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ABSTRACT

In this study, we address the problem of calibrating network confidence while
adapting a model that was originally trained on a source domain to a target do-
main using unlabeled samples from the target domain. The absence of labels from
the target domain makes it impossible to directly calibrate the adapted network on
the target domain. To tackle this challenge, we introduce a calibration procedure
that relies on estimating the network’s accuracy on the target domain. The net-
work accuracy is first computed on the labeled source data and then is modified
to represent the actual accuracy of the model on the target domain. The proposed
algorithm calibrates the prediction confidence directly in the target domain by
minimizing the disparity between the estimated accuracy and the computed con-
fidence. The experimental results show that our method significantly outperforms
existing methods, which rely on importance weighting, across several standard
datasets.

1 INTRODUCTION

Deep Neural Networks (DNN) have shown remarkable accuracy in tasks such as classification and
detection when sufficient data and supervision are present. In practical applications, it is crucial for
models not just to be accurate, but also to indicate how much confidence users should have in their
predictions. DNNs generate confidence scores that can serve as a rough estimate of the likelihood
of correct classification, but these scores do not guarantee a match with the actual probabilities (Guo
et al., 2017). Neural networks tend to be overconfident in their predictions, despite having higher
generalization accuracy, due to the possibility of overfitting on negative log-likelihood loss without
affecting classification error (Guo et al., 2017; Lakshminarayanan et al., 2017; Hein et al., 2019).
A classifier is said to be calibrated with respect to a dataset sampled from a given distribution if its
predicted probability of being correct matches its true probability. Various methods have been intro-
duced to address the issue of over-confidence. Network calibration can be performed in conjunction
with training (see e.g. (Mukhoti et al., 2020; Müller et al., 2019; Zhang et al., 2022)). Post-hoc scal-
ing methods for calibration, such as Platt scaling (Platt et al., 1999), isotonic regression (Zadrozny
& Elkan, 2002), and temperature scaling (Guo et al., 2017), are commonly employed. These tech-
niques apply calibration as post-processing, using a hold-out validation set to learn a calibration map
that adjusts the model’s confidence in its predictions to become better calibrated.

The implementation of deep learning systems on real-world problems is hindered by the decrease
in performance when a network trained on data from one domain is applied to data from a different
domain. This is known as the domain shift problem. There are two main types of domain shift;
namely, covariate shift (Sugiyama et al., 2007) and label shift (Lipton et al., 2018). In this study, we
focus on covariate shift, a scenario where the distribution of features changes across domains, but
the distribution of labels remains constant given the features, since it is more frequent in recognition
tasks. In an Unsupervised Domain Adaptation (UDA) setup we assume the availability of data from
the target domain but without annotation. There is a plethora of UDA methods that are based on
strategies such as adversarial training methods that aim to align the distributions of the source and
target domains (Ganin et al., 2016), or self-training algorithms that are based on computing pseudo
labels for the target domain data (Zou et al., 2019).
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Table 1: Comparison of calibration methods for unsupervised domain adaptation (UDA).
Calibration Method Designed to Works without Works on Approach Granularity

domain shift target label target data

Temp. Scaling (Guo et al., 2017) × × × – Instance level
CPCS (Park et al., 2020) ✓ ✓ × Importance weight estimation Instance level
TransCal (Wang et al., 2020) ✓ ✓ × Importance weight estimation Instance level
UTDC (proposed) ✓ ✓ ✓ Estimates target accuracy Dataset level

In this study we tackle the problem of calibrating predicted probabilities when transferring a trained
model from a source domain to a target domain without any given labels. Studies show that present-
day UDA methods are prone to learning improved accuracy at the expense of deteriorated prediction
confidence (Wang et al., 2020). Calibrating the confidence of the adapted model on data from the
target domain is challenging due to the coexistence of the domain gap and the lack of target labels.
Current calibration methods that are applied to the adapted model use the labeled validation set from
the source domain for calibration (Park et al., 2020; Wang et al., 2020; Pampari & Ermon, 2020).
They apply Importance Weighting (IW) to correct the shift from the source to the target by assigning
higher weights to source examples that resemble those in the target domain. In practice, even after
the domain adaptation process, the accuracy on the source domain where labels are available, is
greater than the accuracy on the target domain. Hence, the accuracy estimation when calibrating
the target domain using the source data is too optimistic. Calibrating neural networks is necessary
because they are often overconfident in their predictions compared to their actual accuracy (Guo
et al., 2017; Lakshminarayanan et al., 2017; Hein et al., 2019). If the accuracy is overestimated, it
conceals the overconfidence issue, leading to a suboptimal temperature scaling value in the case of
temperature scaling. Another drawback of IW methods is that they only use the unlabeled target
data to train a binary source/target classifier that is used to set the weights of the source samples.
However, the network confidence is independent of the true labels and can thus be directly computed
on the target data.

We propose a UDA calibration method that computes the confidence and estimates the accuracy
directly on the target domain. We first assess the accuracy in the target domain. Then we find
calibration parameters that minimize the Expected Calibration Error (ECE) measure (Naeini et al.,
2015) on the target domain. A comparison of typical calibration methods is shown in Table 1. Our
major contributions include the following:

• We show that importance weighting relies on an overly optimistic estimation of the target
accuracy and thus is not relevant for large covariate shift.

• We propose a calibration method that is directly applied to the target domain data, based
on a realistic estimation of the accuracy of the adapted model on the target domain.

We evaluated our UDA calibration algorithm on several standard domain adaptation benchmarks.
The results of our approach on all benchmarks consistently outperform previous works, creating a
new standard of calibrating networks for unsupervised domain adaptations.

2 BACKGROUND

Consider a network that classifies an input image x into k pre-defined categories. The last layer
of the network is comprised of k real numbers z = (z1, ..., zk) known as logits. Each of these
numbers is the score for one of the k possible classes. The logits are then converted into a soft
decision distribution using a softmax layer: p(y = i|x) = exp(zi)∑

j exp(zj)
where x is the input image

and y is the image class. Despite having the mathematical form of a distribution, the output of the
softmax layer does not necessarily represent the true posterior distribution of the classes, and the
network often tends to be over-confidenct in its predictions (Guo et al., 2017; Lakshminarayanan
et al., 2017; Hein et al., 2019). The predicted class is calculated from the output distribution by
ŷ = argmaxi p(y = i|x) = argmaxi zi. The network confidence for this sample is defined by
p̂ = p(y = ŷ|x) = maxi p(y = i|x). The network accuracy is defined by the probability that
the most probable class ŷ is indeed correct. The network is said to be calibrated if the estimated
confidence coincides with the actual accuracy.
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The Expected Calibration Error (ECE) (Naeini et al., 2015) is the standard metric used to measure
model calibration. It is defined as the expected absolute difference between the model’s accuracy
and its confidence. In practice, the ECE is computed on a given validation set (x1, y1), ..., (xn, yn).
Denote the predictions and confidence values of the validation set by (ŷ1, p̂1), ..., (ŷn, p̂n). To com-
pute the ECE measure we first divide the unit interval [0, 1] into M equal size bins b1, ..., bM and let
Bm = {t|p̂t ∈ bm} be the set of samples whose confidence values belong to bin bm. The network
average accuracy at this bin is defined as Am = 1

|Bm|
∑

t∈Bm
1 (ŷt = yt), where 1 is the indicator

function, and yt and ŷt are the ground-truth and predicted labels for xt. The average confidence
at bin bm is defined as Cm = 1

|Bm|
∑

t∈Bm
p̂t. If the network is under-confident at bin bm then

Am > Cm and vice-versa. The ECE is defined as follows:

ECE =

M∑
m=1

|Bm|
n

|Am − Cm| . (1)

The ECE is based on a uniform bin width. If the model is well-trained, most of the samples should
lie within the highest confidence bins. Hence, the low confidence bins should be almost empty and
therefore have no influence on the computed value of the ECE. For this reason, we can consider
another metric, Adaptive ECE (adaECE) where the bin sizes are calculated so as to evenly distribute
samples between bins (Nguyen & O’Connor, 2015):

adaECE =
1

M

M∑
m=1

|Am − Cm| (2)

such that each bin contains 1/M of the data points with similar confidence values.

Temperature Scaling (TS), is a standard, highly effective technique for calibrating the output distri-
bution of a classification network (Guo et al., 2017). It uses a single parameter T > 0 to rescale logit
scores before applying the softmax function to compute the class distribution. Temperature scaling
is expressed as follows:

pT (y = i|x) = exp(zi/T )∑k
j=1 exp(zj/T )

, i = 1, . . . , k (3)

s.t. z1, ..., zk are the logit values obtained by applying the network to input vector x. The optimal
temperature T for a trained model can be found by maximizing the log-likelihood

∑
t log pT (yt|xt)

for the held-out validation dataset. Studies show that finding the optimal T by directly minimizing
the ECE/adaECE measures yields better calibration results (Mukhoti et al., 2020). The adaECE
measure was found to be much more robust and effective for calibration than ECE. In this study we
used the adaECE for both calibration and evaluation.

3 UNSUPERVISED TARGET DOMAIN CALIBRATION

We first formulate the problem of calibration under distribution shift. Let x denote the input to the
classifier network and y be its label. We are given a labeled source domain validation-set dataset, de-
noted as S = {(xi

s, y
i
s)}

ns
i=1 with ns samples, and an unlabeled target domain dataset T = {xi

t}
nt
i=1

with nt samples. Adapting the network trained on the source domain to the target domain in an
unsupervised manner without access to the labels can be achieved using various methods. Here,
our goal is to calibrate the confidence of the adapted network prediction on samples from the target
domain. For the sake of simplification, the adapted network will simply be referred to as the “net-
work”, the source domain validation set data as the “source data”, and the unlabeled target domain
data as the “target data”.

Our method involves calibrating the adapted network directly on the target data. It is based on
the observation that when calibrating by minimizing the adaECE score, it is unnecessary to know
whether each individual prediction is correct. Instead, we only need to know the mean accuracy for
each bin. Fortunately, there are techniques which, given a trained network, can estimate the network
accuracy on data samples from a new domain without access to their labels (Deng & Zheng, 2021;
Guillory et al., 2021; Garg et al., 2022). In this study we use the accuracy estimation method
described in (Deng & Zheng, 2021). Their method suggests learning a dataset-level regression
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Figure 1: A scheme of the UTDC Calibration Framework.

problem. First, augment the source domain validation set, denoted by Ds, using various visual
transformations such as resizing, cropping, horizontal and vertical flipping, Gaussian blurring, and
more. We then create n meta-datasets, denoted as D1, ..., Dn (in our implementation we set n =
50). This process preserves the labels and we can thus compute the model’s accuracy on these
datasets denoted by a1, ..., an. Each dataset Di is represented as a Gaussian distribution using its
mean vector µi and its diagonal covariance matrix Σi. Let Fi be the Fréchet distance (Dowson &
Landau, 1982) between the Gaussian representations of Ds and Di. Fi measures the domain gap
between the original dataset Ds and Di. Next, a linear regression model is fitted to the data set
(F1, a1), ..., (Fn, an) in the form of â = w ·F + b. Finally, the linear regression model is employed
to predict the accuracy of the network on the unlabeled data from the target domain.

We next suggest a simple, intuitive, and very effective method that calibrates the network directly
on the target domain. We first compute the overall network accuracy on the source data Asource
and apply (Deng & Zheng, 2021) to estimate the network accuracy on the target domain. Denote
the estimated target accuracy by Ãtarget. Next, we divide the source data into M equal-size bins
according to their confidence values and compute the corresponding network accuracy Asource,m at
each bin m. We also divide the target data into M equal-size bins according to their confidence
values and estimate the binwise accuracy of the target Atarget,m by rescaling the binwise accuracy on
the source domain in the following way:

Ãtarget,m = Asource,m ·
Ãtarget

Asource
, m = 1, ...,M. (4)

The estimated network accuracy on the target data Ãtarget obtained by an unsupervised adaptation is
usually smaller than its accuracy on the source data Asource. Thus, through this accuracy rescaling,
we obtain a more realistic estimation of the bin-wise network average accuracy on the target data.
Let Ctarget,m be the bin-wise network average confidence values computed on the target data. Substi-
tuting the estimated accuracy term, based on the source labeled data (4) into the adaECE definition
(2), yields the following adaECE measure for the target domain in a UDA setup:

UDA-adaECE =
1

M

M∑
m=1

∣∣∣Ãtarget,m − Ctarget,m

∣∣∣ . (5)

For each calibration method whose parameters can be found by minimizing the adaECE measure, we
can form a UDA variant in which UDA-adaECE (5) is minimized instead of adaECE (2). Examples
of these calibration methods include Temperature Scaling (TS), Vector Scaling, Matrix Scaling (Guo
et al., 2017), Mix-n-Match (Zhang et al., 2020), Weight Scaling (Frenkel & Goldberger, 2022), and
others.

We next demonstrate the UDA calibration principle in the case of TS calibration. We can determine
the temperature that minimizes the UDA-adaECE measure (5) by conducting a grid search on the
possible values. Given the division of the target data into bins, we can also compute the binwise
average confidence after temperature calibration by T on the target Ctarget,m(T ). We can then define
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Algorithm 1 Unsupervised Target Domain Calibration (UTDC)
input: A labeled validation set from the source domain, an unlabeled dataset from the target
domain, and a k-class classifier which was adapted to the target domain.

- Compute the source accuracy Asource and estimate the target accuracy Ãtarget
using (Deng & Zheng, 2021).

- Divide the source points into M equal size sets based on their confidence and compute
the binwise mean accuracy: Asource,m, m = 1, ...,M .

- Divide the target points into M equal size sets B1, ..., BM based on their confidence.
for each candidate value of T do

- Compute the binwise mean confidence on the target:

Ctarget,m(T ) =
1

|Bm|
∑

x∈Bm

k
max
i=1

exp(zx,i/T )∑k
j=1 exp(zx,j/T )

m = 1, ...,M.

s.t. zx,1,...,zx,k are the logit values computed by the network that is fed by x ∈ Bm.
- Compute the adaECE score as a function of T :

UDA-adaECE(T ) =
1

M

M∑
m=1

∣∣∣∣∣Asource,m ×
Ãtarget

Asource
− Ctarget,m(T )

∣∣∣∣∣
end for
output: The optimal temperature: T̂ = argminT UDA-adaECE(T )

the following temperature-dependent adaECE scores:

UDA-adaECE(T ) =
1

M

M∑
m=1

∣∣∣Ãtarget,m − Ctarget,m(T )
∣∣∣ . (6)

The optimal temperature is thus obtained by applying a grid search to find T that minimizes UDA-
adaECE(T ) (6). The proposed Unsupervised Target Domain Calibration (UTDC) algorithm is sum-
marized in Algorithm Box 1 and a scheme of it is shown in Fig. 1.

4 EXPERIMENTS

In this section, we evaluate the capabilities of our UTDC technique to calibrate a network on a target
domain after applying a UDA procedure.

Compared methods. We compared our method to six baselines: (1) Uncalibrated - The adapted
classifier as is, without any post-hoc calibration; (2-4) Source-TS, Source-VS and source-MS - The
adapted network was calibrated by either Temperature Scaling (TS) Vector Scaling (VS) or Matrix
scaling (MS) (Guo et al., 2017) using the labeled validation set of the source domain; (5) CPCS (Park
et al., 2020), and (6) TransCal (Wang et al., 2020), importance weighted UDA calibrators. We also
report Oracle results where the calibration was applied to the labeled data from the target domain
(denoted by Target-TS) and an Oracle version of our approach (denoted by UTDC(*)) where we
used the exact accuracy of the adapted model on the target data instead of estimating it. We used the
adaECE measure computed on the test set of the target domain to evaluate calibration performance.

Datasets. We report experiments on two real-world domain adaptation benchmarks, Office-home
(Venkateswara et al., 2017) and Office-31 (Saenko et al., 2010). Office-home includes four domains
- Art, Real-World, Clipart and Product, represented as A, R, C, and P in the experiments. Office-31
contains three domains - Amazon, Webcam and DSLR, denoted as A, W, D.

Implementation details. We followed the experiment setup of Wang et al. (2020) and used their
code to implement CPCS and TransCal baselines. Follwoing (Wang et al., 2020), we implemented
three different UDA techniques; namely, DANN (Ganin et al., 2016), DANN+E and CDAN+E
(Long et al., 2018). The performance of more recent UDA models (e.g. (Liang et al., 2021; Jin
et al., 2020; Cui et al., 2020)) on the target domain of the evaluated datasets is slightly better but it
is still much worse than the performance on the source domain. We provide a code implementation
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Table 2: Adaptive ECE for top-1 predictions (in %) of Office-home, using 15 bins (with the lowest
in bold ) on various UDA classification tasks and models with different calibration methods.

UDA Method A → R A → C A → P C → R C → P C → A P → R P → C P → A Avg

Uncalibrated 22.23 42.62 30.49 25.18 28.25 33.69 20.32 40.46 38.85 31.34
Source-TS 8.09 24.43 14.89 10.00 14.17 13.85 11.14 27.42 26.60 16.73
Source-VS 10.54 27.54 19.51 12.12 14.65 15.78 11.27 31.55 27.46 18.94
Source-MS 28.62 47.87 35.74 31.62 31.54 40.43 23.59 43.90 40.56 35.99
CPCS 15.84 49.78 23.42 14.02 16.60 18.45 6.31 49.21 25.62 24.36

CDAN+E TransCal 6.01 27.30 9.46 16.67 16.81 21.69 19.90 41.23 39.71 22.09
UTDC 4.46 9.74 7.53 8.36 5.91 8.08 10.45 7.46 9.37 7.93
UTDC(*) 4.30 5.93 7.41 7.85 4.62 10.16 10.76 4.55 9.54 7.24
Target-TS 3.97 5.05 7.19 4.07 4.39 7.07 2.32 4.39 8.57 5.22
Uncalibrated 19.90 39.19 26.75 24.47 26.33 33.53 20.25 40.06 39.25 29.97
Source-TS 6.90 19.80 7.93 6.54 7.01 16.01 15.68 27.87 30.97 15.41
Source-VS 10.15 25.83 15.31 12.13 10.70 17.90 14.69 32.40 31.64 18.97
Source-MS 30.78 52.03 38.39 35.44 35.45 44.21 26.40 45.87 43.33 39.10
CPCS 13.90 50.16 21.32 3.62 7.25 34.74 25.86 22.66 27.97 23.05

DANN+E TransCal 7.21 27.42 12.36 17.81 15.43 29.93 24.64 46.61 45.83 25.25
UTDC 4.14 5.86 5.47 10.28 3.89 6.67 15.33 5.70 12.65 7.78
UTDC(*) 2.68 4.70 4.37 8.55 4.00 4.53 14.60 3.97 6.16 5.95
Target-TS 2.68 2.76 3.67 2.24 3.16 2.99 1.15 1.62 4.55 2.76
Uncalibrated 16.82 31.28 23.11 17.22 20.46 27.38 15.88 33.81 30.13 24.01
Source-TS 6.33 16.41 13.22 2.83 5.00 15.82 10.91 29.09 23.61 13.69
Source-VS 10.03 25.58 15.86 8.10 8.23 15.18 11.86 33.08 27.24 17.24
Source-MS 31.61 50.68 41.31 34.23 36.48 44.23 25.49 44.75 40.17 38.77
CPCS 8.89 33.56 19.99 25.29 9.62 12.82 16.87 27.49 45.93 22.27

DANN TransCal 7.63 29.15 22.20 22.64 22.97 37.66 26.11 50.85 47.53 29.64
UTDC 5.15 4.87 11.24 8.63 5.23 15.08 18.62 12.62 11.23 10.30
UTDC(*) 2.80 5.49 6.21 6.20 3.38 3.44 12.61 5.00 4.67 5.53
Target-TS 2.45 2.38 4.65 2.08 1.73 2.16 1.22 2.35 2.92 2.44

Table 3: Adaptive ECE for top-1 predictions (in %) on Office-31 using 15 bins (with the lowest in
bold) on various UDA classification tasks and models with different calibration methods.

UDA Method Method A → W A → D W → A W → D D → A D → W Avg

Uncalibrated 11.5 10.53 29.63 1.21 29.08 1.33 13.88
Source-TS 6.03 7.43 33.21 0.86 27.25 2.12 12.82
Source-VS 3.74 7.10 33.75 1.52 32.98 1.42 13.42
Source-MS 12.15 16.72 30.76 1.02 29.99 1.38 15.34
CPCS 9.67 12.66 33.47 1.11 28.16 2.18 14.54

CDAN+E TransCal 3.78 9.45 34.43 1.27 33.68 1.56 14.03
UTDC 4.19 5.18 5.15 1.20 5.14 2.18 3.84
UTDC(*) 3.82 5.18 5.09 1.13 25.36 2.18 7.13
Target-TS 3.44 4.67 3.32 0.75 3.20 0.89 2.71
Uncalibrated 13.05 13.55 28.29 0.87 27.15 1.68 14.10
Source-TS 5.18 9.29 26.93 1.31 26.44 2.44 11.93
Source-VS 4.63 8.24 36.64 0.87 31.35 1.55 13.88
Source-MS 18.01 14.02 31.10 1.09 28.51 1.51 15.71
CPCS 15.58 6.81 33.97 1.99 32.69 1.14 15.36

DANN+E TransCal 7.98 5.63 34.53 1.57 31.12 1.59 13.74
UTDC 5.25 5.33 8.99 1.40 12.26 2.41 5.94
UTDC(*) 4.87 6.10 6.86 1.40 6.53 2.44 4.70
Target-TS 3.98 4.77 2.87 0.85 2.80 0.82 2.68
Uncalibrated 10.66 12.59 23.03 1.77 24.43 2.93 12.57
Source-TS 3.89 7.17 29.58 0.98 30.71 4.43 12.79
Source-VS 3.88 7.64 34.50 1.44 32.31 2.84 13.77
Source-MS 21.06 24.70 28.81 1.35 28.45 1.30 17.61
CPCS 16.96 10.10 33.69 2.61 35.39 4.80 17.26

DANN TransCal 10.36 15.62 87.02 2.31 45.79 6.00 27.85
UTDC 3.71 8.70 5.14 2.61 9.26 5.23 5.78
UTDC(*) 5.04 7.52 5.54 2.61 12.25 6.54 6.58
Target-TS 3.53 4.12 2.79 0.97 3.19 1.94 2.76
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of our method for reproducibility https://anonymous.4open.science/r/unsupervised-target-domain-
calibration.

Calibration results. Tables 2 and 3 report the calibration results on Office-home and Office-31
respectively. The results show that UTDC achieved significantly better results than the baseline
methods on both tasks. The calibration obtained by previous IW-based methods was slightly better
(and in some cases even worse) than a network with no calibration or a network that was calibrated
on the source domain. In contrast, the adaECE score obtained by UTDC was almost as good as the
adaECE obtained by an oracle that had access to the labels of the domain samples. In addition to the
adaECE evaluation measure, Table 4 evaluates the average calibration results over all Office-home
tasks, using three other calibration metrics as follows, ECE, Negative Log-Likelihood (NLL) and
Brier Score (BS) (Brier, 1950). We can see there the same trends.

Table 4: calibration metrics results of various UDA calibration methods on the Office-home tasks.

CDAN+E DANN+E DANN
method BS NLL ECE BS NLL ECE BS NLL ECE

Uncalibrated 0.74 3.40 31.32 0.76 3.07 29.92 0.75 2.75 24.08
Source-TS 0.65 2.18 16.79 0.67 2.21 15.40 0.71 2.37 13.71
CPCS 0.71 3.48 24.46 0.72 3.08 23.12 0.76 2.87 22.37
TransCal 0.69 2.70 22.12 0.73 3.08 25.22 0.81 3.72 29.71
UTDC 0.62 1.95 8.01 0.64 2.01 7.81 0.69 2.26 10.35
UTDC(*) 0.62 1.95 7.21 0.63 1.99 5.94 0.68 2.18 5.53
Target-TS 0.61 1.92 5.41 0.63 1.96 2.72 0.68 2.14 2.78

Table 5: Computed temperature on various UDA Office-home tasks, and calibration methods using
CDAN+E.

UDA Method A → R A → C A → P C → R C → P C → A P → R P → C P → A Avg

Source-TS 1.96 2.02 2.02 1.87 1.90 2.06 1.63 1.72 1.68 1.87
CPCS 1.46 0.57 1.49 1.68 1.75 2.05 1.93 0.50 1.73 1.46
TransCal 2.12 1.86 2.39 1.50 1.74 1.62 1.03 0.96 0.95 1.57

CDAN+E UTDC 2.27 2.90 2.91 1.97 2.44 2.54 1.67 2.93 2.89 2.50
UTDC(*) 2.29 3.21 2.68 2.00 2.62 2.30 1.65 3.41 2.90 2.56
Target-TS 2.36 3.61 2.73 2.42 2.73 2.81 2.24 3.49 3.37 2.86

A → R A → C A → P C → R C → P C → A P → R P → C P → A R → A R → C R → P

Figure 2: Average accuracy on Office-home tasks for the three UDA techniques (DANN, DANN+E,
CDAN+E).

We next illustrate and analyze several key features of the proposed method.
Accuracy gap between source and target. To gain a better understanding of the reasons why
our method performs better than IW based methods, we first show the accuracy of the adapted
models on the source and target domains. Fig. 2 presents the accuracy on the source and target
domains for three UDA techniques. It shows that even after adaptation to the target, the model’s
performance on the source samples is consistently better than its performance on the target samples,
especially in cases of large domain gaps. Hence, using the network accuracy on the source to
estimate the network’s accuracy on the target while minimizing the ECE measure, is misleading.
The over-optimistic accuracy estimation leads to a scaling temperature that is too small. Table
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(a) CDAN+E (b) DANN+E (c) DANN

Figure 3: adaECE results as a function of the correction ratio R on Office-Home, A → C task.

5 compares the optimal temperatures computed by the calibration methods. In all the baseline
methods the computed calibration temperature was lower than the optimal value. This results in a
poorer calibration performance as seen in Tables 2 and 3. By contrast, the temperature computed by
all the UTDC variants was much closer to the optimal temperature computed by the Oracle method
which had access to the target labels. Fig. 2 also presents the estimated accuracy of the adapted
model on the target domain. This estimation is close to the true accuracy. Thus, when it is combined
with the confidence computed on the target domain, we can obtain a calibrated mode.

Sensitivity of UTDC to the target accuracy prediction. UTDC is based on estimating the binwise
average network accuracy on the target domain data from the labeled source domain data. This
estimation is done by computing the ratio Ãtarget/Asource between the estimated target accuracy and
the source accuracy. We next analyze the sensitivity of our calibration method to errors in estimating
Atarget. Let R(true) = Atarget/Asource and R(estimated) = Ãtarget/Asource be the true and estimated
ratio used by UTDC(*) and UTDC respectively. In principle, every number 0 < R can be used
to obtain an estimation of the binwise target accuracy: Ãtarget,m = Asource,m · R. We can thus
find the temperature that minimizes the adaECE function on the target data as a function of R:
T̂ (R) = argminT adaECER(T ) where

adaECER(T ) =
1

M

M∑
m=1

|Asource,m ·R− Ctarget,m(T )| .

Fig. 3 shows the adaECE measure on the target data after temperature scaling by T̂ (R) as a func-
tion of the ratio R for the task Office-home A → C. It shows that with the appropriate choice of
R we can achieve the calibration level of the Oracle TS-target algorithm (the case in which target
labels are known). This means that the accuracy difference is indeed the main reason for the cali-
bration degradation caused by methods that try to calibrate the target domain using the source data.
Specifically, as the ratio R drops towards R(true), the adaECE improves and approaches the Oracle
TS-target calibration. In addition, the adaECE reaches a minimum near R(true) and R(estimated).
Finally, there is a range of correction ratios in which UTDC is better by a large margin as compared
to other baselines, thus providing a tolerance for error and resilience in estimating Ãtarget.

The problem with the IW assumption. We showed that our method achieves better results by
explicitly addressing the accuracy gap between source and target domains caused by the domain
shift. Previous methods based on importance weights Park et al. (2020); Wang et al. (2020), relied
on re-weighting source data based on their proximity to the target data, i.e., concentrating on source
samples that resemble the target and attributing less attention to others. We computed the target
similarity weights associated with each sample in the source validation set and divided them into
20% percentile subsets. Fig 4 shows the average accuracy of each group and the average target
accuracy. It shows that the source accuracy is similar in all bins regardless of the similarity to the
target. Thus the IW assumption that source samples that are classified as targets are more relevant
for calibrating the target prediction is wrong.

Accuracy ratio across bins. Our method computes Ãtarget,m by re-scaling Asource,m with the
same ratio for all bins, as defined in Eq. 4. This estimation is based on the assumption that the
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(a) CDAN+E (b) DANN+E (c) DANN

Figure 4: Accuracy of k-th percentile source images based on their probability to be classified as
target Wang et al. (2020), compared to target accuracy (Office-home, A → C).

(a) CDAN+E (b) DANN+E (c) DANN

Figure 5: Accuracy per bin for source and target images. The results are shown on the Office-home
C → P task.

accuracy ratio between source and target is similar across the bins. To illustrate the validity of this
assumption, Fig. 5 shows the accuracy of the adapted network at each bin, for the source and target
data.

5 CONCLUSION

To conclude, in this work, we considered the problem of network calibration in an unsupervised
domain adaptation setup. We first saw that the main problem with calibration using the labeled
data from the source domain is the accuracy difference between the domains. We then shawed
that methods which are based on importance weighting do not address this problem, which causes
them to fail. Our key idea with respect to previous methods is adapting the over-optimistic accu-
racy estimation performed on the labeled data from the source domain to the actual accuracy of the
adapted model on the target domain, and calibrating directly over the target examples. We compared
this solution to previous methods and showed that we consistently and significantly improved the
calibration results on the target domain. We concentrated here on parametric calibration methods
of classification tasks under domain shift. Possible future research directions are applying simi-
lar strategies to domain shift problems in regression and segmentation tasks and to domain shift
problems in non-paramteric calibration methods such as conformal prediction.

REFERENCES

Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review,
78(1):1–3, 1950.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Towards dis-
criminability and diversity: Batch nuclear-norm maximization under label insufficient situations.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Weijian Deng and Liang Zheng. Are labels always necessary for classifier accuracy evaluation? In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

9



Under review as a conference paper at ICLR 2024
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