
One-Shot Learning from a Demonstration
with Hierarchical Latent Language

Anonymous ACL submission

Abstract

Humans have the capability, aided by the ex-001
pressive compositionality of their language, to002
learn quickly by demonstration. They are003
able to describe unseen task-performing proce-004
dures and generalize their execution to other005
contexts. In this work, we introduce De-006
scribeWorld, an environment designed to test007
this sort of generalization skill in grounded008
agents, where tasks are linguistically and pro-009
cedurally composed of elementary concepts.010
The agent observes a single task demonstra-011
tion in a Minecraft-like grid world, and is then012
asked to carry out the same task in a new013
map. To enable such a level of generaliza-014
tion, we propose a neural agent infused with015
hierarchical latent language—both at the level016
of task inference and subtask planning. Our017
agent first generates a textual description of018
the demonstrated unseen task, then leverages019
this description to replicate it. Through mul-020
tiple evaluation scenarios and a suite of gen-021
eralization tests, we find that agents that per-022
form text-based inference are better equipped023
for the challenge under a random split of tasks.024

1 Introduction025

Humans are highly capable of learning by exam-026

ple. If a child watches their school teacher draw027

a purple winged elephant then recite the alphabet028

backwards, they can replicate the sequence of activ-029

ities at home with relative ease. This is in no small030

part due to the human ability to leverage the compo-031

sitionality of language in order to comprehend new032

situations composed of familiar concepts (Chom-033

sky, 1957). The child can restate the demonstration034

in words (as we did above), naturally decompos-035

ing it into its distinct subcomponents (the drawing,036

and the alphabet), which are themselves procedu-037

rally compositional (e.g., “pick up purple marker,038

. . . ”). Humans use their linguistic understanding of039

a task’s hierarchical compositionality to generalize040

it to a new context; without this generalization, we041

Figure 1: Framework for learning from demonstration
via latent language. The Describer module observes an
oracle demonstration of an unseen task and describes it
in text. Given the generated description, the Instructor
module infers necessary subtasks, accomplished by the
Executor module via low-level control actions.

might expect a child would overfit to the specifics 042

of the classroom context. 043

In this work, we explore whether grounded artifi- 044

cial agents can similarly generalize from a demon- 045

stration: a single expert trajectory accomplishing a 046

task. Specifically, we pose a setting where an agent 047

observes a demonstration of a never-before-seen 048

task, then must perform the task in a new context. 049

We construct DescribeWorld, an environment 050

containing a dataset of high-level tasks involving 051

building recipes, navigation, and interaction with 052

objects and terrains.1 Test tasks are distinct from 053

training tasks, but they are procedurally composed 054

of the same subtasks and low-level actions. 055

As humans leverage language to perform such 056

generalization, we follow recent work (Ruis et al., 057

2020) by designing, alongside a traditional random 058

task split, a suite of benchmark splits that require 059

learning systematic rules governing how linguistic 060

variation affects a task’s subtask ‘recipe.’ For ex- 061

ample, the agent might be trained to build a pig 062

barn and an iron shrine, then during testing 063

must build the unseen composition pig shrine. 064

1Examples available at describeworld.github.io;
dataset and code will be released publicly.

1

describeworld.github.io

To perform in this task environment, we devise a065

novel three-level Hierarchical Latent Language Pol-066

icy (HLLP) agent that represents both high-level067

tasks (“build a house on field”) and subtask plans068

(“cut wood”) in natural language. As depicted in069

Figure 1, this effectively recasts the challenge of070

learning from demonstrations as a) describing the071

demonstrated unseen task, then b) following the072

predicted description in a new map. The agent073

uses text representations at two levels of abstrac-074

tion: identifying top-level verbalized tasks (via a075

describer module), and identifying a sequence of076

intermediate-level subtasks (via instructor). We077

train the agent via imitation learning on synthetic078

text associated with oracle actions.079

Our novel testing scenario for DescribeWorld is080

demonstration following, where the agent must081

replicate a demonstrated task in a new random map.082

Given its challenging nature, we also evaluate a083

simpler scenario, description following (Weller084

et al., 2020), which assumes that the agent instead085

has access to a gold task description. This ab-086

lated variant allows us to examine performance087

at lower levels of abstraction by asking: were an088

agent to successfully describe an unseen task using089

NL, could it then follow the task in a new context?090

We contrast approaches that leverage latent lan-091

guage policies versus those that instead use contin-092

uous representations. We find that modeling agent093

policy as latent natural language improves the abil-094

ity to generalize to demonstrations of unseen tasks.095

1.1 Contribution096

We frame the contribution of our new demon-097

stration following environment and our proposed098

HLLP agent in terms of Lake and Murphy (2021)’s099

five desiderata for a computational theory of se-100

mantics characteristic of human language use:101

1. Describing, or understanding the description102

of, a perceptually present scenario: the HLLP103

agent receives as input a multi-modal demonstra-104

tion of a task, and expresses it in text so as to105

generalize into a new randomly-generated map.106

2. Choosing words on the basis of internal de-107

sires, goals, or plans: the agent uses natural lan-108

guage to both describe a demonstrated high-level109

task, as well as to verbalize intermediate-level sub-110

tasks to complete at the level of control policy.111

3. Responding to instructions and requests ap-112

propriately: the agent iteratively executes action113

sequences against the task environment in order114

to follow the high-level descriptions and low-level 115

instructions it produces for itself. 116

4. Producing and understanding unseen con- 117

ceptual combinations: test demonstrations show 118

unseen high-level tasks composed linguistically 119

and procedurally of known concepts. 120

5. Changing one’s beliefs about the world based 121

on linguistic input: demonstrations convey envi- 122

ronmental constraints – e.g. that walking on lava 123

yields a penalty— that the agent must verbalize and 124

act upon via low-level control policy. 125

2 Related Work 126

Latent Language Policy Agents Natural lan- 127

guage has been proposed as a medium for convey- 128

ing task-specific goals (Karch et al., 2020) and con- 129

straints (Yang et al., 2021) to grounded reinforce- 130

ment learning agents. Andreas et al. (2018) show 131

the benefit of reparamatrizing a continuous policy 132

search into discrete text space for various few-shot 133

‘learn-the-rule’ tasks. They suggest that such "la- 134

tent language policy" (LLP) models are a promising 135

avenue for generalization on the basis of language 136

learning. More recent work has applied LLPs to 137

real-time strategy games (Hu et al., 2019; Jacob 138

et al., 2021), while Chen et al. (2021) show that 139

LLPs trained to generate and follow crowdsourced 140

instructions can perform few- or zero-shot simple 141

crafting tasks in a small grid world. Ours is a sim- 142

ilar style of environment, though our high-level 143

tasks are more complex, extending beyond individ- 144

ual crafting recipes.2 Jiang et al. (2019) train hier- 145

archical synthetic language policy agents to accom- 146

plish a set of shape-arranging tasks in a MuJoCo- 147

based environment. They find that language can 148

improve performance on a simple form of system- 149

atic generalization (holding out tasks where the 150

first half of instructions include the word “red”). 151

Grounded Language Environments Several re- 152

cent language grounding environments study an 153

embodied agent given high-level task descriptions 154

and/or instructions to follow, e.g., LANI (Misra 155

et al., 2018), Room2Room (Anderson et al., 2018), 156

ALFRED (Shridhar et al., 2020). ALFRED has a 157

similar notion to ours of task decomposition, where 158

tasks and subtasks are expressible via NL instruc- 159

tion. However, due to limitations of their under- 160

lying 3D engine, they cannot evaluate complex 161

2Performance by Chen et al. (2021)’s model degrades for
crafting recipes with 5 ‘steps’, while ours have upwards of 16.

2

Subtask Graph (hidden):

Description (predicted):
place wood flooring covering all the water
then reach the workspace. avoid walking
on lava.

Inventory:
wood, stone, stick, stone pickaxe

...

Unique Tasks (End Goals + Terr. Consts.) 10604
Unique End Goals 2651
Objects 29 Pickable Objects 11
Craftable Items 19 Buildable Structures 13
Placeable Terrains 7 Natural Terrains 3

Figure 2: DescribeWorld overview. Maps are symbolic
images, while the task description, predicted by the
agent from a demonstration, and the inventory, reflect-
ing subtask completion, are encoded in text.

crafting tasks as a means to target systematic gener-162

alization. Chevalier-Boisvert et al. (2018) and Hill163

et al. (2019) investigate compositional rule learn-164

ing for navigational and pick-up/put-down skills165

using a synthetic language of instructions in 2D and166

3D environments, respectively. Jiang et al. (2020)167

consider a text-based environment in which agents168

must infer zero-shot concept combination recipes169

using common sense. Ruis et al. (2020) construct170

a grounded instruction following benchmark that171

evaluates many types of systematic generalization.172

Our effort builds upon theirs, introducing a novel173

scenario (demonstration following) as well as tasks174

with longer trajectories, subtask dependencies, and175

new action types (building/placing).176

Language-Based Generalization in Humans177

and Models Lake and Baroni (2018) show that178

RNN-based sequence models struggle to perform179

systematic compositional generalization based on180

abstract linguistic rules, while humans are ex-181

tremely effective at it given few examples (Lake182

et al., 2019). Other recent NLP work explores train-183

ing language models to perform few-shot task gen-184

eralization given textual task descriptions (Weller185

et al., 2020; Mishra et al., 2021; Wei et al., 2021).186

Meta-Learning One way to achieve generaliza-187

tion is to learn strategies that can quickly adapt to188

novel tasks by leveraging past experiences (Schmid-189

huber, 1987; Thrun and Pratt, 1998; Bengio et al.,190

2007). Specifically, our experimental setup falls191

under the zero- and few-shot imitation learning cat-192

egory (Duan et al., 2017; Yu et al., 2018; Pan et al.,193

2020; Zhou et al., 2020), where our approach re-194

ceives a single demonstration to solve novel tasks.195

Environmental Constraints

End Goals

Crafting

Navigation

Composite

Building

Placing

Covering

build fence build chicken barn
on water

go to jeweler
and lumbershop

craft necklace

go to furnace

place road

place iron flooring
covering all lavas

place road
covering all fields

place wood flooring
on lava

build gold house
on iron flooring

Terrain
Traversal

rustle pig;
field gives reward

erect wood shrine;
don't walk on water

make scythe
and get coal

clear all of the
chickens

Figure 3: Categories of end goals and environmental
constraints parametrizing high-level tasks.

3 DescribeWorld Environment 196

DescribeWorld is a 2D grid world implemented 197

atop the Mining domain from Sohn et al. (2018). 198

The procedurally generated map (Figure 2) is an 199

8x8 grid (with surrounding walls); cells can contain 200

terrains and objects. The agent can perform move- 201

ment, use, and place actions in order to complete 202

subtasks that either add resources to its inventory, 203

build items, or place craftable terrains at the agent’s 204

location. Details can be found in Appendix A and 205

on our project webpage. The set of possible sub- 206

tasks and their dependencies (depicted in Appendix 207

Figure 7) is constant across all tasks; we combine 208

subtasks in unseen ways to form unique high-level 209

tasks to be learned from demonstration. 210

3.1 Compositional Tasks and Subtasks 211

Tasks and subtasks in DescribeWorld exhibit pro- 212

cedural and lexical compositionality. A list of high- 213

level task categories is shown in Figure 3. Tasks 214

may also be parameterized by environmental con- 215

straints–namely, that traversing a particular type of 216

terrain will produce either a reward or a penalty. 217

Certain building and placing subtasks option- 218

ally accept a special ingredient material, e.g. gold 219

house. The recipes for these subtasks comprise 220

those needed to acquire the material plus those 221

needed to build the object. All gold items require 222

smelted gold, while all houses, whether they are 223

silver, gold, or regular, require wood slats, and 224

iron. These subtasks require a pair of build-key 225

actions to complete: the first uniquely determines 226

3

https://describeworld.github.io

the type of object to build, while the second deter-227

mines which special material should be used. The228

action to specify a given special ingredient is con-229

stant across all special recipes. Further details of230

such subtasks are shown in Appendix Table 5.231

3.2 State Representation232

The state at time step t is represented as a tuple233

(Mt, It), where map Mt is a symbolic 8 × 8 × 3234

tensor with channels for agent, item, and terrain.235

Inventory It is a text representation (comma sep-236

arated) of the currently-held items, e.g. wood,237

stone, spade. There is a step penalty of −1, and238

we track the number of traversals over reward- and239

penalty-giving terrains; rewarding cells can only be240

triggered once per game. Trajectories end upon end241

goal completion, or hitting a 300-step time limit.242

3.3 Oracle243

We implement an oracle that navigates the grid-244

world and completes high-level tasks. The oracle245

computes the set of all necessary subtasks required246

to complete the high-level task. It then computes247

the intersection of necessary and currently eligible248

(i.e. prerequisite-satisfied) subtasks, then chooses249

one to complete according to a canonical order.250

This process is repeated until the high-level task251

is completed. Example trajectories are provided252

in Appendix Figure 8. The oracle is used both253

to generate trajectories for demonstration follow-254

ing (rolling out a trajectory from start to finish),255

as well as to provide gold instructions and execu-256

tions during imitation learning (i.e. used on-the-257

fly to generate the next step towards completing258

the next subtask). In the former case, in order to259

convey environment-specific constraints such as260

rewards/penalties for stepping on particular terrain261

types, we ensure that it traverses all terrain types262

at least once. Ensuring traversal of all terrains can263

require a navigational detour of a couple steps.264

3.4 Data Splits265

We introduce a suite of train/test splits, depicted in266

Figure 4, each of which requires a particular form267

of rule-based systematic generalization in demon-268

stration following agents.269

Random Split We compare against a simple ran-270

dom 70/30 split, where tasks are sorted by hash-271

ing the text of their end goal, ignoring terrain re-272

wards/penalties. The random split test is nontriv-273

ially challenging due to complex subtask dependen-274

cies and unseen randomly-generated maps.275

Training Tasks Evaluation Tasks

H
id

de
n

Su
bt

as
k

H
id

de
n

U
se

C
as

e
H

id
de

n
Te

rr
ai

n
D

es
tin

at
io

n
Le

ng
th

G
en

er
al

iz
at

io
n

Figure 4: Data splits testing for systematic generaliza-
tion in demonstration following agents

Hidden Subtask This split requires procedural 276

generalization on the basis of ingredient/object 277

composition. We remove from the training data 278

all end goals involving the subtask place iron 279

flooring, but leave in all other tasks that involve 280

other types of flooring, and those that use the 281

iron special ingredient. We repeat the procedure 282

with erect pig shrine and build diamond 283

house. Appendix Table 5 lists the building recipes 284

for these subtasks, plus those left in the training set 285

with which they linguistically overlap; those serve 286

as the source of generalization. The test set con- 287

tains all tasks that involve any of the three unseen 288

subtasks.3 This challenge is twofold: the agent 289

must learn that modifiers like pig and diamond cor- 290

respond to a required set of subtasks, plus a fixed 291

specification action when building a structure. 292

Hidden Use Case This split requires generaliza- 293

tion of a subtask learnt in one isolated use case. We 294

remove from training all tasks involving diamond 295

house, except for the plain task build diamond 296

house. At test time, the agent must use the subtask 297

in all other end goals, e.g. build diamond house 298

on field. We repeat the process for place road 299

and make goldware. We also test the generaliza- 300

tion of iron flooring appearing during training 301

only as a destination, e.g. in build house on iron 302

flooring. The agent is tested on all other use 303

cases, e.g. place iron flooring on field. 304

Hidden Terrain Destination This split requires 305

generalization of terrains as not only sources of 306

traversal penalty/reward, but also as a building des- 307

3We leave out tasks requiring covering terrain from the
hidden subtask and use case test sets due to agents’ low com-
pletion rate on the category under the random split.

4

DEMONSTRATION
DESCRIBER

Transition Encoder

DESCRIPTION FOLLOWING NETWORK

EXECUTOR

INSTRUCTOR

Transformer
Encoder

Conv. Net

New Instruction
Switch MLP

Transformer
Decoder

get iron ore

Multi-head
Attention

Aggregator

make pickaxe

(forward connection only)

Consecutive
Image

Encoder
wood, stone

build gold house on road.
Water rewards you.
Avoid lava.

wood, stone,
stick, stone pickaxe

-1

Text Encoder

Multi-head
Attention

Aggregator

Transformer
Encoder

wood

Transformer
Decoder

Image
Encoder

Text
Encoder Multi-head

Attention
Aggregator

Recurrent
Memory

Executor MLP

Text
Encoder

Image
Encoder

Transition Encoder

Transition Encoder

Ti
ed

Figure 5: Architecture of hierarchical latent language policy agent. The describer module decodes a description of
a demonstration in map M dem, then the instructor/executor modules replicate the task in new map M new.

tination. We hold out all tasks that involve the ter-308

rain water as a destination, e.g. in build house309

on water. We leave in tasks that use other ter-310

rain types, e.g. lava and field, as destinations.311

We also leave in tasks that involve water as a ter-312

rain constraint, as in build house. don’t walk313

on water. This split therefore requires agents to314

generalize the fact that water can also serve as a315

destination from the dual roles of other terrains.316

Length Generalization Neural sequence mod-317

els show to fail to generalize to task lengths longer318

than those seen in training (Ruis et al., 2020). We319

test for this capacity by holding out tasks with the320

top 10% longest oracle trajectories.321

4 Hierarchical Latent Language Policy Agent322

We design a three-layer hierarchical latent language323

policy (HLLP) agent to perform one-shot demon-324

stration following. The describer module observes325

oracle demonstrations and describes them in text.326

The description following instructor and executor327

modules work in tandem to generate intermediate-328

level NL instructions and choose low-level actions.329

We train modules to use a compositional, canoni-330

cal subset of English as a means for efficient pol-331

icy communication with other modules.4 We thus332

parametrize our agent’s policy via text description333

D and instruction sequence Instr1 . . . Instri.334

D = fdescr(M
dem
1:n , Idem

1:n , adem
1:n , r

dem
1:n)

Instri = finstr(Mi, Ii, Instri−1;D)

ai = fexec(M1:i, I1:i, a1:i−1; Instr1:i)

335

4This design choice is in contrast with existing work, e.g.
Hu et al. (2019); Chen et al. (2021), that trains LLPs on crowd-
sourced NL instructions with high variation. We do not see the
high variability of naturally occurring language as necessary
for our agents to communicate policy decisions; the describer
need not generate verbose linguistic alterations in order to
effectively convey task-relevant information to other modules.

Describer module Depicted in (Figure 5, left), 336

this is a basic transformer-based “video summa- 337

rization” model. It takes a demonstration (i.e., se- 338

quence of transitions) as input. A transition at time 339

step t is a 5-tuple including the previous step’s 340

symbolic image Mt−1, the action taken at−1, the 341

resulting reward rt−1, the resulting symbolic image 342

Mt, and the text enumerating the new inventory It. 343

For each time step t, we use an image encoder to 344

encode Mt−1 and Mt, and a text encoder to encode 345

the concatenation of at−1, rt−1, and It. The re- 346

sulting encodings are aggregated using an attention 347

mechanism into a single transition representation. 348

To obtain a single demonstration representation, 349

we use a second transformer encoder over the se- 350

quence of transition encodings , then use a standard 351

attention-equipped transformer decoder to generate 352

a description of the demonstrated task. 353

Instructor module Our framework for generat- 354

ing and following instructions given a task descrip- 355

tion is similar to that of Hu et al. (2019), except we 356

use a language model decoder instead of a classifier 357

and compute separate state encodings for the two 358

modules. At each time step, the instructor mod- 359

ule (Figure 5, upper right) computes a multimodal 360

state representation via attention-based aggrega- 361

tion of separate encodings of the textual and image 362

components of the state observation. The text rep- 363

resentation is a transformer encoding of the task 364

description concatenated with the inventory text, 365

while the image representation is a convolutional 366

encoding of the map. The state representation is 367

passed to the ‘new instruction’ classifier, which 368

determines whether to decode a new instruction or 369

copy the previous timestep’s.5 370

5This is necessary because of a lack of a state cue signify-
ing the need for a new instruction, e.g. a change in inventory
in Chen et al. (2021).

5

Executor module This module (Figure 5, lower371

right) computes a combined state representation372

using the same encoder parameters, but using the373

generated instruction text instead of the task de-374

scription. The state representation is used to update375

a recurrent memory cell, the hidden state of which376

is fed to an MLP classifier over low-level actions.377

4.1 Training378

Models are trained to convergence on a validation379

set containing tasks with the same end goals as380

those in the training data, but with unseen combi-381

nations of terrain rewards/penalties. The describer382

is trained with typical seq2seq cross-entropy-based383

supervised learning. The instructor/executor pair is384

trained with imitation learning using DAgger (Ross385

et al., 2011). To train the instructor, we generate386

a synthetic instruction for each subtask. Because387

the description, which is not shown to the execu-388

tor, conveys terrain rewards/penalties, we train the389

instructor to decode them as well, e.g. in ‘go to390

lava and place road. avoid walking on water.’391

Further details are provided in Appendix D.392

5 Experiments393

Demonstration Following We test agents 15394

times for each evaluation task, using demonstra-395

tions in 5 randomly-generated maps each paired396

with 3 unique maps in which to replicate the task.397

Description Following We use the same task in-398

stances as the previous scenario, but provide the399

ground truth task description directly to the agent.400

Instruction Following To set an upper bound401

for instructor performance, we evaluate the per-402

formance of the executor given oracle instructions.403

Our main evaluation metric is the binary com-404

pletion of the demonstrated task. To measure ad-405

herence to terrain constraints, we track the average406

number of reward/penalty cell traversals and com-407

pare to an oracle baseline. To measure accuracy408

against the oracle text, we use exact match com-409

puted as a binary sentence-level score. We note that410

this accuracy does not imply high performance on411

the benchmark, as the lower-level agents must also412

understand the text in order to ultimately execute413

the correct low-level actions to complete the task.414

5.1 Baselines415

Nonverbal Baseline To test the effect of com-416

puting a latent text representation of the high-417

level task, we compare against a nonverbal base-418

line (NV Baseline) that at each time step com- 419

putes a continuous representation of the demon- 420

stration trajectory instead of encoding a pre- 421

dicted text description. The architecture resem- 422

bles that of the executor module, with a trans- 423

former encoder over demonstration transitions 424

(as in the describer) rather than text description. 425

Further details are provided in Appendix C.4. 426

ai = fexec(M
dem
1:n , Idem

1:n , adem
1:n , r

dem
1:n ,M1:i, I1:i, a1:i−1)

427

Latent Language Description Only We also 428

compare against a second baseline that con- 429

ditions the agent’s policy on a latent lan- 430

guage description (LLD), but does not lever- 431

age language at the level of intermediate sub- 432

task planning. The LLD architecture resem- 433

bles the HLLP without the instructor module. 434

D = fdescr(M
dem
1:n , Idem

1:n , adem
1:n , r

dem
1:n)

ai = fexec(M1:i, I1:i, a1:i−1;D)

435

6 Results 436

We average performance over 5 training seeds. Ta- 437

ble 1 shows exact match rates for the describer and 438

instructor, measured for the latter at each new in- 439

struction. Table 2 shows completion rate on the 440

random task split broken down by category, while 441

Table 4 shows generalization splits. 442

6.1 Random Split 443

Both agents that leverage a predicted task descrip- 444

tion (HLLP and LLD) outperform the nonverbal 445

baseline on the random unseen task split. As shown 446

in Table 1, the describer module exhibits around 447

70% exact match accuracy on a set of unseen tasks 448

and 85% on a set of novel combinations of seen 449

training tasks and terrain constraints. The describer 450

properly identifies over 75% of unseen tasks, which 451

are conveyed by the first sentence of each descrip- 452

tion. It struggles with navigation and clearing sub- 453

tasks, which have uniquely short trajectories. De- 454

scription following agents achieve high task com- 455

pletion rates given the ground truth task description 456

(Table 2, middle). The HLLP agent outperforms 457

the LLD baseline by greater than 5%; however, the 458

latter is more effective at covering and clearing sub- 459

tasks, which require variable numbers of repeated 460

subtasks depending on the random map. The ex- 461

ecutor performs nearly perfect given oracle instruc- 462

tions (Table 2, bottom), indicating most description 463

following errors are made by the instructor. 464

6

EM (%)
Describer Instructor

Eval Valid Eval Eval
Tasks Full Goal Full Goal All Last

Random Split 15140 84.3 92.4 69.3 75.7 77.4± 5.1 79.8± 4.3
Navigation 700 10.1 10.6 0.9 0.9 60.1± 16.6 85.1± 1.8
Crafting 5400 98.0 98.9 87.4 88.0 88.9± 4.4 83.2± 4.7
Craft then Nav 880 88.1 99.4 84.0 88.1 89.7± 9.6 97.0± 1.3
Build on Terrain 6040 83.0 92.9 63.8 71.7 78.0± 8.1 81.7± 5.6
Cover Terrain 1680 71.5 98.5 59.5 84.3 60.7± 5.1 52.7± 3.4
Clear Items 400 95.2 95.2 37.0 37.5 72.2± 10.0 72.9± 11.0

Hid. Subtask 8900 84.8 91.4 14.5 15.8 43.6± 4.0 16.5± 4.8
Hid. Use Case 12860 84.1 90.3 19.7 22.2 40.5± 5.0 17.7± 6.8
Hid. Terr Destn 6520 84.9 91.8 0.0 0.0 26.5± 2.1 5.1± 1.4
Length Gen. 5445 85.2 92.0 69.7 92.9 62.9± 5.5 63.8± 8.1

Table 1: Describer and Instructor exact match (EM) against
gold references. Describer EM shown for Full text, and first
sentence describing end Goal. Validation tasks have same end
goals as train, but novel terrain reward/penalty combinations.
Instructor EM shown for All and Last instructions given.

Completion (%) NV Baseline LLD HLLP

Demonstration Following

Overall 25.2± 7.0 65.1± 3.2 68.4± 2.2
Navigation 45.6± 2.6 40.5± 1.3 46.5± 2.9
Crafting 44.4± 13.7 79.6± 3.2 85.5± 1.7
Craft then Nav 45.4± 14.3 89.4± 1.8 95.1± 1.4
Build on Terrain 9.1± 2.7 54.4± 4.1 63.0± 3.4
Cover Terrain 5.4± 2.9 61.2± 4.0 37.9± 1.7
Clear Items 11.6± 5.6 39.3± 0.6 27.0± 6.3

Ground Truth Description Following

Overall – 76.7± 3.6 82.1± 2.5
Navigation – 93.9± 2.3 96.2± 2.9
Crafting – 86.0± 3.3 92.0± 1.8
Craft then Nav – 90.1± 1.5 95.9± 1.6
Build on Terrain – 67.2± 4.7 81.3± 4.2
Cover Terrain – 64.8± 4.2 43.8± 2.5
Clear Items – 85.8± 3.8 67.4± 9.1

Ground Truth Instruction Following

Overall – – 97.2± 1.1
Navigation – – 95.7± 1.5
Crafting – – 98.1± 0.9
Craft then Nav – – 98.5± 0.9
Build on Terrain – – 96.6± 1.4
Cover Terrain – – 97.3± 1.1
Clear Items – – 95.2± 1.8

Table 2: Completion rates on random task split

|Traversals| Oracle NVB LLD HLLP
Tasks + − + − + − + −

0 Rew 1 Pen 5880 – 7 – 30 – 12 – 19
0 Rew 2 Pen 5595 – 17 – 63 – 29 – 39
1 Rew 0 Pen 5490 9 – 8 – 8 – 7 –
1 Rew 1 Pen 11670 9 7 7 32 8 12 7 20
2 Rew 0 Pen 5430 17 – 15 – 15 – 14 –

Table 3: Average traversals on reward (+) or penalty
(−)-giving terrains by agents on random split. Tasks
are categorized by the number of such terrain types.

Adherence to Terrain Constraints Table 3 de-465

picts the rate at which demonstration following466

agents traverse penalty or reward terrains.6 We467

compare against an oracle traversal frequency. This468

comparison is made difficult by the variability469

among the times taken by agents to either complete470

a task or hit the 300-step limit. However, the results471

suggest that the HLLP agent is worse at avoiding472

penalty terrains than the LLD. All agents are close473

to oracle performance at traversing reward terrains.474

6.2 Generalization Splits475

Hidden Subtask Models generally fail to gener-476

alize to unseen compositional subtasks. The de-477

scriber identifies only 16% of the unseen end goals,478

while the instructor predicts the correct final in-479

struction7 at the same rate. Figure 6 (upper) shows480

that given gold descriptions, the HLLP agent ac-481

complishes only pig shrine tasks at all, while the482

LLD also accomplishes diamond house at a low483

rate. The executor often fails to handle unseen or-484

acle instructions.8 We find that the HLLP tends485

to acquire the correct recipe items, but often does486

6Tasks may require traversing a penalty terrain on a ran-
domly generated map.

7This usually corresponds to the hidden subtask.
8e.g. the final ‘build diamond house’ instruction.

not generate the correct final instruction or perform 487

the right pair of low-level build operations to place 488

the structure. The instructor correctly generates the 489

novel pig shrine concept around 30% of the time. 490

Hidden Use Case The nonverbal demonstration 491

follower completely fails to generalize tasks to new 492

use cases. The describer module successfully iden- 493

tifies 20% of unseen use case tasks, but no latent 494

language agent completes more than 5% from pre- 495

dicted descriptions. We observe that completion of 496

the isolated training tasks is not perfect (Figure 6 497

middle), indicating that poor performance on this 498

split may be due to a lack of convergence on the 499

subtasks of interest, which underpopulate the train- 500

ing data. The executor module performs well on 501

unseen goldware and iron flooring use cases. 502

Hidden Terrain Destination Agents fail to gen- 503

eralize a terrain observed only as a reward/penalty 504

source to then being a destination for building tasks; 505

particularly for covering tasks. This is the case at 506

all abstraction levels; the executor given gold in- 507

structions completes 55% of build tasks but only 508

3% of cover tasks. The describer and instructor 509

modules fails to identify the end goal and end in- 510

struction at all; however, in 49% of describer fail- 511

ure cases, the predicted end goal differs from the 512

ground truth only by the specified destination (e.g. 513

on field instead of the desired on water). 514

Length Generalization Both latent language 515

agents achieve moderate success on length gen- 516

eralization, particularly relative to the nonverbal 517

7

Completion (%) NV Baseline LLD HLLP

Demonstration Following

Hidden Subtask 2.5± 1.4 1.3± 0.4 0.4± 0.3
Hidden Use Case 0.3± 0.5 5.1± 1.5 5.9± 3.3
Hidden Terr Destn 1.6± 0.9 4.6± 0.5 3.7± 0.7
Length Gen. 6.0± 2.1 62.6± 3.8 57.9± 9.0

Description Following

Hidden Subtask – 7.4± 2.3 8.0± 3.1
Hidden Use Case – 8.2± 1.9 11.8± 6.9
Hidden Terr Destn – 1.8± 1.2 2.8± 1.2
Length Gen. – 65.7± 4.1 60.9± 9.1

Instruction Following

Hidden Subtask – – 15.6± 7.2
Hidden Use Case – – 48.6± 5.0
Hidden Terr Destn – – 35.3± 7.2
Length Gen. – – 96.6± 1.3

Table 4: Completion rates on generalization splits

baseline (6% vs 60%). The describer is extremely518

successful at identifying long-trajectory tasks.519

6.3 Discussion520

Our results suggest that language serves as an ex-521

pressive, generalization-promoting representation522

for one-shot demonstration following agents. Our523

suite of high-level tasks requires an agent to iden-524

tify task concepts and their roles in composing525

unique end goal and constraint combinations. Lan-526

guage allows the describer module to communi-527

cate such roles succinctly to the other modules,528

which learn how compositional lexical groundings529

guide high- and low-level policy decisions in a530

new context. Learning to encode and plan on the531

basis of a continuous representation of a demon-532

stration trajectory is otherwise a very challenging533

task. Intermediate-level planning on the basis of534

LM decoding provides incremental improvements535

upon nonverbal baselines on a random task split,536

suggesting improved generalization to other maps537

and unseen tasks sampled from the same distribu-538

tion as those seen during training. However, we539

find that instruction-level latent language does not540

meaningfully improve systematic compositional541

generalization in either of our evaluation scenarios.542

Reformulating policy search as sequence search543

simplifies it in certain useful ways–the improved544

flexibility and interpretability of text-based reason-545

ing allows for pinpointing errors at multiple levels546

of decision making, abstracts away low-level exe-547

cution decisions that do not pertain to certain forms548

of generalization, as we observe in our hidden use549

case results. However, a latent language policy550

alone is not a compositional generalization silver551

bullet. Indeed, such challenges remain largely un-552

solved, though recent approaches have suggested553

Figure 6: Hidden subtask and use case tests by subtask.

incremental progress in specific cases (Andreas, 554

2020; Qiu et al., 2021; Conklin et al., 2021). We 555

hope that our benchmark adds to this discourse, and 556

that future work considers our evaluation frame- 557

work. We also welcome future work exploring 558

settings with complex subdependencies under time 559

limits. To improve stability, our instructor chooses 560

subtasks in an inoptimal canonical order that re- 561

quires text-based reasoning about high-level tasks, 562

but not spatial reasoning about object proximity. 563

7 Conclusion 564

Our goal is to design agents that learn new tasks 565

from single examples, with behavior rooted in lan- 566

guage. This is of broad interest to the NLP com- 567

munity, as one-shot learning of novel tasks com- 568

bats the typical need to collect and train massive 569

amounts of task data. This motivated the con- 570

struction of DescribeWorld, a task environment 571

for testing one-shot learning of complex tasks from 572

demonstrations. DescribeWorld allowed for the de- 573

velopment and evaluation of our hierarchical latent 574

language policy agent, which performs decision 575

making on the basis of text at multiple levels of ab- 576

straction. We found that models leveraging latent 577

language can improve upon nonverbal alternatives 578

in multiple evaluation scenarios, but that they can 579

struggle with forms of systematic generalization. 580

We observe that models can accomplish systemat- 581

ically novel tasks provided the correct decision is 582

made at a higher level of abstraction, which exem- 583

plifies how hierarchical latent language provides a 584

mechanism for isolating the level of policy abstrac- 585

tion in which a generalization might occur. 586

8

References587

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,588
Mark Johnson, Niko Sünderhauf, Ian D. Reid,589
Stephen Gould, and Anton van den Hengel.590
2018. Vision-and-language navigation: Interpreting591
visually-grounded navigation instructions in real en-592
vironments. 2018 IEEE/CVF Conference on Com-593
puter Vision and Pattern Recognition, pages 3674–594
3683.595

Jacob Andreas. 2020. Good-enough compositional596
data augmentation. In Proceedings of the 58th An-597
nual Meeting of the Association for Computational598
Linguistics, pages 7556–7566, Online. Association599
for Computational Linguistics.600

Jacob Andreas, Dan Klein, and Sergey Levine. 2018.601
Learning with latent language. In Proceedings of602
the 2018 Conference of the North American Chap-603
ter of the Association for Computational Linguistics:604
Human Language Technologies, Volume 1 (Long Pa-605
pers), pages 2166–2179, New Orleans, Louisiana.606
Association for Computational Linguistics.607

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.608
Hinton. 2016. Layer normalization. CoRR,609
abs/1607.06450.610

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and611
Jan Gecsei. 2007. On the optimization of a synaptic612
learning rule.613

Valerie Chen, Abhinav Gupta, and Kenneth Marino.614
2021. Ask your humans: Using human instructions615
to improve generalization in reinforcement learning.616
In International Conference on Learning Represen-617
tations.618

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,619
Salem Lahlou, Lucas Willems, Chitwan Saharia,620
Thien Huu Nguyen, and Yoshua Bengio. 2018.621
Babyai: A platform to study the sample efficiency622
of grounded language learning. In International623
Conference on Learning Representations.624

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-625
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger626
Schwenk, and Yoshua Bengio. 2014. Learning627
phrase representations using RNN encoder–decoder628
for statistical machine translation. In Proceedings of629
the 2014 Conference on Empirical Methods in Natu-630
ral Language Processing (EMNLP).631

Noam Chomsky. 1957. Syntactic Structures. De632
Gruyter Mouton.633

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan634
Titov. 2021. Meta-learning to compositionally gen-635
eralize. In Proceedings of the 59th Annual Meet-636
ing of the Association for Computational Linguistics637
and the 11th International Joint Conference on Nat-638
ural Language Processing (Volume 1: Long Papers),639
pages 3322–3335, Online. Association for Computa-640
tional Linguistics.641

Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, 642
Jonathan Ho, Jonas Schneider, Ilya Sutskever, 643
P. Abbeel, and Wojciech Zaremba. 2017. One-shot 644
imitation learning. ArXiv, abs/1703.07326. 645

Matthew Hausknecht and Peter Stone. 2015. Deep 646
recurrent q-learning for partially observable mdps. 647
arXiv preprint arXiv:1507.06527. 648

Felix Hill, Andrew Lampinen, Rosalia Schneider, 649
Stephen Clark, Matthew Botvinick, James L Mc- 650
Clelland, and Adam Santoro. 2019. Environmental 651
drivers of systematicity and generalization in a situ- 652
ated agent. In International Conference on Learning 653
Representations. 654

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan- 655
dong Tian, and Mike Lewis. 2019. Hierarchical de- 656
cision making by generating and following natural 657
language instructions. In Advances in Neural Infor- 658
mation Processing Systems, volume 32. Curran As- 659
sociates, Inc. 660

Athul Paul Jacob, Mike Lewis, and Jacob Andreas. 661
2021. Multitasking inhibits semantic drift. In Pro- 662
ceedings of the 2021 Conference of the North Amer- 663
ican Chapter of the Association for Computational 664
Linguistics: Human Language Technologies, pages 665
5351–5366, Online. Association for Computational 666
Linguistics. 667

Minqi Jiang, Jelena Luketina, Nantas Nardelli, 668
Pasquale Minervini, Philip Torr, Shimon Whiteson, 669
and Tim Rocktäschel. 2020. Wordcraft: An envi- 670
ronment for benchmarking commonsense agents. In 671
Language in Reinforcement Learning Workshop at 672
ICML 2020. 673

YiDing Jiang, Shixiang Shane Gu, Kevin P Murphy, 674
and Chelsea Finn. 2019. Language as an abstraction 675
for hierarchical deep reinforcement learning. Ad- 676
vances in Neural Information Processing Systems, 677
32:9419–9431. 678

Tristan Karch, Nicolas Lair, Cédric Colas, Jean- 679
Michel Dussoux, Clément Moulin-Frier, Pe- 680
ter Ford Dominey, and Pierre-Yves Oudeyer. 2020. 681
Language-goal imagination to foster creative 682
exploration in deep rl. 683

Diederik P. Kingma and Jimmy Ba. 2015. Adam: 684
A method for stochastic optimization. In ICLR 685
(Poster). 686

Brenden Lake and Marco Baroni. 2018. Generalization 687
without systematicity: On the compositional skills 688
of sequence-to-sequence recurrent networks. In In- 689
ternational conference on machine learning, pages 690
2873–2882. PMLR. 691

Brenden Lake, Tal Linzen, and Marco Baroni. 2019. 692
Human few-shot learning of compositional instruc- 693
tions. In CogSci. 694

Brenden Lake and Gregory Murphy. 2021. Word mean- 695
ing in minds and machines. Psychological Review. 696

9

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/N18-1197
https://openreview.net/forum?id=Y87Ri-GNHYu
https://openreview.net/forum?id=Y87Ri-GNHYu
https://openreview.net/forum?id=Y87Ri-GNHYu
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.421
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and697
Hannaneh Hajishirzi. 2021. Cross-task general-698
ization via natural language crowdsourcing instruc-699
tions.700

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind701
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.702
Mapping instructions to actions in 3d environments703
with visual goal prediction. In EMNLP.704

Xinlei Pan, Tingnan Zhang, Brian Ichter, Aleksandra705
Faust, Jie Tan, and Sehoon Ha. 2020. Zero-shot imi-706
tation learning from demonstrations for legged robot707
visual navigation. 2020 IEEE International Con-708
ference on Robotics and Automation (ICRA), pages709
679–685.710

Ofir Press and Lior Wolf. 2017. Using the output em-711
bedding to improve language models. In Proceed-712
ings of the 15th Conference of the European Chap-713
ter of the Association for Computational Linguistics:714
Volume 2, Short Papers, pages 157–163, Valencia,715
Spain. Association for Computational Linguistics.716

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw,717
and Fei Sha. 2021. Systematic generalization on718
gSCAN: What is nearly solved and what is next?719
In Proceedings of the 2021 Conference on Empiri-720
cal Methods in Natural Language Processing, pages721
2180–2188, Online and Punta Cana, Dominican Re-722
public. Association for Computational Linguistics.723

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.724
2011. A reduction of imitation learning and struc-725
tured prediction to no-regret online learning. In Pro-726
ceedings of the fourteenth international conference727
on artificial intelligence and statistics.728

Laura Ruis, Jacob Andreas, Marco Baroni, Diane729
Bouchacourt, and Brenden M Lake. 2020. A bench-730
mark for systematic generalization in grounded lan-731
guage understanding. Advances in Neural Informa-732
tion Processing Systems, 33.733

Jurgen Schmidhuber. 1987. Evolutionary principles in734
self-referential learning. on learning now to learn:735
The meta-meta-meta...-hook. Diploma thesis, Tech-736
nische Universitat Munchen, Germany, 14 May.737

Mohit Shridhar, Jesse Thomason, Daniel Gordon,738
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,739
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:740
A Benchmark for Interpreting Grounded Instruc-741
tions for Everyday Tasks. In The IEEE Confer-742
ence on Computer Vision and Pattern Recognition743
(CVPR).744

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. 2018.745
Hierarchical reinforcement learning for zero-shot746
generalization with subtask dependencies. In Ad-747
vances in Neural Information Processing Systems,748
pages 7156–7166.749

Sebastian Thrun and Lorien Y. Pratt. 1998. Learning to750
learn. arXiv: Learning, pages 354–354.751

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 752
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 753
Kaiser, and Illia Polosukhin. 2017. Attention is all 754
you need. In Advances in Neural Information Pro- 755
cessing Systems 30. 756

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin 757
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 758
drew M. Dai, and Quoc V. Le. 2021. Finetuned lan- 759
guage models are zero-shot learners. 760

Orion Weller, Nicholas Lourie, Matt Gardner, and 761
Matthew E. Peters. 2020. Learning from task de- 762
scriptions. In Proceedings of the 2020 Conference 763
on Empirical Methods in Natural Language Process- 764
ing (EMNLP), pages 1361–1375, Online. Associa- 765
tion for Computational Linguistics. 766

Tsung-Yen Yang, Michael Hu, Yinlam Chow, Peter 767
Ramadge, and Karthik R Narasimhan. 2021. Safe 768
reinforcement learning with natural language con- 769
straints. 770

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, 771
Tianhao Zhang, P. Abbeel, and Sergey Levine. 772
2018. One-shot imitation from observing hu- 773
mans via domain-adaptive meta-learning. ArXiv, 774
abs/1802.01557. 775

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sor- 776
doni, Romain Laroche, Remi Tachet des Combes, 777
Matthew Hausknecht, and Adam Trischler. 2018. 778
Counting to explore and generalize in text-based 779
games. arXiv preprint arXiv:1806.11525. 780

Allan Zhou, Eric Jang, Daniel Kappler, Alexander Her- 781
zog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mri- 782
nal Kalakrishnan, Sergey Levine, and Chelsea Finn. 783
2020. Watch, try, learn: Meta-learning from demon- 784
strations and reward. ArXiv, abs/1906.03352. 785

10

http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025
https://aclanthology.org/2021.emnlp-main.166
https://aclanthology.org/2021.emnlp-main.166
https://aclanthology.org/2021.emnlp-main.166
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg

Contents in Appendices:786

• In Appendix A, we provide further details of787

the DescribeWorldframework.788

• In Appendix C, we describe modeling details789

of all our proposed agents and baselines.790

• In Appendix D, we provide training and im-791

plementation details of our agents.792

• In Appendix E, we show additional experi-793

ment results.794

A Environment Details795

As depicted in Figure 2, the procedurally generated796

map (Figure 2(a)) is an 8x8 (10x10 with a wall bor-797

der) grid whose cells may be populated with walls,798

terrains and interactable objects. Terrains are either799

lava, field or water. Some objects disappear800

upon interaction (tree, stone. . .) or transform801

(furnace→ lit furnace), or are permanent fix-802

tures (lumbershop, workspace . . .) at which the803

agent can perform crafting operations.804

The set of possible agent actions comprises di-805

rectional movement ({up, down, left, right}, in-806

teract actions ({pick up, use-1 . . . use-5}, and807

place actions ({place-1 . . . place-4}) Subtasks808

generally have a set of prerequisite subtasks (e.g.809

make stone pickaxe requires get wood and get810

stone). The requirements for a subtask do not811

change across tasks, i.e. make stone pickaxe812

always requires the same prerequisites and ac-813

tion/location combination.814

Crafting tasks require the agent to perform a spe-815

cific interact action while in the cell of a specific816

object (make stone pickaxe requires the agent817

to perform use-1 while on top of the workspace.818

Building tasks require the agent to perform a use819

action on a cell without an item already inside it.820

place-based tasks can be performed anywhere re-821

gardless of the presence of an item or existing ter-822

rain.823

If the agent performs actions that render an end824

goal unattainable (e.g. build house on field825

but the agent covers all fields with other objects),826

the game immediately ends and produces a large827

negative reward.828

A.1 Task Recipes829

Figure 7 depicts the full set of DescribeWorld sub-830

tasks and their dependencies.831

A.2 License 832

The Mining environment (Sohn et al., 2018) on 833

which our code is licensed under the MIT license. 834

B Synthetic Text Generation 835

Every subtask in our dependency graph is as- 836

sociated with a single NL phrase, as shown in 837

Figure 7. To express task descriptions in NL, 838

we use templates with slots for subtasks, land- 839

marks and terrains; e.g. <build_subtask> on 840

<terrain>. We take an object-oriented approach 841

to defining end goals, the code for which will be 842

part of our public release. Every goal class, e.g. 843

BuildTargetLocationGoal, ClearItemGoal or 844

SubtaskThenDestinationGoal is associated with 845

a different NL template. Terrain constraints are 846

treated similarly, with slots for terrain type (Avoid 847

walking on the <terrain>. and Walking on 848

the <terrain> will reward you. 849

To generate oracle instructions during training, 850

we associate with each necessary subtask an in- 851

struction to go to a requisite landmark (if neces- 852

sary) then perform the subtask, e.g. go to tree 853

and cut wood or go to water and build house. 854

If the instructor needs to convey navigational con- 855

straints, we append them to the end of the instruc- 856

tion, as in go to the workspace and make stone 857

pickaxe. avoid walking on lava. Figures 8 858

and 9 show more examples of instructions. 859

C Modeling Details 860

In this section, we provide detailed information 861

of our agents. In Appendix C.1, we will describe 862

some common basic components in the agent ar- 863

chitecture. Later on, we will describe each of the 864

proposed agents mentioned in Section 5. 865

Notations 866

We use game step t to denote one round of interac- 867

tion between an agent with the environment. We 868

use ot to denote text observation at game step t. ot 869

may contain different components depending on a 870

specific context, we will describe individual cases 871

in later subsections. Brackets [·; ·] denote vector 872

concatenation. We use |s| to represent the length 873

of (number of tokens in) a sequence s. We use h 874

and w to denote the height and width of an input 875

image, when the image is flattened, the vector size 876

is hw. 877

11

Figure 7: Full subtask dependency graph for the DescribeWorld task environment.

Action 2

Base Item Prerequisites Action 1 use_1 use_2 use_3 use_4 use_5

flooring spade place_2 wood flooring iron flooring silver flooring gold flooring diamond flooring
barn hay, wood slats use_2 barn chicken barn pig barn
house iron, wood slats use_3 house silver house gold house diamond house
shrine gold ore, silver ore use_4 wood shrine iron shrine chicken shrine pig shrine diamond shrine

Table 5: List of two-action compositional building/placing recipes

C.1 Common Modules878

C.1.1 Text Encoder879

We use a transformer-based text encoder, which880

consists of an embedding layer and a transformer881

block (Vaswani et al., 2017). Specifically, we tok-882

enize an input ot with the HuggingFace GPT-2 tok-883

enizer9. We convert the tokens into 128-dimension884

embeddings, the embedding matrix is initialized885

randomly.886

The transformer block consists of a stack of 4887

convolutional layers, a self-attention layer, and a888

2-layer MLP with a ReLU non-linear activation889

function in between. Within the block, each convo-890

lutional layer has 128 filters, with a kernel size of 7.891

The self-attention layers use a block hidden size of892

128, with 4 attention heads. Layer normalization893

(Ba et al., 2016) is applied after each layer inside894

the block. Following standard transformer training,895

we add positional embeddings into each block’s896

input.897

At every game step t, the text encoder encodes898

ot ∈ R|ot| and results a representation hot ∈899

9https://huggingface.co/transformers/model_
doc/gpt2.html#gpt2tokenizer

R|ot|×H , H = 128 is the hidden size. 900

C.1.2 Image Encoder 901

We propose two image encoder architectures, each 902

tackling a different type of input: 903

Basic: The basic image encoder is adopted from 904

the BabyAI baseline model (Chevalier-Boisvert 905

et al., 2018). Specifically, given a symbolic im- 906

age input M ∈ Zh×w×c
≥0 , we use an image bag- 907

of-word (BOW) embedding layer to convert the 908

integer inputs into real-valued embeddings with 909

size h×w × c×H , where h, w and c denotes the 910

height, width, and channels of the image, H = 128 911

is the embedding size. We sum up the channel 912

dimension, resulting EM ∈ Rh×w×H . 913

Next, the image embeddings are fed into a 914

stacked residual convolutional blocks: 915

hl+1 = ResidualBlockl(hl),

h0 = EM .
(1) 916

Each residual block consists of two convolutional 917

layers, with kernel size of 3 and output channel size 918

of 128. Batch normalization is applied after every 919

convolutional layer, followed by a ReLU non-linear 920

12

https://huggingface.co/transformers/model_doc/gpt2.html#gpt2tokenizer
https://huggingface.co/transformers/model_doc/gpt2.html#gpt2tokenizer

activation function. Before the last ReLU, we apply921

a residual connection, which adds the block input922

into the output of the last batch norm layer.923

The output size of the stacked residual blocks924

is h× w ×H , we flatten its spatial dimensions to925

result the image encoding hM ∈ Rhw×H .926

Consecutive: In the consecutive image encoder,927

we aim to capture the difference between two928

consecutive images. Given two images Mt−1 ∈929

Zh×w×c
≥0 and Mt ∈ Zh×w×c

≥0 , we first compute their930

difference Mdiff ∈ Zh×w×c. We convert the integer931

inputs into real-valued vectors using image BOW932

embedding layers, resulting Et−1 ∈ Rh×w×H ,933

Et ∈ Rh×w×H and Ediff ∈ Rh×w×H . Note Mdiff934

uses a separate image BOW embedding layer.935

To aggregate the three image embeddings, we936

feed their concatenation into an Multilayer Percep-937

tron (MLP):938

EM = Tanh(Linear([Et−1;Et;Ediff])), (2)939

where EM ∈ Rh×w×H . We use the same convo-940

lutional architecture to produce image encoding941

hM ∈ Rhw×H as in the basic image encoder.942

C.1.3 Aggregator943

To aggregate two input encodings P ∈ R|P |×H and944

Q ∈ R|Q|×H , we use the standard multi-head atten-945

tion mechanism (Vaswani et al., 2017). Specifically,946

we use P as the query, Q as the key and value. This947

results an output PQ ∈ R|P |×H , where at every948

time step i ∈ [0, |P |), P i
Q is the weighted sum of949

Q, the weight is the attention of P i on Q. We re-950

fer readers to (Vaswani et al., 2017) for detailed951

information.952

We apply a residual connection on top of953

the multi-head attention mechanism in order to954

maintain the original information contained in P .955

Specifically,956

hPQ = Tanh(Linear([PQ;P])), (3)957

where hPQ ∈ R|P |×H .958

C.1.4 Text Decoder959

We use a transformer-based text decoder to gener-960

ate text. The decoder consists of a word embedding961

layer, a stacked transformer blocks and a projection962

layer.963

Similar to the text encoder, the embedding layer964

is initialized with random embedding matrix. In-965

side the transformer block, there is one self atten-966

tion layer, one multi-head attention layer and a967

2-layer MLP with ReLU non-linear activation func- 968

tions in between. Taking word embedding vectors 969

as input, the self-attention layer first generates a 970

contextual encoding vectors for the words. These 971

vectors are then fed into the multi-head attention 972

layer, to compute attention with representations 973

produced by the encoder, which contains informa- 974

tion from multiple modalities. The resulting vec- 975

tors are fed into the 2-layer MLP. The block hidden 976

size of this transformer is 128. 977

Subsequently, the output of the stacked trans- 978

former blocks is fed into the projection layer, which 979

is a linear transformation with output size same as 980

the vocabulary size. We follow (Press and Wolf, 981

2017), tying the input embeddings and this projec- 982

tion layer. The logits resulted from the projection 983

layer are then normalized by a softmax to gener- 984

ate a probability distribution over all tokens in the 985

GPT-2 vocabulary. 986

Following common practice, we use a mask to 987

prevent the decoder transformer to access “future” 988

information during training. We set the max num- 989

ber of generated tokens to be 30. During inference, 990

the decoder will stop generating whenever gener- 991

ates the end-of-sequence special token, or exhausts 992

all its budget. 993

C.2 Hierarchical Latent Language Policy 994

Agent (HLLP) 995

C.2.1 Describer 996

As briefly mentioned in Section 4, the describer 997

module “summarizes” a demonstration into a short 998

text, where a demonstration typically a sequence 999

of multi-modal transitions. As shown in Figure 5, 1000

at every step t of a demonstration, the transition 1001

contains the symbolic images at previous step and 1002

current step: Mt−1 and Mt, and the text input 1003

ot = [at−1; rt−1; It], where at−1, rt−1, It denote 1004

the action taken at previous step, the resulting re- 1005

ward, and the inventory state at current step, respec- 1006

tively. 1007

We first encode the text input with an text en- 1008

coder described in Appendix C.1.1, similarly, we 1009

encode the image inputs with an consecutive image 1010

encoder described in Appendix C.1.2. We sub- 1011

sequently use two attention blocks described in 1012

Appendix C.1.3 to compute the image encoding’s 1013

attention over text (tokens), and vice versa, the text 1014

encoding’s attention over image (pixels). We aver- 1015

age both the attention-aggregated outputs, resulting 1016

himg→text ∈ R×H and htext→img ∈ R×H , to com- 1017

13

pute the overall representation of this time step:1018

1019

ht = Tanh(Linear([himg→text;htext→img])), (4)1020

where ht ∈ R×H , H = 128 is the hidden size.1021

At the episode level, we use a Transformer-based1022

encoder, with similar architecture to the one in our1023

text encoder. Specifically, the episode encoder is1024

a stacked 2-layer Transformer blocks, which out-1025

puts hdemoi ∈ R|demoi|×H , |demoi| is the number1026

of steps of a demonstration demoi, H is hidden1027

size.1028

Finally, we use a text decoder, as described in1029

Appendix C.1.4, to generate text descriptions.1030

In the describer module, we use a 2-layer text1031

encoder, a 5-layer image encoder, a 2-layer episode1032

encoder, and a 3-layer decoder.1033

C.2.2 Instructor1034

As shown in Figure 5, the instructor consists a1035

text encoder, a basic graph encoder, an attention1036

mechanism, a text decoder, and a new instruction1037

classifier.1038

Specifically, at a game step t, the image encoder1039

takes the image input Mt as input, generates im-1040

age representations vt ∈ Rhw×H , where h and1041

w are the height and width of the image. At the1042

same time, the text encoder encodes the text in-1043

put ot = [D; It; Instrt−1], where D, It and Instrt−11044

denote the task description (either generated by1045

the describer, or provided by an oracle), the in-1046

ventory state at current step, and the instruction1047

at previous game step. The text encoder outputs1048

wt ∈ R|ot|×H . Next, an attention block as de-1049

scribed in Appendix C.1.3 aggregates vt and wt,1050

resulting st ∈ R|ot|×H that contains information1051

from both modalities, where |ot| denotes number1052

of tokens in ot.1053

The new instruction classifier is an MLP switch1054

module that decides whether or not the instruction1055

generated at previous step is still valid (i.e., is it1056

necessary to generate a new instruction):1057

s′t = MaskedMean(st),

pt = Argmax(L1(Tanh(L0(s′t)))).
(5)1058

In which, L0 and L1 are linear transformations with1059

hidden size of 128 and 2, respectively. The output1060

pt ∈ {0, 1} is the discrete switch.1061

In the case where pt = 0, we directly pass the1062

instruction generated at previous step along as out-1063

put; otherwise, a text decoder as described in Ap-1064

pendix C.1.4 will generate a new instruction word- 1065

by-word conditioned on st. 1066

In the describer module, we use a single layer 1067

text encoder, a 2-layer image encoder, and a 2-layer 1068

decoder. The text encoder and image encoder are 1069

tied with the corresponding layers in the executor 1070

module. During training, we do not update the 1071

image encoder. 1072

C.2.3 Executor 1073

Given the intermediate level text instruction, our 1074

executor module translates them into low level ac- 1075

tions to interact with the environment. As shown 1076

in Figure 5, the executor consists a text encoder, 1077

a basic graph encoder, an attention block, and a 1078

recurrent action generator. 1079

Similar to the instructor module, the image en- 1080

coder and text encoder convert image input (Mt) 1081

and text input (It and Instrt]) into hidden repre- 1082

sentations. Note in the executor, to facilitate in- 1083

teraction between the instruction Instrt] with other 1084

text inputs, we encode It and Instrt] separately and 1085

aggregate them using an attention mechanism. 1086

Subsequently, given the image representation vt 1087

and the aggregated text representation wt, we apply 1088

attention block (as described in Appendix C.1.3) 1089

from both directions: 1090

hvw = Attention(vt, wt),

hwv = Attention(wt, vt),

h′vw = MaskedMean(hvw),

h′wv = MaskedMean(hwv),

st = Tanh(Linear([h′vw;h
′
wv])),

(6) 1091

in which, st ∈ RH , H = 128 is hidden dimension. 1092

In order to encourage the action generator to 1093

condition on history information, we equip it with 1094

a recurrent memory (Cho et al., 2014): 1095

s1:t = GRU(st, s1:t−1), (7) 1096

the hidden size of the GRU is 128. We stack an 1097

MLP on top of the recurrent memory to obtain the 1098

output distribution over all actions: 1099

ht = Tanh(Linear(s1:t)),

pat = Softmax(Linear(ht)),

at = Argmax(pat).

(8) 1100

In the executor module, we use a single layer 1101

text encoder and a 2-layer image encoder. The text 1102

encoder and image encoder are tied with the corre- 1103

sponding layers in the instructor module. During 1104

training, we do not update the text encoder. 1105

14

C.3 Latent Language Description Only1106

Baseline (LLD)1107

The LLD baseline shares the same describer archi-1108

tecture, and a similar executor architecture with1109

HLLP, its main difference is the absence of an in-1110

structor.1111

In its executor, at a game step t, the inputs are1112

an image Mt and a short text ot = [D; It], where1113

D is the description generated by the describer (or1114

the oracle description during training), It is the1115

agent’s inventory state. To obtain the text repre-1116

sentation wt, the LLD agent simply encode ot with1117

the text encoder as described in Appendix C.1.1,1118

without performing attention between D and It (as1119

in HLLP). The rest of the executor components are1120

identical to HLLP (Appendix C.2.3).1121

In the LLD baseline, we use a single layer text1122

encoder and a 2-layer image encoder.1123

C.4 Nonverbal Baseline (NV)1124

In the nonverbal baseline, we do not use lan-1125

guage as latent representations between modules.1126

Specifically, given a demonstration demoi, we1127

use a describer similar to the one outlined in Ap-1128

pendix C.2.1, but without decoding the demonstra-1129

tion representation into text. The output of the1130

describer is hdemoi ∈ R|demoi|×H , where |demoi| is1131

the number of steps in demoi, H is hidden size.1132

In our nonverbal baseline’s executor, at game1133

step t, a text encoder encodes the inventory state It1134

into wt; an image encoder encodes an input image1135

Mt into vt. We use multi-head attention blocks1136

(Appendix C.1.3) to aggregate information carried1137

by image (vt), text (wt), and demonstration repre-1138

sentation (hdemoi):1139

h′demoi = MaskedMean(hdemoi),

hdemo→img = Attention(h′demoi , vt),

hdemo→text = Attention(h′demoi , wt),

htext→img = Attention(wt, vt),

himg→text = Attention(vt, wt),

h′text→img = MaskedMean(htext→img),

h′img→text = MaskedMean(himg→text).

(9)1140

Subsequently, we use an MLP to combine them:1141

hcombined =[h′demoi ;

hdemo→img;hdemo→text;

h′text→img;h
′
img→text],

st =Tanh(Linear(hcombined)),

(10)1142

in which, the output st ∈ RH , H = 128 is hidden 1143

dimension. 1144

The remainder of the executor is identical to the 1145

executor used in the HLLP agent, as described in 1146

Appendix C.2.3. 1147

In the nonverbal baseline, we use a single layer 1148

text encoder and a 2-layer image encoder. 1149

D Training and Implementation Details 1150

For all experiments, we use Adam (Kingma and Ba, 1151

2015) as the optimizer. The learning rate is set to 1152

0.001 with a clip gradient norm of 5. 1153

D.1 Describer Training via Supervised 1154

Learning 1155

We use a set of pre-collected expert demonstra- 1156

tions paired with ground-truth descriptions to train 1157

the describer module in HLLP. Because demonstra- 1158

tions are long sequences of agent transitions, which 1159

can be memory consuming, we cut long demon- 1160

strations and only keep their last 100 transition 1161

steps. Since the length of demonstration varies, we 1162

speed up training by sorting the data points by their 1163

demonstration length, and split them by buckets 1164

with a bucket size of 2,000. For every mini-batch 1165

(we use a batch size of 20), we first randomly sam- 1166

ple a bucket, then randomly sample a batch of data 1167

point from that bucket. We train the describer for 5 1168

million episodes (250,000 batches). 1169

D.2 Description Follower Training via 1170

DAgger 1171

We train the description follower modules (instruc- 1172

tor and executor in HLLP, executor in LLD, and 1173

the entire nonverbal baseline) using DAgger (Ross 1174

et al., 2011), an imitation learning method. 1175

Specifically, during the training process, the 1176

agent starts with totally following the expert 1177

demonstrations, then we gradually let the agent to 1178

take over the control. The expert takes the form of a 1179

greedy oracle that identifies eligible and necessary 1180

subtask landmarks, navigates to them according to 1181

a traversal cost graph that considers terrain rewards 1182

and penalties, then performs the subtask. We ini- 1183

tially had the oracle complete whichever eligible 1184

subtask required the fewest steps. However, this 1185

led to training instability due to the compounded 1186

difficulty of inferring required subtasks and select- 1187

ing an eligibility-adherent completion order based 1188

on distances in a random map. Instead, we choose 1189

15

the first eligible subtask in a canonically-ordered1190

list.1191

We collect such trajectories (i.e., sequences of1192

transitions, along the expert demonstrations if the1193

agent takes over control), without updating the net-1194

work, into a replay buffer of size 500,000. We peri-1195

odically (after every 5 data collection steps) sample1196

batches of transitions from the replay buffer, and1197

update the network. Specifically, following the1198

training strategy used in the recurrent DQN liter-1199

ature (Hausknecht and Stone, 2015; Yuan et al.,1200

2018), we sample batches of transition sequences1201

(of length 8), we use the first 4 transitions to esti-1202

mate the recurrent states, and the last 4 transitions1203

for updating the model parameters. We use a mini-1204

batch of size 32 in replay data collection, and a1205

batch size of 64 for update. We linearly anneal the1206

fraction of expert assistance in DAgger from 100%1207

to 1% within 500,000 episodes.1208

When training the HLLP agent, as depicted in1209

Figure 5, we tie the encoder parameters between1210

the instructor and the executor. In which, the image1211

encoder is only updated through the executor loss,1212

whereas the text encoder is only updated through1213

the instructor loss. To stabilize the training, we1214

update the instructor and executor modules in an1215

alternate manner, with a frequency of 2,000 (expe-1216

rience data collection) episodes.1217

We train the description following agents for 11218

million episodes maximally, however, in practice,1219

the agents mostly converge sooner. We set an pa-1220

tience of 100,000 episodes, the training process1221

will terminate if there is no improvement within1222

this period.1223

D.3 Resources1224

We use a mixture of Nvidia V100/P100/P40 GPUs1225

to train all models; on average experiments (train-1226

ing with environment simulation) take 3-4 days,1227

but the wall clock time can vary.1228

E Supplementary Results1229

Table 1 Shows describer module exact match per-1230

formance against gold references in all splits and1231

task categories.1232

Table 7 shows full task completion performance1233

by agents on the hidden terrain destination gener-1234

alization set set decomposed by task category. Ta-1235

ble 8 shows the same for the length generalization1236

set.1237

Figure 8 depicts example unrolled trajectories1238

Valid Eval
Full Task End Goal Full Task End Goal

Random Split 84.3 92.4 69.3 75.7
Navigation 10.1 10.6 0.9 0.9
Crafting 98.0 98.9 87.4 88.0
Craft then Nav 88.1 99.4 84.0 88.1
Building on Terrain 83.0 92.9 63.8 71.7
Covering Terrain 71.5 98.5 59.5 84.3
Clearing Items 95.2 95.2 37.0 37.5

Hidden Subtask 84.8 91.4 14.5 15.8
Crafting 97.8 98.4 36.1 36.4
Craft then Nav 88.2 98.3 32.8 32.8
Building on Terrain 84.6 93.0 6.4 7.5
Covering Terrain 74.9 97.6 7.2 12.1

Hidden Use Case 84.1 90.3 19.7 22.2
Crafting 95.1 95.6 29.1 29.3
Craft then Nav 90.4 99.7 46.2 47.5
Building on Terrain 84.6 93.9 20.3 23.5
Covering Terrain 75.3 97.7 4.0 7.4

Hidden Terrain Destination 84.9 91.8 0.0 0.0
Building on Terrain 84.0 94.4 0.0 0.0
Covering Terrain 71.9 97.7 0.0 0.0

Hidden Length 85.2 92.0 69.7 92.9
Crafting 97.3 98.1 95.6 99.1
Craft then Nav 89.9 99.6 89.1 100.0
Building on Terrain 82.9 93.2 74.4 91.0
Covering Terrain 76.8 97.1 58.9 92.6
Clearing Items 98.8 99.1 100.0 100.0

Table 6: Expanded performance of Describer module
against gold references in all splits and task categories.
Validation scores for task categories not in an eval set
are not shown.

NV Baseline LLD HLLP

Demonstration Following

Overall 1.6± 0.9 4.6± 0.5 3.7± 0.7
Building on Terrain 2.5± 1.5 7.4± 0.8 6.0± 1.1
Covering Terrain 0.0± 0.0 0.1± 0.0 0.0± 0.0

Ground Truth Description Following

Overall – 1.8± 1.2 2.8± 1.2
Building on Terrain – 2.9± 2.0 4.5± 1.9
Covering Terrain – 0.0± 0.0 0.1± 0.1

Ground Truth Instruction Following

Overall – – 35.3± 7.2
Building on Terrain – – 55.1± 11.2
Covering Terrain – – 3.1± 0.8

Table 7: Performance on hidden terrain destination
split broken down by task category

produced by the oracle. Figure 9 depicts example 1239

failure cases by the HLLP agent on the generaliza- 1240

tion splits. 1241

16

build fence on silver flooring, then reach the jeweler.
avoid walking on the field. walking on the lava will reward you.
==
I0: cut wood, stepping on lava and avoiding field (9 steps)
I1: get stone, stepping on the lava and avoiding the field

(3 steps)
I2: get string, stepping on the lava and avoiding the field

(4 steps)
I3: get spade, stepping on the lava and avoiding the field

(4 steps)
I4: make stick, stepping on the lava and avoiding the field

(6 steps)
I5: make wood slats (1 steps)
I6: make stone pickaxe, stepping on the lava and avoiding

the field (7 steps)
I7: get coal, stepping on the lava and avoiding the field

(4 steps)
I8: get silver ore, stepping on the lava and avoiding the

field (11 steps)
I9: light furnace, stepping on the lava and avoiding the

field (3 steps)
I10: smelt silver (1 steps)
I11: place silver flooring on empty cell, stepping on the lava

and avoiding the field (3 steps)
I12: build fence on silver flooring (1 steps)
I13: go to jeweler, stepping on the lava and avoiding the

field (5 steps)
game ended after 62 steps

make net and place silver flooring covering all the
water in any order. avoid walking on the field.
==
I0: cut wood, avoiding the field (5 steps)
I1: get stone, avoiding the field (7 steps)
I2: get string, avoiding the field (7 steps)
I3: get spade, avoiding the field (7 steps)
I4: make firewood, avoiding the field (6 steps)
I5: make stick (1 steps)
I6: make net (1 steps)
I7: make stone pickaxe, avoiding the field (5 steps)
I8: get silver ore, avoiding the field (2 steps)
I9: light furnace, avoiding the field (10 steps)
I10: smelt silver (1 steps)
I11: place silver flooring covering water, avoiding the field

(4 steps)
I12: place silver flooring covering water, avoiding the field

(3 steps)
I13: place silver flooring covering water, avoiding the field

(3 steps)
I14: place silver flooring covering water, avoiding the field

(3 steps)
I15: place silver flooring covering water, avoiding the field

(3 steps)
I16: place silver flooring covering water, avoiding the field

(3 steps)
I17: place silver flooring covering water, avoiding the field

(3 steps)
game ended after 88 steps

dig dirt covering all the water, then reach the workspace.
==
I0: get spade (8 steps)
I1: dig dirt covering water (2 steps)
I2: dig dirt covering water (2 steps)
I3: dig dirt covering water (3 steps)
I4: dig dirt covering water (2 steps)
I5: dig dirt covering water (2 steps)
I6: dig dirt covering water (2 steps)
I7: dig dirt covering water (3 steps)
I8: dig dirt covering water (2 steps)
I9: dig dirt covering water (3 steps)
I10: dig dirt covering water (2 steps)
I11: dig dirt covering water (2 steps)
game ended after 32 steps

clear all of the grasses and the irons.
==
I0: cut wood (6 steps)
I1: get stone (5 steps)
I2: get string (5 steps)
I3: make stick (12 steps)
I4: make stone pickaxe (2 steps)
I5: make scythe (1 steps)
I6: get iron ore (4 steps)
I7: get iron ore (3 steps)
I8: cut hay (4 steps)
I9: cut hay (4 steps)
I10: cut hay (10 steps)
game ended after 56 steps

build pig barn on dirt and build diamond house on silver flooring
in any order.
==

I0: cut wood (8 steps)
I1: get stone (3 steps)
I2: get string (2 steps)
I3: get spade (12 steps)
I4: make stick (12 steps)
I5: make trap (1 steps)
I6: make net (1 steps)
I7: make wood slats (1 steps)
I8: make stone pickaxe (7 steps)
I9: catch pig (3 steps)
I10: make scythe (3 steps)
I11: get coal (16 steps)
I12: get iron ore (15 steps)
I13: get silver ore (5 steps)
I14: cut hay (5 steps)
I15: dig dirt on empty cell (2 steps)
I16: light furnace (12 steps)
I17: build pig barn on dirt (13 steps)
I18: smelt iron (12 steps)
I19: smelt silver (1 steps)
I20: make iron pickaxe (4 steps)
I21: get diamond ore (3 steps)
I22: place silver flooring on empty cell (5 steps)
I23: build diamond house on silver flooring (2 steps)
game ended after 148 steps (task was completed)

place diamond flooring on field, then reach the lumbershop.
==
I0: cut wood (11 steps)
I1: get stone (5 steps)
I2: get spade (4 steps)
I3: make stick (6 steps)
I4: make stone pickaxe (7 steps)
I5: get coal (5 steps)
I6: get iron ore (7 steps)
I7: light furnace (6 steps)
I8: smelt iron (1 steps)
I9: make iron pickaxe (6 steps)
I10: get diamond ore (3 steps)
I11: place diamond flooring on field (5 steps)
I12: go to lumbershop (4 steps)
game ended after 70 steps

Figure 8: Example unrolled oracle trajectories

17

Hidden Subtask

erect pig shrine.
==

I.0: cut wood
I.1: get stone
I.2: get string
I.3: make stick
I.4: make trap
I.5: make net
I.6: make stone pickaxe
I.7: catch pig
I.8: get coal
I.9: get iron ore
I.10: get silver ore
I.11: light furnace
I.12: smelt iron
I.13: make iron pickaxe
I.14: get gold ore <pig shrine now eligible>
I.15: erect pig shrine <agent erects iron shrine>
I.16: erect pig shrine <agent erects iron shrine on same cell>
<repeats until time limit>
game ended after 300 steps (task incomplete)

build diamond house.
==
I.0: cut wood
I.1: get stone
I.2: get string
I.3: make stick
I.4: make wood slats
I.5: make stone pickaxe
I.6: get coal
I.7: get iron ore
I.8: light furnace
I.9: smelt iron
I.10: make iron pickaxe
I.11: get gold ore
I.12: get diamond ore <diamond house now eligible>
I.13: erect diamond shrine <agent erects diamond shrine unsuccessfully>
I.13: erect diamond shrine <agent erects diamond shrine unsuccessfully>
<repeats until time limit>
game ended after 300 steps (task incomplete)

Hidden Use Case

place iron flooring covering all the lava and erect pig shrine
on silver flooring in any order.
==
I.0: cut wood
I.1: get stone
I.2: get string
I.3: get spade
I.4: make stick
I.5: make trap
I.6: make net
I.7: make stone pickaxe
I.8: catch pig
I.9: get coal
I.10: get iron ore
I.11: get silver ore
I.12: light furnace
I.13: smelt iron
I.14: smelt silver
I.15: make iron pickaxe
I.16: place iron flooring covering lava
I.17: place iron flooring covering lava
I.18: place iron flooring covering lava
I.19: place iron flooring covering lava <lava fully covered>
I.20: place iron flooring covering lava
<repeats until time limit>
game ended after 300 steps (task incomplete, no pig shrine)

build chicken barn on road and get gold ore in any order.
==
I.0: cut wood
I.1: get stone
I.2: get string
I.3: catch chicken
I.4: make stick
I.5: make wood slats
I.6: make stone pickaxe
I.7: make scythe
I.8: get coal
I.9: get iron ore
I.10: cut hay
I.11: light furnace
I.12: build chicken barn on empty cell
I.13: smelt iron
I.14: make iron pickaxe
I.15: get gold ore
<repeats until time limit>
game ended after 300 steps (task incomplete, barn not in road)

Hidden Terrain Destination

place silver flooring covering all the water.
==
I.0: cut wood
I.1: get stone
I.2: get spade
I.3: make stick
I.4: make stone pickaxe
I.5: get coal
I.6: get silver ore
I.7: light furnace
I.8: smelt silver
I.9: place silver flooring covering field
<repeats until time limit>
game ended after 300 steps (task incomplete, water not covered)

build fence on water.
==
I.0: cut wood
I.1: get string
I.2: make wood slats
I.3: build fence on empty cell
<repeats until time limit>
game ended after 300 steps (task incomplete, fence not on water)

Figure 9: Example agent failure cases on generalization splits

18

Tasks NVB LLD HLLP

Demonstration Following

Overall 6.0± 2.1 62.6± 3.8 57.9± 9.0
Crafting 1905 29.9± 8.1 82.5± 3.5 86.0± 11.6
Build on Terr 6330 4.9± 2.9 58.9± 4.5 69.6± 13.2
Cover Terr 7830 0.3± 0.4 59.7± 3.9 41.1± 5.4
Craft then Nav 165 36.4± 3.8 91.8± 4.6 88.6± 8.9
Clear Itm 105 18.5± 9.1 87.8± 5.1 42.1± 11.3

Ground Truth Description Following

Overall – 65.7± 4.1 60.9± 9.1
Crafting 1905 – 82.8± 3.4 86.3± 11.6
Build on Terr 6330 – 62.4± 4.9 75.1± 13.8
Cover Terr 7830 – 63.3± 4.1 42.9± 5.3
Craft then Nav 165 – 91.8± 4.6 88.4± 9.2
Clear Itm 105 – 87.8± 5.1 42.1± 11.3

Ground Truth Instruction Following

Overall – – 96.6± 1.3
Crafting 1905 – – 97.4± 1.9
Build on Terr 6330 – – 97.1± 1.2
Cover Terr 7830 – – 95.9± 1.4
Craft then Nav 165 – – 98.7± 0.9
Clear Itm 105 – – 96.6± 1.6

Table 8: Length generalization results

19

