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ABSTRACT

Federated Learning (FL) is a distributed machine learning paradigm that enables
devices to collaboratively train a shared model. However, the long-tailed distribu-
tion in nature deteriorates the performance of the global model, which is difficult
to address due to data heterogeneity, e.g., local clients may exhibit diverse im-
balanced class distributions. Moreover, existing re-balance strategies generally
utilize label distribution as the class prior, which may conflict with the privacy
requirement of FL. To this end, we propose a Label-Distribution-Agnostic En-
semble (LDAE) learning framework to integrate heterogeneous data distributions
using multiple experts, which targets to optimize a balanced global objective un-
der privacy protection. In particular, we derive a privacy-preserving proxy from
the model updates of clients to guide the grouping and updating of multiple ex-
perts. Knowledge from clients can be aggregated via implicit interactions among
different expert groups. We theoretically and experimentally demonstrate that (1)
there is a global objective gap between global and local re-balance strategies1 and
(2) with protecting data privacy, the proxy can be used as an alternative to label
distribution for existing class prior based re-balance strategies. Extensive exper-
iments on long-tailed decentralized datasets demonstrate the effectiveness of our
method, showing superior performance to state-of-the-art methods.

1 INTRODUCTION

Federated Learning (FL) aims to collaboratively learn from data dominated by a number of remote
clients and produce a highly accurate global model on the server with aggregated knowledge. The
most important issues in practical FL applications mainly involve data heterogeneity and privacy
protection during collaboration of disparate data sources. Such issues are even more significant
in the setting of long-tailed data distribution for some real-world scenarios (Cui et al., 2019; Liu
et al., 2019), such as medical applications (Li et al., 2019; Malekzadeh et al., 2021) and autonomous
vehicles (Samarakoon et al., 2019; Pokhrel & Choi, 2020).

Under the long-tailed global data distribution, it is extremely challenging to learn an effective global
model by leveraging knowledge from local clients. From the local perspective, there can be a large
divergence among the imbalanced label distributions of different clients, resulting in the heteroge-
neous imbalance as shown in Figure 1(a), i.e., local datasets on different clients may have different
imbalance ratios or minority classes. From the global perspective, one should handle the imbalance
issue with privacy preservation (Li et al., 2021a), i.e., the server should not require clients to upload
label distributions for re-balance strategies.

Several techniques have been proposed to tackle the class imbalance problem in FL, such as loss
re-weighting (Wang et al., 2021; Shen et al., 2021), client clustering (Duan et al., 2020) and the
client selection scheme (Yang et al., 2021). Most of them focus on datasets with only a few classes
(e.g., ten or twenty classes), suffering from significant performance drops on large-scale imbalanced
datasets with more classes (Liu et al., 2019; Zhang et al., 2021b). Simultaneously, existing solutions
generally assume that some sensitive information is accessible to the global server, e.g., a balanced

1The local re-balance strategy means that each client utilizes re-balance methods based on the local label
distribution, while the global re-balance strategy applies re-balance methods using global label distribution as
the class-wise prior.
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Figure 1: Illustration of the long-tailed FL problem. (a) Different local datasets exhibit diverse
imbalanced label distributions, which even differ from the global dataset. (b) For existing class prior
based re-balance algorithms, the global re-balance strategy outperforms the local one, motivating us
to explore global prior information for the long-tailed FL problem.

mini-dataset (Duan et al., 2020; Wang et al., 2021) or learnable hyper-parameters of local clients
(Shen et al., 2021), which may pose data privacy concerns for the realistic FL applications. Further-
more, we notice that the effectiveness of existing class prior based strategies (Cao et al., 2019; Ren
et al., 2020; Hong et al., 2021) for the imbalance issue in FL remains under-explored.

In this work, we investigate the effectiveness of existing class prior based re-balance algorithms
from the global and local perspectives under the long-tailed distribution. Experimentally, as indi-
cated by Figure 1(b)), combined with these algorithms, the global re-balance strategy yields higher
recognition accuracy than the local re-balance strategy in the setting of FL. We theoretically demon-
strate that the main reason arises from the gap of objective functions between the global and local
re-balance strategies in FL, where the former can yield the matched objective of the centralized
training. However, obtaining global label distribution requires clients to upload their own label dis-
tributions to the server, which may violate the privacy protection principle in FL (Wang et al., 2021;
McMahan et al., 2017). Thus, it is a critical issue to exploit privacy-preserving priors for global
re-balance strategy to maintain a balanced global objective function.

To overcome the above-mentioned problem, we propose a Label-Distribution-Agnostic Ensemble
learning framework (LDAE) to deal with the data heterogeneity and privacy in the long-tailed FL set-
ting. Specifically, we present the proxy information as the class prior of global re-balance strategies
rather than label distribution. The proxy information is derived from the model updates uploaded by
local clients, which is agnostic about the local label distributions for privacy protection. To alleviate
the heterogeneous issue, we propose a multi-expert model architecture to aggregate the knowledge
from different client groups, where clients in the same group have similar local data distribution and
train a corresponding expert. The heterogeneity could be mitigated through information interaction
among different experts trained on different local data distributions.

In conclusion, the key contributions of this work are:

(1) We experimentally and theoretically explore the effectiveness of existing class prior based re-
balance algorithms in FL. It is demonstrated that there is a mismatch of objectives between local
and global re-balance strategies, which indicates that the global re-balance performs better than the
local one on the imbalanced decentralized data.

(2) To address the imbalance issue with privacy protection, we propose a novel FL framework called
LDAE to utilize uploaded model updates to cluster clients into different groups, where a multi-
expert architecture is used to aggregate the knowledge from different groups with heterogeneous
data distribution. Our method is agnostic to the label distribution of the clients.

(3) The experimental results on multiple benchmark datasets demonstrate that LDAE can signifi-
cantly outperform previous state-of-the-art (SOTA) methods under heterogeneous data distribution,
simultaneously protecting the data privacy of the clients.
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2 RELATED WORK

Federated Learning. FL (McMahan et al., 2017) is a learning framework to protect the data privacy
of participants. There is a central server and multiple clients in FL. A global model is learned on
distributed data from different clients. One of the most important challenges in FL is data hetero-
geneity. Many previous studies concentrated on this problem (Smith et al., 2017; Zhao et al., 2018;
Sattler et al., 2020; Karimireddy et al., 2020; Li et al., 2020b; T Dinh et al., 2020). However, most
of them consider that the global dataset (the dataset where all local data is centralized together) is
balanced. Recently, some works (Duan et al., 2020; Yang et al., 2021; Wang et al., 2021; Shen et al.,
2021) focused on the impact of class imbalance in FL and propose different strategies. However,
these methods all require extra information other than model parameters on the server and may not
be satisfied with the data privacy concern. Moreover, they only conduct experiments on datasets
with a few classes, and their algorithms may not be efficient enough to deal with the large-scale
long-tailed imbalance problem. CReFF (Shang et al., 2022) considers long-tailed data in FL in-
spired by (Kang et al., 2019). However, while claiming it has no privacy concerns, their work needs
feature gradients of clients’ data, which can be used to recover original data with model updates.

Long-tailed Learning. In real-world scenarios, data often has a long-tailed label distribution, where
the majority classes have massive samples while the minority classes only have a few samples
(Zhang et al., 2021b). There are many re-balance strategies proposed from different perspectives
in long-tailed learning. Class re-sampling (Chawla et al., 2002; He & Garcia, 2009; Kang et al.,
2019) is a common type, such as over-sampling the minority classes (Shen et al., 2016; Kang et al.,
2019) or under-sampling (He & Garcia, 2009) the majority classes. Another scheme to learn a bal-
anced model is loss re-weighting (Cost-sensitive Learning) (Sun et al., 2007; Cui et al., 2019; Lin
et al., 2014). Generally, these methods tend to give a large training loss when the sample belongs to
the minority class. Recently, many works in long-tailed learning have focused on learning a good
representation extractor to improve the generalization ability of the model. PaCo (Cui et al., 2021)
introduces the contrastive learning method to the long-tailed dataset. Ensemble learning based meth-
ods are also becoming more important in long-tailed learning (Zhou et al., 2020; Xiang et al., 2020;
Wang et al., 2020; Zhang et al., 2021a; Cai et al., 2021). Until now, many re-balance strategies have
worked well to solve the long-tail imbalance problem on centralized datasets. However, it remains
a question whether they are useful in FL. In this work, we answer this question through theoreti-
cal analysis and experiments results. Then, we propose a novel algorithm to help these re-balance
strategies maintain their effectiveness in FL in the following section.

3 METHOD

In this section, we first highlight the challenges when data heterogeneity encounters long-tailed
distribution in FL. Then we systematically explore the local and global re-balance strategies as the
motivation. Finally, we describe the proposed LDAE framework in detail.

Notations. We discuss a typical FL setting with K clients indexed by [K] and a central server.
Each client k has a local training dataset Dk with a total of nk samples. We call the dataset D =⋃

k∈[K] Dk as the global dataset. Considering a C-class classification task on the global dataset D,
each class is indexed by [C] and (x, y) ∈ X × [C] denotes a sample in D, where x is an image in
the input space X and y is its corresponding label. Let θ ∈ Θ be the model parameters and fθ(x, y)
denote the loss of sample pair (x, y). We set nj as the number of training sample for class j, and
n =

∑C
j=1 nj is the total number of training samples. Suppose D follows a long-tailed distribution,

i.e., the sample size is exponentially distributed w.r.t. class index. Without loss of generality, we
assume that the classes are sorted by cardinality in decreasing order, i.e., if i < j, then ni ≥ nj . The
global imbalance ratio is defined as nmax/nmin.

Typically, FL aims at learning a single shared model and optimizing the global objective, which is
the aggregation of the local objective:

min
θ∈Rd

K∑
k=1

nk

n
Fk(θ), where Fk(θ) =

1

nk

∑
(x,y)∈Dk

fθ(x, y). (1)
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However, the above formulation suffers from long-tailed data distribution and performs poorly on
the minority classes. In a decentralized system with global imbalanced data distribution, the training
data on a given client is typically based on the particular data source. Hence, local datasets may
exhibit varying imbalanced label distributions and even differ from the global distribution. We refer
to such circumstances as the following heterogeneous imbalance.

Definition 1 (Heterogeneous Imbalance). Given a global long-tailed training dataset for FL, we
define heterogeneous imbalance by the following items: (1) Various imbalanced ratios or majority
(minority) classes among local datasets. (2) Different imbalanced ratios or majority (minority)
classes between local and global datasets.

The definition reflects that the class imbalance issue is aggravated by data heterogeneity due to var-
ious local imbalanced distributions w.r.t the global one. As a theoretical motivation, we consider the
following configuration of heterogeneous imbalance to investigate the effectiveness of prior based
re-balance techniques for the class imbalance issue in FL. The theoretical results inspire us to op-
timize a balanced objective from a global perspective instead of a local one. We also verify the
theoretical results via extensive experiments.

3.1 THEORETICAL MOTIVATION

We consider a binary classification problem where the ground truth is either positive (y+) or negative
(y−). Under the imbalanced setting, we assume that two clients C0 and C1 have heterogeneously
imbalanced data distributions, i.e., client C0 accesses n+

0 positives and n−
0 negatives, while client

C1 accesses n+
1 positives and n−

1 negatives. Without loss of generality, we consider a simple loss
re-weighting strategy that takes the inverse of the proportion of each class as the weight of the loss
for this class. To be specific, we set the weight of loss to be n0/n

+
0 for the positive class and n0/n

−
0

for the negative class on client C0. Similarly, client C1 uses n1/n
+
1 for the positive class and n1/n

−
1

for the negative class. For the global re-balance strategy, inverse of the global label distribution is
taken as the weights of loss, (i.e., (n0+n1)/(n

+
0 +n+

1 ) for positive class and (n0+n1)/(n
−
0 +n−

1 )
for negative class). We denote the global objective of the global re-balance strategy and the local
re-balance strategy as Gg(θ) and Gl(θ), respectively. Then we can measure the difference of global
object functions between local and global re-balance strategies.

Lemma 1 Using the global re-balance strategy, the global objective yields the same form as the
objective on the centralized dataset with re-balance methods:

Gg(θ) =
1

n+
0 + n+

1

∑
(x,y+)∈D

fθ(x, y
+) +

1

n−
0 + n−

1

∑
(x,y−)∈D

fθ(x, y
−). (2)

Theorem 1 Under the above setting, let E be the biased estimation of global label distribution. Then
there exists a group of re-balance weights e derived from E , whose global objective Ge satisfies:

Gg(θ) ≤ Ge(θ) < Gl(θ), (3)
where the objective gap ∆ = Gl(θ)−Gg(θ) can be written as:

∆ =
n1(n

+
0 )

2 + n0(n
+
1 )

2

n+
0 n

+
1 (n0 + n1)(n

+
0 + n+

1 )

∑
(x,y+)∈D

fθ(x, y
+) +

n1(n
−
0 )

2 + n0(n
−
1 )

2

n−
0 n

−
1 (n0 + n1)(n

−
0 + n−

1 )

∑
(x,y−)∈D

fθ(x, y
−).

(4)

Interpretation. The above analysis illustrates the following points: (1) The global re-balance strat-
egy for the federated long-tailed problem optimizes the same objective function as the re-balance
strategy on the centralized dataset. (2) The local re-balance strategy with a larger objective is less
effective than the global one with a smaller objective. (3) There exists a re-balance strategy derived
from the global perspective, which yields a smaller objective than the local re-balance strategy.

3.2 GLOBAL PROXY INFORMATION

Our theoretical findings show that the global re-balance strategy works better than the local re-
balance strategy in FL. However, it may violate the privacy protection requirements in FL. To over-
come this drawback, we propose a class prior called the Global Proxy Information (GPI) based on
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the model updates of the clients, inspired by an empirical observation: in the FC layer, the neuron
weight of majority classes is updated more frequently than minority classes on the imbalance data.
We further provide a theoretical guarantee that the label distribution cannot be observed through
the numerical LPI value from the global perspective. Thus, GPI can be combined with existing re-
balance strategies under privacy protection, which requires no additional information from clients.

Definition 2 (Local Proxy Information). We denote the gradient of wij after one local optimization
loop on Dk as ∇DkWij

−1 and the dimension of the input of the FC layer as H . Then the local
proxy information of class i on Dk is defined as the gradient magnitude which is associated with
i-th neuron of the FC layer:

Ωk
i =

H∑
j=1

−∇DkWij
−1, where ∇DkWij

−1 =
∂Fk(θ)

∂wij
. (5)

Intuitively, local proxy information (LPI) accumulates the updates of the corresponding neurons of
the last FC layer over the local dataset. Note that LPI is calculated without requirements for label
distributions of the clients and the central server collects no additional information compared to the
vanilla FL algorithm. We consider that the local training uses cross-entropy loss. As a motivation,
we claim the theoretical evidence of the privacy protection of LPI in the following.

Theorem 2 For class i in a local dataset Dk, LPI implicitly connects with its label frequency (sam-
ple number in this class) and the probability that the sample is predicted to be the current class:

Ωk
i ≈ 1

nk
(nk

i −Zi)
∑

(x,y)∈Dk

H∑
j=1

sj , where Zi =
∑

(x,y)∈Dk

zi, (6)

where sj is j-th input of the FC layer, yi is i-th term of the one-hot ground truth, and zi is the
probability of being predicted as class i. Theorem 2 indicates that the numerical value of LPI is
implicitly relevant to the residual between the label frequency and probability from the local model,
hence the local label distributions cannot be derived from the LPI values uploaded by the clients.

Definition 3 (Global Proxy Information). The global proxy information of class i is defined as the
weighted summation of the local proxy information:

Ωi :=

K∑
k=1

nk

n
I(Ωk

i > 0)Ωk
i , (7)

where I(·) is the indicator function and the value is 1 if · is true, 0 otherwise.

I(·) is necessary since negative LPI may result in unstable behavior of GPI. In fact, GPI is the gradi-
ent accumulation over the global dataset by collecting the LPI of the clients, which only involves the
gradient information over local datasets. Importantly, we empirically find that GPI for re-balance
strategies can alleviate the class imbalance issue while maintaining the recognition performance for
majority classes, as shown in the experiment section 4.

During standard training in the practical FL setting, mini-batch SGD is commonly used for lo-
cal training, where GPI can be approximately measured by accumulating gradients over all local
datasets after several epochs of gradient descent steps. Besides, in each communication round, it
is difficult to obtain an accurate GPI, since only a fraction of clients are selected for local updates.
Thus, the global server calculates GPI based on the uploads of all clients only in the beginning
communication round, then keeps a balanced training for subsequent rounds.

3.3 LABEL-DISTRIBUTION-AGNOSTIC ENSEMBLE LEARNING

Guided by our proxy information analysis, we propose a group-based ensemble learning framework
to further handle the heterogeneous imbalance issue for FL. Our method separates clients into dif-
ferent groups based on their LPI. Models trained on individual groups are integrated together with a
multi-expert structure, where each expert focuses on a group of clients with similar LPI. The overall
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Figure 2: An overview of our group-based ensemble learning framework. (a) The training pipeline
with four steps in a communication round: 1) For each expert, αS clients are randomly selected from
the corresponding group and (1 − α)S clients are selected from the other clients. 2) The selected
clients download the global model. 3) Each selected client updates the backbone and associated
experts. 4) The server receives the updates and aggregates them into a new global model. (b)
Cases with different α values for client selection. When α = 0, clients in a group only train the
corresponding expert. When 0 < α ≤ 1, some clients may be chosen to update multiple experts.

framework and the model structure are shown in Figure 2(a). The global and local models have
the same structure, i.e., multiple experts with a shared backbone, and each expert has individual
learnable blocks.

Client Grouping. Based on the section 3.2, the similarity score between LPI and GPI for each client
can be calculated via the cosine distance, allowing us to monotonically rank the local clients. Then
the ranked clients with close similarity scores are divided into the same group. Let hyper-parameter
M be the number of groups, then M experts are allocated for these groups respectively, i.e., group
Pi corresponds to expert Ei.

Client Selection. In one communication round, two parts of the clients are selected to update the
same expert: (1) αS clients are randomly selected in each group (Pi), and (2) (1 − α)S clients are
randomly selected from all clients other than clients in (1). 0 ≤ α ≤ 1 is a hyper-parameter to
control the client selection. Empirically, the difference between experts can be controlled by the
value of α. As shown in Figure 2(b), if α = 1, there is no interaction among the clients from
different groups, where each group only updates the corresponding expert. If α = 0, we adopt M
times booststrap sampling from all clients, where the clients selected at i-th time are used to update
Ei individually. As such, the experts are actually updated on the same global dataset and tend to be
similar after sufficient rounds.

Expert Ensembling. After the client selection step, the selected clients download the current global
model parameters and perform local training on their own datasets. In particular, for each client, the
classification loss is calculated based on the average logits of all experts to interact the knowledge
of different experts. Here, we adopt the balanced softmax loss (BSM) (Ren et al., 2020) for local
training due to the effectiveness of logit adjusted loss for dealing with the class imbalance issue
(Menon et al., 2020). We denote the class prior information, e.g., global label distribution or GPI, as
π, then the BSM is:

LBSM =
1

nk

∑
(x,y)∈Dk

−y log σ

(
1

M

M∑
i=1

vi (x, θ) + log π

)
, (8)

where σ(·) is the softmax function and vi(·) is the output logits of expert Ei. Notice that in the local
training of one expert, only the parameters of the backbone and corresponding expert are updated,
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while other experts are kept frozen. After receiving all the local updates, the server aggregates them
into the global model with FedAvg McMahan et al. (2017).

Table 1: Top-1 accuracy on CIFAR-10-LT, CIFAR-100-LT, and ImageNet-LT. The GPI is combined
with various class prior based re-balance algorithms to address the imbalance problem in FL.

Methods CIFAR-10-LT CIFAR-100-LT ImageNet-LT100 50 100 50
FedAvg 53.16 61.67 34.48 36.84 33.80
FedProx 61.43 71.78 34.16 38.77 32.98

Ratio Loss 53.31 62.26 33.06 34.94 33.15
CLIMB 60.28 72.29 34.66 40.22 35.29

Focal Loss 53.88 59.00 33.88 38.03 32.85
CRT-IB 53.80 63.52 32.48 37.61 31.77
CRT-CB 63.31 69.87 34.06 39.60 35.52

LDAM + GPI 66.73 72.58 35.36 39.17 34.88
BSM + GPI 67.44 74.36 37.19 41.91 37.64

LADE + GPI 64.89 71.79 38.61 41.08 38.52
RIDE + GPI 58.64 68.63 35.88 39.39 40.30
PaCo + GPI 68.84 75.35 37.76 43.24 39.04

LDAE + GPI (ours) 71.07 76.85 40.42 45.16 45.75

4 EXPERIMENT

Datasets and Setup. We conduct experiments on three long-tailed classification datasets: CIFAR-
10-LT, CIFAR-100-LT (Cao et al., 2019) and ImageNet-LT (Liu et al., 2019). Following (Cao et al.,
2019), we construct CIFAR-10-LT and CIFAR-100-LT by an exponential decay with the controllable
IR (imbalance ratio). We show the experimental results with IR = 50 and IR = 100. We adopt Resnet-
18 (He et al., 2016) for CIFAR-10-LT , Resnet-32 for CIFAR-100-LT and ResneXt for ImageNet-LT.

To simulate the data heterogeneity in FL, we divide the samples of each class in the global dataset
into different clients according to the Dirichlet distribution (He et al., 2020; Yurochkin et al., 2019).
Specifically, we first generate pc ∼ DirK(αdir) for class c and then allocating the pc,k proportion
of the samples in class c to client k. The degree of data heterogeneity is controlled by αdir, the
parameter of the Dirichlet distribution. A small αdir indicates high data heterogeneity. We set αdir

as 0.5 for CIFAR-10-LT, 0.1 for CIFAR-100-LT and 0.05 for ImageNet-LT. In each communication
round, 20 clients are selected, and each client trains 2 local epochs. More implementation details
are reported in Appendix A.

Evaluation Protocol. We evaluate the global model on the balanced dataset using top-1 accuracy.
Following typical long-tail recognition tasks Liu et al. (2019), we categorize the classes into three
groups: Many-shot class with > 100 samples, Medium-shot class with ≥ 20 and ≤ 100 samples
and Few-shot class with < 20 samples.

4.1 RESULTS

Comparison with Previous Methods. To evaluate the effectiveness of our group-based multi-
expert model, we conduct experiments comparing it with previous methods including the baseline
algorithm FedAvg (McMahan et al., 2017), the method for dealing with data heterogeneity FedProx
(Li et al., 2020a), methods for dealing with class imbalance in FL Ratio Loss(Wang et al., 2021)
and CLIMB(Shen et al., 2021), and centralized long-tailed learning methods Focal Loss (Lin et al.,
2017), CRT-IB, CRT-CB (Kang et al., 2019), LDAM (Cao et al., 2019), BSM (Ren et al., 2020),
LADE (Hong et al., 2021), RIDE (Wang et al., 2020), and PaCo (Cui et al., 2021). The test ac-
curacy on three typical long-tailed datasets is summarized in Table 1. Our approach significantly
outperforms previous works on each dataset. Notice that the re-balancing methods requiring class
prior information utilize our GPI. They have better results than other previous methods, especially
on CIFAR-100-LT and ImageNet-LT, which have a large number of classes. The subsequent exper-
iments show that the GPI makes a considerable contribution to their good performance.
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Table 2: Comparison the performance of different re-balance strategies with local re-balance, global
re-balance and GPI on CIFAR-10-LT, CIFAR-100-LT and ImageNet-LT.

Methods CIFAR-10-LT CIFAR-100-LT ImageNet-LT100 50 100 50

L
oc

al
R

e-
ba

la
nc

e FedAvg 53.16 61.67 34.48 36.84 33.80
LDAM 63.55 69.50 32.54 37.01 30.70
BSM 66.64 74.29 35.55 39.50 34.39

LADE 66.05 74.54 33.28 39.89 36.32
RIDE 59.95 69.05 34.94 39.09 40.00
PaCo 65.11 71.35 35.92 40.03 38.26

G
lo

ba
l

R
e-

ba
la

nc
e LDAM 67.69 72.41 36.61 40.01 38.66

BSM 65.81 74.15 38.56 42.45 39.63
LADE 66.03 74.06 39.82 42.95 39.37
RIDE 60.37 68.39 34.59 39.35 40.81
PaCo 69.60 72.36 37.63 41.26 39.74
Ours 69.76 75.12 41.77 45.32 45.57

G
PI

LDAM 66.73 72.58 35.36 39.17 34.88
BSM 67.44 74.36 37.19 41.91 37.64

LADE 66.89 74.79 38.61 41.08 38.52
RIDE 58.64 68.63 35.88 39.39 40.30
PaCo 68.84 75.35 37.76 43.24 39.04
Ours 71.07 76.85 40.42 45.16 45.75

Effectiveness of GPI. To further verify the effectiveness of GPI, we use local label distribution (lo-
cal re-balance), global label distribution (global re-balance), and GPI as the class prior information
for several typical centralized long-tailed methods. As shown in Table 2, GPI exhibits better perfor-
mance than local re-balance and comparable results to global re-balance, indicating that our method
can handle the imbalance issue for FL without data privacy leakage.

Table 3: Top-1 accuracy of re-balance strategies with local re-balance, global re-balance and GPI on
Many/Medium/Few classes in CIFAR-100-LT with IR = 100.

Methods Local Re-balance Global Re-balance GPI
Many Medium Few Many Medium Few Many Medium Few

FedAvg 62.03 32.26 4.93 - - - - - -
LDAM 56.23 29.91 7.97 52.03 37.63 17.43 56.14 33.80 12.93
BSM 57.63 36.34 8.87 51.54 41.49 20.00 52.80 39.26 19.07

LADE 54.00 33.74 8.57 52.57 43.34 20.83 55.34 40.46 12.20
RIDE 64.97 31.11 4.37 63.29 32.34 3.73 63.66 34.91 4.60
PaCo 35.60 46.34 24.13 42.06 41.23 28.27 45.94 42.23 22.67
Ours - - - 50.29 44.71 28.07 49.97 44.14 24.93

Furthermore, we report the accuracy of many/medium/few-shot classes on CIFAR-100-LT with IR =
100 in Table 3. Compared with local re-balance using local label distribution, previous cost-sensitive
re-balance methods (i.e., LDAM, Balanced SM and LADE) with GPI can achieve significant im-
provements for medium-shot and few-shot classes. Similarly, benefiting from GPI, RIDE and PaCo
also further increases the recognition accuracy for medium-shot and many-shot classes. The slight
performance improvement of few-shot classes may be attributed to the fact that RIDE and PaCo fo-
cus on representation quality over all classes rather than merely minority classes. On the other hand,
compared with global re-balance, GPI shows competitive results for all classes, although it exhibits
relatively lower accuracy for the medium-shot and few-shot classes. Notice that GPI performs better
on many-shot classes sometimes due to the subtraction of the probability term, as we mentioned in
section 3.2. Compared with the previous SOTA method RIDE, our method obtains higher accuracy
since heterogeneous imbalance is alleviated via client grouping.

GPI Visualization. As shown in Figure 3, we visualize the class-wise GPI curves on CIFAR-100-
LT with IR = 10 and IR = 100. Compared with the groundtruth label distribution on the same IR,

8



Under review as a conference paper at ICLR 2023

GPI curves exhibit a similar tendency, which can be used for class prior based re-balance strategies.
Besides, GPI can maintain the performance of majority classes by using smaller GPI values for
re-balancing. It should be noticed that GPI is merely obtained from the model updates implicitly
combining label frequency and prediction probability as mentioned in Theorem 2.
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Figure 3: Comparison between the global
label distribution and GPI on CIFAR-100-
LT with IR = 10 and IR = 100.

Ablation Studies on the Ensemble Framework. Ta-
ble 4 shows the component analysis of the proposed
ensemble framework. We compare three different
grouping methods: grouping clients randomly (Ran-
dom Grouping), grouping clients by the cosine dis-
tances between local and global label distributions (LD
Grouping), and grouping clients by the cosine dis-
tances between LPI and GPI (PI Grouping). The re-
sults show that Random Grouping contributes little to
the performance, while LD Grouping and PI Grouping
bring about 3% improvement in accuracy. Our group-
ing method can further improve the final performance
of other re-balance strategies besides BSM (Ren et al.,
2020), such as LDAM loss (Cao et al., 2019). More-
over, we evaluate the influence of different values of α,
the hyper-parameter to control the client selection scope
of each expert. As shown in Figure 4, the performance
can be enhanced via an appropriate value of α.

Methods Accuracy
LDAM 35.36
BSM 37.19

PI Grouping + LDAM 38.25
Random Grouping + BSM 37.38

LD Grouping + BSM 40.51
PI Grouping + BSM (Ours) 40.42

Table 4: Ablation studies for the grouping method
and training loss of the ensemble framework on
CIFAR-100-LT with IR = 100.
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Figure 4: Ablation studies on different α for
client selection in the ensemble framework
on CIFAR-100-LT with IR = 100.

Data Heterogeneity. Existing re-balance strategies un-
der the FL setting generally aim to train a balanced local model with compromising performance due
to the heterogeneous property of FL. As shown in Table 1, Table 2 and Table 3, GPI can significantly
improve the performance by alleviating the data heterogeneity issue. Moreover, our multi-expert
framework could ensemble knowledge learned from different local data sources to further address
the heterogeneous imbalance.

Privacy Protection. To train a balanced global model, class prior based re-balance methods mainly
rely on global label distribution without privacy protection, while the proposed GPI is merely related
to the model updates without extra label information. Thus, our method can maintain the data
privacy of clients and simultaneously achieve better performance on all the benchmarks.

5 CONCLUSIONS

In this work, we focus on the long-tailed distribution problem in FL. Existing re-balance methods for
FL suffer from the data heterogeneity issue and assume label distribution is available without consid-
ering privacy requirements. To this end, we propose a label-distribution-agnostic ensemble learning
(LDAE) framework to re-balance the global objective with preserving privacy. In particular, we de-
sign the proxy information to guide the balanced training of multiple experts, which only involves
model updates for preserving privacy. Extensive experimental results indicate the effectiveness of
our method compared with previous SOTA methods.
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A IMPLEMENTATION DETAILS

The number of communication rounds is 2000 for most methods on CIFAR-10/100-LT and 1000
on ImageNet-LT. On the CIFAR-100-LT, the learning rate is initialized as 0.5 and decayed by 0.05
at round 1600 for all methods except PaCo (Cui et al., 2021), where the initial learning rate is 0.3.
On the CIFAR-10-LT (Cao et al., 2019) with imbalance ratio 50 and 100, the initial learning rate
is 0.1 for FedAvg (McMahan et al., 2017), Ratio Loss (Wang et al., 2021), CLIMB (Shen et al.,
2021), Focal Loss (Lin et al., 2017), CRT (Kang et al., 2019), LDAM (Cao et al., 2019), BSM (Ren
et al., 2020), LADE (Hong et al., 2021), and LDAE. It is 0.2 for RIDE (Wang et al., 2020) and
0.3 for PaCo. The learning rate is decayed by 0.1 for all methods. With RIDE, PaCo, and LDAE,
the model is trained for 2500 communication rounds on CIFAR-10-LT due to their complex model
structures. For training on ImageNet-LT (Liu et al., 2019), we set the training round as 1000 and
learning rate as 0.1, which is decayed at 800th round by 0.1. For CRT, we retrain the classifier on
the last 200 rounds. For LADE, we set the weight of LADER as 0.01 for CIFAR-10-LT and 0.1 for
CIFAR-100-LT and ImageNet-LT. We set α = 0.5 in LDAE on all datasets.

B PROOFS

B.1 PROOF TO THEOREM 1

We denote the global objective of FL model with global re-balance and local re-balance as Gg(θ)
and Gl(θ), respectively, then we have:

Gg(θ) =
∑
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Gl(θ) =
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where c is the class index. Then, the objective gap is:

∆ = Gl(θ)−Gg(θ)

=
∑
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For sample number nc
k > 0, we have ∆ > 0, indicating that the objective function value of local

re-balance is always larger than global re-balance on the same dataset. Thus, let E be the biased
estimation of global label distribution, there exists a group of re-balance weights e derived from E ,
where e is close to the global re-balance strategy. Then re-balance weights e based global objective
Ge satisfies:

Gg(θ) ≤ Ge(θ) < Gl(θ). (12)

B.2 PROOF TO THEOREM 2

Follow the definition 2, we have:

Ωk
i = −∂Fk(θ)

∂wij
. (13)

Then assuming cross-entropy loss are used, we can derive the following equation:

Ωk
i =

1

nk

∑
(x,y)∈Dk

(yi − zi)

H∑
j=1

sj , (14)
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where sj is j-th input of the FC layer, yi is i-th term of the one-hot ground truth, and zi is the
probability of being predicted as class i. Since

∑H
j=1 sj is usually independent of the class, we can

write the above equation as:

Ωk
i ≈ 1

nk
(nk

i −Zi)
∑

(x,y)∈Dk

H∑
j=1

sj , where Zi =
∑

(x,y)∈Dk

zi. (15)

C COMPARISON OF FEDERATED LEARNING METHODS

Table 5: Top-1 accuracy of various FL algorithms for dealing with data heterogeneity on CIFAR-
100-LT.

IR FedAvg FedProx SCAFFOLD
w/o BSM w/ BSM w/o BSM w/ BSM w/o BSM w/ BSM

50 36.84 41.91 38.77 42.33 40.44 42.27
100 34.48 37.19 34.16 37.78 34.70 38.55

IR FedAlign Ditto FedRep
w/o BSM w/ BSM w/o BSM w/ BSM w/o BSM w/ BSM

50 39.80 43.66 37.03 39.29 37.69 39.17
100 35.36 39.21 33.45 35.18 32.23 35.04

We further experimented with FedProx (Li et al., 2020a), SCAFFOLD (Karimireddy et al., 2020),
FedAlign (Mendieta et al., 2022), Ditto (Li et al., 2021b) and FedRep (Collins et al., 2021) as
baselines on the CIFAR100-LT. They are recent FL algorithms for dealing with data heterogeneities.
When combined with BSM loss (Ren et al., 2020), for non-personalized FL methods (i.e., FedProx
(Li et al., 2020a), SCAFFOLD (Karimireddy et al., 2020), FedAlign (Mendieta et al., 2022)), we
use GPI as the class prior, and for personalized FL methods (i.e., Ditto (Li et al., 2021b), FedRep
(Collins et al., 2021)), local re-balance is applied.

As shown in Table 5, the non-personalized FL methods are effective in FL with relatively mild class
imbalance (imbalance ratio = 50), while are less effective when class imbalance is severe (imbalance
ratio = 100). More importantly, when combined with our re-balance strategy, these methods can
obtain a significant performance improvement for various imbalance ratios.

However, we test the personalized FL methods Ditto [4] and FedRep [5] on the federated long-
tailed problem, and as the table above shows, they do not perform well on the federated long-tailed
problem, even with more training rounds. We believe the main reason is the distribution shift.
Under the general setting of personalized FL without the long-tailed problem, the distribution of
test data and training data are identical. However, considering the long-tailed problem, the training
data is imbalanced and the test data is balanced for each client, resulting in a distribution shift.
The personalized model focuses more on fitting the local training data distribution and therefore
generalizes poorly to different data distributions. Compared with the personalized FL methods, non-
personalized FL methods with a well-trained global model have a stronger generalization ability, so
they can achieve better performance on the federated long-tailed problem.

Table 6: Top-1 accuracy on CIFAR-100-LT and the model size of LDAE with various expert num-
bers.

Expert Number M CIFAR-100-LT IR = 100 CIFAR-100-LT IR = 50 Parameters(Million)
1 37.19 41.91 0.46
2 38.71 44.92 0.52
3 40.42 45.16 0.77
4 41.68 46.88 1.02
5 41.85 46.59 1.27
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D ABLATION STUDY FOR EXPERT NUMBER OF LDAE

We show the effect of expert number M of our multi-expert method LDAE. A larger M can lead
to more parameters. The results indicate that as M increases, the recognition accuracy improves.
Considering the trade-off between performance and communication cost, 3 and 4 are both good
values for M . When M is larger than 4, the improvement in accuracy is slight.

E VISUALIZATION OF DATA DISTRIBUTION
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Figure 5: The data distributions of local datasets with different settings.

To simulate the data heterogeneity, for each class in the global dataset, we partition the samples into
different clients according to the Dirichlet distribution. In this section, we partition the CIFAR10-LT
into 10 clients with different values of αdir, i.e., the hyper-parameter of the Dirichlet distribution.
In Figure 5, (d, e, f) show the data distributions of local clients with different values of αdir, and (a,
b, c) show the corresponding probability density of the two-dimensional Dirichlet distribution. The
point size indicates the sample number. Small αdir results in higher heterogeneity. The global label
distribution of the CIFAR10-LT with IR = 100 is shown in (g).
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Figure 6: An example of LPI and GPI calculation process.

F EXAMPLE OF LPI AND GPI CALCULATION PROCESS
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Figure 6 intuitively illustrates how LPI and GPI are calculated. In the first round, the server receives
the model updates uploaded by each client. The LPI of class 1 for client k is calculated by adding
the updated values of the weights connected to neuron x1 according to the reference local proxy.
The GPI of class 1 is then the weighted sum of all clients’ LPI based on the Eq.3. The GPI of other
classes is calculated in the same way.

G VISUALIZATIONS OF Z VALUE, LPI, GPI, AND LABEL DISTRIBUTION

(a) Z value for Client-1 (b) Z value for Client-2 (c) Z value for Client-3

(d) LPI for Client-1 (e) LPI for Client-2 (f) LPI for Client-3

(g) GPI

Figure 7: Visualizations of Z (Eq.6), LPI with local label distribution, GPI with global label distri-
bution on CIFAR-10-LT with α = 0.5. Sub-figure (a) and (d) are for client 1, (b) and (e) are for
client 2, (c) and (f) are for client 3.

To verify Theorem 2, we conduct an empirical study on CIFAR-10-LT (α = 0.5 and IR=100),
which include Z (Eq.6) value curve, LPI with local label distribution, and GPI with global label
distribution. These values are obtained in the first communication round. The experimental setup is
described in Appendix A. We randomly select 3 clients from 100 clients for visualizations.

Z Value (Eq.6). As shown in Sub-figure (a), (b), and (c) of Figure 7, we visualize the class-wise
Zi values for the models of different clients at the initial communication round. it is observed
that the model in the first communication round may make a biased prediction instead of uniform
predictions. Therefore, the Zi obtained at this stage may also be biased.

LPI with Local Label Distribution. As shown in Sub-figure (d), (e), and (f) of Figure 7, we
visualize the class-wise LPI estimated at the initial communication round and the groundtruth local
label distribution for different clients. The LPI with a negative value is set to 0 since it will not be
used in the calculation of GPI. As these Sub-figures show, even under the biased Zi values, the LPI
curve for each client can exhibit a similar tendency to the corresponding local label distribution.
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GPI with Global Label Distribution. As shown in Sub-figure (g) of Figure 7, we visualize the
class-wise GPI estimated at the initial communication round. GPI curves have a similar tendency
when compared with the groundtruth global label distribution (black curve). Thus, although Zi

may be biased at the beginning communication round, the estimated GPI can still reflect the trend
of global label distribution. Therefore, GPI can be used as the class prior for re-balance strategies
under the biased prediction at the beginning communication round.
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