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Abstract

Reasoning models leverage inference-time compute to significantly enhance the1

performance of language models on difficult logical tasks, and have become a dom-2

inating paradigm in frontier LLMs. Despite their wide adoption, the mechanisms3

underpinning the enhanced performance of these reasoning models are not well4

understood. In this work, we show that the majority of new capabilities in reasoning5

models can be elicited by small, single-rank changes to base model parameters,6

with many of these changes being interpretable. Specifically, we use a rank-1 LoRA7

to create a minimal parameter adapter for Qwen-2.5-32B-Instruct which recov-8

ers 73-90% of reasoning-benchmark performance compared to a full-parameter9

finetune. We find that the activations of this LoRA are as interpretable as MLP10

neurons, and fire for reasoning-specific behaviors. Finally, we train a sparse au-11

toencoder on the entire activation state of this LoRA and identify fine-grained and12

monosemantic features. Our findings reveal how reasoning performance can arise13

largely from minimal changes to base model parameters. More broadly, our work14

shows that parameter-efficient training methods can be used as a targeted lens for15

uncovering fundamental insights about language model behavior and dynamics.16

1 Introduction17

Current frontier LLMs increasingly rely on chain-of-thought (CoT) reasoning to achieve strong18

performance on logical tasks [1, 7, 14]. Despite their ubiquity, we still lack a crisp, white-box19

understanding of the mechanisms inside the network which enable these gains. Some attempts20

have been made to mechanistically interpret fully finetuned reasoning models [2, 12, 13]. However,21

reasoning model interpretation presents a fundamental challenge: the parameters responsible for22

new reasoning behaviors in a finetuned model are many and differences are diffuse [11]. In this23

paper, we introduce an alternative approach: we use parameter-efficient methods to explicitly enforce24

that differences between base and finetuned models in parameter space are minimal, allowing us to25

perform focused and targeted interpretability experiments.26

We show that a rank-1 LoRA [6] trained to adapt all layers of Qwen-2.5-32B-Instruct on a27

dataset of DeepSeek R1 rollouts is enough to recover 73-90% of the performance gap on reasoning28

benchmarks, compared to a full-parameter finetune. We then perform a component-wise ablation29

study, and find that MLP adapters drive the majority of this change (Table 1).30

We directly interpret the directions defined by this LoRA. Because each adapted matrix is rank-1,31

activations of each adapter component can be represented by a single scalar. In total, our LoRA32

encodes 192 MLP and 256 attention adapter components across model layers and weight matrices,33

with each adapter component providing a single activation at each token position. This allows us34

to treat the LoRA itself as a measurement device: we find that individual adapter directions have35

interpretable properties comparable to those of MLP neurons, and identify monosemantic concepts36
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Benchmark Base Qwen2.5-32B-Instruct Rank-1 LoRA Full Finetune % Recovery

AIME’24 (no-figures) 0.2333 0.5000 0.6000 72.73%
MATH500 0.8340 0.9100 0.9220 86.36%
GPQA-Diamond 0.4899 0.5808 0.5909 89.90%

Table 1: Performance of base model, rank-1 LoRA, and full-parameter finetune on three reasoning
benchmarks. % Recovery is the fraction of the difference in performance between the base model
and full finetune which is recovered by the rank-1 LoRA.

encoded by these directions. Additionally, we take the entire 448-dimensional LoRA activation state,37

representing the entire adapter state across MLP and attention components, and train a cross-layer38

SAE [8]. This SAE uncovers sparse and monosemantic features which organize into categories such39

as Mathematical Operators, Procedural Markers, and Discourse and Reasoning Markers (Figure 3).40

Taken together, these results show that minimal adapters both elicit and expose reasoning signals: a41

rank-1 LoRA is sufficient to recover the majority of reasoning performance, and yields interpretable42

adapter directions.43

2 Preliminaries44

LoRA training We finetune Qwen-2.5-32B-Instruct using s1k-1.1, a sample-efficient dataset45

of 1000 DeepSeek R1 chain-of-thought trajectories and answer attempts on diverse reasoning46

problems [10]. For all experiments, we train on this dataset for 5 epochs using cross-entropy loss on47

a single 8xH200 node. We train our LoRA to adapt all three MLP matrices at every layer (up_proj,48

down_proj, and gate_proj), as well as all four Q, K, V, and O attention matrices at every layer. In49

total, our LoRA contains less than 0.03% as many trainable parameters as the base model.50

Extracting LoRA activations For every N ×M adapted matrix in the base model, a rank-r LoRA51

encodes an N × r lora_A matrix and a r×M lora_B matrix. Because r = 1 for our LoRA, lora_A52

and lora_B are N- and M-dimensional vectors respectively. We can extract scalar activations for53

every LoRA component by taking the activation value between lora_A and lora_B during the54

forward pass, which is equivalent to the projection of lora_A onto the input activation vector to the55

adapted matrix.56

3 LoRA Analysis57

3.1 Ablation Study58
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LoRA Component Ablation

Figure 1: Effect of ablating individual LoRA components from full adapter. (a) Effect of ablating all
adapter components at a given layer on KL divergence. (b) Effect of ablating each adapter component
individually. Ablation at later layers tends to have a significantly greater effect on the model’s
output distribution compared to earlier layers. MLP adapters, especially those trained on gate_proj
matrices tend to have the strongest effect.
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To identify which LoRA components most affect downstream performance, we conduct two ablation59

experiments. First, we zero out individual components and layers to measure their impact on60

output KL divergence relative to the unmodified LoRA. Second, we ablate all MLP components61

simultaneously, and separately all attention components, to assess benchmark performance impact.62

Individual component ablation (Figure 1) reveals that mid-to-late layers (particularly 44, 45, 46, and63

62) have the greatest effect on downstream KL. MLP components show significantly larger impact64

than attention components, with gate_proj having the strongest average effect.65

Simultaneous ablation results (Table 2) confirm MLP adapters’ greater contribution: removing all66

attention adapters decreases performance but still outperforms the base model, while removing all67

MLP adapters causes severe degradation, underperforming the base model on one of three tasks and68

showing poor performance on the others.69

3.2 Interpreting LoRA Components70

We interpret LoRA activations using two different methods: by treating individual adapter activations71

as probes, and separately by training an SAE on the entire 448-dimensional adapter activation vector.72

In both cases, we generate activations over the entire training set and extract max-activating examples73

with associated contexts. We then use LLM autointerpretation to generate interpretations from the74

top 64 contexts with token + activation pairs [3], use the same LLM to classify the monosemanticity75

of features, and finally categorize each feature such that we can compare and examine aggregate76

feature distributions. Categories were generated by prompting an LLM with feature interpretations77

and examples from an equal number of MLP neurons and LoRA directions. The exact prompts used78

are in Appendix B.79

Direction-level interpretation We run our interpretation and feature classification pipeline both on80

individual LoRA activations and on the first 60 neurons of each MLP in the unadapted base model.81

This gives us a baseline to compare feature distributions to, allowing us to examine which feature82

categories the LoRA activates on compared to the baseline feature distribution in the dataset (as83

measured by MLP activations). We find that LoRA activations have roughly the same likelihood84

as MLP neurons to be monosemantic, but tend to encode different feature categories. We interpret85

this level of monosemanticity as a positive result for LoRA interpretation, given significant recent86

work utilizing MLP neurons for pragmatic interpretability tasks [5]. Relative to MLP neurons, LoRA87

activations are more likely to fire for text corresponding to answers or solutions, problem instructions,88

mathematical symbols, and reasoning discourse (Figure 2).89

Cross-layer SAE over entire adapter state To gain a more fine-grained and comprehensive view90

of features encoded by our LoRA, we train a cross-layer sparse autoencoder (SAE) on the entire91

448-dimensional LoRA activation state. We use a batch-top-k SAE with k=16, and an expansion92

factor of 8 [4, 9]. After filtering for dead latents, the trained SAE contains roughly 2000 features.93

We run the same automated interpretation and classification pipeline on max-activating examples for94

each feature in this SAE, and then further categorize each feature with LLM-generated subcategories.95
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Figure 2: (left): Comparison of interpretability scores of individual LoRA adapter activations to
arbitrarily sampled MLP neurons, and find that LoRA activations tend to be monosemantic roughly as
often. (right): Comparison of autointerpretation categories between MLP neurons and LoRA adapter
activations. LoRA adapters tend to activate more often for reasoning-specific feature categories.
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Figure 3: Overview of feature categories learned by an SAE trained on LoRA activation states.
Percentages indicate relative feature activation densities. Categories and subcategories were generated
by prompting an LLM with feature descriptions.

We then visualize relative feature prevalence by computing category-wise activation densities, which96

is the normalized sum of feature activations within each category over a subset of training data, and97

plot these in figure 3. We note that this categorization methodology is subjective and sensitive to98

prompt verbiage, and provide this visualization only as a tool to develop high-level intuitions about99

the adapter’s representational budget across layers and components. Broadly, we observe that features100

tend to concentrate on mathematical operators and syntax, numbers, formatting tokens, and reasoning101

control-flow. Our LLM-based interpretability classification identifies 62% of SAE features as “cleanly102

monosemantic”, up from 22% of LoRA features, with an additional 22% of SAE features classified103

as “broad but consistent”. For a more direct look into our SAE, a selection of individual SAE feature104

activations and interpretations are provided in appendix A.2. Interactive feature dashboard links will105

be present in the camera-ready version of this paper.106

4 Conclusion and Outlook107

Limitations This work includes several limitations. First, we train our LoRA using a sample-108

efficient dataset with roughly 10 million tokens. While significant performance can be elicited using109

this dataset [10], it is likely that our trained models do not contain all of the circuits which are learned110

by models trained on larger datasets. Additionally, we attempted to prove that extracted LoRA111

directions have a causal effect on model outputs when used for steering, but found inconclusive112

results. Anecdotally, steering experiments required very large steering magnitudes to have noticable113

effects (in excess of 50x normal activation magnitudes), at which point the model would have a114

high propensity for backtracking (outputting the Wait, token, among others). More investigation115

of this phenomenon is required to make claims about what is going on. We also heavily use LLM-116

based autointerpretation and autocategorization methods in our analysis. These methods are useful117

for painting a general picture of model mechanisms, but we suspect they often fail to uncover the118

“true” role of extracted features. Finally, we only study one model, Qwen-2.5-32B-Instruct, and119

evaluate this model mostly on math-related reasoning benchmarks.120

We demonstrate that reasoning capabilities in large language models can be substantially recovered121

through minimal parameter modifications, with a rank-1 LoRA recovering 73-90% of full finetuning122

performance while having only ∼ 0.03% as many trainable parameters. Our analysis reveals that123

these minimal parameter changes encode interpretable, reasoning-specific signals, with individual124

adapter directions exhibiting monosemantic properties. Further, we find that sparse autoencoders are125

useful for extracting additional monosemantic features from LoRA activation states. These findings126

open new avenues for understanding LLMs through parameter-efficient methods, and suggest that127

similar targeted approaches could be useful to study other emergent capabilities. Future work could128

involve focused analysis identifying specific circuits that LoRAs interface with, which we hope could129

illuminate the core computational mechanisms underlying reasoning behavior in language models.130
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A Appendix178

A.1 Selected LoRA Directions179

We present a cherry-picked selection of interesting and interpretable LoRA directions, visualized180

with a dashboard. On the left of the dashboard are max-activating examples of the direction over the181

training dataset. On the right, a full training sample is shown with activations highlighted. Highlight182

color represents whether the activation is positive or negative.183

Figure 4: Autointerpretation: Consistently activates on the token “Wait” (and surrounding com-
mas/periods) across examples

Figure 5: Autointerpretation: single-letter math variables and exponent tokens
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Figure 6: Autointerpretation: indicates positional numbering in molecules (position, numeral, middle)
Note: a thresholding operation was applied to make visualizing top activations in the full context
easier.

A.2 Selected SAE Features184

We additionally present a cherry-picked selection of SAE features. The dashboard screenshots185

highlight max-activating feature examples over the training dataset.186
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Figure 7: Autointerpretation: Hesitation markers, notably “Hmm”, in reflective internal thought.
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Figure 8: Autointerpretation: Firing on “is” as an equality indicator in mathematical definitions.
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Figure 9: Autointerpretation: Sphere volume formula tokens, specifically 4/3πR3 components.
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Figure 10: Autointerpretation: Fires on “closed” in mathematical topology contexts.

B LLM Prompts187

B.1 Autointerpretation188

We use gpt-5-mini to automatically generate interpretations for LoRA directions, MLP neurons,189

and SAE features:190

We’re studying neurons in a neural network. Each neuron looks for some particular \191

thing in a short document. Look at the parts of the document where the neuron \192

activates and describe what it’s firing for.193

194

Some activations will be noisy, in these cases you’ll have to look for common \195

phrases or concepts in the examples.196

197
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If a feature always activates for the same token, you should note this in your \198

explanation, and also state whether that feature represents that token in some \199

specific context. You may need to look at words surrounding activating tokens \200

in order to understand why a feature is firing.201

Features should have a clear, singular explanation and should be monosemantic. \202

If there isn’t a clear monosemantic explanation, note this.203

204

Your explanation should not exceed ten words. Don’t write complete sentences. \205

The neuron might be responding to:206

- Individual tokens or specific words207

- Phrases or expressions208

- Abstract concepts or behaviors209

- Broader context or topics210

211

The activation format shows the full text first, then lists tokens where the neuron \212

fired along with their activation strengths (0-10 scale). Higher values mean \213

stronger activation.214

215

For example:216

cat and mouse ran around the tree. They quickly217

tree 7.81218

ran 2.30219

around 1.01220

221

Look at every example, and then generate an explanation. After generating an \222

explanation, assess how monosemantic the feature is.223

224

<neuron_activations>225

{activations_str}226

</neuron_activations>227

228

Classify the feature’s interpretability:229

0: The feature is specific, clear, and monosemantic. All given examples clearly \230

adhere to the explanation. The explanation is not broad, and the examples are not \231

noisy. This feature has a clear and obvious interpretation.232

1: The feature may be broad or noisy, but ALL given examples still adhere to the \233

generated explanation. The explanation may not be obvious.234

2: The feature appears polysemantic. Some examples do not clearly adhere to the \235

generated explanation. The explanation does not cleanly explain the given examples.236

237

Respond with JSON in exactly this format:238

{{239

"explanation": "your concise explanation in just a few words",240

"classification": <0, 1, or 2>,241

"classification_reasoning": "brief justification for your classification"242

}}243

B.2 Autocategorization244

We use claude-opus-4.1 to generate feature categories given feature interpretations using the245

following prompt:246

You will be provided with a list of interpretations of MLP neurons from a \247

large language model. Each interpretation describes what a particular learned \248

feature detects or responds to during tasks.249

Your task is to identify high-level functional role categories that capture what \250

these features are doing computationally.251

252

Read through all feature interpretations carefully253

12



Identify natural groupings based on the computational or functional role each \254

feature plays255

Generate 5-8 high-level categories that capture the major functional roles256

257

Important considerations:258

- Focus on computational function (what role the feature plays) rather than \259

surface-level similarity260

- Categories should be mutually exclusive when possible, though some features \261

may have dual roles262

- Aim for categories that would generalize across different types of tasks263

- Include 3-5 example feature interpretations for each category (copied exactly \264

from the list provided)265

266

Output your response as a JSON object with the following structure:267

‘‘‘json268

{{269

"categories": [270

{{271

"string_id": "category_identifier_in_snake_case",272

"name": "Human Readable Category Name",273

"definition": "A 1-2 sentence description of what functional role these features serve.",274

"examples": [275

"exact feature interpretation from the list",276

"another feature interpretation from the list",277

"additional examples as needed"278

]279

}}280

],281

"summary": "Your overall categorization logic and any notable patterns you observed"282

}}283

‘‘‘284

285

Ensure your response contains ONLY the JSON object, with no additional text before or after.286

287

Here are the feature interpretations to categorize:288

{feature_list}289

Given these categories, we categorize each feature using gpt-5-mini using the following prompt:290

Categorize this neural network feature into ONE of the given categories.291

292

Feature explanation: "{feature.explanation}"293

294

Activation examples (showing what tokens/contexts activate this feature):295

{examples_str}296

297

Available categories:298

{categories_str}299

300

Based on the feature explanation and activation examples, which category best fits this feature?301

Reply with ONLY the category string_id, nothing else.302

303

Your response:304

C Additional Data305
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Task Full LoRA Full LoRA (attn-ablated) Full LoRA (mlp-ablated)

AIME’24 (no-figures) 0.5000 (100.00%) 0.3667 (50.02%) 0.1333 (−37.50%)
MATH500 0.9100 (100.00%) 0.9000 (86.84%) 0.8440 (13.16%)
GPQA-Diamond 0.5808 (100.00%) 0.5152 (27.83%) 0.5051 (16.72%)

Table 2: Absolute scores with percentages in parentheses, computed relative to the Full Rank-1
LoRA’s recovered gain: (x − b)/(ℓ − b) × 100%, where b is the baseline and ℓ is the Full LoRA
score (so Full LoRA is 100%).
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