, it is
enough to check whether E is a subset of E− (E+).

Therefore, towards showing the induction step, suppose
that T is a DT pattern of depth at least one and that for the
two children cℓ and cr of r there is an algorithm that runs
in time O(2(d−1)2/2n1+o(1) log n) (n = ∥E∥) and decides
whether cℓ and cr are valid for E and, in the case the check is
successful, it outputs threshold assignments λcℓ for Tcℓ and
λcr for Tcr . We distinguish the following cases: (1) r is an
unknown node of T and (2) r is a known node of T with fea-
ture f = feat(r). In the former case, it is enough to run the
algorithm that test the validity of cℓ and of cr for E. If either
cℓ or cr turn out to be valid for E, say for example cℓ is valid
for E with threshold assignment λcℓ : KN(Tcℓ) → Z, then r
is valid for E too: λcℓ is also a witness of the validity of r,
since r is unknown. Otherwise, i.e., if both cℓ and cr are not
valid for E then also r is not valid for E.

In the latter case (i.e., case (2)), the task is to understand
whether it is possible to find an integer λ(r) such that cℓ and
cr are valid for E[f ≤ λ(r)] and E[f > λ(r)], respectively.
The idea is to run a binary search on dom(f) that outputs two
integers: λL is the maximum integer such that cℓ is valid for



E[f ≤ λL] and, in a similar manner, λR is the minimum inte-
ger such that cr is valid for E[f > λR]. Note that λL and λR

always exist at the cost of considering any element smaller or
larger than any element in dom(f), respectively. The algo-
rithm now compares the values of λL and λR. If λL ≥ λR

then it is possible to combine the thresholds assignments λcℓ
for Tcℓ and λcr for Tcr to a threshold assignment λ for T :
the threshold assignment λcℓ ∪λcr ∪{λL} is a witness of the
validity of r. Suppose otherwise λL < λR: this means that
for any integer λ∗, either cℓ or cr are not valid for E[f ≤ λ∗]
or E[f > λ∗], respectively. By definition, we can conclude
that in this case r is not valid for E.

A key element of this algorithm for the known node case is
a binary search sub-routine. This sub-routine attempts to find
extremal values λL and λR for which the nodes cℓ and cr are
valid for E[f ≤ λL] and E[f > λR], respectively. Every time
this sub-routine calls the algorithm, it corresponds to check
the validity of the same DT pattern but with a different set of
examples. Understanding the extremal values for λL and λR

is crucial: only the comparison between the extremal values
of λL and λR allows to certify the correctness of our approach
and algorithm.

The overall idea is to use algorithm isValid illustrated in
Algorithm 3. That is, given a CI E and a DT pattern T , the
algorithm isValid attempts to check whether T is valid for E.
In Lines 3 to 6, the algorithm deals with the case where T has
depth 0 and so its root r is also a leaf: it returns TRUE if
E ⊆ E− if r is negative (E ⊆ E+ if r is positive) and
FALSE otherwise.

Starting from Line 7 to the end of the algorithm, the cases
where is r is not a leaf node are analysed. In Lines 8 to 11,
the algorithm deals with the case where r is an unknown
node: here there are two recursive calls that attempt to check
whether cℓ and cr are valid for E. The algorithm returns
TRUE if there is at least one TRUE output and FALSE oth-
erwise.

Finally, in Lines 13 to 15, the algorithm deals with the case
where r is a known node and let g be the feature of r in T .
There is a call to binarySearch which is outlined in Algo-
rithm 4. Given a CI E, a DT pattern T , the feature f and the
left and right child of r, cℓ and cr, this sub-routine performs
a standard binary search procedure on the array D containing
all the values in domE(f) in ascending order to find the max-
imum threshold λL and minimum threshold λR such that Tcℓ
and Tcr are valid for E[f ≤ λL] and for E[f > λR] respec-
tively. To achieve this, the sub-routine makes at most log |E|
calls to isValid; note that each of those calls is made for a
tree of smaller depth. Lines 3 to 10: the sub-routine finds the
maximum λL by calling algorithm isValid in Line 6 repeat-
edly. Lines 11 to 18: the algorithm finds the minimum λR by
calling algorithm isValid in Line 14 repeatedly.

The running time of Algorithm 3 can now be obtained by
multiplying the number of recursive calls to isValid with the
time required for one recursive call. To obtain the number
of recursive calls first note that if isValid is called with DT
pattern of depth d, then it makes at most (2 log n) + 2 recur-
sive calls to isValid with a pattern of depth at most d − 1,
where n = ∥E∥. Therefore the number T (n, d) of recur-
sive calls for a pattern of depth d is given by the recursion

Algorithm 5 Algorithm to compute the triple
(EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ).
Input: CI E, DT pattern T
Output: the triple (EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ).
1: function FINDLR(E, T )
2: r ← “root of T ”
3: if r is a leaf then
4: return (E,nil,nil)

5: cℓ, cr ← “left child and right child of r”
6: if r is an unknown node then
7: Oℓ ← FINDLR(E, Tcℓ )
8: Or ← FINDLR(E, Tcr )
9: return (E,nil,nil) ∪Oℓ ∪Or

10: f ← feat(r)
11: (λL, λR)← BINARYSEARCH(E, T , f , cℓ, cr)
12: Oℓ ← FINDLR(E[f ≤ λL + 1], Tcℓ )
13: Or ← FINDLR(E[f > λR − 1], Tcr )
14: return (E, λL, λR) ∪Oℓ ∪Or

relation T (n, d) = (2(log n) + 2)T (n, d − 1) starting with
T (n, 0) = 0. This implies that T (n, d) ∈ O((log n)d). Fi-
nally, the run-time for one recursive call is easily seen to be at
most O(n log n). Hence, the total run-time of the algorithm is
at most O((log n)dn log n), which because (see also [Cygan
et al., 2015, Exercise 3.18]):

(log n)d ≤ 2d
2/22log log d2/2 = 2d

2/2no(1)

is at most O(2d
2/2n1+o(1) log n).

Now we are finally ready to prove that we can efficiently
compute EXPt, λL(t) and λR(t) for every node t ∈ V (T ).
Theorem 11. Let E be a CI, let T be a DT pattern of depth
at most d. Then there is an algorithm that runs in time
O(2d

2/2∥E∥1+o(1) log ∥E∥) and computes the set EXPt and
thresholds λL(t) and λR(t) for every node t ∈ V (T ).

Proof. Let E be a CI and let T be a DT pattern of
depth at most d. We prove we can compute the triple
(EXPt, λ

L(t), λR(t)) by induction on the depth of the node t,
i.e., the distance of t to the root of T , in T . Note that we are
required to compute the left and right thresholds for a node
only if it is a known node. For this reason, when considering
a node t that is either unknown or a leaf, it is required only to
compute the corresponding set of expected examples EXPt

and then return the triple (EXPt,nil,nil).
Let us consider the base case, i.e., t is the root of T . For

EXPt we can set it equal to E according to the definition.
Suppose that t is also a known node with feature f = feat(t):
to conclude this case, we need to correctly compute the left
and right threshold for t. The idea is to run a binary search on
dom(f), like we did for the algorithm of Lemma 10, that out-
puts two integers: λL(t) is the maximum integer such that Tcℓ
is valid for E[f ≤ λL(t)] and, in a similar manner, λR(t) is
the minimum integer such that Tcr is valid for E[f > λR(t)].

Therefore, towards showing the induction step, suppose
that T is a DT pattern of depth at least one and that t is not
the root of T . Let p be the parent of t in T . By the inductive
hypothesis, we know that there is an algorithm that computes



the triple (EXPp, λ
L(p), λR(p)). First thing we do is running

this algorithm to obtain the triple (EXPp, λ
L(p), λR(p)).

Given (EXPp, λ
L(p), λR(p)) we can now compute EXPt

by distinguishing the following cases: If p is an unknown
node, we set EXPt = EXPp. Moreover, if p is a known
node with feature f = feat(p), we set EXPt to EXPp[f ≤
λL(p) + 1], if t is the left child of p, and we set EXPt to
EXPp[f > λR(p) − 1] otherwise. Given EXPt it only re-
mains to show how to compute λL(t) and λR(t) if t is a
known node with feature ft = feat(t) and children cℓ and cr.
Note that by definition λL(t) is the maximum threshold such
that Tcℓ is valid for EXPt[ft ≤ λL(t)] and λR(t) is the min-
imum threshold such that Tcr is valid for EXPt[ft > λR(t)].
Therefore, we can use the binarySearch function defined in
Algorithm 4 called with parameters EXPt, Tt, fl, cℓ, and cr
to compute the pair (λL(t), λR(t)).

The overall idea stems from the recursive algorithm
findLR illustrated in Algorithm 5. Given a CI E and
a DT pattern T , the algorithm findLR returns the triple
(EXPr, λ

L(r), λR(r)) for root node r of T and call itself for
the children of r (if r is not a leaf) to compute the correspond-
ing triples. In Lines 3 to 4, algorithm findLR deals with the
case r is a leaf (and so it is the unique node) of T . Since r
does not have children, the left and right threshold for r are
directly set as nil.

Starting from Line 5 to the end of the algorithm, the cases
where r is not a leaf node a analysed. In Lines 6 to 9, the
algorithm deals with the case where r is an unknown node:
here there is a recursive call to compute the corresponding
triple for each of the two children of r. Since r is an unknown
node, the left and right threshold for r are directly set as nil
and the triple (E,nil,nil) is returned.

In Lines 10 to 14, the algorithm deals with the case where
r is a known node: first there a is a call to the binarySearch
sub-routine in Line 11 that outputs the left and right thresh-
olds λL and λR for r. Then, there is a recursive call to com-
pute the corresponding triple for each of the two children of
r. Finally the triple (E, λL, λR) is returned. A key element
for the correctness of Algorithm 5 is that every time the al-
gorithm call itself on the DT rooted at a child of the current
node, the correct set of expected examples for that child is
passed as part of the input of that recursive call. For this is
the reason, the set E does not get updated during the current
call.

The running time analysis for Algorithm 5 is exactly the
same as the one for Algorithm 3 as the structure of the two
algorithms is basically the same.

Computing the Pool and Branching Set
Let E be a CI and T a DT pattern for E that is invalid
for E and suppose that we have already computed the triple
(EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ). We say that
T ′ is a proper extension of T if T ′ is an extension of T and
featT ′(t) /∈ feat(T ) for every unknown node t ∈ V (T ) with
featT ′(t) ̸= ■, i.e., unknown nodes of T that are known in T ′

are assigned to features not in feat(T ).
A pool set for T is a set P of examples such that for every

proper extension of T that is valid for E there is a feature
f ∈ feat(T ′)\feat(T ) such that f distinguishes two examples

in P . Let P (t) be the set of examples defined recursively for
every node t of T as follows: If t is a negative (positive) leaf
node of T , then P (t) contains any example in E+ ∩ EXPt

(E− ∩ EXPt). Note that such an example does always exists
because of Lemma 8 and our assumption that T is invalid for
E. Otherwise, t has a left child cℓ and a right child cr and we
set P (t) = P (cℓ)∪ P (cr). Note that P (t) ⊆ EXPt for every
t ∈ V (T ). We show next that P (T ) = P (r) for the root r of
T is a pool set for T .

Lemma 12. Let E be a CI and T be an invalid DT pattern
for E. Then, P (T ) is a pool set for T .

Proof. Assume for a contradiction that this is not the case.
Then, there is a proper extension T ′ of T that is valid for E
such that no feature in feat(T ′) \ feat(T ) distinguishes be-
tween any two examples in P (T ). Let λ : KN(T ′) → Z be
a threshold assignment for T ′ showing the validity of T ′. We
start by showing the following claim:

Claim 13. Let t be an inner node of T such that P (t) ⊆
ET ′(t), then t has a child c in T such that P (c) ⊆ ET ′(c).

Proof. Let cℓ and cr be the left and right child of t in T ,
respectively.

First consider the case that t is known in T and let f =
featT (t). Because T is not valid for E, we obtain from
Lemma 9 that λL(t) < λR(t) and therefore f(eℓ) ≤ f(er)
for every two examples with eℓ ∈ EXPcℓ and er ∈ EXPcr .
Therefore, no matter the value of λ(t) either all examples
in P (cℓ) ⊆ EXPcℓ are send to cℓ (and therefore P (cℓ) ⊆
ET ′(c)) or all examples in P (cr) ⊆ EXPcr are send to cr
(and therefore P (cr) ⊆ ET ′(c)), which shows the claim.

Now consider the case that t is unknown in T and let f =
featT ′(t). If f = ■, then ET ′(cℓ) = ET ′(cr) = ET ′(t) and
therefore the claim obviously holds. Otherwise, we know that
f does not distinguish between any two examples in P (t) and
therefore either P (t) ⊆ ET ′(cℓ) or P (t) ⊆ ET ′(cr), which
because P (cℓ), P (cr) ⊆ P (t) implies the statement of the
claim.

Because the conditions of Claim 13 apply to the root r
of T , it follows that T must have a leaf l with P (l) ⊆ ET ′(l).
But this implies that T ′

l is not valid for ET ′(l) a contradiction
to our assumption that T ′ is valid for E.

The next lemma shows that P (T ) is indeed small and can
be computed efficiently.

Lemma 14. Let E be a CI and T be an invalid DT pattern
for E of height at most d. Then, P (T ) ≤ 2d and P (T ) can
be computed in time O(2d

2/2∥E∥1+o(1) log ∥E∥).

Proof. P (T ) ≤ 2d follows because |P (l)| = 1 for ev-
ery leaf of T and |P (t)| = |P (cℓ)| + |P (cr)| = 2|P (cℓ)|
for every inner node t with children cℓ and cr. To com-
pute P (T ), we first use Theorem 11 to compute the triple
(EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ) in time
O(2d

2/2∥E∥1+o(1) log ∥E∥). We then compute P (T ) in a
leaf-to-root manner in time

(
|V (T )|).



The next lemma now show that the set B(T ) =⋃
e,e′∈P (T ) δ(e, e

′) is a branching set for T , i.e., we can easily
compute a branching set from a pool set.

Lemma 15. Let E be a CI and T be an invalid DT pattern
for E of height at most d. Then, B(T ) is a branching set for
T of size at most 22dδmax(E) and can be computed in time
O(2d

2/2∥E∥1+o(1) log ∥E∥).

Proof. B(T ) is a branching set because P (T ) is a pool
set for T due to Lemma 12. Moreover, because of
Lemma 14, we have that |B| ≤ |P (T )|2δmax(E) ≤
22dδmax(E) and the time required to compute P (T ) is
O(2d

2/2∥E∥1+o(1) log ∥E∥), which dominates the time to
compute B(T ).

We are now ready to show Theorem 6, i.e., we will show
that B(S, s) =

⋃
T∈T B(T ) is a small (S, s)-branching set

and can be efficiently computed, where T is the set of all
invalid DT patterns for E of size at most s using only features
in S ∪ {■}.

Proof of Theorem 6. We start by showing that B(S, s) is an
(S, s)-branching set. Let T be any non-redundant DT for E
of size at most s such that S ⊊ feat(T ) and let T ′ be the DT
pattern for E obtained from T after setting featT ′(t) = ■ for
every t ∈ V (T ) with featT (t) /∈ S and ignoring all thresh-
olds. Because T ′ has at least one unknown node and T is
non-redundant, it follows that T ′ is invalid for E. Therefore,
T ′ ∈ T , which shows that B(T ′) ⊆ B(S, s). Because B(T ′)
is a branching set for T ′ and T is a proper extension of T ′

that is valid for E, we obtain that B(T ′) ∩ (feat(T ) \ S) ̸= ∅
and therefore B(S, s) is an (S, s)-branching set, as required.

Towards showing how to compute B(S, s), let T ′ be the set
of all DT patterns for E of size at most s that use only features
in S∪{■}. Because of Lemma 3, the set T ′ can be computed
in time O((|S| + 1)2s+1) = O((s + 1)2s+1). Moreover,
because of Lemma 10, we can decide whether T is invalid for
E for every T ∈ T ′ in time at most O(2s

2/2n1+o(1) log n),
where n = ∥E∥. Together this allows us to compute the set T
from T ′ in time O((s + 1)2s+12s

2/2n1+o(1) log n). Finally,
because of Lemma 15, we can compute B(T ) for every T ∈
T in time O(2s

2/2n1+o(1) log n), which shows that B(S, s)

can be computed in time O((s+ 1)2s+12s
2/2n1+o(1) log n).

Finally, B(S, s) has size at most |T | times the maximum
size of |B(T )| over all T ∈ T , which because of Lemma 15
is at most 22dδmax(E) ≤ 22sδmax(E). Since |T | ≤ |T ′| ≤
(s+1)2s+1 (because of Lemma 3), we obtain that |B(S, s)| ≤
(s+ 1)2s+122sδmax(E) ≤ (s+ 3)2s+1δmax(E).

We are now ready to show Theorem 4, i.e., that DTS is
fixed-parameter tractable parameterized by size and δmax.

Proof. Our algorithm for DTS is illustrated in Algorithm 1
and Algorithm 2.

Given a CI E and an integer s, the algorithm, given by the
function minDT in Algorithm 1, returns a DT for E of min-
imum size among all DTs of size at most s if such a DT ex-
ists and otherwise the algorithm returns nil. The algorithm
starts by computing the set S of all minimal support sets for

E of size at most s with the help of Lemma 2. The main in-
gredient for the algorithm is the function minDTS illustrated
in Algorithm 2 that the algorithm calls in Line 5 for every
support set S in S. Given E, s, and S the function minDTS
returns a DT of minimum size among all DTs T for E of size
at most s such that S ⊆ feat(T ) if such a DT exists and nil
otherwise. It then updates the currently best DT B if neces-
sary with the DT found by the function minDTS. Moreover,
if the best DT found after iterating over all supports sets in
S has size at most s, it is returned (in Line 9), otherwise the
algorithm returns nil. Finally, the function minDTS illus-
trated in Algorithm 2 does the following. It first computes
a DT T of minimum size that uses exactly the features in S
using Lemma 5. It then tries to improve upon T with the help
of an (S, s)-branching set H , which it computes in Line 3
with the help of Theorem 6. That is, the algorithm now iter-
ates over every feature f in H and calls itself recursively for
the support set S ∪ {f} in Line 5 in order to decide whether
adding f gives rise to a smaller DT. If this call finds a smaller
DT, then the current best DT is updated. Finally, after iter-
ating over all features in H , the algorithm either returns the
current best DT B if its size is at most s or nil otherwise.

We are now ready to show the correctness of Algorithm 1.
So suppose that there is a DT for E of size at most s that
uses all features in S and let T be any such DT of minimum
size. Because the algorithm returns a DT of minimum size
among all the DTs that it considers, it suffices to show that
the algorithm considers T . Even stronger we will show that
the algorithm considers all DTs T ′ for E of size at most s
such that feat(T ′) = feat(T ).

Towards showing the correctness of Algorithm 1, consider
the case that E has a DT of size at most s and let T be such
a DT of minimum size. Because of Observation 1, feat(T ) is
a support set for E and therefore feat(T ) contains a minimal
support set S of size at most s. Because the algorithm (Line 4
of Algorithm 1) iterates over all minimal support sets of size
at most s for E, it follows that Algorithm 2 is called with
parameters E, s, and S.

If feat(T ) = S, then the algorithm finds a DT for E of size
at most |T | in Line 2 of Algorithm 2 because of Lemma 5. If,
on the other hand, feat(T ) \ S ̸= ∅, then H ∩ feat(T ) ̸= ∅,
where H is the (S, s)-branching set computed in Line 3 of
Algorithm 2; this is because H is an (S, s)-branching set and
T is a non-redundant (since minimal) DT for E of size at most
s such that S ⊊ feat(T ). Therefore, the function minDTS is
called recursively for parameters E, s, and S ∪ {f}, where
f is an arbitrary feature in feat(T ) ∩ H . From now onward
the argument repeats and eventually the function minDTS is
called with parameters E, s, and feat(T ) at which point the
algorithm finds a DT for E of size at most |T | in Line 2 of
Algorithm 2. Finally, it is easy to see that if Algorithm 1
outputs a DT T , then it is a valid solution. This is because
T must have been computed in Line 2 of Algorithm 2, which
implies that T is a DT for E. Moreover, T has size at most s,
because of Line 8 in Algorithm 1.

To analyse the run-time of the algorithm, we first remark
that the whole algorithm can be seen as a bounded-depth
search tree algorithm, i.e., a branching algorithm with small
recursion depth and few branches at every node. In partic-



ular, every recursive call adds at least one feature to the set
of features bounding the recursion depth to at most s. More-
over, every feature that is added is either added in Line 2 of
Algorithm 1, when enumerating all minimal support sets, in
which case there are at most δmax(E) branches or the feature
is added in Line 5 of Algorithm 2, in which case there are at
most |H| ≤ (s+3)2s+1δmax(E) branches. It follows that the
algorithm can be seen as a branching algorithm of depth at
most s with at most max{(s+ 3)2s+1δmax(E), δmax(E)} =
(s+ 3)2s+1δmax(E) branches at every step.

Therefore, the total run-time of the algorithm is at
most the number of nodes in the branching tree, i.e., at
most ((s + 3)2s+1δmax(E))s, times the maximum time re-
quired in one recursive call. Now the maximum time
required for one recursive call is dominated by the time
spend in Line 2 of Algorithm 2, i.e., the time required
to compute a DT of minimum size using exactly the fea-
tures in S with the help of Lemma 5, which is at most
O(s2s+12s

2/2n1+o(1) log n), where n = ∥E∥. Therefore, we
obtain O(((s+3)2s+1δmax(E))ss2s+12s

2/2n1+o(1) log n) as
the total run-time of the algorithm, which shows that DTS is
fixed-parameter tractable parameterized by s+ δmax(E).

Algorithm 6 Main method for finding a DT of minimum
depth.
Input: CI E and integer d
Output: DT for E of minimum depth (among all DTs of depth at

most d) if such a DT exists, otherwise nil
1: function MINDTD(E, d)
2: S ← ”set of all minimal support sets for E of size at most

2d using Lemma 2”
3: B ← nil
4: for S ∈ S do
5: T ← MINDTDS(E, d, S)
6: if (T ̸= nil) and (B = nil or |B| > |T |) then
7: B ← T
8: if B ̸= nil and dep(B) ≤ d then
9: return B

10: return nil

Algorithm 7 Method for finding a DT of minimum depth us-
ing at least the features in a given support set S.

Input: CI E, integer d, support set S for E with |S| ≤ 2d

Output: DT of minimum depth among all DTs T for E of depth at
most d such that S ⊆ feat(T ); if no such DT exists, nil

1: function MINDTS(E, s, S)
2: B ← “a minimum depth DT for E of depth at most d that

uses exactly the features in S using Lemma 5”
3: H ← “a (S, 2d)-branching set B(S, 2d) using Theorem 6”
4: for f ∈ H do
5: T ← MINDTDS(E, d, S ∪ {f})
6: if T ̸= nil and |T | < |B| then
7: B ← T
8: if dep(B) ≤ d then
9: return B

10: return nil

The algorithm for DTD is essentially very similar and the
details are provided in Algorithm 6 that uses Algorithm 7 as

a sub-routine. One of the main differences is that instead of
searching for a set of features of size at most s, we now search
for a set of features of size at most 2d. This also has an influ-
ence on the run-time. The ideas behind the algorithm as well
as the proof of correctness are, however, very similar.

4 Approximation Using Support Sets
Given Observation 1 it is tempting to think that it sufficies
to consider only DTs that use the features from some min-
imal support set. Indeed, if this were the case, then our
FPT-algorithm from the previous section could be signifi-
cantly simplified, i.e., it would no longer be necessary to find
branching sets as it would suffice to enumerate all minimal
support sets with the help of Lemma 2. Unfortunately, Ordy-
niak and Szeider [2021] showed that this is not the case and
the difference between an optimal DT and an optimal DT that
is only allowed to employ features from some minimal sup-
port set can be arbitrarily high at least in absolute terms even
for binary CIs. Nevertheless, it was left open whether and
how well the simple approach using only minimal support
sets can be exploited to obtain good approximate solutions for
DTS and DTD and this is what we will explore in this sec-
tion. In particular, let opts(E) and optd(E) be the minimum
size respectively depth of a DT for a CI E and let optsSS(E)

and optdSS(E) the minimum size respectively depth of a DT
for E that is only allowed to use the features from some min-
imal support set. Because optsSS(E) and optdSS(E) can be
computed using a much simpler algorithm that requires only
Lemma 2 and Lemma 5, we want to explore whether they can
be used to approximate opts(E) and optd(E).

As a starting point consider the case of binary CIs. In par-
ticular, let E be a binary CI and let S be a minimum support
set for E. Then, because of Observation 1 any DT for E has
size at least |S| and depth at least log |S|. Moreover, E has
a DT of size at most 2|S|+1 and depth at most |S| + 1, i.e.,
the complete DT using only the features in S. Therefore, we
obtain the following theorem showing that optsSS and optdSS
approximate opts and optd, respectively, for binary CIs.

Theorem 16. Let E be a binary CI. Then, optsSS(E) ≤
2opts(E) and optdSS(E) ≤ 2optd(E).

As our main novel result in this section (for binary CIs),
we show next that the ratios obtained in Theorem 16 are in-
deed best possible and therefore no better approximation for
DTS and DTD can be obtained by considering only DTs that
merely use the features of some minimal support set.

Theorem 17. For every integer k ≥ 1, there is a binary CI
Lk such that opts(Lk) ≤ 2k + 5 and optsSS(Lk) ≥ 2k+1 −
1. Similarly, there is a binary CI Ld

k such that optd(Ld
k) ≤

log(k) + 2 and optdSS(L
d
k) ≥ k + 1.

Finally, we consider the case of non-binary CIs and show
the following theorem, which essentially rules out any ap-
proximation algorithm based solely on minimal support sets.

Theorem 18. For every integer n ≥ 1, there are a
CIs Ln and Ld

n such that opts(Ln),optd(Ld
n) ≤ 5 and

optsSS(Ln),optdSS(L
d
n) ≥ n.



For convenience the proofs for Theorem 17 and Theo-
rem 18 are provided in the Sections 5 respectively 6 below.

5 Proof of Theorem 17
This section is devoted to a proof of Theorem 17. The proof
is split into two main parts, i.e., we show the theorem for
the case of size (the existence of Lk) in Subsection 5.1 and
we show the theorem for the case of depth (the existence of
Ld
k) in Subsection 5.2. Since we will only deal with binary

CIs, we can assume that λ(t) = 0 for every inner node t of
a DT and we will therefore omit the threshold function for
simplicity.

We start by introducing the complete binary CI Ek on k
features since it is required in both subsections. For every
natural number k ≥ 1, let Ek be the complete binary CI on k
features, i.e., Ek has k features f1, . . . , fk and one example
for every of the 2k possible assignments of those features. We
denote by Sk the set of features {f1, . . . , fk} of Ek. More-
over, an example e ∈ Ek is positive |{ f ∈ Sk | e(f) = 1 }|
is even and negative otherwise.

5.1 Size
Here we show Theorem 17 for the case of size, i.e., we show
the existence of the CIs Lk for every k ≥ 1. Namely, let
Lk be the CI obtained from Ek after adding a new feature
f∗ defined as follows. Let Dk be the set of all the examples
e ∈ Ek such that e(fi) = 1 for every i ∈ [k − 2] and let Dk

be the set Ek \ Dk of all remaining examples. Then, we set
e(f∗) = 1 if either e is a positive example or e ∈ Dk and
e(f∗) = 0 otherwise. Refer also to Figure 2 (left) for a visual
representation of L3 and the decomposition into D3 and D3.

f1 f2 f3 f∗

0 0 0 1 +
0 0 1 0 − D3

0 1 0 0 −
0 1 1 1 +
1 0 0 1 −
1 0 1 1 +
1 1 0 1 + D3

1 1 1 1 −

f∗

f1−

+ f2

f3 f3

+ − − +

Figure 2: The CI L3 partitioned into D3 and D3 (left), the DT T3

(right).

We start by showing that Sk is the only minimal support
set for Lk.
Lemma 19. Let k ≥ 1 be an integer. Then, Sk is the only
minimal support set for Lk.

Proof. First, we note that by construction Sk is clearly a
support set for Ek and therefore also for Lk. Therefore, it
only remains to show that for every i ∈ [k], the set Si

k =
feat(Lk) \ {fi} is not a support set for Lk.

For the case that i ∈ [k − 2], let e+i any positive example
in Dk with e+i (fi) = 0 and let e−i be the unique negative

example in Dk agreeing with e+i on all features in Si
k \ {f∗}.

Then, e−i (f
∗) = e+i (f

∗) = 1 and therefore the two examples
cannot be distinguished by any feature in Si

k.
Otherwise, i.e., if i ∈ [k − 1, k], let e+ be any posi-

tive example in Dk and let e− be the unique negative ex-
ample in Dk that differs from e+ only at feature fi. Then,
e−i (f

∗) = e+i (f
∗) = 1 and therefore the two examples can-

not be distinguished by any feature in Si
k.

The next result shows that every (non-redundant) DT for
Lk that uses only the features in the unique minimal support
set Sk has necessarily the structure of a complete binary tree
of large size and depth.

Lemma 20. For every integer k ≥ 1, a non-redundant DT
T with features in Sk is a DT for Lk if and only if T is a
complete DT of depth k+1. In particular, such a DT has size
2k+1 − 1.

Proof. In this proof we assume that a leaf is either positive or
negative depending on the parity of the number of right arcs
present in the unique path from the root to that leaf. We start
with the forward direction: let T be a non-redundant DT that
is not a complete DT of depth k+1. Let P be a path of T from
the root to a leaf ℓ of length at most k: at most k − 1 features
appear in P and so there exists a feature fi ∈ Sk that does not
appear in P . Since by Lemma 19 Si

k = feat(Lk) \ {fi} is not
a support set for Lk, there exits a negative example e− and a
positive example e+ that can not be distinguished by Si

k, this
means that {e−, e+} ⊆ ET (ℓ) and so T is not a DT for Lk.

In order to prove the reverse direction, we assume that T is
a non-redundant and complete DT of depth k+1 with features
in Sk. Let P be a path of T from the root to a leaf ℓ; note that
P is of length k+ 1. Since T is non-redundant, every feature
of Sk appears exactly once in P . Since, by Lemma 19, Sk is
a support set, there is only one example eℓ that ends ℓ, that is
{eℓ} = ET (ℓ).

From this proof, it follows that every non-redundant DT T
with features in Sk for Lk has 2k+1 − 1 nodes.

We now show that Lk has a DT of size at most 2k + 5,
i.e., the DT Tk that is constructed as follows. The root r of
Tk has feature f∗. The left child cℓ of r is a negative leaf
and the right child v1 has feature f1. For every i ∈ [k − 2],
the left child of vi is a positive leaf and the right child vi+1

has feature fi+1. Finally vk and v′k are respectively the left
and right child of vk−1, both having feature fk. The children
of vk and v′k are leaves that are either positive or negative
depending on the parity of the number of right arcs present in
the unique path from the root to that leaf. See Figure 2 (right)
for a visual representation of T3 and note that Tk has 2k + 5
nodes. We show next that Tk is a DT for Lk.

Lemma 21. For every integer k ≥ 1, Tk is a DT for Lk.

Proof. By construction, r and its feature f∗ send every neg-
ative example to its left child cℓ, which is a negative leaf,
except for the two negative examples in Dk, that is, if
{e−1 , e

−
2 } = E−

k ∩ Dk, then ETk
(cℓ) = E−

k \ {e−1 , e
−
2 } and

ETk
(v1) = E+

k ∪ {e−1 , e
−
2 }.



Let e be an example in Dk; by construction, for every i ∈
[k − 2] if e ∈ ETk

(vi) then e ∈ ETk
(vi+1) and by induction

we obtain that e ∈ ETk
(vk−1). Let e be an example in Dk and

j ∈ [k−2] be the minimum integer such that e(fj) = 0. This
means that e ̸∈ ETk

(vj+1) and e is classified by the left child
of the node vj . We have just proved that Dk = ETk

(vk−1)

and that Tk classifies Dk. Now it is straightforward to show
that the subtree of Tk rooted at vk−1 classifies Dk.

We are now ready to proof the first part of Theorem 17.

Proof of Theorem 17 (for size). By Lemma 19, Sk is the
smallest (and unique minimal) support set for Lk and by
Lemma 20, we have that every non-redundant DT for Lk that
uses all and only the features in Sk has size at least 2k+1 − 1.
Moreover, since by Lemma 21 Tk is a DT for Lk, we have
that the smallest DT for Lk has size at most |Tk| = 2k + 5.
Therefore, opts(Lk) ≤ 2k + 5 and optsSS(Lk) ≥ 2k+1 − 1,
as required.

5.2 Depth
For every integer k ≥ 1, let us describe a DT T k as follows.
The tree T k has v1 as root. For every i ∈ [k], the node vi
has v2i and v2i+1 as left child and right child, respectively.
Moreover, the node vi has feature fi if i ∈ [k], and is a leaf
otherwise. A leaf ℓ of T k is positive if the number of right
arcs of the unique path from v1 to ℓ is even and negative oth-
erwise. Note that T k has depth log(k) + 1.

Let Fk be the set of all the examples in Ek that are correctly
classified by T k and denote by Fk = Ek \ Fk. See Figure 3
for a visual representation of E3 and its decomposition in F3

and F3.

f1 f2 f3 f ′ f ′′

0 0 0 0 0 +
0 1 0 0 0 − F3

1 0 0 0 0 −
1 0 1 0 0 +
0 0 1 1 0 −
0 1 1 1 1 +
1 1 0 1 1 + F3

1 1 1 1 0 −

Figure 3: The CI E3 partitioned into F3 and F3

Let f ′ be a new feature defined as follows: e(f ′) = 0 if
e ∈ Fk and e(f ′) = 1 otherwise. We also define another new
feature f ′′ as follows: e(f ′′) = 0 if either e ∈ Fk or e is
a negative example and e(f ′′) = 1 otherwise. Then, the CI
Ld
k, whose existence is claimed in Theorem 17, is obtained

from Ek after adding the two novel features f ′ and f ′′ and
for simplicity, we denote by S′

k the set {f1, . . . , fk, f ′, f ′′}.
We now introduce a DT of small depth for Ld

k, i.e., the DT
T k
∗ . For every integer k ≥ 1, let T k

∗ be the DT described as
follows. The root r of T k

∗ has feature f ′ and its left branch is
the DT T k. The right child of r is a node u with feature f ′′.
The left/right child of u is a negative/positive leaf. Note that
T k
∗ has depth log(k) + 2. See Figure 4 for a visual represen-

tation of the DTs T 3 (left) and T 3
∗ (right).

f1

f2 f3

− ++ −

f ′

f ′′

T 3

− +

Figure 4: The DTs T 3 (left) and T 3
∗ (right).

As for the case of size, we start by showing that Sk is the
only minimal support set for Ld

k.

Lemma 22. For every integer k ≥ 1, Sk is the only minimal
support set for Ld

k.

Proof. By the proof of Lemma 19, the set Sk is a support set
for Ek and therefore also for Ld

k. In the rest of the proof, we
show that, for every i ∈ [k], the set Si

k = S′
k \ {fi} is not a

support set for Ld
k, which completes the proof of the lemma.

Let ei be the example of Ld
k described as follows: ei is

obtained from the minimal (partial) assignment that corre-
sponds to the unique path from v1 to vi in T k by setting
all other values of the assignment to 0. First we prove that
ei ∈ Fk. By construction, the number of features f ∈ Sk

such that ei(f) = 1 is equal to the number of right arcs of the
unique path from v1 to a leaf ℓ described by the assignment
ei: thus ei and ℓ have the same positivity and so ei is correctly
classified by T k. Considering the case k = 3 represented in
Figure 3, it is easy to see that e1 = e2 = (0, 0, 0, 0, 0) and
e3 = (1, 0, 0, 0, 0).

Let e′i be the example in Ld
k such that e′i(fj) = ei(fj) for

every j ∈ [k] \ {i} and e′i(fi) = 1 − ei(fi). Now we prove
that (1) e′i has different positivity than ei and (2) e′i ∈ Fk.
To prove (1), it is enough to observe that ei and e′i differ on
exactly one feature, fi, and so the hamming distance between
them is one: by definition, ei and e′i have different positivity.

In order to prove (2), it is enough to observe that the num-
ber of features f ∈ Sk such that e′i(f) = 1 is equal to
the number of right arcs of the unique path from v1 to a
leaf ℓ described by the assignment e′i: thus e′i and ℓ have
the same positivity and so e′i is correctly classified by T k.
Considering the case k = 3 represented in Figure 3, it is
easy to see that e′1 = (1, 0, 0, 0, 0), e′2 = (0, 1, 0, 0, 0) and
e′3 = (1, 0, 1, 0, 0).

Thanks to the construction of e′i, (1) and (2), we have
shown that, for every i ∈ [k], the pair ei and e′i is made of
a positive and a negative example which can only be distin-
guished by feature fi among those in S′

k: fi must belong to
every (minimal) support set for Ld

k.

We now show that T k
∗ is indeed a DT for Ld

k.

Lemma 23. For every integer k ≥ 1, T k
∗ is a DT for Ld

k.

Proof. By construction, r and its feature f ′ send every exam-
ple of Fk to its left child and every other example, that is Fk,
to the right child. By definition, the set Fk is classified by



T k and, by construction of f ′′, the subtree of T k
∗ rooted at u

classifies Fk. Therefore, T k
∗ classifies Fk ∪ Fk = Ld

k.

We are now ready to proof the second part of Theorem 17.

Proof of Theorem 17 (for depth). By Lemma 19, Sk is the
smallest (and unique minimal) support set for Ld

k and by
Lemma 20, we have that every non-redundant DT for Ld

k that
uses all and only the features in Sk has depth k+1. Moreover,
since by Lemma 23 T k

∗ is a DT for Ld
k, we have that the mini-

mum depth of a DT for Ld
k is at most depth(T k

∗ ) = log(k)+2.
Therefore, optd(Ld

k) ≤ log(k) + 2 and optdSS(L
d
k) ≥ k + 1,

as required.

6 Proof of Theorem 18
Here, we show Theorem 18. We start by introducing the clas-
sification instance Lk for every k ≥ 1, whose existence is
stated in the theorem. Let Lk be the CI with exactly k ex-
amples {e1, . . . , ek} on the 3 features f , f ′, and f ′′ defined
as follows. For every i ∈ [k], we set ei(f) = i . More-
over, ei(f ′) = 1 for every even i ∈ [k − 2] and ei(f

′) = 0
otherwise. Finally, ei(f ′′) = 0 for every odd i ∈ [k − 2]
and ei(f

′) = 1 otherwise. An example ei is negative if i is
odd and positive otherwise. See Figure 5 (left) for a visual
representation of L6.

f f ′ f ′′

1 0 0 −
2 1 1 +
3 0 0 −
4 1 1 +
5 0 1 −
6 0 1 +

f ≤ 3

f ≤ 1 f ≤ 4

− f ≤ 2

+ −

+ f ≤ 5

− +

Figure 5: The CI L6 (left) and the DT B6 (right).

We start by showing that {f} is the unique minimal support
set for Lk.
Lemma 24. For every integer k ≥ 1, the set {f} is the only
minimal support set for Lk.

Proof. First we note that {f} is a support set for Lk: for every
pair of positive and negative examples ei and ej for some
even i ∈ [k] and odd j ∈ [j], feature f is able to distinguish
ei and ej by choosing the threshold equal to min{i, j}.

It is also easy to see that {f ′, f ′′} is not a support set for
Lk: ek−1 and ek have different parity and can not be distin-
guished by either f ′ or f ′′.

For every integer k ≥ 1, let us describe a DT Bk induc-
tively as follows. Every internal node of Bk has feature f : we
just have to describe the threshold chosen for such node. A
leaf of Bk is positive if it is the left child of a node with even
threshold or the right child of a node with odd threshold, and
it is negative otherwise. B1 is the DT with only one node. B2

is the DT having only one internal node with threshold 1.

Now suppose we have all the DT Bi with i < k. The
root of Bk has threshold ⌊k

2 ⌋, the left branch is the DT B⌊ k
2 ⌋

and right branch is the DT B⌈ k
2 ⌉

but with all the thresholds
increased by ⌊k

2 ⌋. See Figure 5 (right) for a visual represen-
tation of B6.

The next lemma shows how Bk is able to classify Lk.

Lemma 25. For every integer k ≥ 1, Bk has size 2k − 1,
depth ⌈log(k)⌉ + 1 and is a DT for Lk of minimum size and
minimum depth among those that only use the feature f .

Proof. We prove the statement by induction on k. For the
base case, B1 has just one (negative) node which trivially
classifies L1. Let us assume the statement is true for every
integer i < k.

By construction, |Bk| = 1 + |B⌊ k
2 ⌋
|+ |B⌈ k

2 ⌉
| = 1 + (k −

1) + (k − 1) = 2k − 1 and dep(Bk) = 1 + dep(B⌈ k
2 ⌉
) =

⌈log(k)⌉+ 1.
Every example ei, with i ∈ [k], ends in either the left or

right child of the root of Bk, depending on the comparison
with ⌊k

2 ⌋. By construction, the left/right child of the root of
Bk is the root of the DT B⌊ k

2 ⌋
/B⌈ k

2 ⌉
which classifies ei by the

inductive hypothesis.

Claim 26. In every DT for Lk that uses only f as feature
there is an internal node with threshold i, for every i ∈ [k−1].

Proof. Let B be a DT for Lk. Suppose, by contradiction,
there exists an integer i∗ ∈ [k − 1] that does not appear in an
internal node of B as threshold. This means that ei∗ and ei∗+1

are not distinguished in B, which is a contradiction since they
have different positivity.

Suppose, by contradiction, that there exists a DT B∗
k for

Lk, that uses only f as feature, of size smaller than |Bk|.
By Claim 26, B∗

k has k−1 internal nodes (as Bk does). As
consequence, we have that B∗

k has less then k leaves: there is
a leaf ℓ and integers i, j ∈ [k − 1], i < j such that ℓ receives
ei and ej . By how f is defined, if B∗

k can not distinguish
ei and ej then it can not distinguish any pair of examples in
{ei, . . . , ej}; in particular B∗

k can not distinguish between ei
and ei+1, which is a contradiction since they have different
positivity.

We are now ready to define the optimum DTs for Lk, which
are allowed to use all features of Lk. For every integer k ≥ 1,
let Ck be the DT described as follows. The root r of Ck has
feature f ′ with threshold 0 and its right child is a positive leaf
cr. The left child cℓ of r has feature f with threshold k − 1:
both children of cℓ are leaves; the left one is negative and the
right one is positive.

Equivalently, for every integer k ≥ 1, let Ck be the DT
described as follows. The root r of Ck has feature f ′′ with
threshold 0 and its left child is a negative leaf cℓ. The right
child cr of r has feature f with threshold k−1: both children
of cℓ are leaves; the left one is positive and the right one is
negative.

Note that, for every k ≥ 1, Ck and Ck have 5 nodes. See
Figure 6 for a visual representation of C6 (left) and C7 (right).



f ′ ≤ 0

f ≤ 5 +

− +

f ′′ ≤ 0

f ≤ 6−

−+

Figure 6: The DT C6 (left) and C7 (right).

Lemma 27. For every even integer k ≥ 1, Ck is a DT for Lk.
Equivalently, for every odd integer k ≥ 1, Ck is a DT for Lk.

Proof. We prove the statement for even integers; the proof
for odd integers is equivalent. Let k be an even integer. By
construction, r, its feature f ′ and the threshold 0 sends all the
positive examples to the right child, which is a positive leaf,
except for ek, that is, ECk

(cℓ) = L−
k ∪ {ek} and ECk

(cr) =

L+
k \ {ek}. The node cℓ, its feature f and its threshold k − 1

can now distinguish L+
k and {ek}, which allows to complete

the classification of Lk.

We are now ready to prove Theorem 18.

Proof of Theorem 18. By Lemma 24, {f} is the smallest (and
unique minimal) support set for Lk and by Lemma 25 we
have that Bk is a DT for Lk of minimum size 2k − 1 and
minimum depth ⌈log(k)⌉ + 1 among those that only use the
feature f . Moreover, by Lemma 27 either Ck or Ck is a DT
for Lk that uses only 5 = O(1) nodes. Therefore, Lk satisfies
opts(Lk) ≤ 5 and optsSS(Lk) ≥ k and setting Ld

k = L2k

satisfies opts(Ld
k) ≤ 5 and optsSS(L

d
k) ≥ k, which completes

the proof of the theorem.

7 Conclusion
We have established novel results that contribute to the foun-
dations of learning interpretable machine learning models.
Our main result is algorithmic. We have devised a parame-
terized algorithm that allows us to efficiently learn an optimal
DT (with the smallest number of nodes or lowest depth). The
worst-case complexity of our algorithm depends on the input
size and the combined parameter solution size, and the maxi-
mum difference. This answers an open question by Ordyniak
and Szeider [2021], who had to include the maximum domain
size for their FPT result and completes their complexity clas-
sification for DT learning. As pointed out in the introduction,
our result stands out because for similar problems (like the
CSP), the inclusion of domain size is inevitable.

Our second result deals with the question of what one loses
when working with a smallest set of features (a minimum
support set) when learning a DT of a small size or depth.
It turns out that this question strongly depends on whether
the domain size is bounded or not. We show that the gap be-
tween the optimal solution and one that depends on the small-
est set of features can be arbitrarily large for the unbounded
domain case. For the bounded domain case, the gap can be
bounded by an exponential function, and that this bound is
tight. This result is of interest to practitioners as it is a natural

approach for heuristics to perform feature reduction before
learning the DT.
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