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ABSTRACT

While Multimodal Large Language Models (MLLMs) excel at single-image un-
derstanding, they exhibit significantly degraded performance in multi-image rea-
soning scenarios. Multi-image reasoning presents fundamental challenges includ-
ing complex inter-relationships between images and scattered critical informa-
tion across image sets. Inspired by human cognitive processes, we propose the
Cognition-Inspired Meta-Action Framework (CINEMA), a novel approach that
decomposes multi-image reasoning into five structured meta-actions: Global, Fo-
cus, Hint, Think, and Answer which explicitly modeling the sequential cognitive
steps humans naturally employ. For cold-start training, we introduce a Retrieval-
Based Tree Sampling strategy that generates high-quality meta-action trajectories
to bootstrap the model with reasoning patterns. During reinforcement learning,
we adopt a two-stage paradigm: an exploration phase with Diversity-Preserving
Policy Optimization (DiPO) to avoid entropy collapse, followed by an annealed
exploitation phase with DAPO to to gradually strengthen exploitation. To train our
model,We construct a dataset of 57k cold-start and 58k reinforcement learning in-
stances spanning multi-image, multi-frame, and single-image tasks. We conduct
extensive evaluations on multi-image reasoning benchmarks, video understanding
benchmarks, and single-image benchmarks, achieving competitive state-of-the-
art performance on several key benchmarks. Our model surpasses GPT-4o on the
MUIR and MVMath benchmarks and notably outperforms specialized video rea-
soning models on video understanding benchmarks, demonstrating the effective-
ness and generalizability of our human cognition-inspired reasoning framework.

1 INTRODUCTION

Recent Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities
in single-image understanding tasks (Bai et al., 2025; Chen et al., 2024b; Hurst et al., 2024; Li et al.,
2024b; Wang et al., 2024a), with extensive research focusing on enhancing models’ single-image
reasoning abilities (Wang et al., 2025e; Huang et al., 2025; Chen et al., 2025a; Yang et al., 2025b).
However, real-world applications often involve processing multiple images simultaneously, such
as in e-commerce, autonomous driving, and video content understanding. Despite their success in
single-image tasks, MLLMs exhibit significantly degraded performance when handling multi-image
reasoning scenarios (Wang et al., 2025a; Meng et al., 2025b).

Multi-image reasoning presents two fundamental challenges. First, images often exhibit complex
inter-relationships: semantic associations, spatial arrangements, temporal sequences, that are crucial
for task completion yet require sophisticated integration beyond isolated image processing (Zhang
et al., 2025b; Meng et al., 2025b). Second, critical information may be scattered across specific
images within larger sets, demanding precise identification and focus on relevant visual content
while filtering out distractors.

Human cognition provides valuable insights for addressing these challenges. When faced with com-
plex multi-image reasoning tasks, humans typically employ a systematic approach: they first survey
the entire problem to understand its global structure, then focus on key relevant details, identify po-
tential pitfalls and confusing elements, engage in deliberate reasoning to connect information across
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images, and finally synthesize their analysis into a coherent solution. This natural cognitive process
suggests that artificial reasoning systems would benefit from structured meta-cognitive frameworks
that explicitly model these human-like reasoning patterns.

Motivated by these observations, we propose the Cognition-Inspired Meta-Action Framework
(CINEMA) that addresses multi-image reasoning through three key innovations. First, we intro-
duce a set of five meta actions: Global, Focus, Hint, Think, and Answer, which systematically
guide models through human-inspired reasoning processes. These meta actions provide a structured
cognitive framework that enables models to effectively navigate the complexities of multi-image
reasoning by explicitly modeling the sequential cognitive steps that humans naturally employ. Sec-
ond, we develop a Retrieval-Based Tree Sampling strategy that mirrors human learning dynamics
through a student-teacher paradigm. This approach generates diverse, high-quality reasoning tra-
jectories by first allowing a student model to attempt initial solutions, then having a teacher model
refine these attempts, and finally retrieving alternative solution paths from a database of reason-
ing trajectories. process not only ensures the quality of training data but also refines the reasoning
trajectories, enabling the model to generate reasoning patterns that more closely resemble human-
like thinking. Third, we design a novel two-stage reinforcement learning approach to optimize the
reasoning process while maintaining trajectory diversity. We observe that standard reinforcement
learning often suffers from entropy collapse (Wang et al., 2025d; Cui et al., 2025; Li et al., 2025),
where policies become overly deterministic and lose exploration capacity over time. To address this
challenge, our first stage employs Diversity-Preserving Policy Optimization (DiPO) with a trajec-
tory homogeneity penalty to maintain sufficient exploration and prevent premature convergence to
suboptimal solutions. The second stage then applies dynamic sampling policy optimization (DAPO)
(Yu et al., 2025) to gradually transition toward more focused behaviors, effectively balancing the
exploration-exploitation trade-off throughout the training process.

To train our model, we construct a high-quality training dataset comprising 57k cold-start instances
and 58k reinforcement learning instances. Each cold-start instance contains two distinct reasoning
trajectories to provide diverse supervision signals during initial training. The dataset encompasses
three categories of visual reasoning tasks: multi-image tasks, multi-frame tasks and single-image
tasks. Our main contributions are as follows:

• We propose a human cognition-inspired reasoning framework that decomposes complex multi-
image reasoning into five structured meta actions (Global, Focus, Hint, Think, Answer). This
framework systematically models the sequential cognitive processes that humans naturally employ
when solving multi-image reasoning tasks, providing explicit guidance for models to navigate
complex visual reasoning scenarios.

• We introduce a novel Retrieval-Based Tree Sampling strategy that generates diverse, high-quality
training trajectories through student-teacher interactions, coupled with a two-stage reinforcement
learning paradigm: Diversity-Preserving Policy Optimization (DiPO) with trajectory homogeneity
penalty to maintain exploration, followed by DAPO to consolidate performance while preserving
learned diversity.

• We construct a comprehensive training dataset with 58k cold-start instances where each contains
two reasoning trajectories, and 58k reinforcement learning instances across multi-image, multi-
frame, and single-image tasks.

• We conduct extensive evaluations across multiple benchmarks spanning multi-image reasoning,
video understanding, and single-image tasks. Our method achieves state-of-the-art performance
on numerous benchmarks and notably outperforms specialized video reasoning models on video
understanding tasks, demonstrating the effectiveness and generalizability of our approach.

2 RELATED WORK

Multimodal Reasoning. Recent works have enhanced MLLM reasoning capabilities (Huang
et al., 2025; Dong et al., 2025; Hu et al., 2024; Su et al., 2025; Yang et al., 2025a), but most
focus on single-image scenarios. Real-world applications like autonomous driving and video un-
derstanding require multi-image reasoning. Existing multi-image approaches have key limitations.
Zhang et al. (2025b) propose a Focus-Centric Visual Chain that decomposes multi-image tasks into
sequential sub-questions targeting specific visual subsets. However, their reasoning process mainly
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focuses on individual image subsets instead of leveraging global multi-image context.. MIA-DPO
Liu et al. (2025c) augments single-image datasets with unrelated images for preference optimization,
but primarily handles cases where questions involve only single images within multi-image contexts.
Authentic multi-image reasoning requires models to analyze individual images while comprehend-
ing holistic relationships among all images. Inspired by human cognition, we propose a reasoning
framework that effectively navigates both local image analysis and global inter-image relationships.

Reinforcement Learning for Reasoning and Entropy Control. Early reinforcement learning ap-
proaches for foundation models relied on Reinforcement Learning from Human Feedback (RLHF),
which required training a separate reward model and extensive human-labeled preference data
(Ouyang et al., 2022; Hunter, 2004). Direct Preference Optimization (DPO) (Rafailov et al., 2023)
simplified this pipeline but still depended on preference annotations. More recently, large-scale pure
RL methods have shown strong gains in reasoning, with outcome-based rewards alone proving ef-
fective (Guo et al., 2025; Team et al., 2025; Zeng et al., 2025; Hu et al., 2025a; Liu et al., 2025b;
Yan et al., 2025; Chen et al., 2025b). To regulate exploration, many approaches add entropy or KL
regularization (He et al., 2025; Liu et al., 2025a), introduce entropy bonuses through reward shaping
(Cheng et al., 2025), or apply stabilizing heuristics such as loss reweighting (Wang et al., 2025d; Cui
et al., 2025) and clip-higher mechanisms (Yu et al., 2025). While these methods focus on entropy
within a single response, others encourage diversity across responses, e.g., via embedding-based
distance measures (Chen et al., 2025d) or enforcing dissimilarity in generated answers (Chen et al.,
2025c). Our approach builds on this line of work but emphasizes diversity at the meta-action level
for entropy control.

3 METHOD

The famework of our method is shown in Figure 1. We first define five structured meta ac-
tions—Global, Focus, Hint, Think, and Answer—that model human cognitive processes (Section
3.1). We then propose Retrieval-Based Tree Sampling to generate diverse, high-quality training
trajectories via student-teacher interactions (Section 3.2), and construct a comprehensive dataset
with 58k cold-start and 58k reinforcement learning instances (Section 3.3). Finally, we introduce
a two-stage training paradigm: in the first stage, Diversity-Preserving Policy Optimization (DiPO)
prevents entropy collapse and maintains trajectory diversity during reinforcement learning, and in
the second stage, DAPO anneals the policy toward exploitation to consolidate performance (Section
3.4).

Meta Action Definition 

What is the correct order of the 
images? A: [0, 1, 2, 3] B: [1, 3, 2, 0]  
C: [3, 2, 1, 0] D: [1, 3, 0, 2]
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Analyze the relationships among 

multiple images

Focus
Focus on details in specific images

Hint
Analyze the key points and error-

prone aspects of the problem

Think
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Figure 1: Overview of CINEMA.
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3.1 META ACTION DEFINITION

Global. This meta action simulates how humans typically approach complex problems by first read-
ing through the entire question to grasp its overall structure. When dealing with multi-image input
tasks, there may be temporal, spatial, semantic, or other relationships between the images. This ac-
tion helps the model identify and leverage these inter-image dependencies to enhance understanding
and reasoning.

Focus. This meta action simulates how humans tackle complex problems by concentrating on an-
alyzing key information relevant to the question. In the context of multi-image reasoning, critical
clues may reside in a specific image. The model should therefore focus its analysis on that image
and pay close attention to salient visual details.

Hint. This meta action simulates how humans improve accuracy by summarizing key points and
error-prone aspects of a problem when solving tasks. In multi-image reasoning tasks, similarly, there
often exists misleading or easily confusable information between images.

Think. This meta action simulates how humans engage in internal reasoning by actively processing
acquired information to formulate solutions or hypotheses. It involves analyzing the relationships
between provided clues, leveraging prior knowledge, and performing logical inference.

Answer. This meta action outputs the final answer based on all prior analytical insights and reason-
ing outcomes. It is the final action in the compliant trajectory.

3.2 RETRIEVAL BASED TREE SAMPLE

To effectively leverage the defined meta actions for multi-image reasoning enhancement, we propose
a novel cold-start data sampling strategy called Retrieval-Based Tree Sampling. This approach is
inspired by human learning mechanisms, where students first attempt problems independently before
receiving guidance from teachers who first refine their initial approach and then introduce alternative
solution pathways.

With the meta actions defined in Section 3.1, we maintain several meta action trees, each contain-
ing multiple reasoning trajectories. Every trajectory in these trees terminates with the ”Answer”
meta action, forming complete reasoning paths from problem comprehension to solution derivation.
These trees serve as a database of diverse reasoning strategies that can be retrieved and adapted for
new problems. The Retrieval-Based Tree Sampling process is shown as follows:

Step 1. Initial Trajectory Generation. We first prompt a smaller model (student model) to perform
initial reasoning on the given task using meta actions. This generates an initial trajectory regardless
of whether the final answer is correct or incorrect. This step mirrors how students first attempt to
solve problems using their existing knowledge and reasoning patterns.

Step 2. Teacher-Guided Trajectory Refinement. The initial trajectory from Step 1 is then provided
to a stronger model (GPT-4o, serving as the teacher model). The teacher model follows the student’s
reasoning action trajectories and reason again, similar to how human teachers guide students by
first understanding their thought processes and then providing corrections. This produces a correct
trajectory that maintains the original action trajectories while ensuring accuracy.

Step 3. Retrieval-Based Diverse Sampling. To enrich the learning experience and expand the
exploration space for subsequent reinforcement learning, we perform retrieval-based sampling from
our trajectory tree database. Starting from trajectories with low similarity to the initial trajectory
from Step 2, we progressively search through increasingly similar trajectories until we identify an
alternative correct reasoning path. This process ensures that each training instance is associated with
two distinct correct trajectories.

3.3 DATASET CONSTRUCTION

To train our model, we construct a high-quality training dataset that supports both cold-start ini-
tialization and reinforcement learning phases. Our dataset encompasses three primary categories:
multi-image tasks in which the number of input images is at least two, multi-frame tasks that in-
volve reasoning over sequential frames from videos or time-series visual data, and single image
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tasks that in which the number of input image is only one. All the data is obtained through existing
open-source multi-modal datasets. More details about dataset is shown in Appendix A.5.

The key distinction between our cold-start and reinforcement learning dataset splits lies in the trajec-
tory generation process described in Section 3.2. Cold-start training data consists of problems where
GPT-4o successfully provides correct answers during Step 2, and for these instances, we proceed
to Step 3 (retrieval-based diverse sampling) to obtain two distinct correct reasoning trajectories per
problem that serve as supervised learning targets for cold start training. In contrast, reinforcement
learning data comprises problems where GPT-4o fails to produce correct answers during Step 2, and
these challenging cases are reserved for reinforcement learning.

3.4 BALANCING EXPLORATION AND EXPLOITATION VIA TWO-STAGE OPTIMIZATION

A critical challenge in reinforcement learning for reasoning is policy entropy collapse which limits
exploration and generalization capacity. We address this through a two-stage training paradigm: first
maintaining trajectory diversity to preserve exploration, then gradually shifting toward exploitation
to consolidate performance.

Diversity-Preserving Policy Optimization (DiPO). In the first stage, we aim to prevent entropy
collapse by maintaining diversity at the meta-action level. To this end, we propose DiPO which
is build on DAPO (Yu et al., 2025)(more details about DAPO is shown in Appendix A.2). Our
central hypothesis is that encouraging a variety of solution strategies can better leverage the model’s
potential and improve its generalization performance like human.

We operationalize this by promoting diverse responses for questions that the model answers cor-
rectly. To this end, we define the reward as a weighted combination of accuracy and format validity:

R = 0.5 ·
[
Racc ·

(
Racc −

N − 1

G− 1
· 0.1

)]
+ 0.5 ·Rformat, (1)

where Racc and Rformat are binary indicators:

Racc =

{
1, if the answer is correct,
0, otherwise,

Rformat =

{
1, if all meta actions in the response are valid,
0, otherwise.

Here, G denotes the group size used in sampling, and N represents the number of trajectories within
the group that share identical meta-action patterns. Intuitively, the penalty term N−1

G−1 discourages
over-reliance on homogeneous trajectories, thereby encouraging the model to maintain diversity
across solutions. This design ensures that correct answers are not only accurate but also exhibit a
broad spectrum of solution strategies, thereby enhancing the model’s generalization. In practice,
to perform dynamic sampling as in DAPO, we use Racc as the filtering criterion rather than the
combined reward R.

Annealed Exploitation. In the second stage, we employ DAPO with an annealing schedule to
gradually shift from exploration to exploitation, leveraging the diversity obtained in stage one while
consolidating performance gains. This two-stage approach maintains higher entropy levels through-
out training compared to standard methods, as validated by our Pass@K experiments.

4 EXPERIMENT SETUP

4.1 BENCHMARK AND BASELINES

Benchmark. To ensure a comprehensive evaluation, we examine the performance of our method
across a broad spectrum of benchmarks, encompassing both multi-image and single-image types.
Specifically, for multi-image evaluations, we cover multi-image comprehensive benchmarks (in-
cluding MUIR (Wang et al., 2025a), MMIU (Meng et al., 2025b), and Mantis-Eval (Jiang et al.)),
multi-image reasoning benchmarks (including MV-MATH (Wang et al., 2025b), MIRB (Zhao
et al., 2024) and EMMA (Hao et al.)), video comprehensive benchmarks (including MVBench
(Li et al., 2024c), and VideoMME (Fu et al., 2025)) and video reasoning benchmarks (including
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Model MUIR MMIU MVMATH EMMA MIRB Mantis MVBench VideoMME VideoMMMU Overall
Closed-Source MLLMs

GPT-4V - - 24.5 - - 62.7 43.5 59.9 - -
Gemini-1.5-Pro - - 29.1 - - - - 71.9 53.9 -

GPT-4o 68.0 55.7 32.1 32.7 - - - 75.0 61.2 -
Open-Source General MLLMs

OpenFlamingo-v2 9B 22.3 23.7 - - 28.8 12.4 7.9 - - -
LLaVA 1.6 7B 27.4 22.2 - - 29.8 45.6 40.9 - - -
VILA1.5 8B 33.1 32.5 - - 36.5 51.2 49.4 20.9 - -

LLaVA-OneVision 7B 41.8 40.3 19.1 - 51.2 64.2 56.7 - - -
InternVL2.5 8B 51.1 46.7 18.8 21.0 52.5 67.7 72.0 56.1 35.2 46.8
Qwen2.5-VL-7B 57.9 50.6 26.7 20.4 48.3 64.5 62.6 56.7 45.8 48.2

Multi-image/Video Enhancing MLLMs
Mantis-Idefics2 8B 44.5 45.6 15.5 20.3 34.8 57.1 51.4 42.6 19.3 36.8

LLaVA-NeXT-Interleave 7B 31.1 47.3 14.7 19.0 39.3 62.7 53.1 47.2 23.2 37.5
mPLUG-Owl3 8B 34.0 39.7 18.7 24.8 41.2 63.1 54.5 53.5 32.0 40.2

MIA-DPO 7B - - - - - 60.4 63.6 - - -
CcDPO 7B 44.8 - - - 60.7 69.1 - - - -
VISC 7B 44.5 52.8 - - 60.2 69.1 68.0 - - -

VideoR1 7B - - - - - - 63.6 57.4 49.8 -
VideoRFT 7B 56.6 44.5 25.1 17.8 46.7 56.7 62.1 59.8 51.1 46.7
TW-GRPO 7B 55.9 44.9 28.2 22.5 24.3 49.8 63.3 55.1 40.8 42.8

Ours 71.6 53.3 36.9 29.3 55.2 67.7 66.5 59.4 49.0 54.3
∆ (vs Qwen2.5VL 7B) +13.7 +2.7 +10.2 +8.9 +6.9 +3.2 +3.9 +2.7 +3.2 +6.1

Ours [with DiPO] 67.9 52.2 35.1 28.4 54.4 71.0 67.1 60.2 51.6 54.2
∆ (vs Qwen2.5VL 7B) +10.0 +1.6 +8.4 +8.0 +6.1 +6.5 +4.5 +3.5 +5.8 +6.0

Ours [with DiPO and annealing] 71.0 52.2 35.0 28.6 55.7 68.4 66.8 61.0 50.1 54.3
∆ (vs Qwen2.5VL 7B) +13.1 +1.6 +8.3 +8.2 +7.4 +3.9 +4.2 +4.3 +4.3 +6.1

Table 1: Performance on multi-image/video benchmark. Ours indicates training with DAPO, Ours
[with DiPO] indicates training with DiPO, and Ours [with DiPO reward and annealing] indicates
training with two-stage RL, where all models are trained for the same number of steps.

VideoMMMU (Hu et al., 2025b)). For single-image evaluations, we include single-image compre-
hensive benchmarks (including MMMU-Pro (Yue et al., 2024) and M3COT (Chen et al., 2024a)) as
well as mathematics reasoning benchmarks (including MM-Math (Sun et al., 2024), Math-Vision
(Wang et al., 2024b), and MathVista (Lu et al., 2023)). Accuracy is reported as the evaluation metric
for all these benchmarks.

Baslines. We compare our method’s performance against four categories of models: closed-source
MLLMs, including GPT-4V (Achiam et al., 2023), Gemini-1.5-Pro (Team et al., 2023), and GPT-4o
(Hurst et al., 2024); open-source general-purpose MLLMs, including OpenFlamingo-v2 (Awadalla
et al., 2023), LLaVAv1.6 (Liu et al., 2024), VILA1.5 (Lin et al., 2024), LLaVA-OneVision (Li
et al.), InternVL2.5 (Chen et al., 2024b), and Qwen2.5-VL (Bai et al., 2025); and multi-image/video
enhanced models, including Mantis-Idefics (Jiang et al.), mPLUG-Owl3 (Ye et al., 2025), LLaVA-
NeXT-Interleave (Li et al., 2024a), CMMCOT (Zhang et al., 2025a), MIA-DPO (Liu et al., 2025c),
VISC (Zhang et al., 2025b), VideoR1 (Feng et al., 2025), and VideoRFT (Wang et al., 2025c);
Single-image reasoning models: Mulberry 7B (Yao et al., 2024), R1-Onevision 7B Yang et al.
(2025b), VLAA-Thinker 7B (Chen et al., 2025a), VisonR1 7B (Huang et al., 2025), MixedR1 7B
(Xu et al., 2025).

4.2 IMPLEMENTATION DETAILS

We select Qwen2.5VL 7B as our backbone model. During the cold-start training phase, the model
is initialized and trained for two epochs with a learning rate of 1 × 10−5. We employ a two-stage
reinforcement learning procedure. The first stage consists of 700 steps of DiPO-based entropy en-
hancement, followed by 300 steps of DAPO-based annealed exploitation. In the subsequent re-
inforcement learning stage, both the KL-divergence and entropy regularization terms are omitted.
Rollouts are generated using a batch size of 64, a temperature of 1.0, and 8 rollouts per prompt. For
policy optimization, an update batch size of 32 is adopted. Regarding reward design, we incorporate
domain-specific validation mechanisms: math verify (Kydlı́ček) and mathruler (hiyouga,
2025) are employed to evaluate answers in mathematical problem-solving, whereas exact string
matching is applied to non-mathematical tasks. To ensure structural consistency, format rewards
are introduced by imposing constraints on the response space, requiring outputs to conform to a
valid meta-action trajectory. Specifically, for single-image inputs, the global action is disallowed,
whereas for multi-image inputs, the inclusion of the global action is mandatory. During inference,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

we set the decoding hyperparameters as follows: temperature = 0.6, top-p = 0.7, and a maximum
of 1024 generated tokens. Additional implementation details are provided in the Appendix A.4.

5 EXPERIMENTS

5.1 RESULTS ON MULTI-IMAGE BENCHMARK

Table 4.1 presents the experimental results on multi-image benchmarks, where our model demon-
strates significant improvements over Qwen2.5VL across all benchmarks, achieving state-of-the-art
performance on MUIR, MVMath, EMMA, VideoMME, and VideoMMMU benchmarks. Remark-
ably, our model surpasses the closed-source GPT-4o on both MUIR and MVMath benchmarks. On
multi-image comprehensive benchmarks, our model achieves 13.7% improvement over Qwen2.5VL
on the MUIR benchmark and 6.9% improvement on MIRB. These multi-image benchmarks encom-
pass diverse multi-image tasks, demonstrating our model’s robust capability in processing multi-
image inputs. On multi-image resoning benchmarks, MVMath is a mathematics dataset with multi-
image inputs, while EMMA encompasses multiple academic disciplines. These benchmarks require
strong reasoning capabilities from the model. Our model achieves 10.2% improvement on MVMath
and 8.9% improvement on EMMA, reflecting enhanced reasoning capabilities attributed to CIN-
EMA, which simulates human-like reasoning processes through structured meta-action trajectory
and cross-image relationship modeling. Notably, our model surpasses specialized video reasoning
models across all three video benchmarks, despite not being specifically designed for video reason-
ing tasks. This demonstrates our model’s superior performance in handling temporal multi-image
data, suggesting that our approach effectively captures both spatial and temporal dependencies in-
herent in sequential visual information.

5.2 RESULTS ON SINGLE-IMAGE BENCHMARK

Table 2 presents the results on single-image benchmarks, where our model demonstrates equally
strong capabilities. Our model achieves superior overall performance compared to existing models
specifically designed for single-image reasoning, despite being trained on only a limited amount
of single-image data. This validates the generalizability of our approach, proving its effective-
ness not only for multi-image scenarios but also for single-image tasks. On comprehensive single-
image benchmarks, our model achieves 3% improvement on MMMU-Pro and 3.8% improvement on
M3COT, surpassing the closed-source models GPT-4V and GPT-4o. On mathematical benchmarks,
our model attains state-of-the-art performance on MM-Math and achieves comparable performance
to existing models specialized in single-image reasoning across other mathematical benchmarks.
In single-image scenarios, the model trained with the two-stage RL approach outperforms standard
DAPO and DiPO, indicating that the two-stage training achieves a better exploration-exploitation
trade-off, thereby promoting improved generalization across diverse tasks.

Model MMMU-Pro M3COT MM-IQ MM-Math Math-Vision MathVista MathVerse Overall
Closed-Source MLLMs

GPT-4V - 62.60 - 23.1 22.76 49.9 39.4 -
Gemini-1.5-Pro 51.47 - 26.86 - - - - -

GPT-4o 56.13 55.7 26.87 31.8 - - - -
Open-Source General MLLMs

LLaVA-OneVision 7B - - - - - 63.2 26.2 -
InternVL2.5 8B 34.3 - - - 22.0 64.4 39.5 -
Qwen2.5VL 7B 38.0 60.1 26.1 36.4 19.5 65.3 40.4 40.8

Reasoning MLLMs
Mulberry - - - 23.7 - 63.1 - -

R1-Onevision 7B 33.9 57.3 25.1 32.9 29.9 64.1 46.4 41.4
VLAA-Thinker 7B 39.5 61.3 26.3 39.0 26.4 68.0 47.8 44.0

VisonR1 7B 30.3 53.2 24.3 40.0 29.9 73.5 52.4 43.4
MixedR1 7B 38.0 59.9 25.9 35.8 30.3 70.6 40.8 43.0

Ours 40.6 63.5 25.6 43.8 26.7 68.7 49.4 45.5
∆ (vs Qwen2.5VL 7B) +2.6 +3.4 +0.5 +7.4 +7.2 +3.4 +9.0 +4.7

Ours [with DiPO] 40.7 63.9 26.3 43.4 26.1 70.0 47.6 45.4
∆ (vs Qwen2.5VL 7B) +2.7 +3.8 +0.2 +7.0 +6.6 +4.7 +7.2 +4.6

Ours [with DiPO reward and annealing] 41.0 62.7 27.3 43.4 26.1 70.1 48.5 45.6
∆ (vs Qwen2.5VL 7B) +3.0 +2.6 +1.2 +7.0 +4.8 +8.1 +8.1 +4.8

Table 2: Performance on single-image benchmark.
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5.3 RESULTS ON PASS@K SETTING

To further validate the advantages of our proposed two-stage RL approach, we conduct Pass@K
experiments on 7 multi-image and 7 single-image benchmarks, comparing models with and without
DiPO and annealing. We evaluate the accuracy across K inference attempts, where K ∈ 2, 4, 8, 16,
and a model is considered correct if at least one inference attempt produces the correct answer.
We report the average accuracy in Figure 2. The results show that incorporating DiPO and anneal-
ing consistently outperforms the baseline across pass@2, pass@4, pass@8, and pass@16, further
demonstrating the effectiveness of our two-stage RL method. After this training paradigm, the model
exhibits more diverse sampling behavior and achieves a higher performance ceiling.

Figure 2: Pass@K performance.

Method MUIR MMIU EMMA

Original 57.9 50.6 20.4
Direct Prompting 33.8 36.9 14.1

SFT RL SFT RL SFT RL

Conventional CoT 59.0 70.0 49.9 51.6 21.2 26.9
Single Trajectory 56.3 65.1 50.9 52.2 24.0 27.9
Ours (Two Traj.) 58.2 71.6 51.9 53.3 24.8 29.3

Table 3: Ablation study on Retrieval-Based Tree Sam-
pling strategy.

5.4 FUTHER ANALYSIS

To conduct an in-depth analysis of our model’s effectiveness, we propose 4 research questions and
conduct detailed experiments:
RQ1: Can diverse trajectories improve model performance?
RQ2: How does the model perform with different numbers of input images?
RQ3: How does the model perform across different tasks?
RQ4: How does two-stage RL training influence entropy control and training dynamics?
About RQ1: Can diverse trajectories improve model performance?
To validate the effectiveness of our proposed Retrieval-Based Tree Sampling strategy, which sam-
ples two different trajectories for each data point, we conduct comparative experiments on three
benchmarks: MUIR, MMMU and EMMA. We compare against three baselines: (1) cold start
training with only one trajectory then RL; (2) cold start training with conventional Chain-of-
Thought (CoT) in the format of: <think>reasoning here</think><answer>answer
here</answer> then RL; and (3) directly prompting MLLMs to perform reasoning using meta
actions without additional training. The experimental results are shown in Table 3. The model
trained with two trajectories achieves superior average performance compared to models trained
with single trajectories and conventional CoT training. Moreover, the best results under RL are all
achieved by the model trained with two trajectories. In comparison to the directly prompted model,
we observe that the untrained model performs poorly in utilizing our defined meta actions, showing
significant performance degradation relative to the original model. This demonstrates the necessity
of constructing datasets for subsequent training.
About RQ2: How does the model perform with different numbers of input images?
To investigate our model’s capability in processing varying numbers of images, we conduct ex-
periments on MUIR and MMIU benchmarks. The MUIR dataset contains samples with 2-9 input
images per instance, whereas MMMU contains samples with 2-32 input images per instance. The
experimental results are presented in Figures 3a and 3b. For different numbers of input images, our
model outperforms the base model in most cases. Even when the number of input images exceeds
17, our model still achieves a significant improvement. This demonstrates the strong capability of
our model in handling multi-image inputs and validates the effectiveness of the proposed cognition-
inspired reasoning framework.
About RQ3: How does the model perform across different tasks?
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(a) Results on MUIR. (b) Results on MMIU. (c) Results on different tasks.

Figure 3: Results about RQ2 and RQ3.

(a) Entropy loss comparison. (b) Reward comparison.
(c) Trajectory diversity compari-
son.

Figure 4: Results about RQ4.

To explore the performance of our model across different tasks, we present the results on MUIR,
which consists of 12 distinct tasks, in Figure 3c. Our model achieves improvements on almost all
tasks. Notably, tasks such as Geographic, Cartoon, and Visual Grounding were not included in
our training set, yet our model still yields significant improvements on these tasks. This further
demonstrates the generalization ability of our proposed reasoning framework in multi-image tasks.
About RQ4: How does two-stage RL training influence entropy and training dynamics?
To explore how two-stage RL training influences entropy control and training dynamics, we present
the results in Figure 4a and 4b. In the first stage, DiPO maintains a moderate entropy level, which
gradually decreases in the second annealing stage. Compared to the baseline, DiPO consistently
preserves higher entropy, effectively preventing entropy collapse. This sustained entropy encourages
exploration, avoids over-concentration, and retains diversity in meta-actions, thereby reducing the
risk of premature convergence. Importantly, despite maintaining higher entropy, DiPO achieves
comparable training accuracy to the baseline, demonstrating that the entropy-preserving mechanism
does not harm training performance. In Figure 4c, each color represents one type of trajectory.
The left one is the visualization without DiPO and annealing, and the right one is with DiPO and
annealing. We show that even after the annealing stage, our model continues to promote richer and
more diverse meta-actions during generation, thereby sustaining exploration and preserving policy
diversity throughout training. The effectiveness of this two-stage training is further supported by the
Pass@K results in Figure 2.

6 CONCLUSION

In this work, we introduce CINEMA, a cognition-inspired meta-action framework that systemati-
cally decomposes multi-image reasoning into structured cognitive steps. By leveraging Retrieval-
Based Tree Sampling for cold-start training and a two-stage reinforcement learning paradigm with
DiPO and annealed DAPO, our approach effectively effectively improve multi-image reasoning
ability. Extensive experiments across multi-image, video, and single-image benchmarks demon-
strate that CINEMA not only achieves state-of-the-art performance, surpassing even large general-
purpose models such as GPT-4o in some key benchmarks, but also maintains higher policy diversity
and adaptability. These results highlight the effectiveness, scalability, and generalizability of our
framework, paving the way toward more robust multimodal reasoning systems.
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A APPENDIX

A.1 AI WRITING ASSISTANCE STATEMENT

Large language models (e.g., ChatGPT) were used exclusively for minor language refinement, such
as improving phrasing and readability. They were not involved in generating scientific content,
conducting experiments, or performing analyses. The authors are entirely responsible for all ideas,
results, and conclusions presented in this paper.

A.2 BACKGROUND: DAPO

DAPO is an improved variant of GRPO, which directly computes the advantage At using the average
reward over multiple sampled outputs, thereby eliminating the need for a separate value function as
in PPO. Specifically, given a prompt q ∼ P (Q), we sample G rollouts {oi}Gi=1 from the current
policy πθold . At each token position t in rollout i, the likelihood ratio is defined in Eq. 2.

ri,t(θ) =
πθ

(
oi,t | q, oi,<t

)
πθold

(
oi,t | q, oi,<t

) (2)

The group-relative advantage Âi,t is then obtained by standardizing each return Ri within the group,
defined in Eq. 3.

Âi,t =
Ri − Mean

(
{Rj}Gj=1

)
Std

(
{Rj}Gj=1

) . (3)

In contrast to GRPO, DAPO introduces several methodological advancements. Specifically, it em-
ploys a Clip-Higher mechanism, wherein ϵhigh is set greater than ϵlow to enhance exploratory be-
havior; integrates Dynamic Sampling to systematically exclude data instances lacking informative
learning signals; incorporates an Overlong Punishment strategy to constrain excessively verbose out-
puts; and adopts a Token-level Loss formulation to mitigate the inherent bias between responses of
varying lengths. The training then proceeds by maximizing the clipped surrogate objective, defined
for DAPO as follows:

JDAPO(θ) = E(q,a)∼D, {oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
,

s.t. 0 <
∣∣{oi | is equivalent(Ri, 1)}

∣∣ < G.

(4)

A.3 BENCHMARK

This section provides a detailed description of the benchmark used for evaluation.

MUIR MUIRBENCH (Wang et al., 2025a) is a comprehensive benchmark designed for robustly
evaluating MLLMs’ multi-image understanding capabilities. It comprises 11,264 images and 2,600
multiple-choice questions (average 4.3 images per instance), covering 12 diverse multi-image tasks
(e.g., action understanding, cartoon storytelling, geographic map reasoning, 3D object multiview
retrieval).

MMIU The Multimodal Multi-image Understanding (MMIU) (Meng et al., 2025b) is a compre-
hensive benchmark tailored for evaluating MLLMs on multi-image comprehension tasks. Structured
around cognitive psychology, it enumerates 7 types of multi-image relationships (refined from se-
mantic, temporal, spatial categories) and covers 52 diverse tasks (e.g., multi-view action recognition,
3D object detection) . In terms of scale, MMIU includes 77,659 images (2–32 per instance, averag-
ing 6.64) and 11,698 meticulously curated multiple-choice questions.

MV-MATH MV-MATH (Wang et al., 2025b) is a specialized benchmark designed to evaluate
MLLMs on mathematical reasoning in multi-visual contexts—addressing the gap in existing bench-
marks that mostly focus on single images. It comprises 2,009 high-quality mathematical problems
derived from real K-12 scenarios.

EMMA EMMA (Hao et al.) is a benchmark designed to evaluate Multimodal LLMs on genuine
cross-modal reasoning. Its 2,788 questions across math, physics, chemistry, and coding require
integrated visual-textual understanding, preventing solutions based on shallow cues or text alone.
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Mantis-Eval Mantis-Eval (Jiang et al.) is a benchmark dataset designed to evaluate a model’s
ability to reason across multiple images. It contains 217 challenging examples.

MIRB MIRB (Zhao et al., 2024) is a dedicated dataset addressing the gap in evaluating vision-
language models (VLMs) on multi-image understanding, as existing benchmarks focus primarily on
single-image inputs. It encompasses 925 samples across four core dimensions: perception, visual
world knowledge, reasoning, and multi-hop reasoning, with all tasks requiring cross-comparison of
multiple images (ranging from 2 to 42, averaging 3.78 per question).

MVBench MVBench (Li et al., 2024c) is a multi-modal video benchmark addressing the lack
of temporal understanding evaluation in MLLMs, covering 20 multi-frame-dependent video tasks
(defined via a static-to-dynamic method). It is built efficiently by auto-converting public video
annotations into multiple-choice QA (with ground-truth for fairness), reveals existing MLLMs’ poor
temporal understanding.

Video-MME Video-MME (Fu et al., 2025) is the first comprehensive benchmark designed to eval-
uate Multi-modal Large Language Models (MLLMs) in video analysis. It fills the gap in assessing
the understanding of sequential visual data by featuring 900 videos (ranging from 11 seconds to 1
hour) across 6 core domains (e.g., Knowledge, Sports Competition) and 30 subfields. Each video is
paired with three expert-annotated multiple-choice QA pairs, resulting in a total of 2,700 questions.
To support multi-modal reasoning, the benchmark also provides subtitles for 744 videos and audio
tracks for all 900 videos.

Video-MMMU Video-MMMU (Hu et al., 2025b) is a benchmark designed to evaluate the knowl-
edge acquisition capabilities of large multimodal models (LMMs) from professional video content.
It comprises 300 expert-level videos (average length 506.2 seconds) spanning six disciplines (e.g.,
Art, Business) and 30 subfields, paired with 900 human-annotated question–answer pairs (three
per video). The benchmark measures performance across three cognitive stages: (1) Perception,
assessing whether models can extract salient knowledge-related details from video content; (2)
Comprehension, evaluating the ability to grasp and reason about the underlying concepts; and (3)
Adaptation, examining whether models can transfer the acquired knowledge to novel or unfamiliar
scenarios.

MMMU-Pro MMMU-Pro (Yue et al., 2024) is an enhanced version of the MMMU benchmark,
designed to more rigorously evaluate multimodal models’ understanding and reasoning. It fil-
ters out text-only solvable questions, augments candidate options, and embeds questions within
images, forcing models to both “see” and “read.” Results show substantially lower performance
(16.8%–26.9%), highlighting its difficulty and realism, and providing a more robust evaluation
framework for future multimodal reasoning research.

M3CoT M3CoT (Chen et al., 2024a) addresses gaps in existing MCoT benchmarks (lack of visual
reliance, single-step reasoning, limited domains) by enabling multi-domain, multi-step, multi-modal
reasoning across 3 domains (science, mathematics, commonsense), 17 topics, and 263 categories. It
has 11,459 total samples (7,973 train, 1,127 dev, 2,359 test) with diverse image types (geographic
graphs, health images, etc.).

MM-MATH MM-MATH(Sun et al., 2024)consists of 5,929 open-ended middle school math prob-
lems paired with visual contexts, and it adopts fine-grained classification covering three dimensions:
difficulty, grade level, and knowledge points. Unlike existing benchmarks that depend solely on bi-
nary answer comparison, MM-MATH incorporates both outcome evaluation and process evaluation.
Specifically, the process evaluation utilizes an LMM-as-a-judge to automatically analyze the steps
of solutions, as well as identify and categorize errors into specific types.

MathVista MathVista (Lu et al., 2023) is proposed as a benchmark integrating challenges from
mathematical and visual tasks. It contains 6,141 examples, sourced from 28 existing multimodal
math datasets and 3 new ones (IQTest, FunctionQA, PaperQA), requiring fine-grained visual under-
standing and compositional reasoning—tasks that state-of-the-art foundation models find challeng-
ing.

MATH-V MATH-V (Wang et al., 2024b) is a curated dataset designed to address the limited ques-
tion diversity and subject breadth of existing visual math reasoning benchmarks (e.g., MathVista).
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It comprises 3,040 high-quality math problems with visual contexts, all sourced from real math
competitions. The dataset spans 16 distinct mathematical disciplines and includes 5 graded diffi-
culty levels, offering comprehensive, diverse challenges for evaluating Large Multimodal Models
(LMMs)’ mathematical reasoning abilities. Additionally, MATH-V reveals a notable performance
gap between current LMMs and humans, while its detailed categorization supports thorough error
analysis of LMMs to inform future research.

A.4 TRAINING DATA CONSTRUCTION

For the construction of the training dataset, we referenced Mantis (Jiang et al.), LLaVA-Interleave
(Li et al., 2024a), Leopard Jia et al., and VideoR1 Feng et al. (2025). Overall, our dataset consists of
multi-image data and single-image data, with 57k samples for cold-start training and 58k samples
for RL. The detailed dataset statistics are presented in Table 1. Regarding the partitioning criteria for
RL data and cold-start data, the key distinction between our cold-start and reinforcement learning
dataset splits lies in the trajectory generation process described in Section 3.2. Cold-start training
data consists of problems where GPT-4o successfully provides correct answers during Step 2, and for
these instances, we proceed to Step 3 (retrieval-based diverse sampling) to obtain two distinct correct
reasoning trajectories per problem that serve as supervised learning targets for cold start training.
In contrast, reinforcement learning data comprises problems where GPT-4o fails to produce correct
answers during Step 2, and these challenging cases are reserved for reinforcement learning.

Type Dataset Count for SFT Count for RL

Multi-Image

ChartVQA(Jia et al.) 2501 -
SlideVQA(Jia et al.) 3249 3000

ALFRED(Shridhar et al., 2020) 8357 2754
Nuscenes(Bansal et al., 2020) 580 4946

RecipeQA(Yagcioglu et al., 2018) 8759 5069
IconQA(Lu et al., 2021b) 5315 3000
nlvr2(Suhr et al., 2018) 5424 1620

Spot-the-Diff(Jhamtani & Berg-Kirkpatrick, 2018) 2248 2589
LRV(Liu et al., 2023) - 2993

RAVEN(Zhang et al., 2019) - 3200

Video

Star(Wu et al., 2024) 5490 2754
NextQA(Xiao et al., 2021) 1193 3000

Clevrer(Yi et al., 2019) 3047 4478
Perception(Patraucean et al., 2023) 2964 2500

Single-Image

Clevr cogen a train1 1506 -
Clevr CoGenT TrainA 70K Complex2 1159 3000

M3COT(Chen et al., 2024a) 1147 -
Share-GRPO(Yao et al., 2025) 1145 3000

GEOQA R1V Train 8K3 800 4816
AI2D(Kembhavi et al., 2016) 630 -
MMK12(Meng et al., 2025a) 442 3537
Geometry3k(Lu et al., 2021a) 317 1406
ScienceQA(Lu et al., 2022) 259 -

PISC(Li et al., 2017) 244 -
Geoqa+(Cao & Xiao, 2022) 172 891

GQA(Hudson & Manning, 2019) 119 -
CLEVR v1.0(Johnson et al., 2017) 118 -

COCO(Lin et al., 2014) 78 -
LRV(Liu et al., 2023) - 3063

Table 4: Statistics of Training Data
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A.5 IMPLEMENTATION

Our SFT experiments are primarily conducted using the LLaMA Factory framework (Zheng et al.,
2024), with the main hyperparameters summarized in Table 5. For the RL stage, we rely on the
EasyR1 framework (Yaowei Zheng, 2025), a multi-model large-scale training system built upon
VERL (Sheng et al., 2024), and the key parameters are reported in Table 6.

A.6 CASE STUDY

Here we present a case study of our model in Figure 5 and 6, covering multi-image benchmarks,
video benchmarks, and single-image benchmarks. The results demonstrate that, across different
types of tasks, our model can dynamically invoke appropriate meta-actions to analyze the problem
and produce correct answers.

(a) Case1.

(b) Case2.

Figure 5: Case study.

1https://huggingface.co/datasets/leonardPKU/clevr_cogen_a_train
2https://huggingface.co/datasets/MMInstruction/Clevr_CoGenT_TrainA_70K_

Complex
3https://huggingface.co/datasets/leonardPKU/GEOQA_R1V_Train_8K
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Parameter Value
Model
model name or path Qwen2.5-VL-7B-Instruct
image max pixels 100352

Method
stage sft
do train true
finetuning type full

Dataset
template qwen2 vl
cutoff len 12000
overwrite cache true
preprocessing num workers 16
dataloader num workers 4

Train
per device train batch size 1
gradient accumulation steps 4
learning rate 1.0e-5
num train epochs 2
lr scheduler type cosine
warmup ratio 0.1

Table 5: Hyperparameters used in SFT

Parameter Value
Data
max prompt length 4096
max response length 4096
rollout batch size 64
max pixels 100352
min pixels 50176

Algorithm
adv estimator grpo
kl coef 0.0
filter groups enable true
filter max num gen batches 20
filter metric acc

Worker.Actor
global batch size 32
max grad norm 1.0
entropy coeff 0.0
kl loss coef 0.0
clip ratio low 0.2
clip ratio high 0.28
optim.lr 1.0e-6
optim.weight decay 1.0e-2

Worker.Rollout
temperature 1.0
top p 1.0
top k -1
n 8

Table 6: Hyperparameters used in RL
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(a) Case1.

(b) Case2.

(c) Case3.

Figure 6: Case study.
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