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GraphCSR: A Space and Time-Efficient Sparse Matrix
Representation for Web-scale Graph Processing

Anonymous Author(s)

ABSTRACT

Graph data processing is essential for web-scale applications, includ-
ing social networks, recommendation systems, and web of things
(WoT) systems, where large, sparsely connected graphs dominate.
Traditional sparse matrix storage formats like compressed sparse
row (CSR) face significant memory and performance bottlenecks
in distributed, federated, and edge-based computing environments,
which are increasingly central to the web. To address this challenge,
we propose GraphCSR, a novel storage format that clusters ver-
tices with identical edge degrees and stores only the starting index
of each group. This approach minimizes memory overhead and
facilitates batch memory access while enhancing overall perfor-
mance, making it particularly suitable for federated systems and
resource-constrained edge nodes. Our experiments across various
graph operations and large datasets show that GraphCSR achieves
considerable memory savings and performance gains of large-scale,
distributed graph processing. When deployed GraphCSR on a
production-grade supercomputer with 79,024 computing nodes,
it outperforms the top-ranked system on the Graph 500 list, demon-
strating its potential for scaling web and WoT graph processing in
large-scale distributed computing systems.

KEYWORDS

Web-scale graph processing, Sparsematrix storage, CSR, Distributed
graph analytics

1 INTRODUCTION

Graph processing is a cornerstone of many web-scale applications,
playing a vital role in modern services like social networks [10, 27],
recommendation systems [41, 54], and the WoT [26, 49]. These
applications rely on graph data to model relationships between en-
tities, enabling powerful features such as user connectivity, content
recommendations, and device communication. For instance, social
networks use graph structures to represent users and their inter-
actions, allowing platforms to identify key influencers or detect
communities within vast networks. Similarly, recommendation sys-
tems leverage graph processing to analyze user-item interactions,
driving personalized content delivery that enhances user experi-
ence. In the context ofWoT, graph data models interactions between
interconnected devices, enabling efficient device communication,
resource management, and automation in smart environments. Op-
erations like breadth-first search (BFS) and depth-first search (DFS)
allow systems to traverse these complex data structures, uncovering
valuable patterns such as connectivity, shortest paths, or clusters.
These capabilities are foundational in enabling web applications to
derive insights from vast amounts of data, ensuring services remain
responsive and adaptive as user bases and data volumes grow.

In graph processing, the relationship between vertices in a graph
is usually represented using an adjacency matrix. In this matrix, an
element 𝑎𝑢,𝑣 is set to one if an edge exists between vertices 𝑢 and

𝑣 ; otherwise, the element is set to zero. Due to the sparsity of many
real-word graphs, where most vertices are low-degree vertices with
only a small number of edges connected to them, the adjacency
matrix is inherently sparse [6, 8, 12, 52]. As such, the adjacency
matrix is typically stored in a sparse matrix format to reduce the
memory footprint and improve the computational efficiency of
graph processing algorithms.

The CSR format is extensively utilized for representing sparse
matrices in the context of web-scale graph processing [8, 37, 47, 52].
CSR focuses on recording only the non-zero entries of a matrix, sup-
ported by auxiliary information such as row pointers and column
indices. Unlike traditional sparse matrix formats, which are pri-
marily designed to optimize sparse matrix-vector (SpMV) or sparse
matrix-matrix (SpMM) multiplications [13, 33, 37] and improve per-
formance on heterogeneous hardware [25, 38], CSR is specifically
crafted to enhance storage efficiency. This characteristic makes it
especially advantageous for large-scale graph traversal algorithms
[36, 39, 47, 52], where memory constraints can present significant
challenges.

However, the increasing scale and complexity of web applica-
tions introduce significant challenges in processing these graphs
efficiently, particularly in distributed, federated, and edge-based
environments where resources like memory and bandwidth are
limited [5, 17, 30, 32, 34, 48, 53]. Traditional sparse matrix storage
formats, such as the CSR and its variants [8, 12, 47], often fall short
in these contexts, as they do not fully exploit the characteristics of
real-world web-scale graphs. Many of these graphs are sparse and
exhibit skewed degree distributions [23, 31], where most vertices
have few edges. The uniform handling of vertices, by storing both
low- and high-degree vertices as individual non-zero entries, results
in inefficiencies, as low-degree vertices unnecessarily contribute to
memory overhead and exacerbate bottlenecks in large-scale graph
processing. Addressing these challenges requires innovative storage
and computation strategies to handle the unique demands of web-
scale graph processing, laying the groundwork for more optimized
and scalable solutions.

We present GraphCSR1, a groundbreaking sparse matrix storage
format specifically designed to enhance memory efficiency for web-
scale graphs with skewed vertex degree distributions. Building
upon the widely adopted CSR format, GraphCSR requires minimal
modifications to existing graph algorithm implementations, making
it easy to adopt.

Our central insight is that many graph vertices tend to exhibit
the same low-edge degree, allowing for effective grouping that
significantly reduces storage needs and runtime memory consump-
tion. GraphCSR capitalizes on the graph sorting step commonly
utilized in most parallel graph processing algorithms [11, 18, 22, 23,
35, 36, 56] by first organizing vertices based on their edge degrees.
Within each grouped category, GraphCSR compresses data by only

1Code available at https://anonymous.4open.science/r/GraphCSR-450E/README.md
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recording the starting vertex, thus minimizing the overall memory
footprint for graph processing tasks. During execution, GraphCSR
employs a straightforward formula to efficiently check for edge con-
nections between any pair of vertices, facilitating standard graph
processing operations while simultaneously reducing memory us-
age. By grouping vertices with the same degree, GraphCSR also
enables batching and coalescing of memory accesses, thereby en-
hancing the performance of web-scale graph processing.

We evaluate GraphCSR in the context of web-scale graph pro-
cessing by applying it to key graph algorithms on widely-used,
large-scale graph datasets [19, 51, 57, 58]. As baselines, we compare
against eight prominent sparse matrix storage formats [8, 12, 18, 22,
23, 47, 52, 56]. Our evaluation is conducted on a large-scale HPC sys-
tem, utilizing up to 79,024 nodes and over 1.2million processor cores
to simulate web-scale environments. Experimental results consis-
tently demonstrate the superiority of GraphCSR, providing greater
storage efficiency and faster processing times compared to all base-
lines. When tested on the Graph 500 BFS benchmark, GraphCSR
outperforms the highest-ranked supercomputer on the latest Graph
500 list (June 2023), achieving a 1.6× increase in throughput, while
reducing memory consumption by 25% and using fewer CPU cores.

The main contribution of this paper is a novel sparse storage
format optimized for web-scale graph processing. Our theoretical
analysis highlights the format’s efficiency in handling massive
graph datasets common in web-scale systems, while the empirical
results confirm its performance advantages over state-of-the-art
sparse matrix storage methods in distributed graph environments.

This paper presents several significant contributions to the field
of web-scale graph processing:

• An important insight is that reordered CSR format can be
effectively leveraged inWeb-scale graph processing to store
and index vertices with identical degrees, particularly low-
degree vertices, in sorted graphs. This approach enhances
space-time efficiency, making it ideal for managing large-
scale graph data in distributed environments.

• We showcase how to exploit the characteristics of low-
degree vertices in sorted graphs to enhance CSR-like for-
mats for web-scale graph processing. This improvement
facilitates the execution of essential graph algorithms and
SpMV operations, enabling efficient graph analysis on large-
scale datasets in distributed systems.

• Extensive experiments demonstrate that GraphCSR achieves
rapid processing times and a reduced memory footprint
compared to state-of-the-art sparse matrix storage formats
in web-scale graph processing for distributed graph applica-
tions. Notably, GraphCSR ranks at the top of the Graph500
BFS leaderboard, handling up to 77.2K nodes with a 57.8%
increase in throughput and a 74% reduction in memory us-
age. These results highlight the effectiveness and efficiency
of GraphCSR in managing large-scale graph datasets.

2 BACKGROUND AND MOTIVATION

2.1 Graph Processing

As depicted in Figure 1, web-scale graph processing generally con-
sists of three key stages: (i) graph preprocessing, (ii) graph con-
struction, and (iii) graph computation. During the preprocessing

stage, various tasks like vertex isolation and pruning, degree count-
ing, and vertex sorting are performed. Note that many large-scale
graph processing algorithms and parallelization strategies require
sorting the graph vertices according to the edge degree at the pre-
processing stage [18, 20, 22, 23, 36, 45, 56]. In the graph construc-
tion stage, vertices and edges are stored in specific storage formats
[14, 20, 28, 45, 52], such as CSR, or bitmap. Finally, the constructed
graphs are passed into a graph processing algorithm like BFS, Single
Source Shortest Path (SSSP), Connected Component (CC), PageRank
(PR), Betweenness Centrality (BC), Triangle Counting (TC) [24, 56]
and SpMV. This structured approach ensures efficient processing
of large-scale graph data across distributed systems.
Problem scope. Our work focuses specifically on the graph con-
struction stage within the context of web-scale graph processing,
aiming to optimize the representation of the graph adjacencymatrix.
This optimization is crucial for reducing the memory footprint, a
significant challenge in large-scale, distributed graph processing en-
vironments. Once the graph is constructed, GraphCSR is equipped
to support various graph computations, including SpMV operations
(see section 5.6), enhancing the overall efficiency of processing mas-
sive graphs in web, federated, and edge-based environments. This
capability ensures scalability and performance across distributed
systems central to modern web-scale applications.
Graph partitioning. In the realm of web-scale graph processing,
two predominant strategies for partitioning graphs and distributing
the elements of the graph adjacency matrix for parallel processing
are 1-dimensional (1D) and 2-dimensional (2D) decomposition [9].
1D graph decomposition involves breaking down a graph adjacency
matrix into smaller sub-matrices, each of which can be owned
by a processor independently. A graph is often represented as a
sequence of vertices and edges, and the decomposition process
involves partitioning this sequence into smaller sub-sequences or
components. This approach is widely used in graph processing
and has been extensively studied [42–44]. In contrast, 2D graph
decomposition represents a graph as a mesh or an edge-vertex
matrix, which can be partitioned into smaller sub-matrices and
assigned to each processor for distributed processing. This approach
has also been extensively studied and has shown promising results
in recent researches [22, 23, 56]. In this work, our discussion is
centralized on 2D graph partitioning, but our techniques can be
equally applied to 1D decomposition.

2.2 CSR for Graph Representation

The CSR format is a widely adopted representation for storing
sparse matrices in the context of web-scale graph processing. Com-
pared to other sparse matrix formats like DOK (Dictionary of keys),
LIL (List of lists), or COO (Coordinate list) [16, 33, 37], CSR offers
efficient access and matrix operations and yields a better storage
solution. Specifically, CSR represents a sparse matrix using three
one-dimensional arrays: val, RST, and COL. The val array stores
the non-zero values in contiguous locations, with each row packed
together. The RST array specifies the starting index of each row in
the val array, while the COL array maps each non-zero value to its
corresponding column. Graph processing algorithms mostly focus
on accessing each vertex and then filtering vertices on demand. For
clarity, the val array can be omitted for better understanding.
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5

Figure 2: CSR format (c) of the graph adjacency matrix (b)

for a graph G (a).

However, in web-scale graph processing, where datasets are
immense and constantly evolving, the limitations of traditional CSR
becomemore pronounced. The need for rapid access, scalability, and
efficient memory usage is critical. Graph processing frameworks
that are designed for web-scale applications often utilize alternative
storage formats or methods (like adjacency lists or distributed graph
databases) that can handle large-scale datasets more effectively and
allow for more efficient parallel processing.

Many real-life graphs exhibit sparsity and unevenness2. General-
purposed sparse matrix storage formats [8, 12, 47, 52] only focus
on removing 0-degree vertices for better memory usage. However,
GraphCSR is tailored for graph processing by further compressing
the graph adjacency matrix by grouping the same-degree vertices
(i.e. 𝑣𝑒𝑟𝑡𝑒𝑥{1, 2, 3} shown in Figure 2). It is worth noting that same-
degree vertices with low degrees constitute the vast majority of
vertices in both real-world and synthetic graphs[22]. As a result,
there is lots of room for GraphCSR to demonstrate its potential.

Many real-world graphs are characterized by sparsity and un-
evenness, often described by the small-world model, where most
vertices have a low degree and are connected to only a few high-
degree vertices. This structure is significant in the context of web-
scale graph processing, as efficient management of large-scale data
becomes crucial. Traditional sparse matrix storage formats primar-
ily focus on removing 0-degree vertices to optimize memory usage.
However, our approach, GraphCSR, is specifically designed for
graph processing at scale by further compressing the graph adja-
cency matrix. It achieves this by grouping same-degree vertices
(e.g. 𝑣𝑒𝑟𝑡𝑒𝑥{1, 2, 3} shown in Figure 2). Notably, the majority of ver-
tices in both real-world and synthetic graphs possess low degrees,
indicating that these same-degree vertices represent a substantial
2This is also known as a small world model - where most vertices of a real-life graph
are low-degree vertices with only a small number of edges connected to very few
high-degree vertices [15, 22].
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Figure 3: Degree cumulative distribution of clueweb12 and

twitter-2010, such that graph-in/out represents the in-degree

or out-degree of the graph.

portion of the graph. This opens up significant opportunities for
GraphCSR to enhance performance and efficiency in processing
large graphs, making it particularly valuable for applications that
require scalable and efficient graph analysis.

2.3 Motivation

Our work is built upon two key observations regarding the row
index array, RST when using CSR to store the adjacency matrix of
a sorted graph. Firstly, the array elements are ordered in a non-
decreasing manner, as exemplified by the sequence 0, 3, 5, 7, 9, 10, 10
in Figure 2(c), and some values in RST may only refer to rows
that correspond to 0-degree vertices, where values are all zero. For
example, in Figure 2(c), the last two elements, 10, 10, of RST, refer
to the last row of the adjacency matrix in Figure 2(a), which shows
the connected edge of the 0-degree vertex 5 in Figure 2(a).

Secondly, vertices with the same edge degree have their adjacent
lists stored in a contiguousmanner in the COL array. For the example
given in Figure 2, the 2-degree vertices 𝑣1, 𝑣2 and 𝑣3 in the COL array
are represented by the sets {0, 4}, {0, 3} and {0, 2} respectively.

Besides clueweb12 and twitter-2010, we conduct tens of public
graphs and get similar distributions, in which low-degree vertices
make up a large proportion of real-life graphs, thereby occupying
a substantial portion of the storage space. Figure 3 shows how the
vertices distribute in two real-world graphs - clueweb12 and twitter-
2010. While graph clueweb12 owns 978,408,098 vertices and has a
sparsity (i.e., non-zero degree vertices ratio) of 90.5%, graph twitter-
2010, on the other hand, owns 41,652,230 vertices with the sparsity
of 86.7%. In Figure 3, we show that 0-degree vertices account for
up to 9.5%, vertices with 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 9 constitute approximately

3
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78%, the proportion of vertices ( 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 20) is steadily in-
creases to 85%, while the ratio of vertices with 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 50
is close to 91% but incrementally climbs to 95% for vertices with
0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 100. Interestingly, the distribution of low-degree
vertices does not vary significantly with the sparsity of the graph
though the number of zeros decreases as the graph gets denser.
For example, even a denser graph like clueweb12 (whose average
degree is 43.5) has less than 10% 0-degree vertices, it still holds 78%
of the vertices with 0 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 9. In addition, [21] showed more
details on the distribution of low-degree vertices. This scenario
adds an extra dimension of motivation to develop a new repre-
sentation for large-scale graphs that contain a large proportion of
low-degree vertices. In the context of web-scale graph processing,
various CSR-like formats have been introduced to tackle the chal-
lenge of storing rows that consist entirely of zero values. Notable
examples include DCSR [8], CSCSR (Coarse Index + Skip List) [12],
and BCSR (Bitmap-based Sparse Matrix Representation) [47]. While
these techniques effectively address the issues raised by our ini-
tial observation, they fail to capitalize on the potential benefits
of grouping vertices with the same degree. This grouping could
substantially minimize the memory requirements when process-
ing large-scale graphs. To address this shortcoming, GraphCSR
is specifically designed to optimize memory usage and enhance
efficiency in web-scale graph processing scenarios.

The primary goal of GraphCSR is to enhance memory effi-
ciency and optimize access patterns for large-scale graph algo-
rithms, specifically tailored for web-scale graph processing. By
effectively grouping low-degree vertices that share the same de-
gree, GraphCSR facilitates batched memory accesses, allowing a
single load operation to retrieve multiple adjacent lists of vertices
with identical edge degrees simultaneously. This optimization is
achieved by storing only the starting addresses of the adjacency
lists for vertices with the same degree, resulting in a significant
reduction in memory usage. Such space savings are crucial when
processing large graphs, where graphs are typically dominated
by low-degree vertices. Traditional sparse matrix storage formats
often overlook the structural characteristics of such large, sorted
graphs, leading to inefficiencies. In contrast, GraphCSR directly
addresses this gap, improving memory utilization and enhancing
performance for processing massive graph datasets in distributed,
federated, and edge-based environments, key to modern web and
WoT systems.

3 OUR APPROACH

In this section, we use BFS as aworking example to explain GraphCSR,
but GraphCSR can be used with any other graph processing algo-
rithm to represent sparse matrices.

3.1 Overview of GraphCSR

GraphCSR enhances the traditional CSR format by utilizing a fold-
ing method to consolidate vertices with the same degree into a
single starting offset in the RST array. This straightforward yet pow-
erful folding scheme is particularly effective for web-scale graph
processing, as many real-world graphs contain a significant number
of low-degree vertices that share identical edge degrees. By opti-
mizing the storage and access patterns in this manner, GraphCSR

significantly improves the efficiency of graph algorithms, making it
well-suited for handling the massive and complex datasets typical
in web-scale applications.

GraphCSR is particularly effectivewhen applied to sorted graphs
generated during the preprocessing stage of many parallel graph
processing algorithms, which are essential for handling large-scale
datasets. Since numerous distributed graph processing algorithms
require the sorting of graph vertices based on their edge degrees,
the sorted graph’s adjacency matrix is often readily available during
construction . In these sorted graphs, vertices with the same degree
are stored contiguously in the RST array of CSR format. GraphCSR
leverages this structure to reduce memory usage by storing only
the initial vertex ID within each group of vertices sharing the same
degree. This optimization not only improves the coherence of ver-
tex access patterns but also significantly reduces the time needed
for vertex traversal. During graph computation, a straightforward
calculation allows for the determination of vertex IDs of the folded
vertices using the starting index of the relevant vertex group and
the starting index of the nearest edge degree group, enhancing the
efficiency of processing large-scale graphs commonly encountered
in web applications.

3.2 The GraphCSR Sparse Storage Format

Specifically, GraphCSR introduces two additional arrays, namely
low_deg_RST and low_deg_COL, and a hyperparameter, denoted as
Thr. The Thr is a threshold that determines whether a vertex is con-
sidered low-degree and should be folded. The low_deg_RST array
stores the number of low-degree vertices, while low_deg_COL array
stores the COL offset value of a vertex concerning the lowest ID of a
group of vertices with the same edge degree. It is worth noting that
the low_deg_COL array points to the original COL array and serves
as an offset of the COL array. This way, the low-degree vertices can
be traced through the low_deg_COL array. For high-degree vertices
whose edge degrees are greater than Thr, we store them in the stan-
dard CSR RST and COL arrays. In contrast to low-degree vertices,
GraphCSR chooses not to compress high-degree vertices. This de-
cision is based on the observation that high-degree vertices are
usually relatively rare in real-world graphs and are often accessed
frequently during graph traversals. Therefore, compressing them
may incur additional runtime overhead, potentially outweighing
the benefits of compression. In GraphCSR, we refer to the RST and
COL arrays used to store high-degree vertices as high_deg_RST and
high_deg_COL, respectively, to aid clarity.

3.3 Graph Construction

We use Figure 4 as a working example to illustrate how GraphCSR
represents a graph adjacency matrix for the example given ear-
lier in Figure 2. For illustration, we set the edge-degree threshold
parameter, Thr, to 2. This means that vertices with an edge de-
gree greater than 2 are considered high-degree vertices and stored
in the high_deg_RST array, while vertices with a degree equal to
or less than 2 are considered low-degree vertices and stored in
the low_deg_RST and low_deg_COL arrays by referring to the COL
array.

Algorithm 1 outlines how GraphCSR encodes high-degree and
low-degree vertices. Specifically, the low_deg_RST[N] stores the

4
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Figure 4: Using GraphCSR (Thr =2) to represent the graph ad-

jacency matrix of Figure 2(b). Here, low_deg_RST[N] records
the number of (𝑇ℎ𝑟 − 𝑁 )-degree vertices, such that 𝑁 ∈
[0,𝑇ℎ𝑟 ), and low_deg_COL[M] records a starting offset in COL
for the vertex with (𝑇ℎ𝑟 −𝑀)-degree, such that𝑀 ∈ [0,𝑇ℎ𝑟 ).

Algorithm 1: GraphCSR constructing algorithm
Input: RST

𝑇ℎ𝑟 // Degree Threshold
Output: 𝑙𝑜𝑤_𝑑𝑒𝑔_𝑅𝑆𝑇

ℎ𝑖𝑔ℎ_𝑑𝑒𝑔_𝑅𝑆𝑇
𝑙𝑜𝑤_𝑑𝑒𝑔_𝐶𝑂𝐿

// Initialization

1 𝑙𝑜𝑤_𝑑𝑒𝑔_𝑅𝑆𝑇 ← 𝑁𝑈𝐿𝐿

2 ℎ𝑖𝑔ℎ_𝑑𝑒𝑔_𝑅𝑆𝑇 ← 𝑁𝑈𝐿𝐿

3 𝑙𝑜𝑤_𝑑𝑒𝑔_𝐶𝑂𝐿← 𝑁𝑈𝐿𝐿

4 for 𝑣𝑐 ∈ [0, len(RST)-1] in parallel do
5 degree = RST[𝑣𝑐+1]-RST[𝑣𝑐 ]
6 if degree ≤ 𝑇ℎ𝑟 then
7 𝑙𝑜𝑤_𝑑𝑒𝑔_𝑅𝑆𝑇 [𝑇ℎ𝑟 − 𝑑𝑒𝑔𝑟𝑒𝑒]++
8 𝑙𝑜𝑤_𝑑𝑒𝑔_𝐶𝑂𝐿[𝑇ℎ𝑟 − 𝑑𝑒𝑔𝑟𝑒𝑒] = RST[𝑣𝑐 ]
9 else

10 ℎ𝑖𝑔ℎ_𝑑𝑒𝑔_𝑅𝑆𝑇 .append(RST[𝑣𝑐 ])

number of (𝑇ℎ𝑟 − 𝑁 )-degree vertices for 𝑁 ∈ [0,𝑇ℎ𝑟 ), with the
edge degree ordered in a descending manner3. For example, in
Figure 4, low_deg_RST[0] equals 3 because there are three ver-
tices, 𝑣1, 𝑣2 and 𝑣3, with an edge degree of 2, and low_deg_RST[1]
equals 1 because there is one vertex, 𝑣4, with an edge degree of
1. The low_deg_COL[M] represents a starting offset in COL for the
vertex with (𝑇ℎ𝑟 − 𝑀)-degree, with 𝑀 ∈ [0,𝑇ℎ𝑟 ). Finally, the
high_deg_RST array is the standard CSR RST array, but it only
stores vertices with degrees greater than Thr. Overall, this approach
optimizes the storage of low-degree vertices while still allowing
high-degree vertices to be stored using the standard CSR approach.

4 EXPERIMENTAL SETUP

4.1 Evaluation Platforms &Workloads

To evaluate the portability of GraphCSR, we apply it to two HPC
systems with different CPU architectures using 512 nodes and 8,192
processor cores. Table 2 lists the two HPC systems used in our
testing and the maximum number of computing nodes used in ex-
periments. Each node on the WuzhengLight has two HG2 32-core
CPUs at 2.5 GHz that are compatible with the AMD x64 instruction
set. Each node on Tianhe-Exa has a Phytium 16-core CPU at 2.0
GHz. Both systems run a customized Linux operating system with
Linux kernel v9.3.0. We use MPICH 10.2.0 for the message pass-
ing interface (MPI) and libgomp 4.5 for OpenMP. We compile the
benchmark using GCC 10.2.0 with “-O3" as the compiler option.

Our main evaluation is performed on the BFS algorithm defined
in the Graph500 benchmark [28]. Graph 500 is the de facto standard
for assessing a computer system’s capability for graph process-
ing [22, 35, 36, 40, 46]. It provides a graph generator to generate
synthetic graphs that mimic real-life graph structures. This tool
takes two parameters, a graph factor, and an 𝑒𝑑𝑔𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 . For a
graph size𝑚 and an 𝑒𝑑𝑔𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 𝑛, the generator generates a graph
of 2𝑚 vertices and 𝑛 × 2𝑚 edges. Unless stated otherwise, we use
the Graph 500 default edge factor of 16.

In addition to synthetic graph data generated by Graph500, we
also evaluate our GraphCSR on two public graphs collected from
real-life social networks [2, 3], including clueweb12 (with 987 mil-
lion vertices and 42.6 billion edges) [3], and twitter-2010 (with 41.7
million vertices and 1.47 billion edges) [2] along with other graph
processing operations, including DFS, SSSP, PR, CC, BC, and TC.

4.2 Evaluation Methodologies

In this paper, we adhere to the Graph 500 ranking methodology
to evaluate the throughput of graph processing. To quantify this,
we report the giga-traversed edges per second (GTEPS), which is a
higher-is-better metric. For each test case, we conduct ten runs on
unloaded machines, randomly selecting 64 root vertices for each
run. We then report the geometric mean of the results. It’s worth
noting that the variances of GTEPS across different runs for the
same test case are small, typically less than 2%.

5 EXPERIMENTAL RESULTS

5.1 Compare to Other Sparse Storage Formats

Table 1 reports the memory footprint when using different sparse
matrix storage formats for BFS. In practice, COL is identical for all
CSRs and shared among all running processes, while RST should
be duplicated for every running process. Especially for large-scale
graph tasks running on an HPC system with thousands of running
processes available, amplifying the volume of RST thousands of
times. Like CSR and its variants, we compare GraphCSR to state-of-
the-art CSR-like formats and consistently outperform all baselines.
Specifically, GraphCSR saves more than 90% 4 memory space over
most of the CSRs and up to 99.8% of space against the CSCSR format.
Furthermore, the average deviation rate in Table 1 is less than 0.4%,

3The descending order of the RST array prioritizes access to high-degree vertices [23].
4Since COL is identical for all CSRs, it is not considered for space saving.
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Table 1: Measured memory footprint ( and difference w.r.t theoretical analysis) per-node for kron-31 on 512-node execution.

Data Structure CSR DCSR CSCSR BCSR GraphCSR

Auxiliary Arrays N/A 11.74 MB (1.81%) 764.33 MB (1.81%) 0.75 MB (0.01%) 160 B (0.00%)
RST 16 MB (0.01%) 6.41 MB (0.03%) N/A 6.41 MB (0.03%) 1.26 MB (0.06%)
COL 48 MB 48 MB N/A 48 MB 48 MB
TOTAL 64 MB (0.01%) 66.16 MB (1.82%) 764.33 MB (1.81%) 55.16 MB (0.03%) 49.26 MB (0.06%)

Table 2: Supercomputer testbed settings

Name #Nodes CPU Memory (GB)

WuzhengLight 512 HG2 64-core CPU 256
Tianhe-Exa 512 Phytium 16-core CPU 16
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Figure 5: BFS-based GraphCSR’s (a) Memory and (b) Time

consumption against other sparse matrix storage formats.

even the largest deviation rates remain below 2%, which proves
GraphCSR’s reliability and consistency.

We also evaluate GraphCSR on a real-world social graph clueweb12 [1]
and report both the memory usage and runtime of BFS shown in
Figure 5. Figure 5(a) shows that GraphCSR has the smallest mem-
ory cost over other storage formats (saving average memory) and in
Figure 5(b) GraphCSR also shows the fastest running time against
others (yielding average runtime speedup). Noted that the time
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Figure 6: GraphCSR’s scalability on Graph500-BFS bench-

mark.

Table 3: GraphCSR-based Graph500 BFS vs.Fugaku (the cur-

rent Graph500 top-ranked supercomputer)

System #Nodes RAM (GB) Storage format GTEPS

Tianhe-Exa 79,024 1,264,384 GraphCSR 162,494
Fugaku 152,064 4,866,048 BCSR [47] 137,096

cost includes graph preprocessing and all storage formats have
implemented the same sorting algorithm before the evaluations.

5.2 Scalability

In this section, we evaluate the scalability of GraphCSR by applying
it to BFS across varying numbers of nodes on WuzhengLight [4]
and Tianhe-Exa [55]. Figure 6 reports how the normalized GTEPS
changes as we increase the number of computing nodes, using one
single node as the normalization baseline. We observe a consistent
increase in GTEPS for GraphCSR as we increase the number of
computing nodes, suggesting that BFS based on GraphCSR exhibits
good scalability.
5.3 GraphCSR for Graph500 Ranking

GraphCSR has been successfully deployed on the Tianhe-Exa su-
percomputer using up to 79,024 nodes, where each node is equipped
with 16GB of RAM. When running distributed Graph500 BFS using
GraphCSR on this setup, we achieved a GTEPS of 162,494. This
represents a 57.8% improvement over the current top-ranked su-
percomputer, Fugaku, which delivers a GSETPS of 137,096 using
over 148.5K nodes and 3.85× more RAM. As shown in Table 3, the
comparison between Tianhe-Exa and Fugaku for Graph 500 BFS
demonstrates that our system achieved a higher throughput using
fewer computing nodes. These results were obtained on the same
graph size generated using the Graph500 graph generation tool,
with an edge_factor of 41, resulting in a graph with 2.2 trillion ver-
tices and 35.2 trillion edges. These results confirm the efficiency and
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Figure 7: Sensibility of Thr in graph clueweb12 and Twitter-

2010, in which saving space =
|𝑀 (𝐶𝑆𝑅)−𝑀 (GraphCSR) |

𝑀 (𝐶𝑆𝑅) × 100%,
M(X) represents the memory cost of format X (i.e., CSR or

GraphCSR).

practicality of GraphCSR in supporting large-scale graph traversal
algorithms on modern supercomputers.

5.4 Preprocessing overhead

GraphCSR requires a sorted graph as input, and further reindex
each vertex by the adjunct RST and COL array. This preprocessing is
a one-off cost. Extensive results show that the processing overhead
of GraphCSR remains relatively manageable even as the graph size
increases (2.07s while scaling to 512 nodes.). We have noticed many
great works on vertex sorting in graph-parallel processing systems
have been provided, such as [14, 18, 22, 24, 36, 50, 56]. GraphCSR
is developed for facilitating graph applications, which can seam-
lessly integrate with existing graph preprocessing approaches while
offering additional benefits.

5.5 Tuning Edge-degree Parameter

In this subsection, we will take the synthetic graphs generated
by the Graph500 data generation tool (Kronecker [28]) to demon-
strate how the hyperparameter 𝑇ℎ𝑟 will affect the performance of

1
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Figure 8: The SpMVperformance of GraphCSRwith (a)Mem-

ory and (b) MFLOPS (Mega FLoating point Operations Per

Second) against the state-of-the-art CSR-like formats.

GraphCSR. In addition, we will explore methods for fine-tuning
Thr to optimize graph processing speed.

The selection policy for𝑇ℎ𝑟 should be highly based on the distri-
bution of vertices in the graph. As shown in Figure 3, low-degree ver-
tices constitute a significant portion of real-world graphs, whereas
DCSR-mentioned hypersparse graphs are uncommon. Thus, the
ideal 𝑇ℎ𝑟 should cover most of the low-degree vertices. For exam-
ple, since vertices with 𝑑𝑒𝑔𝑟𝑒𝑒 ∈ [1, 9] hold more than 78% for the
provided real-world graphs (see in Figure 3), the optimal𝑇ℎ𝑟 should
theoretically be larger than 9. But still, the performance may vary
depending on changes in the proportion of low-degree vertices.
We highly recommend users to define their own 𝑇ℎ𝑟 range and
evaluate the sensibility of 𝑇ℎ𝑟 across different scales of graphs, see
Figure 7 according to the graph degrees’ distribution.

We evaluate the GraphCSR’s performance by carefully tuning
the 𝑇ℎ𝑟 ∈ {10, 15, 20, 25}. We also list the results of 𝑇ℎ𝑟 ≤ 9 (see
Figure 7(a)) to prove that based on the degree distribution in Figure 3,
every increase in Thr brings obvious benefits, and the overall yield
is linear. On the other hand, Figure 7(b) shows that when 𝑇ℎ𝑟 > 9,
further changes in Thr have little effect on its performance with
the same graph. The largest performance gap would be around
5% when we conduct different Thr on clueweb12 and twitter-2010.
So far, we can draw a conclusion that: (i) Majorities of the graphs
have a large scale of N-degree vertices, such that 𝑁 ≤ 10. In this
case, 𝑇ℎ𝑟 = 9 gains significant benefits. First refering to the graph
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degree distribution before finetuning Thr is highly recommended.
(ii) Although a larger Thr may give a better GraphCSR performance,
GraphCSR is overall Thr-oblivious when 𝑇ℎ𝑟 > 10.

5.6 SpMV Performance

So far, our evaluation is based on graph traversing algorithms like
BFS. However, it is noteworthy that GraphCSR can also effectively
support SpMV-based graph processing. In this experiment, we eval-
uate GraphCSR in an isolated SpMV test performed on two real-
world datasets: twitter-2010 and clueweb12. We reuse the two input
graphs’ topology with the randomly generated index vectors as the
testing scenario for a fair comparison. Figure 8 shows the SpMV
performance of the CSR-based variants, including ELLPACK [29],
CSB [7], and CSR5 [37].

Figure 8(a) shows that GraphCSR yields lower memory cost
against all prior CSR-like formats by up to orders of magnitude. On
average, those CSR-based formats require extra memory to support
vectorization and tiling, which perform well in small graph compu-
tations but are fatigued when facing large graphs. By considering
memory efficiency, our approach outperforms the state-of-the-art
storage formats like ELLPACK, CSB and CSR5 as shown in Figure 8
(b).
5.7 GraphCSR for Real-World Graphs

We conducted experiments with GraphCSR on large real-world
graphs, including clueweb12 and twitter-2010, using various graph
algorithms, such as DFS, SSSP, PR, CC, BC, and TC, based on dif-
ferent CSR-like formats, as shown in Figure 9 and Figure 10. The
results show that GraphCSR outperforms prior CSR-like formats

on all datasets and evaluation metrics. GraphCSR surpasses all the
CSR formats by saving up to 89.2% and 71.9% (average 77.3% and
65.5%) of space compared to naive CSR and BCSR, respectively. And
refer to Figure 10, GraphCSR outperforms all the CSR formats and
offers at most 19.3 speedups (average 14.4×) while running each
popular graph algorithm. It’s worth noticing that since real-world
graphs are typically not hypersparse, DCSR requires more memory
than BCSR or even vanilla CSR. Correspondingly, our approach
demonstrates high stability when dealing with both hypersparse
and non-hypersparse graphs since we do not solely rely on the
number of 0-degree vertices as DCSR does.

6 CONCLUSION

We have presented GraphCSR, a CSR-like sparse storage format de-
signed for large-scale graph applications inweb-scale environments,
where memory efficiency is a significant concern. GraphCSR lever-
ages the observation that most of the vertices of real-world graphs
have low edge degrees, and many vertices with the same edge de-
gree can be grouped to reduce memory consumption in storing
the graph adjacency matrix. Through both theoretical analysis and
empirical evaluation on two high-performance clusters, we demon-
strated that GraphCSR consistently outperforms existing sparse
matrix storage formats across a variety of graph operations. By
delivering higher throughput and reduced memory consumption,
GraphCSR enhances the efficiency of large-scale graph processing
in distributed high performance computing environments, making
it particularly suitable for modern web, mobile, and WoT systems
central to the Web’s infrastructure.
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