
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GraphCSR: A Space and Time-Efficient Sparse Matrix
Representation for Web-scale Graph Processing

Anonymous Author(s)

ABSTRACT

Graph data processing is essential for web-scale applications, includ-
ing social networks, recommendation systems, and web of things
(WoT) systems, where large, sparsely connected graphs dominate.
Traditional sparse matrix storage formats like compressed sparse
row (CSR) face significant memory and performance bottlenecks
in distributed, federated, and edge-based computing environments,
which are increasingly central to the web. To address this challenge,
we propose GraphCSR, a novel storage format that clusters ver-
tices with identical edge degrees and stores only the starting index
of each group. This approach minimizes memory overhead and
facilitates batch memory access while enhancing overall perfor-
mance, making it particularly suitable for federated systems and
resource-constrained edge nodes. Our experiments across various
graph operations and large datasets show that GraphCSR achieves
considerable memory savings and performance gains of large-scale,
distributed graph processing. When deployed GraphCSR on a
production-grade supercomputer with 79,024 computing nodes,
it outperforms the top-ranked system on the Graph 500 list, demon-
strating its potential for scaling web and WoT graph processing in
large-scale distributed computing systems.

KEYWORDS

Web-scale graph processing, Sparsematrix storage, CSR, Distributed
graph analytics

1 INTRODUCTION

Graph processing is a cornerstone of many web-scale applications,
playing a vital role in modern services like social networks [10, 27],
recommendation systems [41, 54], and the WoT [26, 49]. These
applications rely on graph data to model relationships between en-
tities, enabling powerful features such as user connectivity, content
recommendations, and device communication. For instance, social
networks use graph structures to represent users and their inter-
actions, allowing platforms to identify key influencers or detect
communities within vast networks. Similarly, recommendation sys-
tems leverage graph processing to analyze user-item interactions,
driving personalized content delivery that enhances user experi-
ence. In the context ofWoT, graph data models interactions between
interconnected devices, enabling efficient device communication,
resource management, and automation in smart environments. Op-
erations like breadth-first search (BFS) and depth-first search (DFS)
allow systems to traverse these complex data structures, uncovering
valuable patterns such as connectivity, shortest paths, or clusters.
These capabilities are foundational in enabling web applications to
derive insights from vast amounts of data, ensuring services remain
responsive and adaptive as user bases and data volumes grow.

In graph processing, the relationship between vertices in a graph
is usually represented using an adjacency matrix. In this matrix, an
element 𝑎𝑢,𝑣 is set to one if an edge exists between vertices 𝑢 and

𝑣 ; otherwise, the element is set to zero. Due to the sparsity of many
real-word graphs, where most vertices are low-degree vertices with
only a small number of edges connected to them, the adjacency
matrix is inherently sparse [6, 8, 12, 52]. As such, the adjacency
matrix is typically stored in a sparse matrix format to reduce the
memory footprint and improve the computational efficiency of
graph processing algorithms.

The CSR format is extensively utilized for representing sparse
matrices in the context of web-scale graph processing [8, 37, 47, 52].
CSR focuses on recording only the non-zero entries of a matrix, sup-
ported by auxiliary information such as row pointers and column
indices. Unlike traditional sparse matrix formats, which are pri-
marily designed to optimize sparse matrix-vector (SpMV) or sparse
matrix-matrix (SpMM) multiplications [13, 33, 37] and improve per-
formance on heterogeneous hardware [25, 38], CSR is specifically
crafted to enhance storage efficiency. This characteristic makes it
especially advantageous for large-scale graph traversal algorithms
[36, 39, 47, 52], where memory constraints can present significant
challenges.

However, the increasing scale and complexity of web applica-
tions introduce significant challenges in processing these graphs
efficiently, particularly in distributed, federated, and edge-based
environments where resources like memory and bandwidth are
limited [5, 17, 30, 32, 34, 48, 53]. Traditional sparse matrix storage
formats, such as the CSR and its variants [8, 12, 47], often fall short
in these contexts, as they do not fully exploit the characteristics of
real-world web-scale graphs. Many of these graphs are sparse and
exhibit skewed degree distributions [23, 31], where most vertices
have few edges. The uniform handling of vertices, by storing both
low- and high-degree vertices as individual non-zero entries, results
in inefficiencies, as low-degree vertices unnecessarily contribute to
memory overhead and exacerbate bottlenecks in large-scale graph
processing. Addressing these challenges requires innovative storage
and computation strategies to handle the unique demands of web-
scale graph processing, laying the groundwork for more optimized
and scalable solutions.

We present GraphCSR1, a groundbreaking sparse matrix storage
format specifically designed to enhance memory efficiency for web-
scale graphs with skewed vertex degree distributions. Building
upon the widely adopted CSR format, GraphCSR requires minimal
modifications to existing graph algorithm implementations, making
it easy to adopt.

Our central insight is that many graph vertices tend to exhibit
the same low-edge degree, allowing for effective grouping that
significantly reduces storage needs and runtime memory consump-
tion. GraphCSR capitalizes on the graph sorting step commonly
utilized in most parallel graph processing algorithms [11, 18, 22, 23,
35, 36, 56] by first organizing vertices based on their edge degrees.
Within each grouped category, GraphCSR compresses data by only

1Code available at https://anonymous.4open.science/r/GraphCSR-450E/README.md

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

recording the starting vertex, thus minimizing the overall memory
footprint for graph processing tasks. During execution, GraphCSR
employs a straightforward formula to efficiently check for edge con-
nections between any pair of vertices, facilitating standard graph
processing operations while simultaneously reducing memory us-
age. By grouping vertices with the same degree, GraphCSR also
enables batching and coalescing of memory accesses, thereby en-
hancing the performance of web-scale graph processing.

We evaluate GraphCSR in the context of web-scale graph pro-
cessing by applying it to key graph algorithms on widely-used,
large-scale graph datasets [19, 51, 57, 58]. As baselines, we compare
against eight prominent sparse matrix storage formats [8, 12, 18, 22,
23, 47, 52, 56]. Our evaluation is conducted on a large-scale HPC sys-
tem, utilizing up to 79,024 nodes and over 1.2million processor cores
to simulate web-scale environments. Experimental results consis-
tently demonstrate the superiority of GraphCSR, providing greater
storage efficiency and faster processing times compared to all base-
lines. When tested on the Graph 500 BFS benchmark, GraphCSR
outperforms the highest-ranked supercomputer on the latest Graph
500 list (June 2023), achieving a 1.6× increase in throughput, while
reducing memory consumption by 25% and using fewer CPU cores.

The main contribution of this paper is a novel sparse storage
format optimized for web-scale graph processing. Our theoretical
analysis highlights the format’s efficiency in handling massive
graph datasets common in web-scale systems, while the empirical
results confirm its performance advantages over state-of-the-art
sparse matrix storage methods in distributed graph environments.

This paper presents several significant contributions to the field
of web-scale graph processing:

• An important insight is that reordered CSR format can be
effectively leveraged inWeb-scale graph processing to store
and index vertices with identical degrees, particularly low-
degree vertices, in sorted graphs. This approach enhances
space-time efficiency, making it ideal for managing large-
scale graph data in distributed environments.

• We showcase how to exploit the characteristics of low-
degree vertices in sorted graphs to enhance CSR-like for-
mats for web-scale graph processing. This improvement
facilitates the execution of essential graph algorithms and
SpMV operations, enabling efficient graph analysis on large-
scale datasets in distributed systems.

• Extensive experiments demonstrate that GraphCSR achieves
rapid processing times and a reduced memory footprint
compared to state-of-the-art sparse matrix storage formats
in web-scale graph processing for distributed graph applica-
tions. Notably, GraphCSR ranks at the top of the Graph500
BFS leaderboard, handling up to 77.2K nodes with a 57.8%
increase in throughput and a 74% reduction in memory us-
age. These results highlight the effectiveness and efficiency
of GraphCSR in managing large-scale graph datasets.

2 BACKGROUND AND MOTIVATION

2.1 Graph Processing

As depicted in Figure 1, web-scale graph processing generally con-
sists of three key stages: (i) graph preprocessing, (ii) graph con-
struction, and (iii) graph computation. During the preprocessing

stage, various tasks like vertex isolation and pruning, degree count-
ing, and vertex sorting are performed. Note that many large-scale
graph processing algorithms and parallelization strategies require
sorting the graph vertices according to the edge degree at the pre-
processing stage [18, 20, 22, 23, 36, 45, 56]. In the graph construc-
tion stage, vertices and edges are stored in specific storage formats
[14, 20, 28, 45, 52], such as CSR, or bitmap. Finally, the constructed
graphs are passed into a graph processing algorithm like BFS, Single
Source Shortest Path (SSSP), Connected Component (CC), PageRank
(PR), Betweenness Centrality (BC), Triangle Counting (TC) [24, 56]
and SpMV. This structured approach ensures efficient processing
of large-scale graph data across distributed systems.
Problem scope. Our work focuses specifically on the graph con-
struction stage within the context of web-scale graph processing,
aiming to optimize the representation of the graph adjacencymatrix.
This optimization is crucial for reducing the memory footprint, a
significant challenge in large-scale, distributed graph processing en-
vironments. Once the graph is constructed, GraphCSR is equipped
to support various graph computations, including SpMV operations
(see section 5.6), enhancing the overall efficiency of processing mas-
sive graphs in web, federated, and edge-based environments. This
capability ensures scalability and performance across distributed
systems central to modern web-scale applications.
Graph partitioning. In the realm of web-scale graph processing,
two predominant strategies for partitioning graphs and distributing
the elements of the graph adjacency matrix for parallel processing
are 1-dimensional (1D) and 2-dimensional (2D) decomposition [9].
1D graph decomposition involves breaking down a graph adjacency
matrix into smaller sub-matrices, each of which can be owned
by a processor independently. A graph is often represented as a
sequence of vertices and edges, and the decomposition process
involves partitioning this sequence into smaller sub-sequences or
components. This approach is widely used in graph processing
and has been extensively studied [42–44]. In contrast, 2D graph
decomposition represents a graph as a mesh or an edge-vertex
matrix, which can be partitioned into smaller sub-matrices and
assigned to each processor for distributed processing. This approach
has also been extensively studied and has shown promising results
in recent researches [22, 23, 56]. In this work, our discussion is
centralized on 2D graph partitioning, but our techniques can be
equally applied to 1D decomposition.

2.2 CSR for Graph Representation

The CSR format is a widely adopted representation for storing
sparse matrices in the context of web-scale graph processing. Com-
pared to other sparse matrix formats like DOK (Dictionary of keys),
LIL (List of lists), or COO (Coordinate list) [16, 33, 37], CSR offers
efficient access and matrix operations and yields a better storage
solution. Specifically, CSR represents a sparse matrix using three
one-dimensional arrays: val, RST, and COL. The val array stores
the non-zero values in contiguous locations, with each row packed
together. The RST array specifies the starting index of each row in
the val array, while the COL array maps each non-zero value to its
corresponding column. Graph processing algorithms mostly focus
on accessing each vertex and then filtering vertices on demand. For
clarity, the val array can be omitted for better understanding.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GraphCSR: A Space and Time-Efficient Sparse Matrix Representation for Web-scale Graph Processing Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Load Graph Graph Preprocessing Graph Construction Graph Application

BFS/SSSP
CC/PR
BC/TC
SpMV

CSR
CSC

Bitmap
GraphCSR

Sorting Graphs
Counting Degrees

Figure 1: A typical graph processing pipeline.

0

1

2

3

4

0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

COL [1, 2, 3, 0, 4, 0, 3, 0, 2, 1]

RST [0, 3, 5, 7, 9, 10, 10]

Non-descending order

Same degree vertices
can be grouped

0 degree vertices can
be further eliminated

(a) Graph G (b) The adjacency matrix

(c) CSR representation of the adjacency matrix

5

Figure 2: CSR format (c) of the graph adjacency matrix (b)

for a graph G (a).

However, in web-scale graph processing, where datasets are
immense and constantly evolving, the limitations of traditional CSR
becomemore pronounced. The need for rapid access, scalability, and
efficient memory usage is critical. Graph processing frameworks
that are designed for web-scale applications often utilize alternative
storage formats or methods (like adjacency lists or distributed graph
databases) that can handle large-scale datasets more effectively and
allow for more efficient parallel processing.

Many real-life graphs exhibit sparsity and unevenness2. General-
purposed sparse matrix storage formats [8, 12, 47, 52] only focus
on removing 0-degree vertices for better memory usage. However,
GraphCSR is tailored for graph processing by further compressing
the graph adjacency matrix by grouping the same-degree vertices
(i.e. 𝑣𝑒𝑟𝑡𝑒𝑥{1, 2, 3} shown in Figure 2). It is worth noting that same-
degree vertices with low degrees constitute the vast majority of
vertices in both real-world and synthetic graphs[22]. As a result,
there is lots of room for GraphCSR to demonstrate its potential.

Many real-world graphs are characterized by sparsity and un-
evenness, often described by the small-world model, where most
vertices have a low degree and are connected to only a few high-
degree vertices. This structure is significant in the context of web-
scale graph processing, as efficient management of large-scale data
becomes crucial. Traditional sparse matrix storage formats primar-
ily focus on removing 0-degree vertices to optimize memory usage.
However, our approach, GraphCSR, is specifically designed for
graph processing at scale by further compressing the graph adja-
cency matrix. It achieves this by grouping same-degree vertices
(e.g. 𝑣𝑒𝑟𝑡𝑒𝑥{1, 2, 3} shown in Figure 2). Notably, the majority of ver-
tices in both real-world and synthetic graphs possess low degrees,
indicating that these same-degree vertices represent a substantial
2This is also known as a small world model - where most vertices of a real-life graph
are low-degree vertices with only a small number of edges connected to very few
high-degree vertices [15, 22].

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Cu
mu

lat
ive

 Di
str

ibu
tio

n
d e g r e e

 c l u e w e b 1 2 - o u t c l u e w e b 1 2 - i n
 t w i t t e r 2 0 1 0 - o u t t w i t t e r 2 0 1 0 - i n

Figure 3: Degree cumulative distribution of clueweb12 and

twitter-2010, such that graph-in/out represents the in-degree

or out-degree of the graph.

portion of the graph. This opens up significant opportunities for
GraphCSR to enhance performance and efficiency in processing
large graphs, making it particularly valuable for applications that
require scalable and efficient graph analysis.

2.3 Motivation

Our work is built upon two key observations regarding the row
index array, RST when using CSR to store the adjacency matrix of
a sorted graph. Firstly, the array elements are ordered in a non-
decreasing manner, as exemplified by the sequence 0, 3, 5, 7, 9, 10, 10
in Figure 2(c), and some values in RST may only refer to rows
that correspond to 0-degree vertices, where values are all zero. For
example, in Figure 2(c), the last two elements, 10, 10, of RST, refer
to the last row of the adjacency matrix in Figure 2(a), which shows
the connected edge of the 0-degree vertex 5 in Figure 2(a).

Secondly, vertices with the same edge degree have their adjacent
lists stored in a contiguousmanner in the COL array. For the example
given in Figure 2, the 2-degree vertices 𝑣1, 𝑣2 and 𝑣3 in the COL array
are represented by the sets {0, 4}, {0, 3} and {0, 2} respectively.

Besides clueweb12 and twitter-2010, we conduct tens of public
graphs and get similar distributions, in which low-degree vertices
make up a large proportion of real-life graphs, thereby occupying
a substantial portion of the storage space. Figure 3 shows how the
vertices distribute in two real-world graphs - clueweb12 and twitter-
2010. While graph clueweb12 owns 978,408,098 vertices and has a
sparsity (i.e., non-zero degree vertices ratio) of 90.5%, graph twitter-
2010, on the other hand, owns 41,652,230 vertices with the sparsity
of 86.7%. In Figure 3, we show that 0-degree vertices account for
up to 9.5%, vertices with 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 9 constitute approximately

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

78%, the proportion of vertices (0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 20) is steadily in-
creases to 85%, while the ratio of vertices with 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 50
is close to 91% but incrementally climbs to 95% for vertices with
0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 100. Interestingly, the distribution of low-degree
vertices does not vary significantly with the sparsity of the graph
though the number of zeros decreases as the graph gets denser.
For example, even a denser graph like clueweb12 (whose average
degree is 43.5) has less than 10% 0-degree vertices, it still holds 78%
of the vertices with 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 9. In addition, [21] showed more
details on the distribution of low-degree vertices. This scenario
adds an extra dimension of motivation to develop a new repre-
sentation for large-scale graphs that contain a large proportion of
low-degree vertices. In the context of web-scale graph processing,
various CSR-like formats have been introduced to tackle the chal-
lenge of storing rows that consist entirely of zero values. Notable
examples include DCSR [8], CSCSR (Coarse Index + Skip List) [12],
and BCSR (Bitmap-based Sparse Matrix Representation) [47]. While
these techniques effectively address the issues raised by our ini-
tial observation, they fail to capitalize on the potential benefits
of grouping vertices with the same degree. This grouping could
substantially minimize the memory requirements when process-
ing large-scale graphs. To address this shortcoming, GraphCSR
is specifically designed to optimize memory usage and enhance
efficiency in web-scale graph processing scenarios.

The primary goal of GraphCSR is to enhance memory effi-
ciency and optimize access patterns for large-scale graph algo-
rithms, specifically tailored for web-scale graph processing. By
effectively grouping low-degree vertices that share the same de-
gree, GraphCSR facilitates batched memory accesses, allowing a
single load operation to retrieve multiple adjacent lists of vertices
with identical edge degrees simultaneously. This optimization is
achieved by storing only the starting addresses of the adjacency
lists for vertices with the same degree, resulting in a significant
reduction in memory usage. Such space savings are crucial when
processing large graphs, where graphs are typically dominated
by low-degree vertices. Traditional sparse matrix storage formats
often overlook the structural characteristics of such large, sorted
graphs, leading to inefficiencies. In contrast, GraphCSR directly
addresses this gap, improving memory utilization and enhancing
performance for processing massive graph datasets in distributed,
federated, and edge-based environments, key to modern web and
WoT systems.

3 OUR APPROACH

In this section, we use BFS as aworking example to explain GraphCSR,
but GraphCSR can be used with any other graph processing algo-
rithm to represent sparse matrices.

3.1 Overview of GraphCSR

GraphCSR enhances the traditional CSR format by utilizing a fold-
ing method to consolidate vertices with the same degree into a
single starting offset in the RST array. This straightforward yet pow-
erful folding scheme is particularly effective for web-scale graph
processing, as many real-world graphs contain a significant number
of low-degree vertices that share identical edge degrees. By opti-
mizing the storage and access patterns in this manner, GraphCSR

significantly improves the efficiency of graph algorithms, making it
well-suited for handling the massive and complex datasets typical
in web-scale applications.

GraphCSR is particularly effectivewhen applied to sorted graphs
generated during the preprocessing stage of many parallel graph
processing algorithms, which are essential for handling large-scale
datasets. Since numerous distributed graph processing algorithms
require the sorting of graph vertices based on their edge degrees,
the sorted graph’s adjacency matrix is often readily available during
construction . In these sorted graphs, vertices with the same degree
are stored contiguously in the RST array of CSR format. GraphCSR
leverages this structure to reduce memory usage by storing only
the initial vertex ID within each group of vertices sharing the same
degree. This optimization not only improves the coherence of ver-
tex access patterns but also significantly reduces the time needed
for vertex traversal. During graph computation, a straightforward
calculation allows for the determination of vertex IDs of the folded
vertices using the starting index of the relevant vertex group and
the starting index of the nearest edge degree group, enhancing the
efficiency of processing large-scale graphs commonly encountered
in web applications.

3.2 The GraphCSR Sparse Storage Format

Specifically, GraphCSR introduces two additional arrays, namely
low_deg_RST and low_deg_COL, and a hyperparameter, denoted as
Thr. The Thr is a threshold that determines whether a vertex is con-
sidered low-degree and should be folded. The low_deg_RST array
stores the number of low-degree vertices, while low_deg_COL array
stores the COL offset value of a vertex concerning the lowest ID of a
group of vertices with the same edge degree. It is worth noting that
the low_deg_COL array points to the original COL array and serves
as an offset of the COL array. This way, the low-degree vertices can
be traced through the low_deg_COL array. For high-degree vertices
whose edge degrees are greater than Thr, we store them in the stan-
dard CSR RST and COL arrays. In contrast to low-degree vertices,
GraphCSR chooses not to compress high-degree vertices. This de-
cision is based on the observation that high-degree vertices are
usually relatively rare in real-world graphs and are often accessed
frequently during graph traversals. Therefore, compressing them
may incur additional runtime overhead, potentially outweighing
the benefits of compression. In GraphCSR, we refer to the RST and
COL arrays used to store high-degree vertices as high_deg_RST and
high_deg_COL, respectively, to aid clarity.

3.3 Graph Construction

We use Figure 4 as a working example to illustrate how GraphCSR
represents a graph adjacency matrix for the example given ear-
lier in Figure 2. For illustration, we set the edge-degree threshold
parameter, Thr, to 2. This means that vertices with an edge de-
gree greater than 2 are considered high-degree vertices and stored
in the high_deg_RST array, while vertices with a degree equal to
or less than 2 are considered low-degree vertices and stored in
the low_deg_RST and low_deg_COL arrays by referring to the COL
array.

Algorithm 1 outlines how GraphCSR encodes high-degree and
low-degree vertices. Specifically, the low_deg_RST[N] stores the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GraphCSR: A Space and Time-Efficient Sparse Matrix Representation for Web-scale Graph Processing Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

high_deg_RST [0, 3] low_deg_COL [3, 9]

COL [1, 2, 3, 0, 4, 0, 3, 0, 2, 1]

low_deg_RST [3, 1]

0

1

2

3

4

5

Figure 4: Using GraphCSR (Thr =2) to represent the graph ad-

jacency matrix of Figure 2(b). Here, low_deg_RST[N] records
the number of (𝑇ℎ𝑟 − 𝑁)-degree vertices, such that 𝑁 ∈
[0,𝑇ℎ𝑟), and low_deg_COL[M] records a starting offset in COL
for the vertex with (𝑇ℎ𝑟 −𝑀)-degree, such that𝑀 ∈ [0,𝑇ℎ𝑟).

Algorithm 1: GraphCSR constructing algorithm
Input: RST

𝑇ℎ𝑟 // Degree Threshold
Output: 𝑙𝑜𝑤_𝑑𝑒𝑔_𝑅𝑆𝑇

ℎ𝑖𝑔ℎ_𝑑𝑒𝑔_𝑅𝑆𝑇
𝑙𝑜𝑤_𝑑𝑒𝑔_𝐶𝑂𝐿

// Initialization

1 𝑙𝑜𝑤_𝑑𝑒𝑔_𝑅𝑆𝑇 ← 𝑁𝑈𝐿𝐿

2 ℎ𝑖𝑔ℎ_𝑑𝑒𝑔_𝑅𝑆𝑇 ← 𝑁𝑈𝐿𝐿

3 𝑙𝑜𝑤_𝑑𝑒𝑔_𝐶𝑂𝐿← 𝑁𝑈𝐿𝐿

4 for 𝑣𝑐 ∈ [0, len(RST)-1] in parallel do
5 degree = RST[𝑣𝑐+1]-RST[𝑣𝑐]
6 if degree ≤ 𝑇ℎ𝑟 then
7 𝑙𝑜𝑤_𝑑𝑒𝑔_𝑅𝑆𝑇 [𝑇ℎ𝑟 − 𝑑𝑒𝑔𝑟𝑒𝑒]++
8 𝑙𝑜𝑤_𝑑𝑒𝑔_𝐶𝑂𝐿[𝑇ℎ𝑟 − 𝑑𝑒𝑔𝑟𝑒𝑒] = RST[𝑣𝑐]
9 else

10 ℎ𝑖𝑔ℎ_𝑑𝑒𝑔_𝑅𝑆𝑇 .append(RST[𝑣𝑐])

number of (𝑇ℎ𝑟 − 𝑁)-degree vertices for 𝑁 ∈ [0,𝑇ℎ𝑟), with the
edge degree ordered in a descending manner3. For example, in
Figure 4, low_deg_RST[0] equals 3 because there are three ver-
tices, 𝑣1, 𝑣2 and 𝑣3, with an edge degree of 2, and low_deg_RST[1]
equals 1 because there is one vertex, 𝑣4, with an edge degree of
1. The low_deg_COL[M] represents a starting offset in COL for the
vertex with (𝑇ℎ𝑟 − 𝑀)-degree, with 𝑀 ∈ [0,𝑇ℎ𝑟). Finally, the
high_deg_RST array is the standard CSR RST array, but it only
stores vertices with degrees greater than Thr. Overall, this approach
optimizes the storage of low-degree vertices while still allowing
high-degree vertices to be stored using the standard CSR approach.

4 EXPERIMENTAL SETUP

4.1 Evaluation Platforms &Workloads

To evaluate the portability of GraphCSR, we apply it to two HPC
systems with different CPU architectures using 512 nodes and 8,192
processor cores. Table 2 lists the two HPC systems used in our
testing and the maximum number of computing nodes used in ex-
periments. Each node on the WuzhengLight has two HG2 32-core
CPUs at 2.5 GHz that are compatible with the AMD x64 instruction
set. Each node on Tianhe-Exa has a Phytium 16-core CPU at 2.0
GHz. Both systems run a customized Linux operating system with
Linux kernel v9.3.0. We use MPICH 10.2.0 for the message pass-
ing interface (MPI) and libgomp 4.5 for OpenMP. We compile the
benchmark using GCC 10.2.0 with “-O3" as the compiler option.

Our main evaluation is performed on the BFS algorithm defined
in the Graph500 benchmark [28]. Graph 500 is the de facto standard
for assessing a computer system’s capability for graph process-
ing [22, 35, 36, 40, 46]. It provides a graph generator to generate
synthetic graphs that mimic real-life graph structures. This tool
takes two parameters, a graph factor, and an 𝑒𝑑𝑔𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 . For a
graph size𝑚 and an 𝑒𝑑𝑔𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 𝑛, the generator generates a graph
of 2𝑚 vertices and 𝑛 × 2𝑚 edges. Unless stated otherwise, we use
the Graph 500 default edge factor of 16.

In addition to synthetic graph data generated by Graph500, we
also evaluate our GraphCSR on two public graphs collected from
real-life social networks [2, 3], including clueweb12 (with 987 mil-
lion vertices and 42.6 billion edges) [3], and twitter-2010 (with 41.7
million vertices and 1.47 billion edges) [2] along with other graph
processing operations, including DFS, SSSP, PR, CC, BC, and TC.

4.2 Evaluation Methodologies

In this paper, we adhere to the Graph 500 ranking methodology
to evaluate the throughput of graph processing. To quantify this,
we report the giga-traversed edges per second (GTEPS), which is a
higher-is-better metric. For each test case, we conduct ten runs on
unloaded machines, randomly selecting 64 root vertices for each
run. We then report the geometric mean of the results. It’s worth
noting that the variances of GTEPS across different runs for the
same test case are small, typically less than 2%.

5 EXPERIMENTAL RESULTS

5.1 Compare to Other Sparse Storage Formats

Table 1 reports the memory footprint when using different sparse
matrix storage formats for BFS. In practice, COL is identical for all
CSRs and shared among all running processes, while RST should
be duplicated for every running process. Especially for large-scale
graph tasks running on an HPC system with thousands of running
processes available, amplifying the volume of RST thousands of
times. Like CSR and its variants, we compare GraphCSR to state-of-
the-art CSR-like formats and consistently outperform all baselines.
Specifically, GraphCSR saves more than 90% 4 memory space over
most of the CSRs and up to 99.8% of space against the CSCSR format.
Furthermore, the average deviation rate in Table 1 is less than 0.4%,

3The descending order of the RST array prioritizes access to high-degree vertices [23].
4Since COL is identical for all CSRs, it is not considered for space saving.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Measured memory footprint (and difference w.r.t theoretical analysis) per-node for kron-31 on 512-node execution.

Data Structure CSR DCSR CSCSR BCSR GraphCSR

Auxiliary Arrays N/A 11.74 MB (1.81%) 764.33 MB (1.81%) 0.75 MB (0.01%) 160 B (0.00%)
RST 16 MB (0.01%) 6.41 MB (0.03%) N/A 6.41 MB (0.03%) 1.26 MB (0.06%)
COL 48 MB 48 MB N/A 48 MB 48 MB
TOTAL 64 MB (0.01%) 66.16 MB (1.82%) 764.33 MB (1.81%) 55.16 MB (0.03%) 49.26 MB (0.06%)

Table 2: Supercomputer testbed settings

Name #Nodes CPU Memory (GB)

WuzhengLight 512 HG2 64-core CPU 256
Tianhe-Exa 512 Phytium 16-core CPU 16

c l u e w e b 1 2 K r o n - 3 11

1 0

1 0 0

1 0 0 0

Me
mo

ry
Fo

otp
rin

t (G
B)

 C O O D C S R C S R
 C S R 5 C S C S R B C S R
 G r a p h C S R

(a) Memory cost

c l u e w e b 1 2 K r o n - 3 11
1 0

1 0 0
1 0 0 0

1 0 0 0 0

Ru
nn

ing
 Ti

me
 (m

s)

 C O O B C S R C S C S R
 C S R 5 D C S R C S R
 G r a p h C S R

(b) Time cost

Figure 5: BFS-based GraphCSR’s (a) Memory and (b) Time

consumption against other sparse matrix storage formats.

even the largest deviation rates remain below 2%, which proves
GraphCSR’s reliability and consistency.

We also evaluate GraphCSR on a real-world social graph clueweb12 [1]
and report both the memory usage and runtime of BFS shown in
Figure 5. Figure 5(a) shows that GraphCSR has the smallest mem-
ory cost over other storage formats (saving average memory) and in
Figure 5(b) GraphCSR also shows the fastest running time against
others (yielding average runtime speedup). Noted that the time

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 20 . 1 2 5
0 . 2 5

0 . 5
1
2
4
8

1 6
3 2
6 4

1 2 8

No
rm

aliz
ed

 G
TE

PS

T h r e a d s / P r o c e s s (N o d e s)

B F S - G r a p h B i g @ T i a n h e B F S - G r a p h B i g @ W u zh e n g L i g h t
B F S - G r a p h C S R @ T i a n h e B F S - G r a p h C S R @ W u zh e n g L i g h
t

Figure 6: GraphCSR’s scalability on Graph500-BFS bench-

mark.

Table 3: GraphCSR-based Graph500 BFS vs.Fugaku (the cur-

rent Graph500 top-ranked supercomputer)

System #Nodes RAM (GB) Storage format GTEPS

Tianhe-Exa 79,024 1,264,384 GraphCSR 162,494
Fugaku 152,064 4,866,048 BCSR [47] 137,096

cost includes graph preprocessing and all storage formats have
implemented the same sorting algorithm before the evaluations.

5.2 Scalability

In this section, we evaluate the scalability of GraphCSR by applying
it to BFS across varying numbers of nodes on WuzhengLight [4]
and Tianhe-Exa [55]. Figure 6 reports how the normalized GTEPS
changes as we increase the number of computing nodes, using one
single node as the normalization baseline. We observe a consistent
increase in GTEPS for GraphCSR as we increase the number of
computing nodes, suggesting that BFS based on GraphCSR exhibits
good scalability.
5.3 GraphCSR for Graph500 Ranking

GraphCSR has been successfully deployed on the Tianhe-Exa su-
percomputer using up to 79,024 nodes, where each node is equipped
with 16GB of RAM. When running distributed Graph500 BFS using
GraphCSR on this setup, we achieved a GTEPS of 162,494. This
represents a 57.8% improvement over the current top-ranked su-
percomputer, Fugaku, which delivers a GSETPS of 137,096 using
over 148.5K nodes and 3.85× more RAM. As shown in Table 3, the
comparison between Tianhe-Exa and Fugaku for Graph 500 BFS
demonstrates that our system achieved a higher throughput using
fewer computing nodes. These results were obtained on the same
graph size generated using the Graph500 graph generation tool,
with an edge_factor of 41, resulting in a graph with 2.2 trillion ver-
tices and 35.2 trillion edges. These results confirm the efficiency and

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GraphCSR: A Space and Time-Efficient Sparse Matrix Representation for Web-scale Graph Processing Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 2 3 4 5 6 7 8 9sa
vin

g s
pa

ce
 ov

er
CS

R

T h r

 c l u e w e b 1 2

 100 %

80 %

60 %

40 %

t w i t t e r -2 0 1 0

(a) Thr from 1 to 9

5 %
1 0 %
1 5 %
8 0 %
8 5 %
9 0 %
9 5 %

1 0 0 %

sa
vin

g s
pa

ce
 ov

er
CS

R

 T h r = 1 0 0 T h r = 5 0 T h r = 2 0
 T h r = 1 5 T h r = 1 0

tw i t t e r -2 0 1 0 0 %
 c l u e w e b 12

(b) Thr from 10 to 100

Figure 7: Sensibility of Thr in graph clueweb12 and Twitter-

2010, in which saving space =
|𝑀 (𝐶𝑆𝑅)−𝑀 (GraphCSR) |

𝑀 (𝐶𝑆𝑅) × 100%,
M(X) represents the memory cost of format X (i.e., CSR or

GraphCSR).

practicality of GraphCSR in supporting large-scale graph traversal
algorithms on modern supercomputers.

5.4 Preprocessing overhead

GraphCSR requires a sorted graph as input, and further reindex
each vertex by the adjunct RST and COL array. This preprocessing is
a one-off cost. Extensive results show that the processing overhead
of GraphCSR remains relatively manageable even as the graph size
increases (2.07s while scaling to 512 nodes.). We have noticed many
great works on vertex sorting in graph-parallel processing systems
have been provided, such as [14, 18, 22, 24, 36, 50, 56]. GraphCSR
is developed for facilitating graph applications, which can seam-
lessly integrate with existing graph preprocessing approaches while
offering additional benefits.

5.5 Tuning Edge-degree Parameter

In this subsection, we will take the synthetic graphs generated
by the Graph500 data generation tool (Kronecker [28]) to demon-
strate how the hyperparameter 𝑇ℎ𝑟 will affect the performance of

1
1 0

1 0 0
1 0 0 0

t w i t t e r - 2 0 1 0

Me
mo

ry
co

st
 (G

B)

 C S R E L L P A C K C S B
 C S R 5 G r a p h C S R

c l u e w e b 1 2
(a) Memory cost

1 0
1 0 0

1 0 0 0
1 0 0 0 0

t w i t t e r - 2 0 1 0
MF

LO
PS

 C S R E L L P A C K C S B
 C S R 5 G r a p h C S R

c l u e w e b 1 2
(b) SpMV Throughput

Figure 8: The SpMVperformance of GraphCSRwith (a)Mem-

ory and (b) MFLOPS (Mega FLoating point Operations Per

Second) against the state-of-the-art CSR-like formats.

GraphCSR. In addition, we will explore methods for fine-tuning
Thr to optimize graph processing speed.

The selection policy for𝑇ℎ𝑟 should be highly based on the distri-
bution of vertices in the graph. As shown in Figure 3, low-degree ver-
tices constitute a significant portion of real-world graphs, whereas
DCSR-mentioned hypersparse graphs are uncommon. Thus, the
ideal 𝑇ℎ𝑟 should cover most of the low-degree vertices. For exam-
ple, since vertices with 𝑑𝑒𝑔𝑟𝑒𝑒 ∈ [1, 9] hold more than 78% for the
provided real-world graphs (see in Figure 3), the optimal𝑇ℎ𝑟 should
theoretically be larger than 9. But still, the performance may vary
depending on changes in the proportion of low-degree vertices.
We highly recommend users to define their own 𝑇ℎ𝑟 range and
evaluate the sensibility of 𝑇ℎ𝑟 across different scales of graphs, see
Figure 7 according to the graph degrees’ distribution.

We evaluate the GraphCSR’s performance by carefully tuning
the 𝑇ℎ𝑟 ∈ {10, 15, 20, 25}. We also list the results of 𝑇ℎ𝑟 ≤ 9 (see
Figure 7(a)) to prove that based on the degree distribution in Figure 3,
every increase in Thr brings obvious benefits, and the overall yield
is linear. On the other hand, Figure 7(b) shows that when 𝑇ℎ𝑟 > 9,
further changes in Thr have little effect on its performance with
the same graph. The largest performance gap would be around
5% when we conduct different Thr on clueweb12 and twitter-2010.
So far, we can draw a conclusion that: (i) Majorities of the graphs
have a large scale of N-degree vertices, such that 𝑁 ≤ 10. In this
case, 𝑇ℎ𝑟 = 9 gains significant benefits. First refering to the graph

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

c l u e w e b 1 2 t w i t t e r - 2 0 1 01 0 0
1 0 1
1 0 2
1 0 3

Me
mo

ry
Fo

otp
rin

t (G
B)

D F S

 C S R D C S R C S C S R B C S R G r a p h C S R

c l u e w e b 1 2 t w i t t e r - 2 0 1 0
S S S P

c l u e w e b 1 2 t w i t t e r - 2 0 1 0
P R

c l u e w e b 1 2 t w i t t e r - 2 0 1 01 0 0
1 0 1
1 0 2
1 0 3

C C
c l u e w e b 1 2 t w i t t e r - 2 0 1 0

B C
c l u e w e b 1 2 t w i t t e r - 2 0 1 0

T C
Figure 9: Memory footprint for deploying GraphCSR on two real-world graphs.

c l u e w e b 1 2 t w i t t e r - 2 0 1 01 0 � �

1 0 0
1 0 1
1 0 2
1 0 3

Ru
nn

ing
 Ti

me
 (m

s)

D F S

 C S R D C S R C S C S R B C S R G r a p h C S R

c l u e w e b 1 2 t w i t t e r - 2 0 1 0
S S S P

c l u e w e b 1 2 t w i t t e r - 2 0 1 0
P R

c l u e w e b 1 2 t w i t t e r - 2 0 1 01 0 � �

1 0 0
1 0 1
1 0 2
1 0 3

C C
c l u e w e b 1 2 t w i t t e r - 2 0 1 0

B C
c l u e w e b 1 2 t w i t t e r - 2 0 1 0

T C
Figure 10: Runtime for deploying GraphCSR on two real-world graphs.

degree distribution before finetuning Thr is highly recommended.
(ii) Although a larger Thr may give a better GraphCSR performance,
GraphCSR is overall Thr-oblivious when 𝑇ℎ𝑟 > 10.

5.6 SpMV Performance

So far, our evaluation is based on graph traversing algorithms like
BFS. However, it is noteworthy that GraphCSR can also effectively
support SpMV-based graph processing. In this experiment, we eval-
uate GraphCSR in an isolated SpMV test performed on two real-
world datasets: twitter-2010 and clueweb12. We reuse the two input
graphs’ topology with the randomly generated index vectors as the
testing scenario for a fair comparison. Figure 8 shows the SpMV
performance of the CSR-based variants, including ELLPACK [29],
CSB [7], and CSR5 [37].

Figure 8(a) shows that GraphCSR yields lower memory cost
against all prior CSR-like formats by up to orders of magnitude. On
average, those CSR-based formats require extra memory to support
vectorization and tiling, which perform well in small graph compu-
tations but are fatigued when facing large graphs. By considering
memory efficiency, our approach outperforms the state-of-the-art
storage formats like ELLPACK, CSB and CSR5 as shown in Figure 8
(b).
5.7 GraphCSR for Real-World Graphs

We conducted experiments with GraphCSR on large real-world
graphs, including clueweb12 and twitter-2010, using various graph
algorithms, such as DFS, SSSP, PR, CC, BC, and TC, based on dif-
ferent CSR-like formats, as shown in Figure 9 and Figure 10. The
results show that GraphCSR outperforms prior CSR-like formats

on all datasets and evaluation metrics. GraphCSR surpasses all the
CSR formats by saving up to 89.2% and 71.9% (average 77.3% and
65.5%) of space compared to naive CSR and BCSR, respectively. And
refer to Figure 10, GraphCSR outperforms all the CSR formats and
offers at most 19.3 speedups (average 14.4×) while running each
popular graph algorithm. It’s worth noticing that since real-world
graphs are typically not hypersparse, DCSR requires more memory
than BCSR or even vanilla CSR. Correspondingly, our approach
demonstrates high stability when dealing with both hypersparse
and non-hypersparse graphs since we do not solely rely on the
number of 0-degree vertices as DCSR does.

6 CONCLUSION

We have presented GraphCSR, a CSR-like sparse storage format de-
signed for large-scale graph applications inweb-scale environments,
where memory efficiency is a significant concern. GraphCSR lever-
ages the observation that most of the vertices of real-world graphs
have low edge degrees, and many vertices with the same edge de-
gree can be grouped to reduce memory consumption in storing
the graph adjacency matrix. Through both theoretical analysis and
empirical evaluation on two high-performance clusters, we demon-
strated that GraphCSR consistently outperforms existing sparse
matrix storage formats across a variety of graph operations. By
delivering higher throughput and reduced memory consumption,
GraphCSR enhances the efficiency of large-scale graph processing
in distributed high performance computing environments, making
it particularly suitable for modern web, mobile, and WoT systems
central to the Web’s infrastructure.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GraphCSR: A Space and Time-Efficient Sparse Matrix Representation for Web-scale Graph Processing Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] 2021. https://lemurproject.org/clueweb12/
[2] 2022. https://law.di.unimi.it/webdata/twitter-2010/. (2022).
[3] 2022. https://lemurproject.org/clueweb12/. (2022).
[4] 2022. https://www.laitimes.com/en/article/85ga_86m5.html. (2022).
[5] Yasir Arfat, Rashid Mehmood, and Aiiad Albeshri. 2018. Parallel Shortest Path

Graph Computations of United States Road Network Data on Apache Spark.
Social Informatics and Telecommunications Engineering (2018), 323–336.

[6] Cigdem Aslay, Laks VS Lakshmanan, Wei Lu, and Xiaokui Xiao. 2018. Influence
maximization in online social networks. In Proceedings of the eleventh ACM
international conference on web search and data mining. 775–776.

[7] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks. In Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and architectures. 233–244.

[8] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. IEEE, 1–11.

[9] Aydin Buluç and Kamesh Madduri. 2011. Parallel breadth-first search on dis-
tributed memory systems. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–12.

[10] Deniz Canturk, Pinar Karagoz, Sang-Wook Kim, and Ismail Hakki Toroslu. 2023.
Trust-aware location recommendation in location-based social networks: A
graph-based approach. Expert Systems with Applications 213 (2023), 119048.

[11] Huanqi Cao, Yuanwei Wang, Haojie Wang, Heng Lin, Zixuan Ma, Wanwang Yin,
and Wenguang Chen. 2022. Scaling graph traversal to 281 trillion edges with 40
million cores. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 234–245.

[12] Fabio Checconi and Fabrizio Petrini. 2014. Traversing trillions of edges in real
time: Graph exploration on large-scale parallel machines. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE, 425–434.

[13] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
2018. G-Miner: an efficient task-oriented graph mining system. In Proceedings of
the Thirteenth EuroSys Conference. ACM, 32.

[14] R. Chen, J. Shi, Y. Chen, and H. Chen. 2015. Powerlyra: Differentiated graph com-
putation and partitioning on skewed graphs. European Conference on Computer
Systems (2015), 1–15.

[15] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. 2019. Powerlyra: Differentiated graph computation and partitioning on
skewed graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019),
1–39.

[16] Xinhai Chen, Peizhen Xie, Lihua Chi, Jie Liu, and Chunye Gong. 2018. An efficient
SIMD compression format for sparse matrix-vector multiplication. Concurrency
and Computation: Practice and Experience 30, 23 (2018), e4800.

[17] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P.
Raghavan. 2009. On compressing social networks. SIGKDD (2009), 219–228.

[18] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope: a unified engine for big
graph processing. Proceedings of the VLDB Endowment 14, 12 (2021), 2879–2892.

[19] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 international conference on management of data. 1433–
1445.

[20] Pablo Fuentes, Mariano Benito, Enrique Vallejo, José Luis Bosque, Ramón Bei-
vide, Andreea Anghel, Germán Rodríguez, Mitch Gusat, Cyriel Minkenberg, and
Mateo Valero. 2017. A scalable synthetic traffic model of Graph500 for computer
networks analysis. Concurrency and Computation: Practice and Experience 29, 24
(2017), e4231.

[21] Xinbiao Gan, Guang Wu, Cong Liu, Jiaqi Si, Xuguang Chen, Bo Yang, and Tiejun
Li. 2022. TianheQueries: Ultra-Fast and Scalable Graph Queries on Tianhe
Supercomputer. In 2022 IEEE 24th Int Conf on High Performance Computing
& Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on
Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys). 1153–1158. https://doi.org/10.
1109/HPCC-DSS-SmartCity-DependSys57074.2022.00182

[22] Xinbiao Gan, Yiming Zhang, Ruibo Wang, Tiejun Li, Tiaojie Xiao, Ruigeng Zeng,
Jie Liu, and Kai Lu. 2021. TianheGraph: Customizing Graph Search for Graph500
on Tianhe Supercomputer. IEEE Transactions on Parallel and Distributed Systems
33, 4 (2021), 941–951.

[23] Xinbiao Gan, Yiming Zhang, Ruigeng Zeng, Jie Liu, Ruibo Wang, Tiejun Li, Li
Chen, and Kai Lu. 2022. Xtree: Traversal-based partitioning for extreme-scale
graph processing on supercomputers. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 2046–2059.

[24] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. {PowerGraph}: Distributed {Graph-Parallel} Computation on Natural

Graphs. In 10th USENIX symposium on operating systems design and implementa-
tion (OSDI 12). 17–30.

[25] Joseph L Greathouse and Mayank Daga. 2014. Efficient sparse matrix-vector
multiplication on GPUs using the CSR storage format. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 769–780.

[26] Wenzhong Guo, Chin-Chen Chang, Eyhab Al-Masri, Chi-Hua Chen, Haishuai
Wang, Qichun Zhang, and K Shankar. 2022. DLWoT’22: 2nd International Work-
shop on Deep Learning for the Web of Things. In Companion Proceedings of the
Web Conference 2022. 936–939.

[27] Qi He, Jaewon Yang, and Baoxu Shi. 2020. Constructing knowledge graph for
social networks in a deep and holistic way. In Companion Proceedings of the Web
Conference 2020. 307–308.

[28] http://graph500.org/. 2021. The Graph 500 List. https://graph500.org/ Last
accessed 03 March 2022.

[29] Konstantin Isupov, Ivan Babeshko, and Alexander Krutikov. 2021. Implementa-
tion of multiple precision sparse matrix-vector multiplication on CUDA using
ELLPACK format. In Journal of Physics: Conference Series, Vol. 1828. IOP Publish-
ing, 012013.

[30] Keita Iwabuchi, Hitoshi Sato, Yuichiro Yasui, Katsuki Fujisawa, and Satoshi
Matsuoka. 2014. NVM-based hybrid BFS with memory efficient data structure.
In 2014 IEEE International Conference on Big Data (Big Data). IEEE, 529–538.

[31] Danai Koutra. 2021. The power of summarization in graph mining and learning:
smaller data, faster methods, more interpretability. Proceedings of the VLDB
Endowment 14, 13 (2021), 3416–3416.

[32] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media? Www ’10 Proceedings of International
Conference on World Wide Web (2010), 591–600.

[33] Yishui Li, Peizhen Xie, Xinhai Chen, Jie Liu, Bo Yang, Shengguo Li, Chunye
Gong, Xinbiao Gan, and Han Xu. 2020. VBSF: a new storage format for SIMD
sparse matrix–vector multiplication on modern processors. The Journal of
Supercomputing 76 (2020), 2063–2081.

[34] Yongsub Lim, Won-Jo Lee, Ho-Jin Choi, and U Kang. 2015. Discovering large
subsets with high quality partitions in real world graphs. In 2015 International
Conference on Big Data and Smart Computing (BIGCOMP). IEEE, 186–193.

[35] Heng Lin, Xiongchao Tang, Bowen Yu, Youwei Zhuo, Wenguang Chen, Jidong
Zhai, Wanwang Yin, and Weimin Zheng. 2017. Scalable graph traversal on
sunway taihulight with ten million cores. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 635–645.

[36] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen,
Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu, et al. 2018. Shentu: pro-
cessing multi-trillion edge graphs on millions of cores in seconds. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 706–716.

[37] Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication. In Proceedings of the 29th ACM on
International Conference on Supercomputing. 339–350.

[38] Yongchao Liu and Bertil Schmidt. 2015. LightSpMV: Faster CSR-based sparse
matrix-vector multiplication on CUDA-enabled GPUs. In 2015 IEEE 26th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 82–89.

[39] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015.
GraphBIG: understanding graph computing in the context of industrial solutions.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[40] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, and Mitsuhisa
Sato. 2020. Performance Evaluation of Supercomputer Fugaku using Breadth-
First Search Benchmark in Graph500. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 408–409.

[41] Chien-ChunNi, Kin Sum Liu, and Nicolas Torzec. 2020. Layered graph embedding
for entity recommendation using wikipedia in the yahoo! knowledge graph. In
Companion Proceedings of the Web Conference 2020. 811–818.

[42] Roger Pearce. 2017. Triangle counting for scale-free graphs at scale in distributed
memory. In 2017 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 1–4.

[43] Roger Pearce, Maya Gokhale, and Nancy M Amato. 2014. Faster parallel traversal
of scale free graphs at extreme scale with vertex delegates. In SC’14: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 549–559.

[44] Magdalena Ryczkowska, Marek Nowicki, and Piotr Bala. 2016. The performance
evaluation of the Java implementation of Graph500. In Parallel Processing and
Applied Mathematics: 11th International Conference, PPAM 2015, Krakow, Poland,
September 6-9, 2015. Revised Selected Papers, Part II. Springer, 221–230.

[45] Koji Ueno and Toyotaro Suzumura. 2012. Highly scalable graph search for
the graph500 benchmark. In Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing. 149–160.

[46] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi
Matsuoka. 2016. Extreme scale breadth-first search on supercomputers. In 2016

9

https://lemurproject.org/clueweb12/
https://law.di.unimi.it/webdata/twitter-2010/
https://lemurproject.org/clueweb12/
https://www.laitimes.com/en/article/85ga_86m5.html
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00182
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00182
https://graph500.org/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

IEEE International Conference on Big Data (Big Data). IEEE, 1040–1047.
[47] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and

Satoshi Matsuoka. 2017. Efficient breadth-first search on massively parallel
and distributed-memory machines. Data Science and Engineering 2, 1 (2017),
22–35.

[48] Norases Vesdapunt and Hector Garcia-Molina. 2016. Updating an Existing Social
Graph Snapshot via a Limited API. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 1693–1702.

[49] XinWang, Yuwei Zhou, HongChen, andWenwuZhu. 2024. Curriculum Learning:
Theories, Approaches, Applications, Tools, and Future Directions in the Era of
Large Language Models. In Companion Proceedings of the ACM onWeb Conference
2024. 1306–1310.

[50] Wikipedia. 2021. Fugaku (supercomputer). https://en.wikipedia.org/wiki/
Fugaku_(supercomputer) Last accessed 20 September 2021.

[51] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula Graph: An
open source distributed graph database. arXiv preprint arXiv:2206.07278 (2022).

[52] Gan Xinbiao, Tan Wen, and Liu Jie. 2021. Bidirectional-Bitmap Based CSR for Re-
ducing Large-Scale Graph Space. Journal of Computer Research and Development
58, 3 (2021), 458.

[53] R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU
[http://socialcomputing.asu.edu]. Informatics and Decision Systems Engineering
(2009).

[54] Mengyuan Zhao, Xiaowen Huang, Lixi Zhu, Jitao Sang, and Jian Yu. 2022. Knowl-
edge graph-enhanced sampling for conversational recommendation system. IEEE
Transactions on Knowledge and Data Engineering 35, 10 (2022), 9890–9903.

[55] Li Zhe, Wu Chengkun, Li Yishui, et al. 2021. FEP-Based Large-Scale Virtual
Screening for Effective Drug Discovery Against COVID-19 [J/OL]. (2021).

[56] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.).
USENIX Association, 301–316. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/zhu

[57] Lei Zou, Lei Chen, and M Tamer Özsu. 2009. Distance-join: Pattern match
query in a large graph database. Proceedings of the VLDB Endowment 2, 1 (2009),
886–897.

[58] Lei Zou, Jinghui Mo, Lei Chen, M Tamer Özsu, and Dongyan Zhao. 2011. gStore:
answering SPARQL queries via subgraph matching. Proceedings of the VLDB
Endowment 4, 8 (2011), 482–493.

10

https://en.wikipedia.org/wiki/Fugaku_(supercomputer)
https://en.wikipedia.org/wiki/Fugaku_(supercomputer)
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Graph Processing
	2.2 CSR for Graph Representation
	2.3 Motivation

	3 Our Approach
	3.1 Overview of GraphCSR
	3.2 The GraphCSR Sparse Storage Format
	3.3 Graph Construction

	4 Experimental Setup
	4.1 Evaluation Platforms & Workloads
	4.2 Evaluation Methodologies

	5 Experimental Results
	5.1 Compare to Other Sparse Storage Formats
	5.2 Scalability
	5.3 GraphCSR for Graph500 Ranking
	5.4 Preprocessing overhead
	5.5 Tuning Edge-degree Parameter
	5.6 SpMV Performance
	5.7 GraphCSR for Real-World Graphs

	6 Conclusion
	References

