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Abstract

Reasoning models leverage inference-time compute to significantly enhance the
performance of language models on difficult logical tasks, and have become a dom-
inating paradigm in frontier LLMs. Despite their wide adoption, the mechanisms
underpinning the enhanced performance of these reasoning models are not well
understood. In this work, we show that the majority of new capabilities in reasoning
models can be elicited by small, single-rank changes to base model parameters,
with many of these changes being interpretable. Specifically, we use a rank-1 LoRA
to create a minimal parameter adapter for Qwen-2.5-32B-Instruct which recov-
ers 73-90% of reasoning-benchmark performance compared to a full-parameter
finetune. We find that the activations of this LoRA are as interpretable as MLP
neurons, and fire for reasoning-specific behaviors. Finally, we train a sparse au-
toencoder on the entire activation state of this LoRA and identify fine-grained and
monosemantic features. Our findings reveal how reasoning performance can arise
largely from minimal changes to base model parameters. More broadly, our work
shows that parameter-efficient training methods can be used as a targeted lens for
uncovering fundamental insights about language model behavior and dynamics.

1 Introduction

Current frontier LLMs increasingly rely on chain-of-thought (CoT) reasoning to achieve strong
performance on logical tasks [1} [7, [14]. Despite their ubiquity, we still lack a crisp, white-box
understanding of the mechanisms inside the network which enable these gains. Some attempts
have been made to mechanistically interpret fully finetuned reasoning models [2} 12} 13]]. However,
reasoning model interpretation presents a fundamental challenge: the parameters responsible for
new reasoning behaviors in a finetuned model are many and differences are diffuse [L1]. In this
paper, we introduce an alternative approach: we use parameter-efficient methods to explicitly enforce
that differences between base and finetuned models in parameter space are minimal, allowing us to
perform focused and targeted interpretability experiments.

We show that a rank-1 LoRA [6] trained to adapt all layers of Qwen-2.5-32B-Instruct on a
dataset of DeepSeek R1 rollouts is enough to recover 73-90% of the performance gap on reasoning
benchmarks, compared to a full-parameter finetune. We then perform a component-wise ablation
study, and find that MLP adapters drive the majority of this change (Table [T)).

We directly interpret the directions defined by this LoRA. Because each adapted matrix is rank-1,
activations of each adapter component can be represented by a single scalar. In total, our LoRA
encodes 192 MLP and 256 attention adapter components across model layers and weight matrices,
with each adapter component providing a single activation at each token position. This allows us
to treat the LoRA itself as a measurement device: we find that individual adapter directions have
interpretable properties comparable to those of MLP neurons, and identify monosemantic concepts
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Benchmark Base Qwen2.5-32B-Instruct Rank-1 LoRA  Full Finetune % Recovery

AIME’24 (no-figures) 0.2333 0.5000 0.6000 72.73%
MATHS500 0.8340 0.9100 0.9220 86.36%
GPQA-Diamond 0.4899 0.5808 0.5909 89.90%

Table 1: Performance of base model, rank-1 LoRA, and full-parameter finetune on three reasoning
benchmarks. % Recovery is the fraction of the difference in performance between the base model
and full finetune which is recovered by the rank-1 LoRA.

encoded by these directions. Additionally, we take the entire 448-dimensional LoRA activation state,
representing the entire adapter state across MLP and attention components, and train a cross-layer
SAE [_8]. This SAE uncovers sparse and monosemantic features which organize into categories such
as Mathematical Operators, Procedural Markers, and Discourse and Reasoning Markers (Figure 3).

Taken together, these results show that minimal adapters both elicit and expose reasoning signals: a
rank-1 LoRA is sufficient to recover the majority of reasoning performance, and yields interpretable
adapter directions.

2 Preliminaries

LoRA training We finetune Qwen-2.5-32B-Instruct using s1k-1.1, a sample-efficient dataset
of 1000 DeepSeek R1 chain-of-thought trajectories and answer attempts on diverse reasoning
problems [10]]. For all experiments, we train on this dataset for 5 epochs using cross-entropy loss on
a single 8xH200 node. We train our LoRA to adapt all three MLP matrices at every layer (up_proj,
down_proj, and gate_proj), as well as all four Q, K, V, and O attention matrices at every layer. In
total, our LoRA contains less than 0.03% as many trainable parameters as the base model.

Extracting LoRA activations For every N x M adapted matrix in the base model, a rank-r LoRA
encodes an N X r lora_A matrix and a r X M lora_B matrix. Because r = 1 for our LoRA, lora_A
and lora_B are N- and M-dimensional vectors respectively. We can extract scalar activations for
every LoRA component by taking the activation value between lora_A and lora_B during the
forward pass, which is equivalent to the projection of lora_A onto the input activation vector to the
adapted matrix.

3 LoRA Analysis

3.1 Ablation Study

LoRA Component Ablation
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Figure 1: Effect of ablating individual LoRA components from full adapter. (a) Effect of ablating all
adapter components at a given layer on KL divergence. (b) Effect of ablating each adapter component
individually. Ablation at later layers tends to have a significantly greater effect on the model’s
output distribution compared to earlier layers. MLP adapters, especially those trained on gate_proj
matrices tend to have the strongest effect.
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To identify which LoRA components most affect downstream performance, we conduct two ablation
experiments. First, we zero out individual components and layers to measure their impact on
output KL divergence relative to the unmodified LoRA. Second, we ablate all MLP components
simultaneously, and separately all attention components, to assess benchmark performance impact.

Individual component ablation (Figure|[I)) reveals that mid-to-late layers (particularly 44, 45, 46, and
62) have the greatest effect on downstream KL. MLP components show significantly larger impact
than attention components, with gate_proj having the strongest average effect.

Simultaneous ablation results (Table[2) confirm MLP adapters’ greater contribution: removing all
attention adapters decreases performance but still outperforms the base model, while removing all
MLP adapters causes severe degradation, underperforming the base model on one of three tasks and
showing poor performance on the others.

3.2 Interpreting LoRA Components

We interpret LoRA activations using two different methods: by treating individual adapter activations
as probes, and separately by training an SAE on the entire 448-dimensional adapter activation vector.
In both cases, we generate activations over the entire training set and extract max-activating examples
with associated contexts. We then use LLLM autointerpretation to generate interpretations from the
top 64 contexts with token + activation pairs [3]], use the same LLM to classify the monosemanticity
of features, and finally categorize each feature such that we can compare and examine aggregate
feature distributions. Categories were generated by prompting an LLM with feature interpretations
and examples from an equal number of MLP neurons and LoRA directions. The exact prompts used
are in Appendix [B]

Direction-level interpretation We run our interpretation and feature classification pipeline both on
individual LoRA activations and on the first 60 neurons of each MLP in the unadapted base model.
This gives us a baseline to compare feature distributions to, allowing us to examine which feature
categories the LoRA activates on compared to the baseline feature distribution in the dataset (as
measured by MLP activations). We find that LoRA activations have roughly the same likelihood
as MLP neurons to be monosemantic, but tend to encode different feature categories. We interpret
this level of monosemanticity as a positive result for LoRA interpretation, given significant recent
work utilizing MLP neurons for pragmatic interpretability tasks [5]. Relative to MLP neurons, LoRA
activations are more likely to fire for text corresponding to answers or solutions, problem instructions,
mathematical symbols, and reasoning discourse (Figure2).

Cross-layer SAE over entire adapter state To gain a more fine-grained and comprehensive view
of features encoded by our LoRA, we train a cross-layer sparse autoencoder (SAE) on the entire
448-dimensional LoRA activation state. We use a batch-top-k SAE with k=16, and an expansion
factor of 8 [4,9]]. After filtering for dead latents, the trained SAE contains roughly 2000 features.
We run the same automated interpretation and classification pipeline on max-activating examples for
each feature in this SAE, and then further categorize each feature with LLM-generated subcategories.

Interpretability Comparison: LoRA vs Boase Model MLP Relative Feature Enrichment
0 LoRA Features 49]:1 A;G'g% Answer and Solution Markers ———8.5x
;\5 mmm MLP Neurons Instruction and Procedural Markers ——3.0x
gw 28.59%32.9% Mathe_zmatlcal Operators ahd Symbols —i2.2x
B30 22.4% ]: Discourse arj\d Reaso.nfng Markers
S :[ 20.2% Numeric and Digit Detectors
o 20 Structural Delimiters and Boundaries
& 10 Domain-Specific Content Words 0.63x
Function Words and Articles 0.35x

0
Monosemantic Fuzzy Polysemantic -4 -2 0 2 4
(0) (1) (2) Logz Fold Change (LoRA / Base MLP)
Classification Category

Figure 2: (left): Comparison of interpretability scores of individual LoRA adapter activations to
arbitrarily sampled MLP neurons, and find that LoRA activations tend to be monosemantic roughly as
often. (right): Comparison of autointerpretation categories between MLP neurons and LoRA adapter
activations. LoRA adapters tend to activate more often for reasoning-specific feature categories.
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an SAE trained on LoRA activation states.
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Figure 3: Overview of feature categories learned by
Percentages indicate relative feature activation densities.
by prompting an LLM with feature descriptions.

We then visualize relative feature prevalence by computing category-wise activation densities, which
is the normalized sum of feature activations within each category over a subset of training data, and
plot these in figure[3] We note that this categorization methodology is subjective and sensitive to
prompt verbiage, and provide this visualization only as a tool to develop high-level intuitions about
the adapter’s representational budget across layers and components. Broadly, we observe that features
tend to concentrate on mathematical operators and syntax, numbers, formatting tokens, and reasoning
control-flow. Our LLM-based interpretability classification identifies 62% of SAE features as “cleanly
monosemantic”, up from 22% of LoRA features, with an additional 22% of SAE features classified
as “broad but consistent”. For a more direct look into our SAE, a selection of individual SAE feature
activations and interpretations are provided in appendix [A.2] Interactive feature dashboard links will
be present in the camera-ready version of this paper.

4 Conclusion and Outlook

Limitations This work includes several limitations. First, we train our LoRA using a sample-
efficient dataset with roughly 10 million tokens. While significant performance can be elicited using
this dataset [[10], it is likely that our trained models do not contain all of the circuits which are learned
by models trained on larger datasets. Additionally, we attempted to prove that extracted LoRA
directions have a causal effect on model outputs when used for steering, but found inconclusive
results. Anecdotally, steering experiments required very large steering magnitudes to have noticable
effects (in excess of 50x normal activation magnitudes), at which point the model would have a
high propensity for backtracking (outputting the Wait, token, among others). More investigation
of this phenomenon is required to make claims about what is going on. We also heavily use LLM-
based autointerpretation and autocategorization methods in our analysis. These methods are useful
for painting a general picture of model mechanisms, but we suspect they often fail to uncover the
“true” role of extracted features. Finally, we only study one model, Qwen-2.5-32B-Instruct, and
evaluate this model mostly on math-related reasoning benchmarks.

We demonstrate that reasoning capabilities in large language models can be substantially recovered
through minimal parameter modifications, with a rank-1 LoRA recovering 73-90% of full finetuning
performance while having only ~ 0.03% as many trainable parameters. Our analysis reveals that
these minimal parameter changes encode interpretable, reasoning-specific signals, with individual
adapter directions exhibiting monosemantic properties. Further, we find that sparse autoencoders are
useful for extracting additional monosemantic features from LoRA activation states. These findings
open new avenues for understanding LLMs through parameter-efficient methods, and suggest that
similar targeted approaches could be useful to study other emergent capabilities. Future work could
involve focused analysis identifying specific circuits that LoRAs interface with, which we hope could
illuminate the core computational mechanisms underlying reasoning behavior in language models.
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178 A Appendix

179 A.1 Selected LoRA Directions

180 We present a cherry-picked selection of interesting and interpretable LoRA directions, visualized
181 with a dashboard. On the left of the dashboard are max-activating examples of the direction over the
182 training dataset. On the right, a full training sample is shown with activations highlighted. Highlight
183 color represents whether the activation is positive or negative.
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Figure 4: Autointerpretation: Consistently activates on the token “Wait” (and surrounding com-
mas/periods) across examples
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0 \le \theta < 2\piS , we define $zA{n} = raffl} et it o Since 2 modi2. 2 varies a5 2,1,2,1,... pe exponent parity. SO\ whern odd, 2L moswnemn eve. o 2tz B

- mod3 if and only ifn is odd. So if the ring hase.g.,F2andF4 as components, theninnoddscenario,F4 can be included as eachnon-zero [}

1 \theta[n}$ for dll positive reals $n$ elenent xeF4 satisfiesxt{ZAEL}XAL3IEL, since for riodd, 2F=3 iff n-1. Wait non=L.\r\n B

<lim_start|>assistant\n<lim_start|> - E
Wait, 21, but theexponent is2A{FEL. Let me check for -l thel@XpORERE is3, which agrees. Fornszthe EXponRERt is5, which would

. But in miltiplicative group -

A{2}. TfxA{5}-1, thenxA{2}=1, which implies B

Rollout 778, Example 4, Activation: -2.373 xel. But xAZ-1 only forxel. But there are elements wherexAS= xAZl, whichcantradicts. Therefore, if the product ring includes H

fields other thanF2 as components, such asF4,then the order to satisfyxA{28f #1}=1 in those fields require that the =

2000000 / 4Ak). Since 4Ak = (2A2) 21¢2K). miltiplicative exponents divide2An +1, whichuas discussed above for eachn.\\n |

Therefore, 2000000 / 47k = Therefore, essentially, given a fixedn:\nn s

Ifn isoddthen, to haveF4 in a product, we needs that F4 multiplicativeorder3 divides2Bl +1. Sincenthen ZAH#1 must be divisible
by3. Whenis28i'#1 divisible by3?\n\:
Rollout 117, Example 5, Activation: -2.326

Figure 5: Autointerpretation: single-letter math variables and exponent tokens



184

185
186

Layer 32 - down_proj (positive)

Analyzing top activating examples

Rollout 882, Example 1, Activation: 3.876

, prop-1-en-2-ylcyclopentane would have the cyclopent

ane connected to the|

structure-wise, cyclopentane is attached to the CH2

group of CHZ

carbon of the propene. So

Rollout 551, Example 2, Activation: 3.756

2-methoxybut-2-ene would have the methoxy group on

carbon 2, which is in th

structure: OCH3 attached to the left-hand side of the

double bond? Wait,

Rollout 915, Example 3, Activation: 3.752

the aldehyde (CHO) could be para or adjacent.\n\nAss

uning they are adjacent: then the aldehyde is in|

ortho to the ketone. The aromatic protons would be split

depending on their adjacency to electron-withdrawing

groups .

Rollout 882. Examole 4. Activation: 3732

Figure 6: Autointerpretation: indicates positional numbering in molecules (position, numeral, middle)
Note: a thresholding operation was applied to make visualizing top activations in the full context

easier.

A.2 Selected SAE Features

of the double bond.

Full Context
Rollout 882

Threshold: [ ] 255  Intensity: [ ] 1.4x

Prop-1-en-2-yl would mean the double bond is between carbons 1 and 2 of the propene, ubstituent Cthe cyclopentane) is on
€arboii 2. So, prop-1-en-2-ylcyclopentane would have the cyclopentane connected to the| €arbori of the propene
structure-wise, cyclopentane is attached to the CH2 group of CH2=CHZ, making it CH2-C(cyclopentane)=CHZ. Wait, no. Wait, propene
is CHZ=CH-CH3. But if it's prop-1-en-Z-yl, it would have the double bond between carbons 1 and 2, and the substituent (the
cyclopentane) onlcarbon 2. So, the structure should be cyclopentane attached to thelS@EONA carbon of the propene. Hence, the
double bond between carbons 1 and 2, and the cyclopentane is onCarbon 2. So the structure is CH2=C(CSHO)-CH3? Wait, no. Wait,
propene is CH2=CHCH3. So prop-1-en-2-yl would be substituted at position 2, right? Let me make sure. For propene (three carbons),
prop-1-ene is CH2=CHCH3. Then the substituents are named based on thelpOSTE(GNS. So substituting on thelfildALE carbor (carbon 2)
would give -CH2-C(cyclopentane)=CH2? Wait, maybe cyclopentyl is on CZ. So the overall structure would be cyclopentane ring
connected to a CHZ group, which is double bonded to another CHZ group. Hmm. So maybe it's cyclopentylmethyl attached to a double
bond. Wait, maybe it's:\mn

Cyclopentane\n
o

But prop-1-en-2-yl would be the group CH2-C(=CH2)-. Wait, maybe I need to think about substituents. The main chain is propene
(three carbons) with the double bond starting at carbon 1. The substituent (cyclopentane) is onl€arbon 2 of the propene.
Therefore, the structure is

CHz-C(cyclopentyl)=CH2. \\n

Wait, that would be Z-cyclopentylprop-1-ene. But the name given is prop-1-en-2-ylcyclopentane, which might be cyclopentane with a
prop-1-en-2-yl group attached. The prop-1-en-2-yl group is CH2-C(H)=CHZ group attached via thelmiddlé carbon (C2) to the
cyclopentane. So the cyclopentane is connected to the central carbon6f the propene. Thus the structure is cyclopentane-C(H2)-
CHZ-CHZ with a double bond between the first and second carbons? Maybe not. Let me confirm. Maybe the structure is best
represented as (cyclopentyldmethyl attached to a double bond. So maybe:\n\n

Cyclopentane-CH2-CH2-CH2, but the double bond is between the first and second carbons. Wait, no. Wait, in prop-1-en-2-yl group,
the substituent is on thelSécond carbon of the double bond. For example, in prop-l-ene, the structure is CH2=CHCH3. If we
substitute on carbon 2, it becomes CHz=C(R)-CH3. So if R is cyclopentyl, then the starting molecule is CH2=C(CSHO)-CH3. So that's
2-cyclopentylprop-1-ene. But the name given is prop-1-en-2-ylcyclopentane, which might be naming the cyclopentane with a
substituent of prop-1-en-2-yl. According to IUPAC nomenclature, when you name substituents, you take the main chain (or ring) and
add substituents. Here, cyclopentane is the main ring, and the substituent is prop-1-en-2-yl. Wait, prop-l-en-2-yl group has the
structure (H2-C(H)=CH2-, where the point of attachment is the central carbon. So the substituent is CH2-C(H)=CH2 attached to
cyclopentane at thel central carbon. So the structure would be cyclopentane with a CH(CZH4) group? Not quite. Let me maybe check
the substituent name. Prop-1-en-2-yl is the same as 1-propenyl-2-yl, but maybe the substituent is like this: The double bond is
between positions 1 and 2 of the propenyl group, and the attachment to the main group is atUBGSEENGH 2. So, the substituent is -

We additionally present a cherry-picked selection of SAE features. The dashboard screenshots
highlight max-activating feature examples over the training dataset.



SAE Feature Interpretation Dashboard

3584 features | 64 examples per feature | 1000 rollouts processed

Feature: - 182 - Feature 224 (64 examples, max=5.46) N Only full examples: c 64 examples found

Top Activating Examples Max activation: 8.2891

Rank #1| Rollout 745, Token 4652 Activation: 7.2578

rysohn: every continuous image of the Cantor set is metrizable if and only if the corresponding map is at most countable-to-one.

Hml. not sure.

But back to the original problem. Since K is the union of an increasing sequence of metrizable subspaces. How do we lift that

structure
Rank #2 | Rollout 532, Token 10099 Activation: 7.0820
open cover has a o-discrete refinement. Let's apply this to the open cover by single balls of radius 1/n. Then proceed to refine

it.-- not directly applicable.

Alternatively, use the idea that in metric spaces, each point has a countable neighborhood base given by metric balls. Thus, for

any
Rank #3 | Rollout 532, Token 10100 Activation: 7.0156
cover has a a-discrete refinement. Let's apply this to the open cover by single balls of radius 1/n. Then proceed to refine it.l

.- not directly applicable.

Alternatively, use the idea that in metric spaces, each point has a countable neighborhood base given by metric balls. Thus, for

any x
Rank #4 | Rollout 794, Token 10636 Activation: 6.9258
Base. But that seems irrelevant.

Alternatively, considering that the base (from Neessler reagent reaction) with B could form H2N- groups.-- is unclear.

Alternatively, after arriving at compound B being a benzamide, the amide can undergo hydrolysis to form an Aniline derivative. But
this
Rank #5 | Rollout 57, Token 8603 Activation: 7.2500

, every open set is Lebesgue measurable and the space is a Baire space. Maybe construct a decreasing sequence of open sets
narrowing down on E--- vague. Alternatively, consider that in the density topology, the family of neighborhoods of a

point includes all measurable sets containing x with density 1. Since this

Figure 7: Autointerpretation: Hesitation markers, notably “Hmm”, in reflective internal thought.



SAE Feature Interpretation Dashboard

3584 features | 64 examples per feature | 1000 rollouts processed

Feature: - 301 - Feature 224 (64 examples, max=5.46) N Only full examples: c 64 examples found

Top Activating Examples Max activation: 5.7617
Rank #1 | Rollout 825, Token 971 Activation: 4.7383
,0,0), and (0,16,0).

So now, the apex is at some point (x, y, h), where h- the height of the pyramid (since the base is on the xy-plane, the z-
coordinate is h). The distances from the apex to each of the three base

Rank #2 | Rollout 620, Token 4068 Activation: 4.8242

t2 - t1. Then, during this interval, heat is being generated at a time-dependent rate P(t) = F * v(t), where F- the braking
force (1874 N), and v(t) = 20 - 9.1 t.

The total energy deposited into the track

Rank #3 | Rollout 579, Token 3882 Activation: 5.3047

free molecular flow, the drag force on a plate moving at velocity v through a gas is given by F = @ A vA2 C, where.- a
coefficient depending on the reflection properties of the molecules. For specular reflection, it might differ from diffuse
reflection. Wait, but since this is a physics problem,

Rank #4 | Rollout 578, Token 4725 Activation: 5.0117
A
That seems overly simplistic, but if this is the formula we use, then the drag force would be 2 6 v c A, wher‘e.- a

characteristic thermal speed. Wait, but in kinetic theory, cA2 = 3kT/m. But here, the 1/2 rho ¢

Rank #5 | Rollout 579, Token 7124 Activation: 5.0859

rarefied gas, the force F on a plate moving with velocity v is given by F = rho A v (v + v_m), where v_m- the mean velocity of
the gas molecules. But this is hand-wavy. Alternatively, here's a thought. Imagine that each collision transfers a momentum
proportional to the

Rank #6 | Rollout 579, Token 3090 Activation: 5.0000

the free molecular flow is given by:
P = (1/2) %6 v2 + (1/2) &% c2,
where| c- the speed of sound or something? Hmm, maybe not.

Wait, perhaps the correct approach is to use the concept of dynomic pressure and thermal pressure. Alternatively,

Figure 8: Autointerpretation: Firing on “is” as an equality indicator in mathematical definitions.



SAE Feature Interpretation Dashboard

3584 features | 64 examples per feature | 1000 rollouts processed

Feature: - 8 - Select active feature... v Only full examples: c 64 examples found

Top Activating Examples Max activation: 6.7852
Rank #1 | Rollout 259, Token 1726 Activation: 6.2383
is much larger than V_core, so the mass of the liquid is approximately &®_liq * V_planet = %6_lig * (4/.. R3).

But actually, no. The problem states that the planet is made of liquid of constant density @6 with the exception of the solid core

Rank #2 | Rollout 259, Token 1776 Activation: 6.4531

made of liquid of constant density @@ with the exception of the solid core. Therefore, the total mass of the planet is M = @§*
C4/.. R3) + m_core - 6@‘(4/. T r3). Wait, no. If the planet is radius R, then without the

Rank #3 | Rollout 259, Token 1824 Activation: 6.0820

r3). Wait, no. If the planet is radius R, then without the core, it would have mass M_liq = w‘(4/. 1 R3). But since there's a
solid core of radius r and mass m, which replaces a portion of the liquid. So the actual total mass is

Rank #4 | Rollout 259, Token 2748 Activation: 6.3750

/ a2, where M(a) is the mass enclosed within radius a. For a uniform sphere of density @6, M(a) = ( .)na3p. Therefore, g(a) =
(4/')![ G ®8 a. So inside the uniform sphere, gravitational acceleration increases

Rank #5 | Rollout 259, Token 695 Activation: 6.7500
as gravitational force.
Calculating the core's density. The radius of the core is 1844 meters, so its volume is (l/.)’m'S. Let's compute the volume first:

V_core = (4/B)i(10M m3 = (4

Rank #6 | Rollout 259, Token 2764 Activation: 5.5938

For a uniform sphere of density 8, M(a) = (")lmap. Therefore, gla) = (4/.)|r G B8 a. So inside the uniform sphere,
gravitational acceleration increases linearly with distance from the center.

But wait, in our case, the

Rank #7 | Rollout 259, Token 2837 Activation: 6.2227

but it has a core of different density. But if we consider the planet excluding the core, it would have a mass M_lig_total =
@ [B>n 73 88 - (4/B>n r3 66, But if R >> r, then M_liq_total 8 (

Figure 9: Autointerpretation: Sphere volume formula tokens, specifically 4/3w R components.
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SAE Feature Interpretation Dashboard

3584 features | 64 examples per feature | 1000 rollouts processed

Feature: 59 Select active feature... v Only full examples: c 64 examples found

Top Activating Examples Max activation: 5.9648

Rank #1 | Rollout 49, Token 5786 Activation: 5.4258

in X. It's o-compact, so it is a countable union of compact sets. Since X is Hausdorff, each compact set is-. Each compact
subset of a Hausdorff space is also sequentially compact?

Wait, not necessarily unless it's first-countable.

But X is first-count

Rank #2 | Rollout 49, Token 3271 Activation: 5.2109

, A is a countable union uF- subsets. So every subset of X is Fo.

In other words, every subset is a countable union af- sets. So such a space is called a "perfect space" sometimes, but T
need to be careful with terminology. Alternatively, a space where every subset is

Rank #3 | Rollout 49, Token 10368 Activation: 5.2188

Then we can apply Baire category theorem on P. Since P is o-compact, it is a countable union of compact subsets. Each compact
subset is- in P. But if P is also a Baire space, then one of the compact sets must contain an open set. But since P has no
isolated points

Rank #4 | Rollout 659, Token 6108 Activation: 5.5234

] aren't compact because they're not- in R. Therefore, the union of the Am would have to be all of Q, but each Am is ul
- and bounded (hence compact) subset of R. But how can their unien be Q when Q is not o-compact? Because in a Hausdor

Rank #5 | Rollout 659, Token 6615 Activation: 5.8047

of compact subsets of R. For if it were o-compact, so Q = @BkAk with each Ak compact in R, then each Ak '15- and bounded.
But then, Q would be a countable union m‘- sets, hence an Fa set. However, Q is an Fo set in

Rank #6 | Rollout 659, Token 2197 Activation: 5.9648

sequence in K has a limit in K.

But in R, if you have a set K %% Q that is compact in R, then K is a- and bounded subset of R, hence it contains all its
limit points (in R). But since K is a subset of Q, those limit points must be in

Figure 10: Autointerpretation: Fires on “closed” in mathematical topology contexts.

17 B LLM Prompts

188 B.1 Autointerpretation

189 We use gpt-5-mini to automatically generate interpretations for LoORA directions, MLP neurons,
190 and SAE features:

191 We’re studying neurons in a neural network. Each neuron looks for some particular \
192 thing in a short document. Look at the parts of the document where the neuron \

193 activates and describe what it’s firing for.

194

195 Some activations will be noisy, in these cases you’ll have to look for common \

196 phrases or concepts in the examples.

197

11



198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239
240
241
242
243

244

245
246

247
248
249
250
251
252
253

If a feature always activates for the same token, you should note this in your \
explanation, and also state whether that feature represents that token in some \
specific context. You may need to look at words surrounding activating tokens \
in order to understand why a feature is firing.

Features should have a clear, singular explanation and should be monosemantic. \
If there isn’t a clear monosemantic explanation, note this.

Your explanation should not exceed ten words. Don’t write complete sentences. \
The neuron might be responding to:

- Individual tokens or specific words

- Phrases or expressions

- Abstract concepts or behaviors

- Broader context or topics

The activation format shows the full text first, then lists tokens where the neuron \
fired along with their activation strengths (0-10 scale). Higher values mean \
stronger activation.

For example:

cat and mouse ran around the tree. They quickly
tree 7.81

ran 2.30

around 1.01

Look at every example, and then generate an explanation. After generating an \
explanation, assess how monosemantic the feature is.

<neuron_activations>
{activations_str}
</neuron_activations>

Classify the feature’s interpretability:

0: The feature is specific, clear, and monosemantic. All given examples clearly \
adhere to the explanation. The explanation is not broad, and the examples are not \
noisy. This feature has a clear and obvious interpretation.

1: The feature may be broad or noisy, but ALL given examples still adhere to the \
generated explanation. The explanation may not be obvious.

2: The feature appears polysemantic. Some examples do not clearly adhere to the \
generated explanation. The explanation does not cleanly explain the given examples.

Respond with JSON in exactly this format:

a8
"explanation": "your concise explanation in just a few words",
"classification": <0, 1, or 2>,
"classification_reasoning": "brief justification for your classification"
3}

B.2 Autocategorization

We use claude-opus-4.1 to generate feature categories given feature interpretations using the
following prompt:

You will be provided with a list of interpretations of MLP neurons from a \

large language model. Each interpretation describes what a particular learned \
feature detects or responds to during tasks.

Your task is to identify high-level functional role categories that capture what \
these features are doing computationally.

Read through all feature interpretations carefully

12



254
255
256
257
258
259

261
262
263
264
265

267
268
269
270
271
272
273
274
275
276
277
278
279

281
282
283
284
285

287
288
289

290

291
292
293
294

296
297
298
299
300
301
302
303
304

305

Identify natural groupings based on the computational or functional role each \
feature plays
Generate 5-8 high-level categories that capture the major functional roles

Important considerations:

- Focus on computational function (what role the feature plays) rather than \
surface-level similarity

- Categories should be mutually exclusive when possible, though some features \
may have dual roles

- Aim for categories that would generalize across different types of tasks

- Include 3-5 example feature interpretations for each category (copied exactly \
from the list provided)

Output your response as a JSON object with the following structure:

[

json
a8
"categories": [
i
"string_id": "category_identifier_in_snake_case",
"name": "Human Readable Category Name",
"definition": "A 1-2 sentence description of what functional role these features serve.",
"examples": [
"exact feature interpretation from the list",
"another feature interpretation from the list",
"additional examples as needed"
]
3}
1,
"summary": "Your overall categorization logic and any notable patterns you observed"
3}

(1

Ensure your response contains ONLY the JSON object, with no additional text before or after.

Here are the feature interpretations to categorize:
{feature_list}

Given these categories, we categorize each feature using gpt-5-mini using the following prompt:

Categorize this neural network feature into ONE of the given categories.
Feature explanation: "{feature.explanation}"

Activation examples (showing what tokens/contexts activate this feature):
{examples_str}

Available categories:
{categories_str}

Based on the feature explanation and activation examples, which category best fits this feature?
Reply with ONLY the category string_id, nothing else.

Your response:

C Additional Data
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Task Full LoRA Full LoRA (attn-ablated) Full LoRA (mlp-ablated)

AIME’24 (no-figures)  0.5000 (100.00%) 0.3667 (50.02%) 0.1333 (—37.50%)
MATH500 0.9100 (100.00%) 0.9000 (86.84%) 0.8440 (13.16%)
GPQA-Diamond 0.5808 (100.00%) 0.5152 (27.83%) 0.5051 (16.72%)

Table 2: Absolute scores with percentages in parentheses, computed relative to the Full Rank-1
LoRA’s recovered gain: (z — b)/(¢ — b) x 100%, where b is the baseline and ¢ is the Full LoRA
score (so Full LoRA is 100%).

14
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