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ABSTRACT

Despite the remarkable success achieved by neural networks, particularly those
represented by MLP and Transformer, we reveal that they exhibit potential flaws
in the modeling and reasoning of periodicity, i.e., they exhibit satisfactory perfor-
mance within the domain of training period, but struggle to generalize to out of
the domain (OOD). The inherent cause lies in the way that they tend to memo-
rize the periodic data rather than genuinely understand the underlying principles
of periodicity. In fact, periodicity is essential to various forms of reasoning and
generalization, underpinning predictability across natural and engineered systems
through recurring patterns in observations. In this paper, we propose FAN, a novel
network architecture based on Fourier Analysis, which empowers the ability to
efficiently model and reason about periodic phenomena, meanwhile maintaining
general-purpose ability. By introducing Fourier Series, periodicity is naturally
integrated into the structure and computational processes of FAN. On this basis,
FAN is defined following two core principles: 1) its periodicity modeling capabil-
ity scales with network depth and 2) the periodicity modeling available throughout
the network, thus achieving more effective expression and prediction of periodic
patterns. FAN can seamlessly replace MLP in various model architectures with
fewer parameters and FLOPs, becoming a promising substitute to traditional MLP.
Through extensive experiments, we demonstrate the superiority of FAN in peri-
odicity modeling tasks, and the effectiveness and generalizability of FAN across a
range of real-world tasks, including symbolic formula representation, time series
forecasting, language modeling, and image recognition.

1 INTRODUCTION

The flourishing of modern machine learning and artificial intelligence is inextricably linked to the
revolutionary advancements in the foundational architecture of neural networks. For instance, multi-
layer perceptron (MLP) (Rosenblatt, 1958; Haykin, 1998) plays a pivotal role in laying the ground-
work for current deep learning models, with its expressive power guaranteed by the universal ap-
proximation theorem (Hornik et al., 1989). Recent claims about the impressive performance of large
models on various tasks are typically supported by Transformer architecture (Vaswani et al., 2017;
Touvron et al., 2023; OpenAI, 2023). In this context, the community’s enthusiasm for research on
neural networks has never diminished. Some emerged neural networks demonstrate notable capa-
bilities in specific fields (Gu & Dao, 2023; Liu et al., 2024), sparking widespread discussion within
the community.

Beneath the surface of apparent prosperity, we uncover a critical issue that remains in existing neu-
ral networks: they struggle to model the periodicity from data, especially in OOD scenarios. We
showcase this issue through an empirical study as illustrated in Figure 1. The results indicate that
existing neural networks, including MLP (Rosenblatt, 1958), KAN (Liu et al., 2024), and Trans-
former (Vaswani et al., 2017), face difficulties in fitting periodic functions, even on a simple sine
function. Although they demonstrate proficiency in interpolation within the domain of training data,
they tend to falter when faced with extrapolation challenges of test data, especially in OOD scenar-
ios. Therefore, their generalization capacity is primarily dictated by the scale and diversity of the
training data, rather than by the learned principles of periodicity to perform reasoning. We argue
that periodicity is an essential characteristic in various forms of reasoning and generalization, as it
provides a basis for predictability in many natural and engineered systems by leveraging recurring
patterns in observations. In fact, real-world tasks inherently contain many periodic and non-periodic
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KAN TransformerMLP FAN (Ours)

𝑦 = 	sin(𝑥)

Figure 1: The performance of different neural networks within and outside the domain of their
training data for the sine function, where x is a scalar variable.

features, although some of them are hidden. The limitations of existing neural networks in capturing
periodicity may impact their generalization performance, especially in OOD scenarios.

In this paper, we investigate a key research problem: How to enable neural networks to model peri-
odicity? One core reason existing neural networks fail to model periodicity is that they heavily rely
on data-driven optimization without explicit mechanisms to understand the underlying principles in
the data. To this end, we propose a Fourier Analysis Network (FAN), a novel neural network frame-
work based on Fourier Analysis. By leveraging the power of Fourier Series, we enable the neural
network to capture and encode periodic patterns, offering a way to model the general principles from
the data. Moreover, FAN is built upon two core principles: the first ensures that its periodic mod-
eling capacity scales with network depth, while the second guarantees periodic modeling available
throughout the network. FAN not only exhibits exceptional capabilities in periodicity modeling but
also demonstrates competitive or superior effects on general tasks, which holds great potential as a
substitute to traditional MLP.

To verify the effectiveness of FAN, we conduct extensive experiments from two main aspects: pe-
riodicity modeling and application of real-world tasks. 1) For periodicity modeling, FAN achieves
significant improvements in fitting both basic and complex periodic functions, compared to exist-
ing neural networks (including MLP, KAN, and Transformer), particularly in OOD scenarios. 2)
FAN demonstrates superior performance in real-world tasks, including symbolic formula represen-
tation, time series forecasting, language modeling, and image recognition. The experimental re-
sults indicate that FAN outperform baselines (including MLP, KAN, and Transformer) for symbolic
formula representation task, and Transformer with FAN surpasses the competing models (includ-
ing Transformer, LSTM, and Mamba), for time series forecasting and language modeling tasks.
Moreover, FAN also shows effectiveness on standard CNN, especially in OOD scenarios, for image
recognition tasks. As a promising substitute to MLP, FAN improves the model’s generalization per-
formance meanwhile reducing the number of parameters and floating point of operations (FLOPs)
employed. We believe FAN is promising to be an important part of the fundamental model backbone.

2 PRELIMINARY KNOWLEDGE

Fourier Analysis (Stein & Weiss, 1971; Duoandikoetxea, 2024) is a mathematical framework that
decomposes functions into their constituent frequencies, revealing the underlying periodic structures
within complex functions. At the heart of this analysis lies Fourier Series (Tolstov, 2012), which
expresses a periodic function as an infinite sum of sine and cosine terms. Mathematically, for a
function f(x), its Fourier Series expansion can be represented as:

f(x) = a0 +

∞∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
, (1)

where T is the period of the function, and the coefficients an and bn are determined by integrating
the function over one period:

an =
1

T

∫ T

0

f(x) cos

(
2πnx

T

)
dx, bn =

1

T

∫ T

0

f(x) sin

(
2πnx

T

)
dx. (2)
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The power of Fourier Series lies in its ability to represent a wide variety of functions, including non-
periodic functions through periodic extensions, enabling the extraction of frequency components.
Building on this mathematical foundation, FAN aims to embed the periodic characteristics directly
into network architecture, enhancing generalization capabilities and performance on various tasks,
particularly in scenarios requiring the identification of patterns and regularities.

(a) MLP Layer (b) FAN Layer

Activation Function Activation FunctionCosine Sine

𝑾 𝑾

Learnable Weights

𝜙 𝑥 = 	 [	cos(𝑊!𝑥)	||	sin(𝑊!𝑥)	||	𝜎(𝐵!̅ +𝑊!̅𝑥)]	Φ 𝑥 = 	𝜎(𝐵# +𝑊#𝑥)	

Figure 2: Illustrations of MLP layer Φ(x) vs. FAN layer ϕ(x).

3 FOURIER ANALYSIS NETWORK (FAN)

In this section, we first construct a simple neural network modeled by the formula of Fourier Series,
and then on this basis, we design FAN and provide its details. Finally, we discuss the difference
between the FAN layer and the MLP layer.

Consider a task involving input-output pairs {xi, yi}, with the objective of identifying a function
f(x) : Rdx → Rdy that approximates the relationship such that yi ≈ f(xi) for all xi, where dx
and dy denote the dimensions of x and y, respectively. To build a simple neural network fS(x) that
represents Fourier Series expansion of the function, specifically F{f(x)}, as described in Eq. (1),
we can express fS(x) as follows:

fS(x) ≜ a0 +

N∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
,

(I)
= a0 +

N∑
n=1

(
wc

n cos
(
win

nx
)
+ ws

n sin
(
win

nx
))

,

(II)
= B + [wc

1, w
c
2, · · · , wc

n] cos([w
in
1 ||win

2 || · · · ||win
n ]x)

+ [ws
1, w

s
2, · · · , ws

n] sin([w
in
1 ||win

2 || · · · ||win
n ]x)

= B +Wc cos(Winx) +Ws sin(Winx),

(III)
= B +Wout[cos(Winx)|| sin(Winx)],

(3)

where B ∈ Rdy ,Win ∈ RN×dx , and Wout ∈ Rdy×2N are learnable parameters, (I) follows that
the computation of an and bn computed via Eq. (2) is definite integral, (II) and (III) follows the
equivalence of the matrix operations, [·||·] and [·, ·] denotes the concatenation along the first and
second dimension, respectively.

To fully leverage the advantages of deep learning, we can stack the aforementioned network fS(x)
to form a deep network fD(x), where the i-th layer, denoted as li(x), retains the same structural
design as fS(x). Therefore, fD(x) can be formulated as:

fD(x) = lL ◦ lL−1 ◦ · · · ◦ l1 ◦ x, (4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where l1 ◦x denotes the application of the left function l1 to the right input x, that is l1(x). However,
we discover that the direct stacking of fS(x) results in the primary parameters of the model fD(x)
focusing on learning the angular frequency (ωn = 2πn

T ), thereby neglecting the learning of the
Fourier coefficients (an and bn), as follows:

fD(x) = lL(lL−1 ◦ lL−2 ◦ · · · ◦ l1 ◦ x)
= BL +WL

out[cos(W
L
in (l1:L−1 ◦ x)|| sin(WL

in (l1:L−1 ◦ x))] (5)

where l1:L−1 ◦ x is defined as lL−1 ◦ lL−2 ◦ · · · ◦ l1 ◦ x, WL
in (l1:L−1 ◦ x) is used to approximate

the angular frequencies, and WL
out is used to approximate the Fourier coefficients. Therefore, the

capacity of fD(x) to fit the Fourier coefficients is independent of the depth of fD(x), which is an
undesirable outcome.

To this end, we design FAN based on the following principles: 1) the capacity of FAN to represent
the Fourier coefficients should be positively correlated to its depth; 2) the output of any hidden
layer can be employed to model periodicity using Fourier Series through the subsequent layers. The
first one enhances the expressive power of FAN for periodicity modeling by leveraging its depth,
while the second one ensures that the features of FAN’s intermediate layers are available to perform
periodicity modeling.

Suppose we decouple fS(x) as follows:

fS(x) = fout ◦ fin ◦ x, (6)

where

fin(x) = [cos(Winx)|| sin(Winx)], (7)
fout(x) = B +Woutx. (8)

To satisfy both principles, the inputs of the intermediate layers in FAN necessitate to employ fin
and fout simultaneously, rather than applying them sequentially.

Finally, FAN is designed on this basis, with the FAN layer ϕ(x) defined as below:

ϕ(x) ≜ [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)], (9)

where Wp ∈ Rdx×dp ,Wp̄ ∈ Rdx×dp̄ , and Bp̄ ∈ Rdp̄ are learnable parameters (with the hyper-
parameters dp and dp̄ indicating the first dimension of Wp and Wp̄, respectively), the layer output
ϕ(x) ∈ R2dp+dp̄ , and σ denotes the activation function, which can further enhance its expressive
power for periodicity modeling.

The entire FAN is defined as the stacking of the FAN layer ϕ(x):

FAN(x) = ϕL ◦ ϕL−1 ◦ · · · ◦ ϕ1 ◦ x, (10)

where

ϕl(x) =

{
[cos(W l

px)|| sin(W l
px)||σ(Bl

p̄ +W l
p̄x)], if l < L,

BL +WLx, if l = L,
(11)

Table 1: Comparison of MLP layer and FAN layer, where dp is a hyperparameter of FAN layer
and defaults to 1

4doutput in this paper, dinput and doutput denote the input and output dimensions of the
neural network layer, respectively. In our evaluation, the FLOPs for any arithmetic operations are
considered as 1, and for Boolean operations as 0.

MLP Layer FAN layer

Formula Φ(x) = σ(Bm +Wmx) ϕ(x) = [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)]

Num of Params (dinput × doutput) + doutput (1− dp

doutput
)× ((dinput × doutput) + doutput)

FLOPs 2× (dinput × doutput)
+FLOPsnon-linear × doutput

(1− dp

doutput
)× 2× (dinput × doutput)

+FLOPsnon-linear × doutput

4
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The illustrations of the MLP layer Φ(x) vs. the FAN layer ϕ(x) are shown in Figure 2. Note that
the FAN layer ϕ(x) computed via Eq. (9) can seamlessly replace the MLP layer Φ(x) computed via
Eq. (12) in various models with fewer parameters and FLOPs, achieved by sharing the parameters
and computation of Sin and Cos parts. The number of parameters and FLOPs of the FAN layer
compared to the MLP layer are presented in Table 1.

KAN TransformerMLP FAN

𝑦 = 𝑥	𝑚𝑜𝑑	5

KAN

Transformer

MLP

FAN

𝑦 = (1	 +	sin(𝑥)) sin(2𝑥)

KAN

Transformer

MLP

FAN

𝑦 =
𝑒!"# $

1 + cos%(2𝑥)

Figure 3: The performance of FAN in periodicity modeling compared to MLP, KAN, and Trans-
former, where the green line represents the test data within the domain of the training data, while
the blue line represents the test data outside the domain of the training data.

4 EXPERIMENTS

In this section, we first introduce the baselines and implementation details of our experiments. Sec-
ond, we verify the superiority of FAN in periodicity modeling tasks (Section 4.1). Third, we demon-
strate the effectiveness and generalizability of FAN across a range of real-world tasks, including
symbolic formula representation (Section 4.2), time series forecasting (Section 4.3), language mod-
eling (Section 4.4), and image recognition (Section 4.5). Finally, we conduct further analysis on
FAN’s running time and hyperparameter impact. (Section 4.6).

Baselines. In our experiments, we mainly compare FAN with the following baselines: 1) MLP
(Rosenblatt, 1958), 2) Transformer (Vaswani et al., 2017), 3) KAN (Liu et al., 2024), 4) LSTM
(Hochreiter & Schmidhuber, 1997), 5) Mamba (Gu & Dao, 2023), 6) CNN (LeCun et al., 1998).
Details of the baselines are given in Appendix F. Moreover, we also include the following variants of
FAN into our comparisons: I) FAN (Gated): a variant of FAN that adds gates to control the tendency
of the layer, with the formula defined as ϕg(x) = [g·cos(Wpx)||g·sin(Wpx)||(1−g)·σ(Bp̄+Wp̄x)],
where g is a learnable parameter. II) Transformer with FAN and Transformer with FAN (Gated):
we replace each MLP layer in Transformer with the FAN layer computed via Eq. (9) and the layer

5
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Figure 4: Comparison of training and test losses for different models on the tasks of learning com-
plex periodic functions.

of FAN (Gated), respectively. III) CNN with FAN: similarly, we replace each MLP layer in CNN
with the FAN layer.

Implementation Details. We conduct our experiments on a single GPU of Tesla A100-PCIe-40G.
Unless otherwise specified, we use the following hyperparameters in the experiments. The model
architecture consists of 3-12 layers, the activation function σ is set to GELU (Hendrycks & Gimpel,
2016), and the dimension of the projection matrix Wp is set to dp = 1

4dh, where dh denotes the
dimension of the hidden layers. We employ the AdamW optimizer (Loshchilov & Hutter, 2019) for
the model’s training process. More experimental details and comprehensive setups of each task can
be found in Appendix C.

4.1 PERIODICITY MODELING

Setup. In periodic modeling tasks, we select periodic functions with practical significance and
compare the models’ performance in learning the underlying principles of periodicity. Specifically,
we generate data from periodic functions over a large domain, using a portion of this domain as
training data and the entire domain as test data, i.e., a part of test data would be out of the domain
of training data. In this task, we compare FAN and its variant, FAN (Gated), with MLP, KAN, and
Transformer. The input of each task is a scalar.

Results. Figure 3 illustrates the performance of FAN and other baselines in periodicity modeling.
The results indicate that existing neural networks, including MLP, KAN, and Transformers, exhibit
notable deficiencies in their ability to model periodicity. Although they attempt to fit these periodic
functions, their ability limits their performance in modeling a large domain of periodicity, including
the test data within and outside the domain of the training data. In contrast, FAN significantly
outperforms the baselines in all these tasks of periodicity modeling. Moreover, FAN performs
exceptionally well on the test data both within and outside the domain, indicating that it is genuinely
modeling periodicity rather than merely memorizing the training data.

We also analyze the training process of different models on the tasks of learning complex periodic
functions, as illustrated in Figure 4, which leads to the following findings. 1) FAN far exceeds the
other baselines in both convergence speed and final effects. 2) In comparison to FAN, FAN (Gated)
often achieves faster convergence, but the final performance remains comparable. 3) Although the
baselines show stabilization or gradual reductions in training loss as the number of epochs increases,
their modeling may have diverged considerably from the distribution of the test data, resulting in a

6
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Figure 5: Comparisons of FAN with the baselines, including MLP, KAN, and Transformer, across
varying numbers of parameters on symbolic formula representation tasks.

sharp increase in test loss. This phenomenon further demonstrates the shortcomings of these models
in capturing periodicity.

4.2 SYMBOLIC FORMULA REPRESENTATION

Setup. Symbolic formula representation is a common task in both mathematics and physics. We
follow the experiments conducted in KAN’s paper (Liu et al., 2024), adhering to the same tasks, data,
hyperparameters, and baselines. In addition to the original baselines, we also include Transformer
for comparison in this task.

Results. Figure 5 demonstrates the performance of different models applied to four common func-
tions in mathematics and physics. From Figure 5, we can observe that while KAN remains com-
petitive with FAN when the number of parameters is small, its performance declines clearly as the
number of parameters increases, which exhibits a U-shaped trend (Liu et al., 2024). In contrast, as
the number of parameters becomes large, FAN consistently outperforms the other baselines, includ-
ing MLP, KAN, and Transformer, in fitting these functions, despite many of these functions being
only partially periodic or entirely non-periodic. This may be attributed to FAN’s ability to capture
and model both periodic and non-periodic features and the advantages of fewer parameters. These
results indicate that although FAN enhances its ability to model periodicity, it does not compromise
its capacity to fit non-periodic functions.

Table 2: Performance of different sequence models on time series forecasting tasks, where Input
Length = 96, the bold values indicate the lowest value on each row, and the improve means the
relative improvements of using FAN and FAN (Gated) based on Transformer.

Dataset Output
Length

LSTM
(12.51 M)

Mamba
(12.69 M)

Transformer
(12.12 M)

Transformer with FAN (11.06 M)

Gated Default

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Weather

96 1.069 0.742 0.552 0.519 0.413 0.438 0.292 0.380 0.313 0.431
192 1.090 0.778 0.700 0.595 0.582 0.540 0.535 0.550 0.472 0.525
336 0.992 0.727 0.841 0.667 0.751 0.626 0.637 0.602 0.719 0.581
720 1.391 0.892 1.171 0.803 0.967 0.715 0.845 0.706 0.732 0.670

Exchange

96 0.938 0.794 0.908 0.748 0.777 0.681 0.685 0.644 0.657 0.623
192 1.241 0.899 1.328 0.925 1.099 0.800 0.998 0.757 0.968 0.741
336 1.645 1.048 1.512 0.992 1.614 1.029 1.511 0.961 1.266 0.905
720 1.949 1.170 2.350 1.271 2.163 1.204 1.658 1.104 2.063 1.205

Traffic

96 0.659 0.359 0.666 0.377 0.656 0.357 0.647 0.355 0.643 0.347
192 0.668 0.360 0.671 0.381 0.672 0.363 0.649 0.353 0.657 0.354
336 0.644 0.342 0.665 0.374 0.673 0.360 0.665 0.358 0.656 0.353
720 0.654 0.351 0.662 0.364 0.701 0.380 0.682 0.369 0.673 0.363

ETTh

96 0.999 0.738 0.860 0.697 1.139 0.853 0.842 0.736 0.873 0.707
192 1.059 0.759 0.849 0.700 1.373 0.932 0.885 0.748 0.914 0.741
336 1.147 0.820 1.005 0.745 1.261 0.924 0.980 0.770 0.999 0.793
720 1.206 0.847 0.994 0.758 1.056 0.819 1.002 0.798 1.031 0.818

Average
(Improve) – 1.083 0.726 1.002 0.668 0.994 0.689 0.845

↓ 15.0%
0.637
↓ 7.6%

0.852
↓ 14.3%

0.635
↓ 7.9%

7
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4.3 TIME SERIES FORECASTING

Setup. Time series forecasting plays a critical role in various real-world applications. In our ex-
periments, we employ four public datasets of this task to assess the model performance on time
series forecasting, including Weather (Wu et al., 2021a), Exchange (Lai et al., 2018), Traffic (Wu
et al., 2021a), and ETTh (Zhou et al., 2021) datasets. For each dataset, we input 96 previous time
steps and forecast the subsequent time steps of {96, 192, 336, 720}. In this task, we choose the
sequence models as baselines, including LSTM, Mamba, Transformer, Transformer with FAN , and
Transformer with FAN (Gated).

Results. As presented in Table 2, we compare the performance of Transformer with FAN and
other sequence models for time series forecasting tasks on four public datasets. In most cases,
Transformer with FAN and its gated version achieves the best performance on these tasks, compared
to LSTM, Mamba, and the standard Transformer. The improvements of Transformer with FAN and
FAN (Gated) over the standard Transformer are notable, with the average relative improvements
ranging from 14.3% to 15.0% for MSE and from 7.6% to 7.9% for MAE. These results suggest
that incorporating explicit periodic pattern encoding within neural networks improves time series
forecasting performance in real-world applications.

4.4 LANGUAGE MODELING

Setup. Language modeling is a fundamental task in natural language processing. In this exper-
iment, we conduct language modeling using the SST-2 (Socher et al., 2013) dataset and evaluate
the model’s performance on its test set, as well as on the related datasets such as IMDB (Maas
et al., 2011), Sentiment140 (Sahni et al., 2017), and Amazon Reviews (Linden et al., 2003). These
four classic datasets all belong to the field of sentiment analysis. In this task, the comparisons are
between Transformer with FAN and FAN (Gated), along with other sequence models, including
LSTM, Mamba, and Transformer.

Table 3: Performance of different sequence models on language modeling tasks, where the models
are trained on the training set of SST-2 and evaluated on the other datasets, the bold value indicates
the best performance on each column, the bold italic indicates the best performance other than
Transformer with FAN and FAN (Gated), and the improvements represent our relative improvements
of using FAN based on Transformer.

Model Num of
Params

SST-2 (test) IMDB Sentiment140 Amazon Reviews

Loss ↓ Acc ↑ Loss ↓ Acc ↑ Loss ↓ Acc ↑ Loss ↓ Acc ↑
LSTM 120.14M 0.4760 0.8060 0.6449 0.6438 0.8026 0.5979 0.5791 0.7152
Mamba 129.73M 0.4335 0.7959 0.6863 0.6203 0.7871 0.5874 0.6163 0.6719
Transformer 109.48M 0.4297 0.8119 0.5649 0.6994 0.8891 0.5779 0.5563 0.7155
w/ FAN (Gated) 95.33M 0.4250 0.8039 0.5817 0.7012 0.7941 0.6194 0.4835 0.7689
w/ FAN 95.32M 0.4094 0.8154 0.5225 0.7398 0.8257 0.6093 0.4748 0.7763
Improvements ↓ 14.16M ↓ 4.72% ↑ 0.43% ↓ 7.51% ↑ 5.78% ↓ 7.13% ↑ 5.43% ↓ 14.65% ↑ 8.50%

Results. We report the performance comparison between different sequence models across four
public sentiment analysis datasets, as shown in Table 3. The results indicate that Transformer with
FAN achieves clear improvements compared to the standard Transformer and other baselines, such
as LSTM and Mamba, especially for zero-shot OOD performance on IMDB, Sentiment140, and
Amazon Reviewers datasets. Using FAN achieves the relative improvements up to 14.65% and
8.50% in terms of Loss and Accuracy respectively, while reducing the number of parameters by
about 14.16M. The result indicates the potential of periodicity modeling to enhance both effective-
ness and generalization on cross-domain language modeling and sentiment analysis tasks.

4.5 IMAGE RECOGNITION

Setup. Image recognition is a key computer vision task where image content is identified and
categorized. Our evaluation contains four public benchmarks of image recognition: MNIST (LeCun
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et al., 2010), MNIST-M (Ganin et al., 2016), Fashion-MNIST (Xiao et al., 2017), and Fashion-
MNIST-C (Weiss & Tonella, 2022), where MNIST is used for digit recognition, Fashion-MNIST
assesses clothing classification, MNIST-M and Fashion-MNIST-C are their variant for robustness.

Results. We also apply FAN to image recognition tasks on four classic benchmarks, as shown in
Table 4. Experimental results show that using FAN outperforms the standard CNN in most cases for
the optimal Accuracy, Accuracy, and OOD Accuracy, as well as achieves clear improvements in the
optimal OOD Accuracy. We believe that there are some latent periodic features in image recognition
tasks, and FAN’s ability to model these periodic features can help CNN achieve competitive or
superior performance, especially in OOD scenarios.

Table 4: Results on image recognition tasks. Accuracy* means best Accuracy, Accuracy means
Accuracy at the last epoch, and OOD Accuracy means Accuracy on other paired datasets. Bold
values indicate the highest value between CNN and CNN w/ FAN under the same setting.

Dataset Accuracy* ↑ OOD Accuracy* ↑ Accuracy ↑ OOD Accuracy ↑
CNN w/ FAN CNN w/ FAN CNN w/ FAN CNN w/ FAN

MNIST 99.63 99.67 28.85 30.3 99.55 99.64 22.12 21.64
MNIST-M 94.52 94.23 82.85 83.55 94.29 94.22 80.07 81.44

Fashion-MNIST 94.15 94.47 49.82 51.88 94.05 94.21 48.08 50.3
Fashion-MNIST-C 88.61 88.82 91.45 91.59 88.6 88.59 91.41 91.47

4.6 FURTHER ANALYSIS OF FAN

Table 5: Comparison of actual runtime between FAN and MLP.
1024×1024 2048×2048 4096×4096 8192×8192

MLP 0.064 ms 0.114 ms 0.212 ms 0.938 ms
FAN 0.128 ms 0.133 ms 0.211 ms 0.704 ms

Runtime of FAN. We analyze
the actual running time of the
FAN Layer compared to the
MLP Layer with different input
and output dimensions, as shown
in Table 5. The experimental re-
sults show that MLPs exhibit smaller runtimes when the input and output sizes are small, due to
PyTorch’s optimization of MLP. However, as the input and output sizes continue to increase, matrix
computations become the main contributor to runtime. At this point, FAN’s fewer parameters and
reduced FLOPs begin to show significant advantages. Note that FAN can be further optimized from
the underlying implementation.

The impact of hyperparameter dp. In our experiments, we fix the hyperparameter dp = 1
4dh

intuitively for FAN, where dh denotes the dimension of the hidden layers. As shown in Figure 7
of Appendix, we investigate the impact of varying dp empirically on task performance by changing
itself. The results indicate that performance initially improves as dp increases, but then decreases
beyond a certain point. This trend may be attributed to the number of potential periodic features
specific to each task. Furthermore, there remains room for further improvements with the better
hyperparameter setup of dp.

5 RELATED WORK

In this section, we outline the two most relevant directions and associated papers of this work.

Learning Periodicity with Neural Networks. Periodic functions are one of the most basic func-
tions of importance to human society and natural science (Newton, 1687; Osborn & Sensier, 2002;
Kwasnicki, 2008; De Groot & Franses, 2012; Zhang et al., 2017). However, commonly used neural
networks, such as MLPs and transformers, struggle with modeling periodicity. This limitation is
attributed to the lack of inherent “periodicity” in their inductive biases. Some previous works (Sil-
vescu, 1999; Liu, 2013; Parascandolo et al., 2016; Uteuliyeva et al., 2020) proposed merely using
standard periodic functions themselves or their linear combinations as activation functions, which

9
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only work well on some shallow and simple models. On this basis, work (Liu et al., 2020) intro-
duced the Snake function, i.e., x+ sin2(x), as the activation function. However, we observed that it
can fit periodic functions to a certain extent, but its effect is limited especially for OOD scenarios,
as demonstrated in Appendix D. Therefore, although some previous studies have attempted to inte-
grate periodic information into neural networks, their actual performance and range of applications
remain heavily constrained.

Fourier-based Neural Network. Previous studies have explored Fourier-based neural networks
to enhance the computational tasks (Zuo & Cai, 2005; Tan, 2006; Zuo et al., 2008; Li et al., 2021b;
Chen et al., 2022). Fourier Neural Networks (Silvescu, 1999; Ngom & Marin, 2021) are shallow
feedforward networks that employ cosine activation functions to map inputs to their Fourier decom-
positions. Work (Lee et al., 2021) directly utilized the Fourier Series constructed by a shallow neural
network for generating periodic signals. In addition, work (Jiang et al., 2022) introduces Fourier Se-
ries at the end of models to embed periodic components within the network. These approaches
generally possess a similar principle as Eq. (3), using a neural network to simulate the formula of
Fourier Series. However, this leads to the same problem as in Eq. (5), i.e., they are hard to serve as
building blocks for deep neural networks, which limits these approaches’ capabilities.

In this paper, we design FAN to address these challenges, which performs exceptionally well on
periodicity modeling and a range of real-world tasks.

6 DISCUSSION

In this section, we mainly discuss the expressive power and application scope of FAN as follows.

First, FAN theoretically possesses the same expressive power as MLP as it also adheres to the uni-
versal approximation theorem, which ensures its capacity for functional approximation (refer to
Appendix E for the detailed explanation). Moreover, FAN introduces an important enhancement
by explicitly incorporating periodicity, a feature absent in traditional MLPs. Through this design,
FAN not only retains the capabilities of MLP but also enhances its ability to capture periodic char-
acteristics in data. For periodic tasks and some non-periodic tasks that are partially periodic, FAN
leverages its effective periodicity modeling ability to yield better results. Therefore, FAN can be
seen as a promising alternative to MLP.

Second, beyond tasks that explicitly require periodicity modeling, FAN also has utility in a broader
range of applications, which has been evidenced by our extensive experiments on real-world tasks,
such as symbolic formula representation, time series forecasting, language modeling, and image
recognition, where FAN achieve competitive or superior performance than MLP and other base-
lines. In fact, many machine learning tasks may harbor hidden forms of periodicity, even without
explicitly including periodicity, such as mathematical operations and logic reasoning. If the neural
network lacks the ability to model periodicity, it could impair its learning efficiency. From a deeper
perspective, periodicity is not just a data feature but reflects a form of structural knowledge—one
that allows for the transfer and reuse of abstract rules and principles across different contexts.

7 CONCLUSION

In this paper, we have proposed Fourier Analysis Network (FAN), a novel neural network archi-
tecture for tackling the problem of periodicity modeling, which utilizes Fourier Series to facilitate
capturing the underlying principles within data and reasoning. Experimental results demonstrate
that FAN can successfully fit a variety of both basic and complex periodic functions, whereas other
approaches failed. Moreover, FAN and its combination with Transformer also exhibit superior per-
formance in multiple real-world tasks, including symbolic formula representation, time series fore-
casting, language modeling, and image recognition tasks, outperforming existing neural networks
such as MLP, KAN, Transformer, CNN, LSTM, and Mamba. These promising results, especially
the stronger performance and the fewer parameters and FLOPs compared to MLP, suggest its po-
tential to become a key component of foundational models. In the future, we aim to further increase
the scale of FAN and expand its scope of application, reinforcing its role as a versatile and powerful
building block in the machine learning landscape.
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A MLP

The MLP layer Φ(x) is defined as:

Φ(x) = σ(Bm +Wmx), (12)

where Bm ∈ Rdm and Wp̄ ∈ Rdx×dm are learnable parameters with the hyperparameter dm indi-
cating the first dimension of Wm, σ denotes the activation function, and MLP can be defined as the
stacking of the MLP layer Φ(x):

MLP(x) = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1 ◦ x, (13)

where

Φl(x) =

{
σ(Bl

m +W l
mx), if l < L,

BL +WLx, if l = L.
(14)

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXPERIMENTS ON PERIODICITY MODELING TASKS.

More experimental results on periodicity modeling tasks are shown in Figure 6.

KAN

Transformer

MLP

FAN

𝑦 = sin	(𝑥	 + 	sin	(2𝑥))

KAN

Transformer

MLP

FAN

𝑦 = sin 𝑡 cos!(2𝑡) + cos 𝑡 sin!(3𝑡)

Figure 6: Additional Experiments on Periodicity Modeling Tasks.

B.2 FAN FOR SOLVING SCIML PROBLEMS

We conduct experiments on the SciML problem that includes the Fourier function class following
the work (Li et al., 2021a). The Burgers’ equation, a non-linear partial differential equation, is fre-
quently used in scientific computing to model shock waves and traffic flow, among other phenomena.
The detailed error rate on Burgers’ equation is listed in the Table 6. We can find that replacing the
MLP Layer with FAN Layer in Fourier Neural Operator (FNO) (Li et al., 2021a) can achieve clear
improvements on each setting of resolution s of this task.

B.3 COMPARISON WITH FREQUENCY-BASED MODELS IN TIME SERIES FORECASTING
TASKS

To compare with frequency-based models in Time Series Forecasting tasks such as FEDformer
(Zhou et al., 2022), we replace MLP with FAN in frequency-based models. We present the experi-
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Table 6: The error rate on Burgers’ equation. The values in the table represent the Average Relative
Error for Burgers’ equation with lower values indicating better performance.

Model s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192

FNO 5.93% 6.14% 6.03% 6.75% 7.36% 9.93%
FNO with FAN 5.26% 5.17% 5.18% 6.73% 6.35% 7.06%

mental results in Table 7, where the results of FEDformer are cited from its paper directly. From the
results, we can find that FEDformer with FAN can outperform FEDformer in almost all cases.

Table 7: Results of comparison with frequency-based models in time series forecasting tasks.
Dataset Len FEDformer with FAN

MSE MAE MSE MAE

Traffic

96 0.587 0.366 0.577 0.357
192 0.604 0.373 0.601 0.366
336 0.621 0.383 0.620 0.378
720 0.626 0.382 0.619 0.370

Exchange

96 0.148 0.278 0.138 0.267
192 0.271 0.380 0.261 0.371
336 0.460 0.500 0.461 0.503
720 1.195 0.841 1.159 0.827

Electricity

96 0.193 0.308 0.184 0.298
192 0.201 0.315 0.199 0.313
336 0.214 0.329 0.212 0.325
720 0.246 0.355 0.239 0.347

B.4 COMPARISON WITH DIRECTLY LEARNING THE COEFFICIENTS

We compare FAN with a baseline of directly learning the coefficients, which inputs sin(x) and
cos(x) and then uses the MLP Layer instead of the FAN Layer to model the Fourier coefficients. In
this setting, frequencies are fixed and only the coefficients are learned, which may limit the model’s
ability to capture patterns not aligned with these frequencies. Taking simple f(x) = x mod 5 as an
example, this setting may not even converge at all, because the frequency of x mod 5 is inconsistent
with sin(x) and cos(x). The experimental results of their loss are shown in Table 8.

Table 8: Comparison of FAN and directly learning the coefficients on fitting f(x) = x mod 5.
Epoch 50 100 150 200

Directly learning the coefficients 2.10 2.09 2.09 2.08
FAN 0.28 0.23 0.18 0.17

B.5 EXPERIMENTS ON TIME SERIES FORECASTING WITH INSTANCE NORMALIZATION

We conduct experiments on time series forecasting tasks with instance normalization (Ulyanov et al.,
2016), and the results are shown in Table 9. We find that applying instance normalization before the
architecture can effectively improve the performance.

B.6 THE INFLUENCE OF HYPERPARAMETERS dP

We evaluate the influence of hyperparameters dp as shown in Figure 7.
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Table 9: Results on time series forecasting tasks with instance normalization, where Input Length
= 96, the bold values indicate the lowest value on each row, and the improve means the relative
improvements of using FAN and FAN (Gated) based on Transformer.

Dataset Output
Length

Transformer
(12.12 M)

Transformer with FAN (11.06 M)

Gated Default

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Weather

96 0.1772 0.2301 0.1864 0.2352 0.1756 0.2247
192 0.2438 0.2844 0.2445 0.2834 0.2327 0.2760
336 0.3077 0.3267 0.3156 0.3320 0.3118 0.3291
720 0.4253 0.3982 0.3909 0.3782 0.4113 0.3906

Exchange

96 0.1433 0.2653 0.1157 0.2452 0.1436 0.2666
192 0.2563 0.3552 0.2539 0.3611 0.2651 0.3757
336 0.5273 0.5218 0.4329 0.4891 0.5092 0.5326
720 1.7401 0.9273 1.5783 0.9303 1.0599 0.7657

Traffic

96 0.6160 0.3449 0.6030 0.3334 0.6109 0.3319
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Figure 7: The influence of hyper-parameters dp on language modeling tasks. We use the red dashed
line to represent the performance of the standard Transformer.
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B.7 THE EFFECTIVENESS OF THE FAN LAYER FOR DEEP NEURAL NETWORKS

We evaluate the effect of varying the number of FAN layers from 3 to 20 on periodicity modeling
tasks, employing residual connections to mitigate overfitting. The experimental results show that
both the best training loss and test loss still decrease slowly as the number of layers increases.

Furthermore, on Language Modeling tasks, we replaced 24 MLP Layers of Transformer with 24
FAN Layers, i.e. Transformer with FAN, and it also achieved clear improvements on each task, es-
pecially for OOD zero-shot evaluation scenarios. These findings indicate that FAN Layer is effective
for deep neural networks.
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Figure 8: Performance of Deeper FAN on fitting y = esin
2(πx)+cos(x)+(x mod 3) − 1.

C EXPERIMENTAL DETAILS

C.1 SETUP OF PERIODICITY MODELING

In periodicity modeling tasks, FAN, MLP, and KAN each consist of three layers with comparable
FLOPs, while the Transformer model comprises twelve layers. For consistency, we set the hidden
layer dimension (dh) to 2048 for FAN, MLP, and Transformer. In the case of KAN, we follow its
original paper (Liu et al., 2024), where the spline order (K) and the number of spline intervals (G)
are set to 3 and 50, respectively. We apply a learning rate of 1 × 10−5 for training all models.
We ensured that the data density of each period in tasks was consistent, meaning that each cycle
contained a fixed quantity of 10,000 training data points.

C.2 SETUP OF SYMBOLIC FORMULA REPRESENTATION

In symbolic formula representation tasks, we used the create dataset function from the official
KAN repository to generate the datasets. Each dataset contains 3000 training samples and 1000
test samples, with all input variables randomly sampled from the range [-1, 1]. We followed
the training settings from the original KAN paper, training all methods using LBFGS for 1800
steps. For KAN, we increased the number of grid points to scale up the parameter size, covering
G = {3, 5, 10, 20, 50, 100, 200, 500, 1000}. For other methods, we scaled up the parameter size by
increasing the number of layers and the dimensions of hidden layers.

C.3 SETUP OF TIME SERIES FORECASTING

In time series forecasting task, we implement our model based on the codebase by (Wu et al.,
2021b). Each model comprises 2 encoder layers and 1 decoder layer. We fix the hidden size for
both the Transformer and our model at 512, with the feedforward dimension set to 2048 (four times
the hidden size). The parameter sizes detailed in the main text correspond to the Exchange dataset;
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variations in the number of variables across different datasets influence the linear layers in the model.
We adjust the hidden sizes of the other models to align with the Transformer parameters for fairness.

C.4 SETUP OF LANGUAGE MODELING

In language modeling task, we employ the BERT tokenizer (Devlin et al., 2018) and an embedding
layer with a dimensionality of 768, except for Mamba, which adheres to its default settings as
specified in the original paper (Gu & Dao, 2023). The architecture features 4, 24, and 12 layers with
hidden sizes of 1800, 768, and 768 for LSTM, Mamba, and Transformers, respectively. To mitigate
training stagnation in deeper LSTM models, we reduce the number of layers while increasing the
hidden size to balance the parameters. Importantly, Mamba’s layer count is twice that of a similarly
sized Transformer, as each layer consists of two Mamba blocks (Multihead attention block + MLP
block).

C.5 SETUP OF IMAGE RECOGNITION

In image recognition tasks, we employ a simple CNN generated by ChatGPT as the baseline model,
which consists of four Convolutional Layers and two MLP Layers. We replace MLP with FAN in
CNN, i.e. CNN with FAN, as the counterpart, ensuring that they have similar parameters. For each
task, we use stochastic gradient descent with momentum (SGDM) as the optimizer, the learning rate
is set to 0.01, and the training process runs for 100 epochs.

D COMPARISON OF FAN AND SNAKE ACTIVATION FUNCTION

We compare FAN with Snake, a previous approach used for improving the fitting of periodic func-
tions with neural networks. The results are shown in Figure D.

Snake FAN (Ours)

𝑦 = 	sin(𝑥)

Figure 9: Comparisons of FAN with MLP (Snake) (Liu et al., 2020) in fitting periodic functions.
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E HOW FAN COMPLY WITH UNIVERSAL APPROXIMATION THEOREM

The Universal Approximation Theorem states that a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate continuous functions on compact subsets of
Rn, under mild assumptions on the activation function, which needs to be a non-constant, no-linear,
and continuous function. FAN Layer is defined as ϕ(x) = [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)],
where || denotes concatenation and σ denotes the standard activation function, such as ReLU and
GELU. Since sin and cos functions also satisfy the required conditions of being non-constant, con-
tinuous, and non-linear activation functions, the FAN layer adheres to the Universal Approximation
Theorem.

F MORE DETAILS OF BASELINES

In our experiments, we mainly compare FAN with the following baselines. 1) MLP (Rosenblatt,
1958): the most classic model, which is widely used in the backbone of various models. 2) Trans-
former (Vaswani et al., 2017): a prevalent model known for its self-attention mechanism, which
achieves outstanding performance on various tasks. 3) KAN (Liu et al., 2024): an emerged model
specialized for symbolic formula representation, which uses the b-spline functions instead of fixed
activation functions. 4) LSTM (Hochreiter & Schmidhuber, 1997): a well-known recurrent neu-
ral network (RNN) that can capture long-term dependencies on sequential data. 5) Mamba (Gu &
Dao, 2023): an emerged selective state space model (SSM) that achieves competitive performance
on some tasks with sequential inputs. 6) CNN (LeCun et al., 1998): convolutional neural network
contains the convolutional layers, which are effective in processing image data.
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