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Abstract
The turnstile data stream model offers the most
flexible framework where data can be manipu-
lated dynamically, i.e., rows, columns, and even
single entries of an input matrix can be added,
deleted, or updated multiple times in a data stream.
We develop a novel algorithm for sampling rows
ai of a matrix A ∈ Rn×d, proportional to their
ℓp norm, when A is presented in a turnstile data
stream. Our algorithm not only returns the set
of sampled row indexes, it also returns slightly
perturbed rows ãi ≈ ai, and approximates their
sampling probabilities up to ε relative error. When
combined with preconditioning techniques, our
algorithm extends to ℓp leverage score sampling
over turnstile data streams. With these proper-
ties in place, it allows us to simulate subsampling
constructions of coresets for important regression
problems to operate over turnstile data streams
with very little overhead compared to their respec-
tive off-line subsampling algorithms. For logistic
regression, our framework yields the first algo-
rithm that achieves a (1 + ε) approximation and
works in a turnstile data stream using polynomial
sketch/subsample size, improving over O(1) ap-
proximations, or exp(1/ε) sketch size of previous
work. We compare experimentally to plain oblivi-
ous sketching and plain leverage score sampling
algorithms for ℓp and logistic regression.

1. Introduction
When analyzing huge amounts of data, even linear time and
space algorithms may require large computing resources or
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even reach the limits of tractability. When dealing with data
streams, or distributed data, we face additional restrictions
regarding their accessibility or communication. In massively
unordered models, huge amounts of data are stored and need
to be processed in arbitrary order. To deal with such situa-
tions, it is necessary to preprocess the dataset and reduce its
size before classical data analysis algorithms can perform
on a compressed substitute data set. Two main techniques
can be identified in the literature, referred to as coresets
and sketching, that quickly compute some sort of smaller
data summary while data is presented under the various
restrictions mentioned above, and thereby provide math-
ematical guarantees on the approximation error obtained
from analyzing the proxy (Phillips, 2017; Munteanu, 2023).

Coreset constructions often work by importance subsam-
pling or selection of original rows of a data matrix and
reweighting them reciprocally to their sampling probability
(Munteanu & Schwiegelshohn, 2018). This yields unbiased
and precise estimates using few rows of high importance
that are likely to be included, while many low contributions
are redundant and can be subsampled in a near uniform way
(Langberg & Schulman, 2010; Feldman et al., 2020).

Sketching is often seen as a descendant of random projec-
tions and aims at randomly isolating rows that have a very
high impact on the objective function (Woodruff, 2014).
The idea behind the type of sketches considered in this pa-
per is that these high impact contributions can be separated
with high probability from each other by hashing them ran-
domly into buckets, and collisions with less important data
add only little noise (Charikar et al., 2004; Woodruff, 2014;
Mahabadi et al., 2020).

Coresets admit batch-wise processing of data points using
a black-box technique called Merge & Reduce (Bentley
& Saxe, 1980; Geppert et al., 2020; Feldman et al., 2020;
Cohen-Addad et al., 2023), and a lot of effort has been put
recently into developing on-line algorithms that simulate ℓp
norm subsampling in a data stream, when the input points
are presented row-by-row (Chhaya et al., 2020; Cohen et al.,
2020; Munteanu et al., 2022; Woodruff & Yasuda, 2023a).
Dynamic data structures, allowing to remove points after
their insertion (Frahling & Sohler, 2005; Frahling et al.,
2008; Braverman et al., 2017), are slightly less common in
the coreset literature.
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While the above models are often sufficient in practice, mas-
sively unordered and distributed data bases require handling
so called turnstile data streams (Muthukrishnan, 2005) that
allow multiple additive updates to change single coordinates
of a data matrix in an arbitrary order. Starting from an initial
zero matrix A = 0, data is represented as a sequence of
updates of the form (i, j, v) meaning that the previous value
Aij is updated to Aij + v. Note that this model can simply
simulate (multiple) row- or column-wise updates and dele-
tions as in the previous models. Allowing the full flexibility
of turnstile data streams seems to lie in the domain of linear
sketching algorithms, as most known turnstile streaming
algorithms can be interpreted as linear sketches. Indeed, un-
der certain conditions, linear sketching (Li et al., 2014; Ai
et al., 2016) is optimal for handling turnstile data streams.

Linearity provides a couple of useful properties. For in-
stance in distributed systems, each computing node can
calculate their own sketch ΠA(i) and the final sketch rep-
resenting the full data is obtained by summing all sketches
ΠA = Π

∑
i A(i) =

∑
i ΠA(i) at a central node. Linear

sketches allow certain database operations to be applied in
the sketch space. For instance, when a time varying signal
is sketched at time instances t1 < t2, then the difference of
the two sketches ΠA(t2) − ΠA(t1) = ΠA(t1,t2] represents
a sketch of all changes between the two time stamps. As-
sociativity of matrix multiplication also enables projection
operations in the sketch space since a sketch of projected
data equals the projected sketch: Π(AP ) = (ΠA)P . Addi-
tionally, state of the art sketching techniques make heavy
use of sparsity, which allows for fast updates with little,
often constant or logarithmic overhead over the time spent
on just reading the data. This is commonly referred to as
input sparsity time or Õ(nnz(A)), where nnz(A) denotes
the number of non-zero entries in the representation of A.

For some problems, this flexibility comes at a price, as lower
bounds for sketching ℓp related loss functions for p > 2
indicate near linear Ω(n1−2/p log n) sketching size (Andoni
et al., 2013), while subsampling can produce coresets of
size dO(p) (Dasgupta et al., 2009; Woodruff & Zhang, 2013;
Munteanu et al., 2022; Woodruff & Yasuda, 2023a;c). The
situation is different for 1 ≤ p ≤ 2, where sketching is more
powerful in compressing data.

But recent research again indicates certain limitations. For
logistic regression, data oblivious sketches were only known
to give constant factor approximations until recently a first
(1 + ε)-approximation was developed (Munteanu et al.,
2023), albeit with an exponential dependence on 1/ε. Simi-
larly, a classic result (Indyk, 2006) on sketching the ℓ1 norm
of vectors had exp(1/ε) dependencies and this is likely nec-
essary as indicated by impossibility results of Charikar et al.
(2004); Li et al. (2021); Wang & Woodruff (2022). These
seem to suggest that sketching cannot yield (1 + ε) approx-

imations for all queries below exp (1/ε) or exp (Ω(
√
d))

size. However, we note that these impossibility results are
derived under the assumption that the sketch must be taken
as a final data approximation, and is not allowed to be post-
processed, which is a major difference to our work.

We remark here that Indyk (2006) gave fully polynomial
(1±ε)-approximations for ℓp norms, using median operators
that turn convex optimization problems to non-convex opti-
mization problems in the sketch space. The considered sort
of convex loss functions f(Az) remains convex with respect
to z for any fixed dataset A directly by rules of combining
convex functions. In particular, if A is replaced by any other
fixed A′ such as a weighted subsample or a sketch, then
fw(A

′z) remains convex. It is probably more instructive to
explain the source of non-convexity of previous ℓp-norm
sketches with (1 + ε) guarantee within polynomial size.
This came from the fact that for each query z, the estimate
came from a different row a′i of A′ (namely the median row
among all |a′iz|pp). Now, imagine this as a dataset that is not
fixed, but it is changing in a non-convex way for each query.
The median technique is still useful for single estimations,
but we avoid to use these methods for the final sketch, so as
to preserve convexity and thus the efficient tractability of
the optimization problem.

Again, in contrast to sketching, sampling based core-
sets are known for ℓ1, and logistic regression within
poly(d, 1/ε, log n) size and without affecting the efficiency
of optimizing over the reduced data. We thus ask the ques-
tion if it is possible to get the best of the two worlds:

Question 1: Is it possible to obtain the full flexibility of
turnstile streaming updates, and fully polynomial sketch-
ing/sampling size, while preserving a (1± ε) factor approx-
imation, and convexity of the reduced problem?

In particular, we resolve the above question by developing a
new algorithm for ℓp sampling over turnstile data streams.

Definition 1.1 (Lp,p sampling). Let A ∈ Rn×d with rows
ai ∈ Rd, and k ∈ N. An Lp,p sampler is a turnstile
streaming algorithm that returns a subset S ⊆ [n] of size
S = Θ(k), such that the probability that S contains index i
is given by

Pr[i ∈ S] ≥ min

{
1, (1± ε)

k∥ai∥pp
∥A∥pp

}
,

where ∥A∥p = (
∑

ij |Aij |p)1/p denotes the entry-wise p
norm. Moreover, we call it an ℓp leverage score sampler, if
the inclusion probabilities satisfy

Pr[i ∈ S] ≥ min
{
1, ku

(p)
i

}
, (1)

where u
(p)
i = supz∈Rd\{0}

|aiz|p
∥Az∥p

p
for i ∈ [n] are the ℓp

leverage scores of A, see Definition H.1.
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We remark that the amount of overestimation in Equation (1)
translates into an increase in the sample size, and will thus
be controlled by a constant that possibly depends on the
dimension d, though not on the number of input points n.

1.1. Our contributions

We answer Question 1 in the affirmative. We first develop an
Lp,p sampler that processes data presented in a turnstile data
stream. After another stage of postprocessing, it identifies
Θ(k) many indexes i ∈ [n] whose inclusion probabilities
satisfy the requirements of Definition 1.1. We use known
ℓp subspace embeddings that can be calculated in parallel
while reading the turnstile data stream, and obtain a condi-
tioning matrix P ∈ Rd×d. Post right-multiplication of the
Lp,p sampler sketch with P yields a well-conditioned basis
so that the sampler becomes an ℓp leverage score sampler.
In addition to the row indexes i ∈ S, it returns slightly
perturbed rows ãi ≈ ai such that ∥ãi − ai∥p ≤ O(ε)∥ai∥p,
as well as accurate (1± ε)-estimates on the sampling prob-
abilities, which translate to (1± ε)-approximations of the
weights required by various importance sampling coreset
constructions.

Our main contributions can be summarized as follows:

1) We simplify and generalize the L2,2 sampler of Ma-
habadi et al. (2020) to arbitrary Lp,p, for p ∈ [1, 2], by
developing new statistical test procedures on the sketch
and providing a tailored analysis of our new algorithm.

2) We show how our algorithm can be used to sample with
probability approximately proportional to

∥ai∥p
p

∥A∥p
p
+1/n

as well as
∥ai∥p

p

∥A∥p
p
+

∥ai∥q
q

∥A∥q
q

for distinct p, q ∈ [1, 2].

3) We apply our algorithm to construct ε-coresets over
turnstile data streams for a wide array of regression
loss functions including linear-, ReLU-, probit-, and
logistic regression, as well as their ℓp generalizations.

4) We provide an experimental comparison to previous
reduction algorithms for ℓp and logistic regression that
were purely based either on sketching or subsampling.

To our knowledge, we give the first algorithm that returns
an ε-coreset for logistic regression and requires only poly-
nomial space in the turnstile data stream setting, improving
over the exp(1/ε) dependence of Munteanu et al. (2023).
Given the impossibility results of (Li et al., 2021; Wang &
Woodruff, 2022) mentioned above, it may seem surprising
that we can circumvent exponential 1/ε dependence. We
can get around these limitations by first sketching oblivi-
ously, then post-processing the sketch and selecting the right
information. These latter steps of ’cherry-picking’ from the

sketch are crucial to obtain our results. In particular, they vi-
olate pure obliviousness required by previous impossibility
results.

1.2. Comparison to related work

Our work builds upon and extends the work of Mahabadi
et al. (2020) on L2,2 samplers to arbitrary Lp,p. The authors
claimed that a generalization to other values of p is possible,
but out of scope of their paper, which focused on L2,2, and
the sum of ℓ2 norms, denoted L1,2. We note that Drineas
et al. (2012) gave a high level description for the case p =
2 but required a second pass to collect the samples from
the original data instead of extracting samples from the
sketch. A similar L1,1 sampling technique was developed
in Sohler & Woodruff (2011) in the context of ℓ1 regression.
However, the paper gives only an outline of the proof and
the full details apparently never appeared. Other classic
literature on ℓp sampling, and recent advances improving the
error of the subsampling distribution to zero, focused on the
special case of sampling entries from a vector proportional
to their ℓp norm contributions (Monemizadeh & Woodruff,
2010; Andoni et al., 2011; Jowhari et al., 2011; Jayaram &
Woodruff, 2021; Jayaram et al., 2022), rather than sampling
rows of a matrix. We refer the interested reader to Cormode
& Jowhari (2019) for a survey on this line of research.

The work of Mahabadi et al. (2020) requires generalizations
of the well-known AMS (Alon et al., 1999) and CountSketch
(Charikar et al., 2004) algorithms to estimate the Frobenius
norm of their (transformed) input matrices and identify the
rows that exceed a certain fraction thereof. Our techniques
also rely on the CountSketch but the AMS sketch using
Rademacher random variables is a special choice that does
not allow to generalize beyond the case p = 2. There exist
alternatives for sketching ℓp norms via p-stable random vari-
ables, but these distributions are not expressible in closed
form except for p ∈ {1, 2} and are cumbersome to ana-
lyze (Indyk, 2006; Mai et al., 2023). On our quest for a
unifying algorithm for all p ∈ [1, 2], we exploit the per-
centiles of norms sketched in independent repetitions of the
CountSketch data structure and do not require additional
sketches to estimate the required thresholds. In particu-
lar, there is no special treatment across different values of
p ∈ [1, 2], which simplifies our algorithms. We note that Li
& Woodruff (2016) developed similar ideas for a subroutine
for estimating ∥A∥pp in special cases.

As mentioned in the introduction, there are a lot of works on
subsampling based on ℓp row norms, in particular using ℓp
leverage scores (Drineas et al., 2006; 2012; Dasgupta et al.,
2009; Molina et al., 2018; Munteanu et al., 2018; 2022;
Woodruff & Yasuda, 2023c; Frick et al., 2024), and related
measures such as Lewis weights (Cohen & Peng, 2015;
Mai et al., 2021; Woodruff & Yasuda, 2023a). Many of
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Algorithm 1 Finding ℓp heavy hitters.

1: Input: data matrix A ∈ Rn×d presented as a turnstile
data stream, and parameters s, r and ε.;

2: Output: list L ⊆ [n]× Rd of slightly perturbed rows
of A with large ℓp norms, each (i, ãi) ∈ L satisfying
∥ãi − ai∥p ≤ (ε/3)∥ai∥p;

3: For i ∈ [n] and j ∈ [s] generate hi,j ∈ [r] uniformly at
random;

4: For i ∈ [n] and j ∈ [s] generate a sign σi,j ∈ {−1, 1}
uniformly at random;

5: //* sketching stage *//
6: For j ∈ [s] initialize Bj ∈ Rr×d as 0-matrix;
7: for l = 1 . . . N do
8: Let update ul be of the form ai = ai + xl;
9: For j ∈ [s] set Bj,hi,j

= Bj,hi,j
+ σi,jxl;

10: end for
11: //* extraction stage *//
12: Let L be an empty list ;
13: Let M0 := M0(A) be the 0.65-percentile of the set

{∥Bj,1∥pp | j ∈ [s]}
14: for i ∈ [n] do
15: For j ∈ [s] denote ãi,j = σi,jBj,hi,j

;
16: Compute vi = medianj∈[s]∥ãi,j∥pp ;
17: if vi ≥ (12/ε)pM0 then
18: Find j ∈ [s] minimizing

medianj′∈[s]{∥ãi,j − ãi,j′∥pp} ;
19: Add (i, ãi,j) to L ;
20: end if
21: end for
22: RETURN L;

the above sampling algorithms can be handled in row-wise
insertion data streams using a standard technique called
Merge & Reduce (Bentley & Saxe, 1980; Geppert et al.,
2020; Feldman et al., 2020; Cohen-Addad et al., 2023), or
via online algorithms (Chhaya et al., 2020; Cohen et al.,
2020; Munteanu et al., 2022; Woodruff & Yasuda, 2023a).

Our work extends ℓp leverage score sampling to the most
flexible and dynamic setting of turnstile data streams. We
simulate ℓp norm sampling algorithms by means of first
sketching the data obliviously. After postprocessing the
sketches, they allow us to extract an approximate sample that
satisfies the coreset guarantee. Hereby, we provide a general
framework that allows ℓp leverage score sampling based
coreset constructions to be simulated almost generically
with little overhead compared to the off-line construction.
The approximate weights and probabilities are readily of
such form as to provide (1±O(ε)) factor guarantees. Thus,
if we had access to the original data rows once again, our
sampler would apply in a black-box manner to any off-line
construction that uses ℓp leverage score sampling. There is
only one additional requirement for full turnstile processing,

Algorithm 2 ℓp norm sampling.

1: Input: data matrix A ∈ Rn×d presented as a turnstile
data stream, matrix P ∈ Rd×d (identity matrix P = Id
if not specified), and parameters k, s and r.;

2: Output: a sample S consisting of tuples (i, ãi, wi)
where for i ∈ [n], ãi ≈ ai and wi is roughly the in-
verse sampling probability of i;

3: For i ∈ [n] generate independent scaling factors ti ∈
(0, 1) uniformly at random;

4: Let A′ = TA be the matrix where the rows ai of A are
multiplied by t

−1/p
i ;

5: Forward turnstile updates for A′ to Algorithm 1;
6: For j ∈ [s] set Bj = BjP in Algorithm 1;
7: Let L be the output of Algorithm 1;
8: Let Sk be the set of k elements of L with the largest ℓp

norms;
9: Set α = mini∈Sk

∥ã′i∥pp;

10: For (i, ã′i) ∈ L we set ãi = ã′it
1/p
i ;

11: Set S = {(i, ãiP−1, 1/min{1, ∥ãi∥p
p

α }) | ∥ã′i∥pp ≥α} ;
12: RETURN S;

where after seeing the data once, we only have access to
the sketches instead of the original data. Namely, the loss
function needs to be robust to the small perturbations of the
original rows returned by our algorithm. To provide a wide
array of applications as a corollary of our methods, we prove
the robustness property for wide classes of functions such
as the linear regression loss, ReLU loss, logistic regression,
probit regression, and their ℓp-generalizations.

In particular, we give the first turnstile streaming algorithm
for logistic regression that achieves a (1+ε)-approximation
with fully polynomial dependence on the input dimen-
sions, improving over the O(1)-factor oblivious sketching
algorithms of Munteanu et al. (2021; 2023), and over the
(1+ ε)-approximation of Munteanu et al. (2023) that had an
exp(1/ε) dependence in its sketching dimension. We point
out that their sketches were directly the final approximations
and input to the optimization algorithm, in which case the
aforementioned impossibility results (Li et al., 2021; Wang
& Woodruff, 2022) apply. To circumvent these limitations,
our new algorithm uses oblivious sketches as intermediate
data structures from which we extract an approximate core-
set in a postprocessing stage. This might seem minor, but
is actually a crucial point that allows to get below the expo-
nential dependence and yields sketches and coresets of fully
polynomial size with respect to all input parameters.

2. Algorithms and technical overview
As we have mentioned above, the sketching algorithm is
similar to previous ℓp samplers using the CountSketch and
randomized scaling. It is usual in this line of research to
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analyze the algorithms under the assumption of full indepen-
dence of generated random numbers. Since this assumption
implies Ω(n) space complexity, we will provide the nec-
essary arguments to reduce this overhead to only a log(n)
factor at the end of the section.

Our sketching matrix can be written as a concatenation
of a diagonal n × n matrix T = diag(t

−1/p
1 , . . . , t

−1/p
n ),

where ti ∼ U(0, 1) and a CountSketch S with r rows and
s independent repetitions. Each repetition Sj , j ∈ [s] is an
r × n matrix with one single non-zero entry indexed by a
uniform random value hi,j ∈ [r] in each column i ∈ [n],
that takes a uniform value σi,j ∈ {−1, 1}. Each sketch
of an input matrix A ∈ Rn×d is then calculated by Bj =
ΠjA = SjTA, for j ∈ [s]. The exact update procedure is
given in Algorithm 1 resp. Algorithm 2.

The idea behind the CountSketch algorithm (Algorithm 1)
is that there cannot be too many large entries i ∈ [n] and
thus they get separated with good probability when they
are mapped to the target coordinates by the functions h.
Collisions still happen, but only with small entries, whose
contributions become even smaller by summing them using
random signs σ. This ensures that very large entries ai
are approximately preserved not only with respect to their
norm but also regarding their orientation, as their sketched
approximations ãi after bringing them back to the original
scale and sign satisfy

∥ãi − ai∥p ≤ O(ε)∥ai∥p.

The purpose of the uniform random values ti ∼ U(0, 1)
is to randomly upscale the contributions to become heavy
coordinates with probability proportional to our desired
target ℓp distribution. The idea is illustrated by the fact that

Pr

[∥∥∥∥ ai

t
1/p
i

∥∥∥∥p
p

≥
∥A∥pp
k

]
= Pr

[
ti ≤

k∥ai∥pp
∥A∥pp

]
=

k∥ai∥pp
∥A∥pp

,

which is (up to clipping at 1) exactly the right distribution
for sampling Θ(k) elements proportional to their ℓp norm
contribution with good probability.

Since ∥A∥pp is not easy to calculate over a turnstile data
stream, previous work approximated the required threshold
from an AMS sketch or using a sketch with i.i.d. Cauchy en-
tries, i.e., specific methods designed for the special choices
of p ∈ {1, 2}. The Cauchy sketch is in principle extendable
using p-stable distributions, which exist for p ∈ [1, 2], but
except for the special cases p ∈ {1, 2}, they do not admit
closed form expressions and are cumbersome to analyze
(Indyk, 2006; Mai et al., 2023). We thus follow a differ-
ent statistical idea for extracting the relevant information
directly from the CountSketch.

2.1. Idea 1: thresholding the CountSketch

To calculate the required threshold, we select an arbitrary
row/bucket out of the independent repetitions of the Count-
Sketch. W.l.o.g., we simply take the first bucket Bj,1, j ∈
[s], and we let M0 be the .65-percentile of the realized ℓpp
norm of the sketched buckets, i.e., of the set {∥Bj,1∥pp |
j ∈ [s]}. The idea behind this value is that it can be upper
bounded in terms of M =

∑
i∈SR

∥ai∥pp, the ℓpp norm of the
tail, ignoring the largest r/20 rows in ℓpp norm, divided by
the number of rows r of the sketch. M0 can also be lower
bounded by the theoretical .6-percentile of the ℓpp norm
contributions of the buckets in the CountSketch, i.e., by
M ′ = inf{w ∈ R≥0 | P (∥B∥pp ≤ w) ≥ 0.6}. With these
quantities in place and choosing sufficiently large number of
repetitions s ≳ log(n/δ), we can give the following bound

M ′ ≤ M0 ≤ 4M/r.

A direct analysis using M0 is not possible but we can esti-
mate this threshold by theoretical upper and lower bounds.
The upper bound is used to show that all heavy elements
with ∥ai∥pp ≳ M/(εpr) are included in the sample. The
lower bound M ′ allows us to prove that the elements whose
median ℓpp norm estimates vi in the sketch are large w.r.t.
this threshold, are actually large in their original magni-
tude. It can further be shown for these elements that their
median estimates are (1± ε)-approximations to their true
ℓpp norm and thus that they are in the set of returned large
elements. Finally, we show that at least half of the sketches
not only preserve the norm up to (1± ε) but also preserve
the orientation up to a small relative error perturbation, i.e.,
Si := {j ∈ [s] | ∥ãi,j − ai∥p ≤ ε∥ai∥p/9} ≥ s/2. There-
fore, taking the repetition that minimizes the median ℓp
distance to all other repetitions and applying the triangle
inequality over the original element, yields an approxima-
tion ãi that is close to the original element, i.e., it satisfies
∥ãi − ai∥ ≤ (ε/3)∥ai∥p.

Now, with these properties in place, we are able to prove
that if the number of rows r and repetitions s are chosen
sufficiently large, then all the items returned by the algo-
rithm satisfy the desired approximation guarantees. Overall,
we conclude that all sufficiently large elements have an
approximate representative in the output and all elements
in the output are sufficiently close approximations of their
respective original input points.
Theorem 2.1. Let ε, δ ∈ (0, 1/20], γ ∈ (0, 1). Let L be
the list of tuples in the output of Algorithm 1. Further let
SR(r/20) be the subset of rows excluding the r/20 largest
ℓp norms and let M =

∑
i∈SR

∥ai∥pp. If r = 8γ−1 · (12/ε)p
and s ≥ 3 ln(6n/δ)/0.0253 then with probability at least
1 − δ, the following properties hold: for any element
(i, ãi) ∈ L it holds that ∥ãi − ai∥p ≤ (ε/3)∥ai∥p and
∥ãi∥pp = (1 ± ε)∥ai∥pp. Further, for any i ∈ [n] with
∥ai∥pp ≥ γM it holds that i ∈ L.

5



Turnstile ℓp leverage score sampling with applications

2.2. Idea 2: controlling random rescaling by means of
the harmonic series

For the sake of presenting the high level idea, we fix p = 1
for the moment and consider the matrix A ∈ Rn×1 consist-
ing of n copies of the row ai = 1. If we multiply each row
with t−1

i , where ti ∼ U(0, 1) are drawn uniformly at ran-
dom, then the new matrix A′ = TA with rows a′i = ai/ti
consists roughly of the entries n, n/2, n/3, . . . , n/(n−1), 1
in expectation. Summing over these entries forms a har-
monic series that yields ∥A′∥1 = Θ(n log(n)) and the k
largest elements of A′ are bounded from below by n/k.

In other words, the previous threshold becomes M =
Θ(n log(n)), i.e., it increases by a log n factor and we aim
to find all rows with ℓ1 norm greater or equal to n/k. If we
now apply Algorithm 1 to A′ with r = O(k log(n)/ε) then
all elements with a′i ≥ n/k = Θ(M/(k log(n))) will be
in L with high probability. The challenge is to control the
randomness of the variables ti since by the uniform distribu-
tion they have a high variance, and to generalize the idea to
arbitrary non-uniform instances and to different p ∈ [1, 2].

In our detailed analysis, Algorithm 2 is slightly modified by
applying Algorithm 1 twice in parallel to avoid dependen-
cies between the threshold α and the final sample S.1 The
main purpose of this modification is to keep the analysis
clean and simple while running time and space complexities
remain bounded to within a factor of two. The plain algo-
rithm as presented here in Algorithm 2 is likely to have the
same properties up to small constant factors but its analysis
would require additional technicalities that distract from un-
derstanding the main ideas behind the algorithm. Moreover,
we assume that the matrix P equals the default choice of
the identity matrix I ∈ Rd×d; other choices are discussed
later in the applications of Section 3.

We summarize the properties of the sample returned by
Algorithm 2 as follows:

Theorem 2.2. If we apply the modified version of Al-
gorithm 2 (see Appendix F) with 0 < ε, δ ≤ 1/20,
k ≥ 160 ln(12/δ), r ≥ 32k ln(n) · (72/ε)p, and s ≥
3 ln(36n/δ)/0.0253, then with probability at least 1 − δ
it holds that

1) |S| ∈ [k, 2k],

2) index i ∈ S is sampled with probability

pi := P (i ∈ S) ≥ min
{
1,

k∥a∥p
p

∥A∥p
p

}
,

3) if i ∈ S then ∥ãi − ai∥p ≤ (ε/3)∥ai∥p,

4) if i ∈ S then wi = (1± ε) 1
pi

,

5)
∑

i∈S wi∥ãi∥pp = (1± ε)∥A∥pp.
1See Appendix F for details.

The first item ensures that the sample size will be within
a constant factor to the required size k.2 The second item
ensures that the marginal sampling probabilities satisfy the
right distribution of Definition 1.1. The third item yields that
each sample is a close approximation of their corresponding
original input point. The fourth item ensures that the weight
corresponds up to (1±ε) to the inverse inclusion probability,
which is required to obtain an unbiased estimate of a sum
by their weighted importance subsample. Finally, item five
shows that the weighted sum over ℓpp norms gives an (1± ε)
estimate for the entry-wise ℓpp norm of the full original data.

The proof of Theorem 2.2 is subdivided into several tech-
nical lemmas. The full details are in Appendix F. Here, we
provide a high level overview:

First, we determine the expected norm of the k-th largest
row of A′. Note that ∥a′i∥ ≥ ∥ai∥. Instead of assuming
that ∥ai∥pp ≥ ∥A∥pp/k, we define A(k) ∈ Rn×d to be the
truncated matrix that we get by scaling down the largest
rows of A so that all rows ai(k) of A(k) satisfy ∥ai(k)∥pp ≥
∥A(k)∥pp/k. The exact value of ∥ai∥pp does not matter but
the analysis becomes more complicated for very large values.
We use this to show that rows with ∥ai∥pp ≥ ∥A∥pp/k ≥
∥A(k)∥pp/k remain large rows after multiplying with ti.

After truncating the large rows of A′ in this way, we show
that the total sum M ′′ =

∑
i∈SR(r/20)∥a′i∥pp, excluding the

largest contributions is small enough to guarantee that all
rows of A′ with the k largest norms are in L. Note that a γ
fraction of M ′′ serves as a threshold for the event i ∈ L in
Theorem 2.1, so we would like M ′′ to be not much larger
than the original M .

When proving that this is indeed the case, we need to take
care of one complication. Namely, the expected value of
∥a′i∥pp = ∥ai∥pp/ti is unbounded. However, after truncation,
we know that ti > max{1/n, ∥ai∥pp/u} for some u ∈ R≥0,
which enables to bound the expected value of ∥a′i∥pp by
∥ai∥pp log(n) and the variance by 2u∥ai∥pp.

Using these properties, we can prove that the total contri-
bution of the elements that are not large, is bounded by
M ′′ = O(M log(n)) as already indicated in the introduc-
tory example. Then, we show that we can make the same
analysis work up to further (1 ± ε) errors when we only
have access to the sketched approximations ã′i instead of the
exact values of a′i. Finally, we approximate the sampling
probabilities, whose inverses serve as (1± ε) approximate
weights. Combining these additional uncertainties with the
properties of Algorithm 1 provided in Theorem 2.1, we
conclude the proof of Theorem 2.2.

2Note that the plain Algorithm 2 returns exactly k elements,
which is desirable for our experiments with fixed subsample sizes.
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2.3. Sublinear space with logarithmic overhead

The hash functions denoted by h as well as the random
signs σ admit random variables of bounded independence,
for which hashing based random number generators are
available that require only a seed of size O(log n) and are
able to produce the entries instantly when they are required
(Alon et al., 1986; 1999; Dietzfelbinger, 1996; Rusu & Do-
bra, 2007). Derandomization of the random scalars ti, as
well as other random variables used in the applications of
the next section, seems more complicated. To this end,
we use in a black-box manner, a standard psedorandom
number generator of Nisan (1992) that also produces its
random numbers on the fly as required and uses only poly-
logarithmic overhead to simulate a polynomial amount of
independent random bits required in our analysis.

Proposition 2.3 (Nisan 1992, cf. Jayaram et al. 2022). Let
A be an algorithm that uses S = Ω(log n) space and R
random bits. Then there exists a pseudorandom number
generator for A that succeeds with high probability and
runs within O(S logR) bits.

3. Applications
Our algorithms provide a fairly general framework for turn-
stile streaming algorithms that simulates under mild con-
ditions any off-line coreset construction that builds upon
ℓp leverage score sampling, up to little overheads in the
sketch resp. subsample size. In this section, we discuss
the additional conditions and give a brief overview over the
analysis for the loss functions of several important regres-
sion problems, showing that they can be handled within our
framework. In the presented form, our algorithms simulate –
by means of sketching a turnstile data stream – drawing a
subsample of the rows from the input matrix proportional to
their ℓpp norm contribution, i.e., proportional to ∥ai∥pp/∥A∥pp.
This is commonly referred to as row-norm sampling and
usually yields only additive error guarantees. For the desired
multiplicative (1± ε) guarantees, the probabilities need to
be replaced by (approximate) ℓp leverage scores obtained
from a well-conditioned basis U so as to sample proportion-
ally to ∥ui∥pp/∥U∥pp. In addition, many algorithms require
sampling from a mixture of ℓp leverage scores with another,
e.g., a uniform distribution. To sample approximately from
such distributions, we need some additional ideas.

3.1. Idea 3: sampling from mixture distributions and ℓp
conditioning

Say, we would like to sample from a mixture of two dis-
tributions p and q. Then we can show by simple algebraic
manipulations that if S1 ∼ p and S2 ∼ q then S = S1 ∪ S2

is a sample whose marginal inclusion probabilities are in
Pr[i ∈ S] = Θ(pi + qi). And if p and q are only known up

to (1± ε) factors, as is the case with our ℓp samplers, then
Pr[i ∈ S] can be approximated up to (1± ε) factors, which
implies that all properties ensured by the sampler continue
to hold for the combined sample. The second distribution
is often a simple uniform sample, in which case it can be
included into the sketching algorithm for the ℓp distribution
by only hashing the entries i ∈ [n] that satisfy ti > c/n and
otherwise including them in the uniform sample.

Corollary 3.1. Combining a sample S1 from Algorithm 2
with parameter k and a uniform sample S2 with sampling
probability k/n we get a sample S1∪S2 of size Θ(k) and the

sampling probability of i is Ω
(
k
(

∥ai∥p
p

∥A∥p
p
+ 1/n

))
, for any

sample ãi we have that ∥ãi − ai∥p ≤ (ε/3)∥ai∥p. Further,
the sampling probability and thus appropriate weights can
be approximated up to a factor of (1± ε).

To obtain (1 ± ε) relative error guarantees by ℓp leverage
score sampling, we need to be able to transform the input
to a so called well-conditioned basis U for the ℓp column
space of A (Dasgupta et al., 2009). This is a generalization
of the orthonormal basis in ℓ2 to general ℓp which are not ro-
tationally invariant and therefore require more complicated
constructions to ensure low bounded distortions.

Definition 3.2 (Dasgupta et al. 2009). Let A be an n × d
matrix, let p ∈ [1,∞), and let q ∈ (1,∞] be its dual norm,
satisfying 1

p+
1
q = 1. Then an n×d matrix V is an (α, β, p)-

well-conditioned basis for the column space of A if

(1) ∥V ∥p :=
(∑

i≤n,j≤d |Vij |p
)1/p

≤ α, and

(2) for all z ∈ Rd, ∥z∥q ≤ β∥V z∥p.

We say that V is an ℓp-well-conditioned basis for the column
space of A if α and β are in dO(1), independent of n.

The required basis transformations involve right-
multiplication of our sketches with a conditioning
matrix P . To this end, we can simply use the associativity
of matrix multiplication to postprocess the sketches. I.e., it
holds that ΠU = Π(AP ) = (ΠA)P (see Algorithm 2). To
obtain P , we run in parallel to the ℓp row-sampler another
turnstile sketch Π2A that gives an ℓp subspace embedding
in low dimensions, from which a QR-decomposition yields
via Π2A = QR the desired conditioning matrix P = R−1.
This idea goes back to Sohler & Woodruff (2011); Drineas
et al. (2012); Woodruff & Zhang (2013) and has become a
standard technique in recent literature. Using the oblivious
ℓp subspace embeddings of Woodruff & Yasuda (2023b),
we get the following result.

Proposition 3.3. There exists a turnstile sketching al-
gorithm that for a given p ∈ [1, 2] computes an in-
vertible matrix R such that AR−1 is (α, β, p)-well-
conditioned with α = O(d2/p−1/2(log d)1/p−1/2),
and β = O((d(log d)(log log d))1/p), and (αβ)p =
O(d3−p/2(log d)2−p/2(log log d)) for p ∈ [1, 2). For
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p = 2 it holds that α = O(
√
2d), β = O(

√
2), and

(αβ)p = O(d). Moreover, the ℓp leverage scores u(p)
i sat-

isfy u
(p)
i ≤ βp∥aiR−1∥pp, and

∑
i u

(p)
i ≤ (αβ)p = dO(1).

Since the above conditioning result uses dense ℓp subspace
embedding matrices which come with the computational
bottleneck of the current matrix multiplication time, we re-
mark that there exist sparse alternatives for ℓp subspace em-
beddings given in Theorems 4.2, 5.2 of Wang & Woodruff,
2022. However this comes at the cost of slightly larger d
dependence resulting in (αβ)p = O(d2+p/2(log d)1+p/2).

Another interesting aspect is that the proof of (Woodruff
& Yasuda, 2023b) uses so called ℓp spanning sets, relaxing
slightly the dimension of well-conditioned bases, which
yields an almost optimal linear (αβ)p = O(d log log d)
conditioning. However, their computation is based on re-
peatedly reweighted ℓ2 leverage score calculations. Cur-
rent non-adaptive/adaptive sketching techniques (Mahabadi
et al., 2020) are limited to post right-multiplication, but
re-weighting would require post left-multiplication. It is
thus currently unclear whether the direct construction of
ℓp spanning sets is possible in our setting of turnstile data
streams. It seems even less clear whether recent local search
and non-constructive improvements (Bhaskara et al., 2023)
can be leveraged. Developing a constructive version that
operates on turnstile data streams is thus an important and
exciting open problem.

3.2. Idea 4: robustness of various loss functions under
small perturbations

Our final step before applying our new samplers to provide a
framework for approximating a broad array of loss functions
studied in previous literature, is to show that they can handle
the small perturbations that are introduced by replacing the
original data samples ai by their sketched versions ãi with
∥ãi − ai∥p ≤ O(ε)∥ai∥p. This is not immediate for the
considered loss functions, and needs to be verified on a
case-wise basis. We note that the remaining items, i.e., the
(1± ε) factor approximations to the sampling probabilities
and the corresponding approximations of weights are readily
in a form that approximates the entire loss function in the
common case where it is simply a summation of single loss
functions. We have the following theorem, which uses a
data dependent parameter µ that is standard in the analysis
of asymmetric loss functions (Munteanu et al., 2018; 2022).

Theorem 3.4. Let A ∈ Rn×d be µ-complex (see Defi-
nition H.4). Given a leverage score sampling algorithm
that constructs an ε-coreset of size k, as for the loss func-
tions below (summarized in Proposition H.5 in Appendix H),
there exists a sampling algorithm that works in the turn-
stile stream setting that with constant probability outputs
a weighted 2ε-coreset (A′, w) ∈ Rk′×d × Rk′

≥1 of size

k′ = Θ(k), such that

∀z ∈ Rd :

∣∣∣∣∣∣
∑
i∈[k′]

wig(a
′
iz)−

n∑
i=1

g(aiz)

∣∣∣∣∣∣ ≤ 2ε

n∑
i=1

g(aiz).

The size of the sketching data structure used to generate the
sample is r · s, where s = 3 ln(36n/δ) and r =

O (k ln(n)(αpβp/ε)p) if g(t) = |t|p,
O (k ln(n)(µαpβp/ε)p) if g(t) = max{0, t}p,
O (k ln(n)(µαβ/ε)) if g(t) = ln(1 + et),
O
(
k ln(n)(pµ2αpβp/ε)p

)
if g(t) = − ln(Φp(−t)),

where Φp : R → [0, 1] denotes the CDF of the p-generalized
normal distribution. In particular if the matrix P := R−1

of Proposition 3.3 is used in Algorithm 2, then the overhead
is at most O(ln(n)(pµ2αpβp/ε)p) = poly(µd/ε) log(n).

We would like to add that our algorithm serves as a general
framework, that in principle extends beyond the loss func-
tions presented in Theorem 3.4. It likely works for any loss
function which is close to the ℓp norm.3 In particular, any
off-line ℓp leverage score algorithm can be simulated with
little overhead. If one could access the original rows ai for
i in the sample, our algorithm serves as a generic black-box.
But to work with the approximated samples ãi one needs
to show additionally and on a case-wise basis that the loss
function is robust to their perturbation. This last item limits
Theorem 3.4 to the presented loss functions, since we have
proven the robustness property only for those four functions
as exemplary applications.

We further note that any improvement of conditioning pa-
rameters α, β ∈ dO(1) will reduce the overhead. Addi-
tionally, the analysis takes an established subsample size k,
possibly depending on d, and adds dO(1) overhead for the
turnstile simulation. Thus, our work conditions the turnstile
result on readily available off-line subsampling and matrix
conditioning results. It might save some d dependence if all
analyses were integrated more directly.

4. Experimental illustration
We demonstrate the performance of our novel turnstile ℓp
sampler. Recall, that our algorithm is a hybrid between an
oblivious sketch and a leverage score sampling algorithm. It
thus makes most sense to compare to pure oblivious sketch-
ing as well as to pure off-line leverage score sampling. To
this end, we implement our new algorithm into the exper-
imental framework of the near-linear oblivious sketch of
Munteanu et al. (2023), and add the code of Munteanu et al.

3A known limitation is that p > 2 would imply Ω̃(n1−2/p)
sketch size, although the final sample can be small again.
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Figure 1. Comparison of the approximation ratios for logistic regression, and ℓ1 regression on various real-world datasets. The new
turnstile data stream sampler (orange) is compared to plain leverage score sampling (red), and to plain oblivious sketching (blue). The
plots indicate the median of approximation ratios taken over 21 repetitions for each reduced size. Best viewed in colors, lower is better.

(2022) for ℓ1 leverage score sampling.4

Our a priori hypothesis from the theoretical knowledge on
the three regimes is that the performance should be some-
where in the middle between the performances of the com-
petitors. Ideally, we would want our algorithm to perform
as closely as possible to off-line leverage score sampling.

The following real-world datasets have become standard
baselines to measure the performance of data reduction algo-
rithms for logistic regression and ℓ1 regression: Covertype,
Webspam, and KDDCup, see Appendix I.2 for details. For
each dataset, and each of the two problems, we first solve the
original large instance to optimality to obtain zopt. We then
run the data reduction algorithms, for varying target coreset
resp. sketch sizes, and solve the reduced and reweighted
problem to optimality to obtain the approximation z̃. For
each target size, we repeat this process 21 times and plot
in Figure 1 the median of the resulting approximation ra-
tios f(z̃)/f(zopt). We experienced convergence problems
using the scipy optimizer for the non-differentiable ℓ1
loss. Thus, for ℓ1 regression, zopt denotes the best (though
not necessarily optimal) solution found. The results are
consistent across all settings: our new turnstile sampler out-
performs pure oblivious sketching by a large margin. Its
performance lies between the two competitors and is very
close to off-line leverage score sampling. In some cases,

4Our new code is available at https://github.com/
Tim907/turnstile-sampling.

it even performs slightly better for ℓ1 regression, which is
likely due to the reported inaccuracies of the scipy opti-
mizer, rather than the reduction algorithms.

The experiments affirm our hypothesis, and corroborate the
usefulness of our novel turnstile ℓp leverage score sampling
sketch in practical applications. We refer to Appendix I
for more experiments using p = 1.5, and a mixture of
ℓ1+ℓ2 leverage scores, as well as details on data, computing
environment, running times, and memory requirements.

5. Conclusion
We generalize the turnstile ℓ2 row sampling algorithm of
Mahabadi et al. (2020) to work for all p ∈ [1, 2] using
novel statistical tests that rely only on the CountSketch
data structure, rather than requiring auxiliary or p-specific
sketches. This is used to simulate ℓp leverage score sampling
over a turnstile data stream. The combination of different ℓp
distributions and uniform sampling extends our methods to
logistic regression and ℓp generalizations of linear, ReLU,
and probit regression losses. Our experiments show good
performance for ℓp and logistic regression as compared
to pure oblivious sketching and off-line sampling. The
most intriguing open question is whether it is possible to
simulate the construction of ℓp spanning sets (Woodruff
& Yasuda, 2023b; Bhaskara et al., 2023) in turnstile data
streams, which would bring larger powers of d down to near-
optimal linear dependence (Munteanu & Omlor, 2024).
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A. Preliminaries
We are given a data matrix A ∈ Rn×d with row vectors ai, . . . an ∈ Rd presented in a turnstile data stream. We assume that
n ≫ d. Further let p ∈ [1, 2] have a fixed value. Let si ≥ u

(p)
i + 1

n where u
(p)
i = supx∈Rd\{0}

|aix|p
∥Ax∥p

p
are the ℓp leverage

scores (see Definition H.1). Our goal is to develop an algorithm that samples row i with probability pi ≳
ksi
S in one pass

over a turnstile data stream and determine weights wi ≈ 1
pi

. We allow an error controlled by a parameter ε > 0 in both, the
sampled vector as well as the weight.

B. The algorithms
Our first algorithm (Algorithm 1) determines heavy rows of a matrix A. It is a modification of the CountSketch (Charikar
et al., 2004), that performs additional statistical tests on s repetitions of the sketch to 1) determine a suitable threshold M0

using the 0.65-percentile among the s repetitions, relative to which any row will be considered ’heavy’, 2) estimate the ℓp
norm of the current row up to (1 ± ε) error using the median among the s repetitions, and compares the estimate to the
threshold, and 3) find a representative element among the s repetitions using the median again, to find an approximation of
the row that lies close to most other approximations. This will ensure that it also lies close to the original input row, which it
represents. See the main text for more details.

Our second algorithm (Algorithm 2) multiplies random scaling factors t−1/p
i , where ti ∼ U(0, 1) to the rows of a matrix A

to get a new Matrix A′ = TA, where T = diag(t
−1/p
1 , . . . , t

−1/p
n ) is a diagonal n× n matrix. Then Algorithm 1 is applied

to determine the heavy rows of A′P . Hereby A is presented in a turnstile data stream, and P is a conditioning matrix that is
obtained in a postprocessing step after the stream has reached its end. This can be done using another turnstile sketching
primitive applied to the stream that represents A in parallel to our algorithm. The postprocessing step is then completed by
right-multiplication of our sketch with P (in most of our analysis P = I; other choices are discussed later in the applications
of Section 3). If r and s are sufficiently large, then we can guarantee that A′ has at least a certain number of heavy rows, the
(roughly) k largest of which are back transformed to their original sign, scale and basis, and returned as an approximate
sample S together with estimated sampling probabilities. This is done by calculating a threshold α which is the smallest
approximated ℓp norm of the k largest elements. For (i, ãiP−1, wi) ∈ S the first entry is the index of a row ai of A, the
second entry is a slightly perturbed row ãiP

−1 ≈ ai, and the third entry is a weight which is roughly the inverse of the
sampling probabilities pi ≈ min{1, ∥ãi∥pp/α} ≈ min{1, ∥aiP∥pp/∥AP∥pp}.

C. Outline of the analysis
1) We first prove some technical lemmas that are used multiple times and give intuitions about how parts of the analysis

work. In particular, we analyze sums of Bernoulli random variables, medians and other percentiles, as well as the
expected ℓp norm of a random bucket.

2) We analyze Algorithm 1. Here, we show that there is an upper bound for M0 which guarantees that it finds and returns
all ’heavy’ rows. Further, we show that there is a lower bound for the threshold M0, which guarantees that any element
returned by the algorithm is approximated up to a relative error of ε.

3) We then proceed by analyzing a slightly modified version of Algorithm 2 (see Appendix F for details). We first give a
high level intuition of how the algorithm works. We prove that the probability of sampling row i is greater or equal to
(1− ε)∥aiP∥pp/α ≈ c · k∥aiP∥pp/∥AP∥pp for an appropriate α (and constant c) and that the number of samples is in
the interval [k, 2k]. We then use the properties proven in 2) to show that the norm of each row is approximated up to
a relative error of ε. Finally, we analyze the weights for which we show that they are roughly the inverse sampling
probabilities and that they can be used to approximate ∥AP∥pp up to a factor (1± ε).

4) We show that if we can sample from two distributions pi, p′i, we can also sample from a joint distribution where the
sampling probability is roughly pi+p′

i

2 . In particular, we use this to combine Algorithm 2 with uniform sampling to

sample with probability proportional to
∥aiP∥p

p

∥AP∥p
p
+ 1

n .

5) We show how our results can be applied to construct an ε-coresets for the ℓp variants of linear regression, ReLU
regression, probit regression, as well as logistic regression.
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D. Tools for the analysis
Let us start with some facts following from well known results of probability theory. The first fact is about the median
of Bernoulli random variables. The lemma will be crucial for arguments regarding the median or other percentiles and to
obtain bounds on the number of samples.

Lemma D.1. Let m ∈ N and 0 < δ < 1. Let X1, . . . , Xm be a sequence of independent Bernoulli random variables with
P (Xi = 1) = p > 0.075. If m ≥ 3 ln(2/δ)/0.0253 then with probability at least 1− δ it holds that X =

∑m
i=1 Xi = |{i |

Xi = 1}| ∈ (1± 0.025)pm.

Proof. Let X =
∑m

i=1 Xi be the number of 1’s in {X1 . . . Xm}. Since X is a sum of Bernoulli random variables, the
expected value of X equals E(

∑m
i=1 Xi) = pm. By Chernoff’s bound it holds that

P (|X − pm| > 0.025pm) ≤ 2 exp

(
−0.0252pm

3

)
≤ 2 exp

(
−0.0253m

3

)
≤ δ.

The next lemma is similar to the previous one but handles Bernoulli random variables with small expected sum.

Lemma D.2. Let m ∈ N and 0 < δ < 1. Let X1, . . . , Xm be a sequence of independent Bernoulli random variables with
P (Xi = 1) = pi and let k ≥ 20 ln(2/δ). If E(X) ≤ 9k then with probability at least 1− δ it holds that

X =
∑m

i=1
Xi = |{i | Xi = 1}| ∈ [E(X)− k,E(X) + k].

Proof. We will prove this by using Bernstein’s inequality. First, note that E(
∑m

i=1 X
2
i ) = E(

∑m
i=1 Xi) = E(X) ≤ 9k

since Xi are Bernoulli random variables. Second, note that Xi ≤ 1. Thus using Bernstein’s inequality we get that

P (|X − E(X)| ≥ k) ≤ 2 exp

(
− k2/2

E(X) + k/3

)
≤ 2 exp

(
− k

20

)
≤ δ.

An important property of a sum with random signs is that it preserves the ℓ2 norm of the entries. The following lemma uses
this fact and shows the relation of the expected value of the pth power of a sum with random signs over the elements of a
vector v to its ℓp norm ∥v∥pp.

Lemma D.3. Let v1, . . . vn ∈ Rd and let σ1, . . . , σn ∈ {−1, 1} be uniform and pairwise independent random signs. If
p ≤ 2 then it holds that E(∥

∑n
i=1 σivi∥pp) ≤

∑n
i=1∥vi∥pp.

Proof. First note that for uniform and pairwise independent random signs we have that

E

∥∥∥∥∥
n∑

i=1

σivi

∥∥∥∥∥
p

p

 = E

 d∑
j=1

∣∣∣∣∣
n∑

i=1

σivij

∣∣∣∣∣
p
 =

d∑
j=1

E

(∣∣∣∣∣
n∑

i=1

σivij

∣∣∣∣∣
p)

.

Khintchine’s inequality (see Haagerup, 1981) followed by the standard inter-norm inequality yield

E

(∣∣∣∣∣
n∑

i=1

σivij

∣∣∣∣∣
p)

≤ ∥v(j)∥p2 ≤ ∥v(j)∥pp

where v(j) ∈ R is the vector with coordinates vij for i ∈ [n]. Combining the previous two inequalities we get that

E

∥∥∥∥∥
n∑

i=1

σivi

∥∥∥∥∥
p

p

 ≤
d∑

j=1

∥v(j)∥pp =
∑

i,j∈[n]×[d]

|vij |p =

n∑
i=1

∥vi∥pp
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Some notation Consider a bucket B consisting of a set of indices together with the corresponding set of random signs we
define Gp(B) = ∥

∑
i∈B σiai∥p. The specific signs σi = σi,j , j ∈ [s] will be clear from the context.

E. Analysis of Algorithm 1
High level idea For k ∈ [n] let SL(k,A) ⊂ [n] be the subset of the k indices of elements with the largest ℓp norm (ties are
broken arbitrarily) and let SR(k,A) = [n] \ SL(k,A) be the subset of the remaining indices. If A is clear from the context
we simply write SL(k) and SR(k). If k is also clear from the context we just write SL and SR.

The idea of Algorithm 1 is that if we hash the elements to r buckets, then for k = r/20, at least r − r/20 buckets, do not
contain any large element of SL(k). Further the expected squared ℓ2 norm of a bucket is M/r for M =

∑
i∈SR(k)∥ai∥pp.

Using Lemma D.3 and the union bound we can extend this result showing that with probability at least 1− 1/4− 1/20, the
contribution of a bucket B is G(B)p ≤ 4M/r.

The argument can also be applied to the buckets containing a certain index i, i.e., if we consider a bucket Bi containing
the element i then with probability at least 1 − 1/4 − 1/20 we have that ∥Bi − σiai∥pp = ∥

∑
j∈B\{i} σjaj∥pp ≤ 4M/r.

Thus if ∥ai∥pp ≳ M
εpr then most of the buckets containing element i will be close to ai and using the median, which is the

approximation ãi calculated by Algorithm 1, we can approximate the large elements exceeding a fraction of γM up to an
error of ε with respect to their ℓp norm by setting r = O( 1

γεp ).

In addition to the definitions given in the high level idea, we define

M ′ = inf{w ∈ R≥0 | P (G(B)p ≤ w) ≥ 0.6}

to be the (theoretical) .6-percentile of the ℓpp norm contributions of buckets. The following Lemma yields an upper and a
lower bound for M0:

Lemma E.1. If s ≥ 3 ln(2/δ)/0.0253, then the value of M0 in Algorithm 1 satisfies

M ′ ≤ M0 ≤ 4M/r

with failure probability at most 2δ.

Proof. Let SL = SL(r/20) be the set of the r/20 indices with the largest ℓp norm and SR = [n] \ SL. Let M =∑
i∈SR

∥ai∥pp. Consider any bucket B. The probability that B contains any specific element is 1/r. By a union bound, the
probability that B contains an element of SL is bounded by P (B ∩ SL ̸= ∅) ≤ r/20 · 1/r = 1/20. Further denoting by
P (S) for a set S the probability that S = B \ SL and using Lemma D.3 it holds that

E(Gp(B \ SL)
p) =

∑
S⊂SR

P (S)E

∥∥∥∥∥∑
i∈S

σiai

∥∥∥∥∥
p

p

 ≤
∑

S⊂SR

P (S)

(∑
i∈S

∥ai∥pp

)
.

Now, by double counting the last term, we also have that

∑
S⊂SR

P (S)

(∑
i∈S

∥ai∥pp

)
=
∑
i∈SR

∥ai∥pp

 ∑
S⊂SR,i∈S

P (S)

 =
∑
i∈SR

∥ai∥pp · P (i ∈ B) =
∑
i∈SR

1

r
· ∥ai∥pp = M/r.

Thus using Markov’s inequality we have that Gp(B \ SL)
p ≤ 4M/r with probability at least 1 − 1/4. Using the union

bound we have that with probability at least 1− 1/4− 1/20 = 0.7, an arbitrary bucket B contains no element of SL and
Gp(B \ SL)

p ≤ 4M/r.

Since s ≥ 3 ln(2/δ)/0.0253, Lemma D.1 implies that at least 0.675 · s many random buckets satisfy these properties with
failure probability at most δ, so in particular this holds for the (realized) .65-percentile M0. We conclude that M0 ≤ 4M/r.

The lower bound also follows by Lemma D.1 for s ≥ 3 ln(2/δ)/0.0253, which implies that the (theoretical) .6-percentile
is not exceeded by more than .025. Specifically, this yields |{j ∈ [s] | G(Bj,1)

p ≤ M ′}| ≤ 0.625s. Consequently the
(realized) 0.65-percentile M0 is larger than M ′. The failure probability is again bounded by at most δ, and the overall failure
probability is bounded by 2δ by another union bound, which concludes the proof.
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In the following lemma, these bounds will be used to show that with high probability all elements in the output L of
Algorithm 1 are close to the original rows. Further it shows that all rows with large ℓp norm will be in L.
Lemma E.2. If s ≥ 3 ln(2n/δ)/0.0253, r ≥ 50, 0 < ε ≤ 1/3 and M ′ ≤ M0, then the following holds with failure
probability at most δ: For any i ∈ [n] with vi ≥ (12/ε)pM ′ it holds that ∥ai∥pp ≥ (3/ε)pM ′. Further, for any i ∈ [n] with
∥ai∥pp ≥ (3/ε)pM ′ it holds that vi = (1±ε)∥ai∥pp. In particular, this implies that for any i with ∥ai∥pp ≥ (12/ε)pM ′/(1−ε)
it holds i ∈ L. Finally, it holds for Si := {j ∈ [s] | ∥ãi,j − ai∥p ≤ ε∥ai∥p/9} that |Si| ≥ s/2.

Proof. By Lemma E.1, it holds that M ′ ≤ M0 with probability 1− δ.

We show the first claim by contraposition: rows ai with small norms, i.e., ∥ai∥pp < (3/ε)pM ′ will not be part of the output
L. Fix i ∈ [n] and for each repetition j ∈ [s] let B(i, j) be the bucket that contains i. We set bi,j =

∑
l∈B(i,j)\{i} σl,jal to

be the content of the bucket after sketching all data, but with the contribution of ai removed. We set

M ′′ = inf{w ∈ R≥0 | P (G(B \ {i})p ≤ w) ≥ 0.575}.

Note that for any bucket B it holds that P (i ∈ B) = 1/r ≤ 0.02. Thus, we have that

P (G(B \ {i})p ≤ M ′) ≥ P (G(B)p ≤ M ′)− P (i /∈ B) ≥ 0.58 > 0.575.

and consequently M ′′ ≤ M ′.

By definition of the .575-percentile M ′′ and applying Lemma D.1, we get that

∥bi,j∥pp ≤ M ′′ ≤ M ′

holds for at least half of the indices of j ∈ [s] up to failure probability at most δ/n which will be assumed in the remainder
of the proof.

For all i and j that satisfy ∥bi,j∥pp ≤ M ′, we have that

G(B(i, j))p = ∥σi,jai + bi,j∥pp ≤ (∥ai∥p +M ′1/p)p

≤ (2max{∥ai∥p,M ′1/p})p ≤ max{4∥ai∥pp, 4M ′}.

Then it also holds that vi = medianj∈[s]∥ãi,j∥pp ≤ max{4∥ai∥pp, 4M ′}. Thus, we can conclude that if index i satisfies
∥ai∥pp < (3/ε)pM ′ ≤ (3/ε)pM0 then it holds that

vi < max{(12/ε)pM0, 4M
′} ≤ (12/ε)pM0

and consequently i /∈ L.

Next, we show that rows with larger norm ∥ai∥pp ≥ (3/ε)pM ′ are well approximated assuming that ∥bi,j∥pp ≤ M ′. Let
γ := M ′

∥ai∥p
p
≤ (ε/3)p. Then by the triangle inequality it holds that

G(B(i, j))p = ∥σi,jai + bi,j∥pp ≤ (1 + γ1/p)p∥ai∥pp ≤ (1 + 3γ1/p)∥ai∥pp ≤ (1 + ε)∥ai∥pp
and similarly we have

G(B(i, j))p = ∥σi,jai + bi,j∥pp ≥ (1− 3γ1/p)∥ai∥pp ≥ (1− ε)∥ai∥pp.

Since ∥bi,j∥pp ≤ M ′ holds for at least half of the indices j ∈ [s] we can conclude that

vi = median
j∈[s]

∥ãi,j∥pp ∈
[
(1− ε)∥ai∥pp, (1 + ε)∥ai∥pp

]
.

Finally, we show that for i with i ∈ L it holds that ∥ãi,j − ai∥p ≤ (ε/9)∥ai∥p and that |Si| ≥ s/2. Using that ε ≤ 1/3 we
have for i ∈ [n] with vi ≥ (12/ε)pM0 that

∥ãi,j − ai∥pp = ∥bi,j∥pp ≤ M ′ ≤ M0 ≤ (ε/12)p vi ≤ (ε/12)p(1 + ε)∥ai∥pp ≤ (ε/9)p∥ai∥pp
which also yields

|{j ∈ [s] | ∥ãi,j − ai∥p ≤ ε∥ai∥p/9}| ≥ s/2.

By the union bound, these properties hold for all i simultaneously with probability at least 1 − O(δ). Rescaling δ by a
constant concludes the proof.
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We are now ready to prove that Algorithm 1 works as intended for the right choice of r and s:

Theorem E.3 (copy of Theorem 2.1). Let ε, δ ∈ (0, 1/20], γ ∈ (0, 1). Let L be the list of tuples in the output of
Algorithm 1. Further let SR(r/20) be the subset of rows excluding the r/20 largest ℓp norms and let M =

∑
i∈SR

∥ai∥pp.
If r = 8γ−1 · (12/ε)p and s ≥ 3 ln(6n/δ)/0.0253 then with probability at least 1− δ, the following properties hold: for
any element (i, ãi) ∈ L it holds that ∥ãi − ai∥p ≤ (ε/3)∥ai∥p and ∥ãi∥pp = (1 ± ε)∥ai∥pp. Further, for any i ∈ [n] with
∥ai∥pp ≥ γM it holds that i ∈ L.

Proof of Theorem 2.1/E.3. The statements of Lemma E.1 and Lemma E.2 hold with failure probability at most δ =
2(δ/3) + (δ/3) using the union bound. Then we have that M ′ ≤ M0 ≤ 4M/r and for any i ∈ L it holds that vi ≥
(12/ε)pM0 ≥ (12/ε)pM ′. Lemma E.2 yields that vi = (1±ε)∥ai∥pp. For the set Si = {j ∈ [s] | ∥ai− ãi,j∥p ≤ ε∥ai∥p/9}
we have that |Si| ≥ s/2.

For any elements j, j′ ∈ Si we have

∥ãi,j − ãi,j′∥p ≤ ∥ãi,j − ai∥p + ∥ai − ãi,j′∥p ≤ 2ε∥ai∥p/9

by the triangle inequality. It follows that medianj′∈[s]{∥ãi,j − ãi,j′∥p} ≤ 2ε∥ai∥pp/9 since |Si| ≥ s/2.

Let ãi = ãi,j for j ∈ [s] minimizing medianj′∈[s]{∥ãi,j − ãi,j′∥pp}. Again since |Si| ≥ s/2 there must be at least one
element in j′ ∈ Si with ∥ãi,j − ãi,j′∥p ≤ 2ε∥ai∥p/9. Using the triangle inequality again we get that

∥ãi − ai∥p = ∥ãi,j − ai∥p ≤ ∥ãi,j − ãi,j′∥p + ∥ãi,j′ − ai∥p ≤ (2ε/9 + ε/9)∥ai∥p ≤ ε∥ai∥p/3.

We note that since ∥ãij − ai∥p ≤ ε∥ai∥p/3 holds, we have by the triangle inequality that

∥ãij∥pp ≤ (∥ai∥p + ∥ãij − ai∥p)p ≤ (1 + ε)∥ai∥pp

and

∥ãij∥pp ≥ (∥ai∥p − ∥ãij − ai∥p)p ≥ (1− ε)∥ai∥pp.

Finally, since M ′ ≤ M0 ≤ 4M/r, or equivalently M ′r/4 ≤ M0r/4 ≤ M , we also have for any i with ∥ai∥pp ≥ γM that

∥ai∥pp ≥ γM ≥ γrM0/4

and thus by Lemma E.2

vi ≥ (1− ε)∥ai∥pp ≥ 1

2
· γrM0

4
≥ (12/ε)pM0.

which implies that i ∈ L.

F. Analysis of Algorithm 2
High level idea Consider the matrix A ∈ Rn×1 consisting of n copies of the row 1. If we multiply each row with
t−1
i where ti ∈ (0, 1] are drawn uniformly at random then what roughly happens is that the new matrix A′ with rows
a′i = ai/ti consists of the rows n, n/2, n/3, . . . , n/(n− 1), 1. We then have that ∥A′∥1 = Θ(n log(n)) and the k largest
elements of A′ are bounded from below by n/k. Or in other words M = (n log(n)) and we want to find all rows with
ℓ1 norm greater or equal to n/k. If we now apply Algorithm 1 to A′ with r = O(k log(n)/ε) then all elements with
a′i ≥ n/k = Θ(M/(k log(n))) will be in L with high probability. The challenge will be to control the randomness of the
variables ti and to generalize the idea to arbitrary instances and different p’s.

Instead of analyzing Algorithm 2 as presented, we analyze a slightly modified version, where Algorithm 1 is applied twice in
parallel. The main purpose of the modification is to keep the analysis clean and simple. The presented Algorithm 2 is likely
to have the same properties up to small constant factors but the analysis would require to work with conditional probabilities
which only leads to additional technicalities that distract from understanding the main ideas of our algorithm.
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Modification of Algorithm 1 To simplify the analysis, we run Algorithm 1 twice with two independent copies of the
scaling random variables ti, i ∈ [n]. The first copy is used to compute α and the second generates the sample using the
value of α from the first copy. This makes the estimate α independent of the sample and avoids purely technical difficulties
in the analysis. However, it is likely not necessary and is therefore not presented in the pseudo code. In the first iteration, we
use an increased value of k′ = (3/2)k and we stop after defining α (line 9). In the second iteration, we skip lines 8-9 and
use α from the previous iteration.

We define S ⊆ L to be the set of indices with ∥ãi∥pp ≥ α returned at the end. We assume that ti ∈ (0, 1] are drawn i.i.d.

uniformly at random and A′ = TA ∈ Rn×d is the matrix with rows a′i = t
−1/p
i ai.

Our main theorem is that given k ∈ [n] with an appropriate choice of r, s Algorithm 2 returns a subsample S ⊆ [n]×Rd×R≥1

such that |S| ∈ [k, 2k], index i is sampled with probability at least min{1, k∥a∥p
p

∥A∥p
p
} and for (i, ãi, wi) ∈ S we have that

∥ãi − ai∥p = (ε/3)∥ai∥p and wi = (1± ε)P (i ∈ S)−1. Further we can use the weights to approximate ∥A∥pp up to a factor
of (1± ε).

Theorem F.1 (copy of Theorem 2.2). If we apply the modified version of Algorithm 2 (see Appendix F) with 0 < ε, δ ≤ 1/20,
k ≥ 160 ln(12/δ), r ≥ 32k ln(n) · (72/ε)p, and s ≥ 3 ln(36n/δ)/0.0253, then with probability at least 1− δ it holds that

1) |S| ∈ [k, 2k],

2) index i ∈ S is sampled with probability

pi := P (i ∈ S) ≥ min
{
1,

k∥a∥p
p

∥A∥p
p

}
,

3) if i ∈ S then ∥ãi − ai∥p ≤ (ε/3)∥ai∥p,

4) if i ∈ S then wi = (1± ε) 1
pi

,

5)
∑

i∈S wi∥ãi∥pp = (1± ε)∥A∥pp.

To support readability, the proof of Theorem 2.2/F.1 is divided into multiple Lemmas.

Our first Lemma considers the unique number N(k) ∈ R≥0 such that the expected number of elements i ∈ [n] with
∥a′i∥pp ≥ N(k) is k. The properties that we show in this Lemma will allow to show that the number of elements is
|S| ∈ [k, 2k]. Further it will be used later to show that the largest 2k rows of A′ have a norm large enough to be in L with
failure probability at most δ. Before we state the lemma, we need to give some more definitions:

Recall that SL(k,A) ⊆ [n] is the set of indices of the elements with the k largest norms (of A) and SR(k,A) = [n] \ SL.
We set M(A, k) :=

∑
i∈SR(k,A)∥ai∥pp.

We will show that all indices where ∥ai∥pp ≥ ∥A∥pp/k will be sampled with probability at least 1 − δ. The exact value
of ∥ai∥pp does not matter but if it gets large, it makes the analysis more complicated. Since we want to provide a good
understanding of our analysis, instead of assuming that ∥ai∥pp ≥ ∥A∥pp/k we define A(k) ∈ Rn×d to be the truncated matrix
that we get by scaling down the largest rows of A so that all rows ai(k) of A(k) satisfy ∥ai(k)∥pp ≥ ∥A(k)∥pp/k.

Definition F.2. Let uk ∈ R be the solution5 of the equation

uk∑n
i=1 min{uk, ∥ai∥pp}

=
1

k
.

Then we define A(k) to be the matrix with

ai(k) =

{
u
1/p
k

∥ai∥p
· ai ∥ai∥pp > uk

ai ∥ai∥pp ≤ uk.
5We note that uk can be computed by scaling down the largest row(s). If there are multiple largest rows, we scale all of them down.

uk exists if and only if the number of non-zero rows is larger or equal to k.
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In particular note that all elements ∥ai∥pp > uk are truncated to ∥ai(k)∥pp = uk.

We already note the following properties of A(k): it holds that SR(A(k), k) = SR(A, k) and ∥A(k)∥pp ≤ 2 ·∑
i∈SR(A,k/2)∥ai∥pp. The first one follows immediately since there can be at most k large rows that contribute

∥ai∥pp ≥ ∥A∥pp/k and all others remain unchanged. The second claim will be proven in the following lemma.

Lemma F.3. For k ∈ [n] we set N(k) ∈ R≥0 to be the unique number such that the expected number of elements i ∈ [n]
with ∥a′i∥pp ≥ N(k) is k. Then it holds that

min

{∥A∥pp
k

, 2M(A, k/2)

}
≥

∥A(k)∥pp
k

= N(k) ≥ M(A, k)/k.

Proof. We first prove that N(k) =
∥A(k)∥p

p

k . For i ∈ [n] define the Bernoulli random variable Xi = 1 if ti ≤
k∥ai(k)∥pp/∥A(k)∥pp and Xi = 0 otherwise. Note that Xi = 1 iff ∥a′i(k)∥pp = ∥ai(k)∥pp/ti ≥

∥A(k)∥p
p

k . Thus, Xi = 1 holds
with probability pi = min{1, k∥ai(k)∥pp/∥A(k)∥pp} = k∥ai(k)∥pp/∥A(k)∥pp by definition of A(k). Let X =

∑n
i=1 Xi.

Observe that

E(X) =

n∑
i=1

pi =

n∑
i=1

k∥ai(k)∥pp/∥A(k)∥pp = k.

To see this, note that the truncated largest rows satisfy ∥ai(k)∥pp/∥A(k)∥pp = 1/k by Definition F.2. Therefore their
probability equals pi = 1. Now, if we increase their norms back to their original size, then the probabilities remain truncated
at 1, and thus do not change. Therefore E(X) = k holds also for the original matrix A. By definition of N(k) we get that
N(k) =

∥A(k)∥p
p

k .

Since SR(A(k), k) = SR(A, k) it holds that

∥A∥pp
k

≥
∥A(k)∥pp

k
≥ M(A(k), k)

k
=

M(A, k)

k
.

Further since
∥ai(k)∥p

p

∥A(k)∥p
p
≤ 1

k we have that

∑
i∈SL(A(k),k/2)

∥ai(k)∥pp =
∑

i∈SL(A(k),k/2)

∥A(k)∥pp ·
∥ai(k)∥pp
∥A(k)∥pp

≤
∑

i∈SL(A(k),k/2)

∥A(k)∥pp ·
1

k
=

∥A(k)∥pp
2

and consequently M(A(k), k/2) =
∑

i∈SR(A(k),k/2)∥ai∥pp ≥ ∥A(k)∥p
p

2 . We conclude that

∥A(k)∥pp
k

≤ ∥A(k)∥pp ≤ 2 ·M(A(k), k/2) ≤ 2 ·M(A, k/2).

Our next Lemma shows that if k is large enough then the number of rows with ∥a′i∥pp ≥ N(k) is roughly k.

Lemma F.4. Assume that k ≥ 160 ln(2/δ). Then it holds that ||{i ∈ L | ∥a′i∥pp ≥ N(k)}| − k| ≤ k/8 with failure
probability at most δ.

Proof. For i ∈ [n] define the Bernoulli random variable Xi = 1 if ti ≤ ∥ai∥pp/N(k) and Xi = 0 otherwise. Let
X =

∑n
i=1 Xi. First notice that by definition of N(k) we have that

E(X) = k.

By Lemma D.2 it holds that P (|X − k| ≥ k/8) ≤ δ.

After looking at the heavy hitters and large rows of A′ that we would like to sample, we will now show that the total sum∑
SR(r/20)∥a′i∥pp is small enough to guarantee that the rows of A′ with the k largest norms are in L. When proving that this

is indeed the case, we need to take care of one complication. Namely, the expected value of ∥a′i∥pp = ∥ai/t1/pi ∥pp = ∥ai∥pp/ti
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is unbounded. However if we know that ti > max{1/n, ∥ai∥pp/u} for some u ∈ R≥0 then we can bound the expected value
of ∥a′i∥pp by ln(n)∥ai∥pp and the variance by 2u∥ai∥pp. Using these properties, we can prove that the total contribution of
the elements that are not large is bounded by O(ln(n)) times the original value, as already indicated in the introductory
example.

The following Lemma shows that with high probability M(A′, 3k) is bounded by O(log(n)M(A, k)).

Lemma F.5. Assume that k ≥ 160 ln(2/δ). Set M = M(A′, 3k) =
∑

i∈SR(3k,A′)∥a′i∥pp and M(A) = M(A, k) =∑
i∈SR(k,A)∥ai∥pp. Then it holds that M ≤ 2 ln(n)M(A) with failure probability at most 2δ.

Proof. We define S0 = {i ∈ [n] | ti < 1/n} and we set S1 = SL((5/2)k,A
′) ∪ S0 and S2 = [n] \ S1.

In this proof we assume that we have ∥ai∥pp = M(A)/k for all i ∈ SL(A, k): If ∥ai∥pp < M(A)/k then increasing
the norm of ai can only increase M(A′, 3k). Further if ∥ai∥pp > M(A)/k then following argumentation shows that
i ∈ S1 and thus decreasing the norm of ai has no effect on S2: By the upper bound in the first item of Lemma F.3
N(2k) ≤ ∥A∥pp/(2k) ≤ M(A)/k. Further by Lemma F.4 we have that

||{i ∈ [n] | ∥a′i∥pp ≥ N(2k)}| − 2k| ≤ (2k/8) = k/4

with probability at least 1− δ. Then SL((5/2)k,A
′) ⊆ S1 contains all i ∈ [n] with ∥a′i∥pp ≥ M(A)/k ≥ N(2k).

Notice that ∥a′i∥pp ≥ ∥ai∥pp and by the above assumption ∥ai∥pp = M(A)/k for all i ∈ SL(A, k), we get that SL(A, k) ⊆ S1

and thus
∑

i∈S2
∥ai∥pp ≤ M(A, k).

Further, note that the expected number of indices i ∈ [n] with ti < 1/n is smaller than one. By Lemma D.2 the number of
such indices is bounded above by k/2 with failure probability at most δ. Thus |S0| ≤ k/2 and |S1| ≤ (5/2)k + k/2 = 3k.

For i ∈ S2 define the random variable Xi = ∥a′i∥pp < M(A)/k =: u. Recall that Xi = t−1
i ∥ai∥pp where

ti ∈ (max{∥ai∥pp/u, 1/n}, 1) is drawn uniformly at random as we already know that ti > max{∥ai∥pp/u, 1/n} for
all i ∈ S2. This implies that

E(Xi) ≤
1

1− 1/n
·
∫ 1

1/n

∥ai∥ppt−1 dt ≤ (3/2)∥ai∥pp
[
ln(t)

]1
1/n

= (3/2)∥ai∥pp ln(n)

for any element in i ∈ S2. Consequently we have for X =
∑

i∈S2
Xi that

E(X) =
∑
i∈S2

E(Xi) ≤
∑
i∈S2

(3/2)∥ai∥pp ln(n) ≤ (3/2)M(A) ln(n).

Further since ∥a′i∥pp ≤ u we have that

E(X2
i ) =

1

1− ∥ai∥pp/u
·
∫ 1

∥ai∥p
p/u

∥ai∥2pp t−2 dt

≤ 1

1− ∥ai∥pp/u
·
[
(−t)−1

]1
∥ai∥p

p/u
∥ai∥2pp

=
1

1− ∥ai∥pp/u
· ∥ai∥pp(u− ∥ai∥pp)

=
u(u− ∥ai∥pp)
u− ∥ai∥pp

· ∥ai∥pp ≤ ∥ai∥ppu

and thus ∑
i∈S2

E(X2
i ) ≤

∑
i∈S2

∥ai∥ppu ≤ M(A)u = 2M(A)2/k

Using Bernstein’s inequality with t = M(A)/2 we get that

P (X ≥ 4M(A) ln(n)) ≤ P (X ≥ (3/2)M(A) ln(n) + t)
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≤ exp

(
− t2/2

M(A)2/k + tM(A)/(3k)

)
≤ exp

(
−k

6

)
≤ δ.

This shows with the claimed probability that

4M(A) ln(n) > X =
∑
i∈S2

∥a′i∥pp ≥
∑

i∈SR(3k,A′)

∥a′i∥pp = M,

where we have used that |S1| ≤ 3k, thus |S2| ≥ n − 3k, and the right hand side sums over the smallest possible set of
n− 3k elements. This concludes the proof.

We do not know the exact value of a′i, but only have access to their sketched approximations ã′i. Thus, we define Ñ(k) to be
the unique number such that the expected number of elements i ∈ L with ∥ã′i∥pp ≥ Ñ(k) is k. The following Lemma shows
that there is only a small difference between N(k) and Ñ(k).

Lemma F.6. Let ε > 0 and k ≥ 160 ln(2/δ). Further assume that ∥ã′i∥pp = (1± ε)∥a′i∥pp. Then

N((1− ε)k) ≥ Ñ(k) ≥ N((1 + ε)k).

Proof. Let Xi = 1 if ∥ai∥pp/ti ≥ Ñ(k) and Xi = 0 otherwise.

For the inequality N((1 − ε)k) ≥ Ñ(k) notice that by assumption we have that ∥ã′i∥pp ≥ (1 − ε)∥a′i∥pp. Let X ′
i = 1 if

∥ai∥pp/ti ≥ Ñ(k)/(1 − ε) and X ′
i = 0 otherwise. Note that P (X ′

i = 1) ≥ P (Xi = 1) · (1 − ε) and that the probability

that ti ∈ (1 − ε, 1) · Ñ(k)/(1−ε)
∥ai∥p

p
given that ti ≤ Ñ(k)/(1−ε)

∥ai∥p
p

is ε. Thus the expected number of indices with X ′
i = 1 is at

least (1− ε) times the number of indices with Xi = 1 and consequently N((1− ε)k) ≥ Ñ(k).

Now let X ′
i = 1 if ∥ai∥pp/ti ≥ Ñ(k)/(1 + ε). Note that P (X ′

i = 1) ≤ P (Xi = 1) · (1 + ε) and that the probability that

ti ∈ (1/(1 + ε), 1) · Ñ(k)/(1−ε)
∥ai∥p

p
is 1− 1

1+ε = ε
1+ε ≤ ε.

Thus the expected number of indices with X ′
i = 1 is at most (1 + ε) times the number of indices with Xi = 1 and

consequently N((1 + ε)k) ≤ Ñ(k).

We are now ready to prove the first three statements of Theorem 2.2/F.1 along with some more technical claims.

Corollary F.7. If ε ≤ 1/20, r ≥ max{32 ln(n)k · (12/ε)p, 120k}, s ≥ 3 ln(6n/δ)/0.0253 and k ≥ 160 ln(2/δ) then with
failure probability at most 5δ it holds that

1) L contains all indices i with ∥ãi∥ ≥ Ñ(2k);

2)
∥A∥p

p

k ≥ Ñ((10/8)k) ≥ α ≥ Ñ((14/8)k);

3) ∥ãi − ai∥p ≤ (ε/3)∥ai∥p holds for all elements in S

4) |S| ∈ [k, 2k];

5) P (i ∈ S) ∈ [(1− ε) · ∥ai∥p
p

α , (1 + ε) · ∥ai∥p
p

α ] if (1− ε) · ∥ai∥p
p

α ≤ 1 and P (i ∈ S) = 1 otherwise.

6) P (i ∈ S) ≥ min{1, k∥ai∥p
p

∥A∥p
p
}

Proof. The first part of this corollary is to prove that L contains all the important elements.

By Lemma F.3 we have that
N(2k) ≥ M(A, 2k)/(2k).

21



Turnstile ℓp leverage score sampling with applications

By Lemma F.5 it holds that M(A′, 6k) ≤ 2 ln(n)M(A, 2k) with failure probability at most 2δ. Applying Theorem E.3
to A′ with r = max{32 ln(n)k · (12/ε)p, 120k}, s ≥ 3 ln(nδ−1/6)/0.0253 we get that with failure probability at most δ
all indices i with ∥a′i∥pp ≥ M(A, 2k)/(2k) are in L and ∥ãi − ai∥p ≤ (ε/3)∥ai∥p holds for all elements in L and thus in
particular for any element in S ⊆ L proving 1) and 3).

Next we look at the number of elements in S. First note that it holds that

||{i ∈ L | ∥ã′i∥pp ≥ Ñ(k′)}| − k′| ≤ k′/8

with failure probability at mos δ. The proof of this is exactly as the proof of Lemma F.4, just replacing N by Ñ . We
apply this twice, for k′ = (14/8)k to see that α ≥ Ñ((14/8)k) with failure probability at most δ and for k′ = (10/8)k
to see that α ≤ Ñ((10/8)k) with failure probability at most δ. Combining both results we get that α = N(kα) with
kα ∈ [(10/8)k, (14/8)k]

As we apply our algorithm the second time with fixed α, we apply the same argument to prove that

||{i ∈ L | ∥ã′i∥pp ≥ Ñ(kα)}| − kα| ≤ kα/8

implying that |S| ∈ [k, 2k]. Further by Lemma F.6 and Lemma F.3, and using that ε ≤ 1/20, we have that

α = Ñ(kα) ≤ N((1− ε)(10/8)k) ≤ N((9/8)k) ≤
∥A∥pp
(9/8)k

Finally, we consider the sampling probabilities. We note that i is sampled if i ∈ L and ∥ã′i∥pp ≥ α. Since i ∈ L, we have that
∥ã′i∥pp = (1± ε)∥a′i∥pp. Thus i is sampled if ∥ã′i∥pp ≥ α

1−ε and i is not in S if ∥ã′i∥pp ≤ α
1+ε . Thus the probability P (i ∈ S)

is at least
(1−ε)∥ai∥p

p

α and at most
(1+ε)∥ai∥p

p

α proving 5). For the 6) observe that by our previous arguments, Lemma F.3, and
again using ε ≤ 1/20, we have that

P (i ∈ S) ≥
(1− ε)∥ai∥pp

α
≥

(1− ε)∥ai∥pp
N((9/8)k)

≥
(1− ε)(9/8)k∥ai∥pp

∥A∥pp
≥

k∥ai∥pp
∥A∥pp

.

The following Lemma completes the proof of Theorem 2.2/F.1:

Lemma F.8. Assume that the statements of Corollary F.7 hold. For all elements (i, ãi, wi) it holds that wi = (1± ε)P (i ∈
S)−1. Further it holds that

∑
i∈S wi∥ãi∥pp = (1± ε)∥A∥pp with failure probability at most δ.

Proof. Assuming that for any element i ∈ L it holds ∥ã′i∥pp = (1± ε)∥a′i∥pp we have

P (i ∈ S) = P (∥ã′i∥pp ≥ α) ≥ (1/2)P (∥a′i∥pp ≥ α) + (1/2)P (∥a′i∥pp ≥ α/(1− ε))

= (1/2) ·
∥ai∥pp
α

+ (1/2) ·
(1− ε)∥ai∥pp

α

= (1− ε/2)
∥ai∥pp
α

.

Here the first inequality uses the fact that with probability 1/2 we have that ∥ã′i∥pp ≥ ∥a′i∥pp, since the vector added to ai in
its respective bucket has a 0.5 chance to point in the same direction as ai.

Similarly, we have that

P (i ∈ S) = P (∥ã′i∥pp ≥ α) ≤ (1/2)P (∥a′i∥pp ≥ α) + (1/2)P (∥a′i∥pp ≥ α/(1 + ε))

= (1/2) ·
∥ai∥pp
α

+ (1/2) ·
(1 + ε)∥ai∥pp

α

= (1 + ε/2)
∥ai∥pp
α

.
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Since (1± ε/2)/(1± ε/2) = (1± 3ε) this proves that

wi =
α

∥ãi∥pp
=

α

(1± ε)∥ai∥pp
= (1± 2ε)

α

∥ai∥pp
=

1± 2ε

(1± ε/2)P (i ∈ S)
= (1± 3ε)P (i ∈ S)−1.

Now consider the random variable that takes the value Xi =
∥ai∥p

p

∥A∥p
p
· P (i ∈ S)−1 with probability P (i ∈ S) and Xi = 0

otherwise. Assume without loss of generality that (1− ε) · ∥ai∥p
p

α ≤ 1 holds for all i ∈ [n]. Indices with (1− ε) · ∥ai∥p
p

α > 1
we have that P (i ∈ S) = 1 and would only add a special case where the variance of Xi is zero. Then by Corollary F.7 item
5) we have that

∥ai∥pp
∥A∥pp

· P (i ∈ S)−1 ≤
∥ai∥pp
∥A∥pp

α

(1− ε)∥ãi∥pp
≤

∥ai∥pp
∥A∥pp

α

(1− 3ε)∥ai∥pp
=

α

(1− 3ε)∥A∥pp
≤ 2α

∥A∥pp
≤ 2/k.

Further we have that E(
∑n

i=1 P (i ∈ S)Xi) = 1 and

n∑
i=1

P (i ∈ S)X2
i ≤ 2

k
·

n∑
i=1

P (i ∈ S)Xi =
2

k

Using Bernstein’s inequality we get that

P (|
n∑

i=1

P (i ∈ S)Xi − 1| ≥ ε) ≤ exp

(
− ε2/2

2/k + 2/(3k)

)
≤ exp

(
−kε2

6

)
≤ δ.

Since we do not know P (i ∈ S)−1 but rather wi = (1± 3ε)P (i ∈ S)−1 we get that∑
i∈S

wi∥ãi∥pp =
∑
i∈S

(1± 3ε)P (i ∈ S)−1(1± ε)∥ai∥pp

=
∑
i∈[n]

(1± 3ε)(1± ε)Xi∥A∥pp = (1± ε)∥A∥pp(1± 3ε)(1± ε) = (1± 6ε)∥A∥pp

with failure probability at most δ.

Theorem 2.2/F.1 follows by substituting ε by ε/6 and δ by δ/6.

G. Weighted sampling from multiple distributions
Assume that we want to sample an index i with probability pi + p′i but we only have access to a sampling algorithm that
samples with probability pi and another sampling algorithm that samples with probability p′i. The question is whether this is
sufficient to sample with probability roughly pi + p′i for some constants c1pi + c2p

′
i.

Lemma G.1. Let S1 ⊆ [n] (resp S2) be a sample where index i ∈ [n] is sampled with probability pi (resp p′i). Then
S = S1 ∪ S2 is a sample where i is sampled with probability (pi + p′i) ≥ P (i ∈ S) ≥ (1/2)(pi + p′i). Further, if both
pi and p′i are known up to a factor of (1± ε), i.e., we have p̃i = (1± ε)pi and p̃′i = (1± ε)p′i, then we can compute the
probability P (i ∈ S) up to a factor of (1± ε).

Proof. First note that the probability that i /∈ S is given by

P (i /∈ S) = (1− pi)(1− p′i) = 1− pi − p′i + pip
′
i

and consequently
P (i ∈ S) = pi + p′i − pip

′
i.

Since 0 ≤ pip
′
i =

pip
′
i

2 +
pip

′
i

2 ≤ pi

2 +
p′
i

2 this implies that

pi + p′i ≥ P (i ∈ S) ≥ 1

2
· (pi + p′i).
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Further let p̃i = c1pi and p̃′i = c2p
′
i. Using elementary calculus and using the fact that p̃′i ≥ 0 and p̃i ≥ 0 one can verify

that the probabilities are maximized, respectively minimized at the approximation boundaries, i.e., when c1, c2 = (1± ε).

We thus get that

c1pi + c2p
′
i − c1c2pip

′
i ≤ (1 + ε)(pi + p′i)− (1 + ε)2pip

′
i ≤ (1 + ε)(pi + p′i − pip

′
i) = (1 + ε)P (i ∈ S).

and similarly

c1pi + c2p
′
i − c1c2pip

′
i ≥ (1− ε)(pi + p′i)− (1− ε)2pip

′
i ≥ (1− ε)(pi + p′i − pip

′
i) = (1− ε)P (i ∈ S).

We get the following corollary:

Corollary G.2 (copy of Corollary 3.1). Combining a sample S1 from Algorithm 2 with parameter k and a uniform
sample S2 with sampling probability k/n we get a sample S1 ∪ S2 of size Θ(k) and the sampling probability of i is

Ω
(
k
(

∥ai∥p
p

∥A∥p
p
+ 1/n

))
, for any sample ãi we have that ∥ãi − ai∥p ≤ (ε/3)∥ai∥p. Further, the sampling probability and

thus appropriate weights can be approximated up to a factor of (1± ε).

For the sake of completeness note that if we want to sample with probability Ω
(
k
(

∥ai∥p
p

∥A∥p
p
+ 1/n

))
then for this particular

sampling probability there is another even simpler approach, which is to not sketch indices with ti ≥ k/n in Algorithm 2,
but instead include the original rows ai into a separate uniform sample. In this case, their weights wi need to be adapted to
wi = p−1

i = (max{ k
n ,

∥ai∥p
p

α })−1.

H. Application to ℓp leverage score sampling for regression loss functions
We now show how Algorithm 2 can be used to get an ε-coreset by simulating known results based on ℓp leverage score
sampling. We first need a few more definitions.

Definition H.1 (ℓp leverage scores). For fixed p ∈ [1, 2] we set u(p)
i = supz ̸=0

|aiz|p
∥Az∥p

p
to be the i-th leverage score of A.

Definition H.2 (Dasgupta et al. 2009, copy of Definition 3.2). Let A be an n× d matrix, let p ∈ [1,∞), and let q ∈ (1,∞]
be its dual norm, satisfying 1

p + 1
q = 1. Then an n× d matrix V is an (α, β, p)-well-conditioned basis for the column space

of A if

(1) ∥V ∥p :=
(∑

i≤n,j≤d |Vij |p
)1/p

≤ α, and

(2) for all z ∈ Rd, ∥z∥q ≤ β∥V z∥p.

We say that V is an ℓp-well-conditioned basis for the column space of A if α and β are dO(1), independent of n.

Proposition H.3 (copy of Proposition 3.3). There exists a turnstile sketching algorithm that for a given p ∈ [1, 2]
computes an invertible matrix R such that AR−1 is (α, β, p)-well-conditioned with α = O(d2/p−1/2(log d)1/p−1/2), β =
O((d(log d)(log log d))1/p), and (αβ)p = O(d3−p/2(log d)2−p/2(log log d)) for p ∈ [1, 2). For p = 2 it holds that
α = O(

√
2d), β = O(

√
2), and (αβ)p = O(d). Moreover, the ℓp leverage scores u(p)

i satisfy u
(p)
i ≤ βp∥aiR−1∥pp, and∑

i u
(p)
i ≤ (αβ)p = dO(1).

Proof of Proposition 3.3/H.3. Let Π ∈ Rr×n be an ℓp subspace embedding satisfying

∀x ∈ Rd : ∥Ax∥p/η ≤ ∥ΠAx∥p ≤ γ∥Ax∥p (2)

We show that if ΠA = QR is the QR decomposition, then U = AR−1 is a (ηdr1/2, γ, p)-well-conditioned basis for the
column space of A. Note that q ≥ 2 ≥ p ≥ 1. Then

∥z∥q ≤ ∥z∥2 = ∥Qz∥2 = ∥ΠAR−1z∥2 ≤ ∥ΠAR−1z∥p ≤ γ∥AR−1z∥p = γ∥Uz∥p
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and noting that Q ∈ Rr×d has orthonormal columns, we also have that

∥U∥pp =

d∑
i=1

∥AR−1
i ∥pp ≤ ηp

d∑
i=1

∥ΠAR−1
i ∥pp = ηp

d∑
i=1

∥Qi∥pp

≤ ηpd1/2

(
d∑

i=1

∥Qi∥2pp

)1/2

≤ ηpd1/2

(
d∑

i=1

(r1/p−1/2)2p∥Qi∥2p2

)1/2

≤ ηpd1/2(r1/p−1/2)p

(
d∑

i=1

∥Qi∥2p2

)1/2

= ηpd(r1/p−1/2)p

Taking the p-th root on both sides yields ∥U∥p ≤ ηd1/pr1/p−1/2.

Next, we choose for Π the oblivious subspace embeddings given in Corollary 1.12 of Woodruff & Yasuda, 2023b, that allow
for the following parameterization: if 1 ≤ p < 2 then Equation (2) holds with η = O(1), γ = O((d(log d)(log log d))1/p),
and r = O(d log d). It is thus (α, β, p)-well-conditioned with α = ηd1/pr1/p−1/2 = O(d2/p−1/2(log d)1/p−1/2), and
β = γ = O((d(log d)(log log d))1/p). Thus, (αβ)p = O(d3−p/2(log d)2−p/2(log log d)).

In the special case p = 2, it is known (Clarkson & Woodruff, 2017) that the CountSketch directly yields an (1± ε)-error
oblivious subspace embedding with sparsity s = 1, thus it can be applied in O(nnz(A)) time, and was shown in Lemma
2.14 of Munteanu et al., 2022 that it yields a (α, β, 2)-well-conditioned basis with α =

√
2d, β =

√
2 using the QR

decomposition as above. Thus, (αβ)p = 4d in this case.

Finally, Lemma 2.12 of Munteanu et al., 2022 yields that u(p)
i ≤ βp∥Ui∥pp = βp∥aiR−1∥pp, and

∑
i u

(p)
i ≤ (αβ)p.

We remark that there exist sparse alternatives for ℓp subspace embeddings given in Theorems 4.2, 5.2 of Wang & Woodruff,
2022 that admit a sparsity of s = O(log d). These apply to the data in O(nnz(A) log d) time (much faster than dense matrix
multiplication) where nnz(A) denotes the number of non-zero entries of A. However this comes at the cost of slightly
larger (αβ)p = O(d2+p/2(log d)1+p/2).

For asymmetric loss functions (all of Proposition H.5 except g(t) = |t|p), we require an additional parameter µ that has
been introduced for logistic regression by Munteanu et al. (2018) and generalized to arbitrary p (Munteanu et al., 2022).

Definition H.4 (µ-complexity, Munteanu et al. 2022). Let A ∈ Rn×d be any matrix. For a fixed p ≥ 1 we define

µp(A) = sup
z∈Rd\{0}

∑
aiz>0 |aiz|p∑
aiz<0 |aiz|p

.

We say that A is µ-complex if µp(A) ≤ µ < ∞.

We summarize a (non-exclusive) list of leverage score sampling results for various loss functions in the following proposition:

Proposition H.5. Let A ∈ Rn×d be µ-complex. If we sample S ⊂ [n] of a certain size k := |S| = poly(µd/ε) proportional
to sampling probabilities pi ≥ c(∥aiR−1∥pp + 1/n) where R is the matrix from Proposition H.3 and weights wi = (kpi)

−1

then with constant probability the weighted subsample is an ε-coreset, i.e., it holds that

∀z ∈ Rd :
∑
i∈S

wig(aiz) = (1± ε)
∑
i∈[n]

g(aiz)

where g(·) denotes one of the following loss functions:

• g(t) = |t|p (here k = poly(d/ε) is independent of µ),

• g(t) = max{0, t}p,

• g(t) = − ln(Φp(−t)), where Φp : R → [0, 1] denotes the CDF of the p-generalized normal distribution,
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• g(t) = ln(1 + et).

Proof. For the first item, g(t) = |t|p, which is known as the loss function for linear ℓp regression, the result is known for
p = 2 (Drineas et al., 2006), and has been generalized to general p ∈ [1, 2] (Dasgupta et al., 2009), and improved using
sketching techniques (Sohler & Woodruff, 2011; Drineas et al., 2012; Woodruff & Zhang, 2013).

For the second item, we refer to (Munteanu et al., 2022) who solved the problem for g(t) = max{0, t}p as a means to
approximate the third item, i.e., the p-generalized probit regression problem.

The fourth item g(t) = ln(1 + et) is known as logistic regression (Munteanu et al., 2018; Mai et al., 2021), that can be
handled by means of ℓ1 leverage score sampling (Munteanu et al., 2022).

Using these results we show that we can construct an ε-coreset in the turnstile stream setting using our algorithm with only
poly(µd/ε) log n overhead. The main challenge here is to show that the perturbation incurred from the fact that ãi is not
exactly ai, does not cause a large error for the loss function.

Theorem H.6 (copy of Theorem 3.4). Let A ∈ Rn×d be µ-complex (see Definition H.4). Given a leverage score sampling
algorithm that constructs an ε-coreset of size k, as for the loss functions below (summarized in Proposition H.5), there exists
a sampling algorithm that works in the turnstile stream setting that with constant probability outputs a weighted 2ε-coreset
(A′, w) ∈ Rk′×d × R≥1 of size k′ = Theta(k), such that

∀z ∈ Rd :

∣∣∣∣∣∣
∑
i∈[k′]

wig(a
′
iz)−

n∑
i=1

g(aiz)

∣∣∣∣∣∣ ≤ 2ε

n∑
i=1

g(aiz).

The size of the sketching data structure used to generate the sample is r · s, where s = 3 ln(36n/δ) and r =
O (k ln(n)(αpβp/ε)p) if g(t) = |t|p,
O (k ln(n)(µαpβp/ε)p) if g(t) = max{0, t}p,
O (k ln(n)(µαβ/ε)) if g(t) = ln(1 + et),
O
(
k ln(n)(pµ2αpβp/ε)p

)
if g(t) = − ln(Φp(−t)),

where Φp : R → [0, 1] denotes the CDF of the p-generalized normal distribution. In particular if the matrix P := R−1 of
Proposition 3.3 is used in Algorithm 2, then the overhead is at most O(ln(n)(µ2αpβp/ε)p) = poly(µd/ε) log(n).

Proof of Theorem 3.4/H.6. We use the algorithm from Proposition H.3 and Algorithm 2 in parallel. From the algorithm
of Proposition H.3 we get a matrix R such that u(p)

i ≤ cR∥aiR−1∥pp. Using Algorithm 2 with the modification described
in Section G and parameters r ≥ max{32k ln(n) · (72/ε′)p, 120k}, s ≥ 3 ln(36n/δ)/0.0253, and ε′ = ε/(αβ)p, we get
a sample S of size 2k ≥ |S| ≥ k by Theorem 2.2/F.1 resp. Corollary G.2. Thus S consists of Θ(k) (weighted) samples
(i, ãi, w̃i), where ∥ãiR−ai∥p ≤ (ε′/3)∥ai∥p and w̃i = (1± ε′)wi = (1± ε′)P (i ∈ S)−1 with P (i ∈ S) ≥ c(u

(p)
i +1/n).

Using Proposition H.5, with constant probability it holds that∑
i∈S

wig(aiz) = (1± ε′)2
∑
i∈[n]

g(aiz).

Here, the additional factor of (1± ε′) comes from the approximation of the weights in the output of our algorithm, up to
which we can assume in the following we have the exact weights of Proposition H.5. The remaining part of the proof is to
show that the error incurred by replacing ai with the output rows ãiP−1 = ãiR is small.

• First we consider g(t) = |t|p. Recall that AR−1 is an (α, β, p)-well-conditioned basis. We aim to use a variant
of Bernoulli’s inequality in the following form, which follows using the mean value theorem: (|a| + |b|)p − |a|p ≤
p|b|(|a|+ |b|)p−1. We also use that ∥ãi − aiR

−1∥p ≤ (ε′/3)∥aiR−1∥p. For ε′ = ε/(αβ)p this yields∣∣∣∣∣∑
i∈S

wig(ãiRz)−
∑
i∈S

wig(aiz)

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈S

wi|⟨ãiR, z⟩|p − |⟨ai, z⟩|p
∣∣∣∣∣
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≤
∑
i∈S

wi ||⟨ãiR, z⟩|p − |⟨ai, z⟩|p|

=
∑
i∈S

wi

∣∣|⟨ãi, Rz⟩|p − |⟨aiR−1, Rz⟩|p
∣∣

≤
∑
i∈S

wi

∣∣|⟨aiR−1 + ãi − aiR
−1, Rz⟩|p − |⟨aiR−1, Rz⟩|p

∣∣
≤
∑
i∈S

wi

∣∣∣(|⟨aiR,R−1z⟩|+ |⟨ãi − aiR
−1, Rz⟩|

)p − |⟨aiR−1, Rz⟩|p
∣∣∣

≤
∑
i∈S

wip
∣∣⟨ãi − aiR

−1, Rz⟩
∣∣ (|⟨aiR−1, Rz⟩|+ |⟨ãi − aiR

−1, Rz⟩|
)p−1

≤
∑
i∈S

wip∥ãi − aiR
−1∥p∥Rz∥q

(
∥aiR∥p∥R−1z∥q + ∥ãi − aiR

−1∥p∥Rz∥q
)p−1

≤
∑
i∈S

wip(ε
′/3)∥aiR−1∥p∥Rz∥q

(
(1 + ε′/3)∥aiR∥p∥R−1z∥q

)p−1

≤
∑
i∈S

wip(2ε
′/3)∥aiR−1∥pp∥Rz∥pq

≤
∑
i∈S

wi∥aiR−1∥pp(4ε′/3)βp∥AR−1Rz∥pp

≤ (1 + ε′/3)∥AR−1∥pp(4ε′/3)βp∥AR−1Rz∥pp
≤ (1 + ε′/3)(4ε′/3)(αβ)p∥Az∥pp
≤ 2ε∥Az∥pp =

∑
i∈[n]

|aiz|p.

• Now let g(t) = max{0, t}p. Using ε′ = ε/((µ+ 1)(αβ)p), we have very similarly to the case |t|p above (the . . . indicate
that these steps are verbatim). Consider the cases where max{ãiRz, aiz} ≤ 0, or min{ãiRz, aiz} ≥ 0. In both cases we
have that ∣∣∣∣∣∑

i∈S

wig(ãiRz)−
∑
i∈S

wig(aiz)

∣∣∣∣∣ ≤∑
i∈S

wi |max{0, ãiRz}p −max{0, aiz}p|

≤
∑
i∈S

wi

∣∣|⟨ãiR−1, z⟩|p − |⟨ai, z⟩|p
∣∣

≤ . . . (verbatim to the previous calculation)
≤ 2ε∥Az∥pp/(µ+ 1)

= 2ε
∑

aiz>0

|aiz|p = 2ε
∑
i∈[n]

max{0, aiz}p ≤ 2ε
∑
i∈[n]

g(aiz). (3)

Consider the remaining case where max{ãiRz, aiz} ≥ 0 ≥ min{ãiRz, aiz}. By Hölder’s inequality we have that

|⟨ãi, Rz⟩ − ⟨ai, z⟩| ≤
∣∣⟨ãi, Rz⟩ − ⟨aiR−1, Rz⟩

∣∣
=
∣∣⟨ãi − aiR

−1, Rz⟩
∣∣

≤ ∥ãi − aiR
−1∥p∥Rz∥q

≤ (ε′/3)∥aiR−1∥pβ∥Az∥p. (4)

Consequently, we get the same overall bound in this case∣∣∣∣∣∑
i∈S

wig(ãiRz)−
∑
i∈S

wig(aiz)

∣∣∣∣∣ ≤∑
i∈S

wi |max{0, ãiRz}p −max{0, aiz}p|
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≤
∑
i∈S

wi max{ãiRz, aiz}p

≤
∑
i∈S

wi |⟨ãi, Rz⟩ − ⟨ai, z⟩|p

≤
∑
i∈S

wi(ε
′/3)∥aiR−1∥ppβ∥Az∥pp

≤ (1 + ε′/3)(ε′/3)(αβ)p∥Az∥pp
≤ 2ε∥Az∥pp/(µ+ 1)

= 2ε
∑

aiz>0

|aiz|p = 2ε
∑
i∈[n]

max{0, aiz}p ≤ 2ε
∑
i∈[n]

g(aiz). (5)

• Now let g(t) = ln(1+ exp(t)) = ln(exp(t)(1+ exp(−t))) = t+ g(−t). Note that g(t) ≥ max{0, t}. For the derivative,
we have that 0 ≤ g′(t) = exp(t)

1+exp(t) ≤ 1 for all t ∈ R. Let p = 1, and ε′ = ε/((µ+ 1)(αβ)).

Using Equation (4) again with p = 1, we get the following overall bound∣∣∣∣∣∑
i∈S

wig(ãiRz)−
∑
i∈S

wig(aiz)

∣∣∣∣∣ ≤∑
i∈S

wi

∣∣∣∣∫ aiz

ãiRz

g′(t) dt

∣∣∣∣ ≤∑
i∈S

wi

∣∣∣∣∫ aiz

ãiRz

1 dt

∣∣∣∣
=
∑
i∈S

wi |⟨ãi, Rz⟩ − ⟨ai, z⟩|

≤
∑
i∈S

wi(ε
′/3)∥aiR−1∥1β∥Az∥1

≤ (1 + ε′/3)(ε′/3)(αβ)∥Az∥1
≤ 2ε∥Az∥1/(µ+ 1)

= 2ε
∑

aiz>0

|aiz| = 2ε
∑
i∈[n]

max{0, aiz} ≤ 2ε
∑
i∈[n]

g(aiz). (6)

• Finally, consider g(t) = − ln(Φp(−t)). For this loss function, we run Algorithm 2 twice in parallel, once with the
given parameter p and once with p = 1. We combine the samples using Lemma G.1, and add a uniform component using
Corollary G.2.

By (Munteanu et al., 2022, Lemma 2.8), we have that f(Az) =
∑

i∈[n] g(aiz) ≥ n
µ . Further by (Munteanu et al.,

2022, Lemma 2.6) it holds that g(t) is monotonically non-decreasing and convex, and further for any t ≥ 1 it holds that
tp−1 ≤ g′(t) ≤ tp−1 + p−1

t . The lower bounds of the cited lemma also imply that g(t) ≥ max{0, t}p/p. Note that for
t ≤ 1 convexity yields 0 ≤ g′(t) ≤ g′(1) ≤ 2, and for t ≥ 1, we get 0 < tp−1 ≤ g′(t) ≤ tp−1 + 2.

Then, we get for ε′ = ε/(6pµ(µ+ 1)(αβ)p) that∣∣∣∣∣∑
i∈S

wig(ãiRz)−
∑
i∈S

wig(aiz)

∣∣∣∣∣ ≤∑
i∈S

wi

∣∣∣∣∫ aiz

ãiRz

g′(t) dt

∣∣∣∣
≤
∑
i∈S

wi

(∣∣∣∣∫ aiz

ãiRz

2 dt

∣∣∣∣+
∣∣∣∣∣
∫ max{1,max{ãiRz,aiz}}

max{1,min{ãiRz,aiz}}
tp−1 dt

∣∣∣∣∣
)

(7)

Note, that the first integral is the same up to a factor of 2 as the one we used to handle logistic regression, and ε′ is smaller
by a factor of 6pµ now. We thus get verbatim to Equation (6) that∑

i∈S

wi

∣∣∣∣∫ aiz

ãiRz

2 dt

∣∣∣∣ ≤ 4ε/(6pµ)
∑
i∈[n]

max{0, aiz}.

Next, note that the second integral satisfies |
∫ a

b
tp−1 dt| ≤ |ap − bp|, and we see that it can be handled verbatim to the case
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distinction for the ℓp ReLU function, i.e., as in Equations (3) and (5). Recall that ε′ is smaller by a factor of 6pµ. Thus

∑
i∈S

wi

∣∣∣∣∣
∫ max{1,max{ãiRz,aiz}}

max{1,min{ãiRz,aiz}}
tp−1 dt

∣∣∣∣∣ ≤∑
i∈S

wi |max{1,max{ãiRz, aiz}}p −max{1,min{ãiRz, aiz}}p|

≤ 2ε/(6pµ)
∑
i∈[n]

max{0, aiz}p

To conclude, we note that for all t ∈ R \ (0, 1) we have that max{0, t} ≤ max{0, t}p, and for t ∈ (0, 1) it holds that
max{0, t} ≤ 1. Thus max{0, t} ≤ max{0, t}p + 1. Consequently, we can resume our calculation of Equation (7)

(7) ≤ 4ε/(6pµ)
∑
i∈[n]

max{0, aiz}+ 2ε/(6pµ)
∑
i∈[n]

max{0, aiz}p

≤ ε/µ
∑
i∈[n]

max{0, aiz}p

p
+ εn/µ

≤ ε
∑
i∈[n]

g(aiz) + ε
∑
i∈[n]

g(aiz) = 2ε
∑
i∈[n]

g(aiz).

I. Additional details on experiments and data
I.1. Computing environment

All experiments were run on a workstation with AMD Ryzen Threadripper PRO 5975WX, 32 cores at 3.6GHz, 512GB
DDR4-3200.

I.2. Details on datasets

The datasets were automatically downloaded and preprocessed by the Python code. We give a short description of the data
for completeness of presentation. These descriptions were copied from Munteanu et al. (2022; 2023): the Covertype data
consists of 581, 012 cartographic observations of different forests with 54 features. The task is to predict the type of trees at
each location (49% positive). The Webspam data consists of 350, 000 unigrams with 127 features from web pages, which
have to be classified as spam or normal pages (61% positive). The Kddcup data consists of 494, 021 network connections
with 41 features and the task is to detect network intrusions (20% positive).

I.3. Experimental focus

We demonstrate the performance of our novel turnstile ℓp sampler. Recall, that our algorithm is a hybrid between an
oblivious sketch and a leverage score sampling algorithm. It thus makes most sense to compare to pure oblivious sketching
as well as to pure off-line leverage score sampling. We refer to (Mai et al., 2021; Munteanu et al., 2022) for comparisons
between ℓp leverage scores and Lewis weights, which are not the focus of this paper.

We implement our new algorithm into the experimental framework of the near-linear oblivious sketch of Munteanu et al.
(2023), and add the code of Munteanu et al. (2022) for ℓ1 leverage score sampling. Our new and combined code is available
at https://github.com/Tim907/turnstile-sampling.

Our a priori hypothesis from the theoretical knowledge on the three regimes is that the performance should be somewhere in
the middle between the performances of the competitors. Ideally, we would want our algorithm to perform as closely as
possible to off-line leverage score sampling.

I.4. Details on space requirements and running times

The required space is r · s · d to store the r · s many d-dimensional vectors, where the values of r and s are as stated in all
theorems. In bit complexity, we need to add another log(n) factor under the standard assumption that all values considered in
the data stream are polynomially bounded in n and d, and n > d. Oblivious sketching uses exactly k rows of d-dimensional
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vectors. Leverage score sampling uses Θ(n) space, since we compute all n leverage scores in main memory, before
sampling. In our implementation, the values of r and s were initially evaluated and fixed to r = ⌈k ·max{30, log(n)}⌉, and
s = 2 · ⌈max{5, log(n)/2}⌉

For turnstile sketching, the running time is O(nnz(A) log n) where nnz(A) denotes the number of non-zero entries in the
representation of A. Oblivious sketching requires O(nnz(A) log d). Offline leverage scores require O(nd2). However,
our turnstile sampler requires an additional extraction which dominates the running time requiring O(nds+ ks2 + kd2).
The main goal is to get turnstile updates, (1 + ε) error, and poly(d, ε, log n) space, which the comparison methods cannot
provide. However, this comes at the cost of increased running time. Clearly, the oblivious sketch cannot be outperformed
but it has limitations in terms of accuracy. In our experimants, the sketching and extraction time of the turnstile sampler is
larger than the other methods by a factor of 8-15. However the total running time including optimization is usually increased
by only a factor 3-6.

I.5. Experiments for logistic regression
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Figure 2. Comparison of the approximation ratios and running times for logistic regression on various real-world datasets. The new
turnstile data stream sampler for p = 1 (orange) and a mixture p = 1, q = 2 (lime) is compared to plain leverage score sampling (red),
and to plain oblivious sketching (blue). The plots indicate the median of approximation ratios taken over 21 repetitions for each reduced
size. Best viewed in colors, lower is better.
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I.6. Experiments for ℓ1 regression
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Figure 3. Comparison of the approximation ratios and running times for ℓ1 regression on various real-world datasets. The new turnstile
data stream sampler for p = 1 (orange) and a mixture p = 1, q = 2 (lime) is compared to plain leverage score sampling (red), and to
plain oblivious sketching (blue). The plots indicate the median of approximation ratios taken over 21 repetitions for each reduced size.
Best viewed in colors, lower is better.
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I.7. Experiments for ℓ1.5 regression
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Figure 4. Comparison of the approximation ratios and running times for ℓ1.5 regression on various real-world datasets. The new turnstile
data stream sampler for p = 1.5 (orange) is compared to plain leverage score sampling for p = 1.5 (red). The plots indicate the median
of approximation ratios taken over 21 repetitions for each reduced size. Best viewed in colors, lower is better.
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