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Abstract

We propose a surrogate function for efficient use of score-based priors for Bayesian
inverse imaging. Recent work turned score-based diffusion models into probabilis-
tic priors for solving ill-posed imaging problems by appealing to an ODE-based
log-probability function. However, evaluating this function is computationally inef-
ficient and inhibits posterior estimation of high-dimensional images. Our proposed
surrogate prior is based on the evidence lower-bound of a score-based diffusion
model. We demonstrate the surrogate prior on variational inference for efficient
approximate posterior sampling of large images. Compared to the exact prior in
previous work, our surrogate prior accelerates optimization of the variational image
distribution by at least two orders of magnitude. We also find that our principled
approach achieves higher-fidelity images than non-Bayesian baselines that involve
hyperparameter-tuning at inference. Our work establishes a practical path forward
for using score-based diffusion models as general-purpose priors for imaging.

1 Introduction

Ill-posed image reconstruction requires a prior to enforce desired image statistics. From a Bayesian
perspective, the prior influences the uncertainty and richness of the estimated image. Diffusion
models represent rich image priors, but leveraging these priors for Bayesian image reconstruction
remains a challenge. Recent work demonstrated how to turn score-based diffusion models into
probabilistic priors (score-based priors) for Bayesian imaging [8]. However, it involves solving an
ordinary differential equation (ODE) for every probability computation, requiring days to a week to
reconstruct even a 32× 32 image [8]. We present a method for Bayesian inference with a score-based
prior that is both principled and computationally efficient.

We propose leveraging the evidence lower-bound of a score-based diffusion model [18; 10] as an
efficient surrogate for the exact log-probability function. This function can be plugged into any
inference algorithm that requires the value or gradient of the posterior log-density. When it is used
in variational inference of an image posterior, we find at least two orders of magnitude in speedup
of optimizing the variational distribution. Our time- and memory-efficiency improvements make it
practical to perform inference with score-based priors.

In this paper, we describe our variational-inference approach to efficiently estimate a posterior with
a surrogate score-based prior. We provide experimental results to validate the proposed surrogate
prior, including high-dimensional posterior samples of sizes up to 256× 256, a resolution infeasible
with the exact prior. In the setting of accelerated MRI, we quantify time- and memory-efficiency
improvements of the surrogate over the exact prior. We also demonstrate how our proposed approach
achieves higher-quality image reconstructions than methods that deviate from true Bayesian inference.
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Figure 1: High-dimensional Bayesian inference with a surrogate score-based prior. We propose a
surrogate prior for efficient use of score-based diffusion models as priors for Bayesian imaging. Here
we show posterior samples for 16×-accelerated MRI of 256× 256 knee images, approximated via
variational inference with a surrogate score-based prior. Bayesian imaging at this image resolution is
computationally infeasible with the previous ODE-based approach [8].

2 Background

2.1 Bayesian inverse imaging

Image reconstruction can be framed as an inverse problem in which a hidden image x∗ ∈ RD must
be recovered from measurements y ∈ RM , where y = f(x∗) + ϵ. For an ill-posed inverse problem,
Bayesian imaging considers a posterior of possible images x given y whose log-density is

log p(x | y) = log p(y | x) + log p(x) + const. (1)
Given a log-likelihood function log p(y | x) and a prior log-probability function log p(x), we can
use established techniques for sampling from the posterior, including variational inference (VI) [2].

2.2 Score-based diffusion models

Diffusion models for inverse imaging. Diffusion models [14; 10; 16; 17; 19] learn a rich image
distribution that would be useful as a prior for inverse problems. Previous methods incorporate this
prior in a non-Bayesian way, such as by projecting images onto a measurement subspace [20; 6; 4; 3;
5] or by following a gradient toward higher measurement likelihood [7; 11; 9; 12; 1; 15; 13]. Such
methods require hyperparameter-tuning at inference and may not accurately sample the posterior.

Generative distribution. A score-based diffusion model transforms the simple distribution π =
N (0, I) into a complex image distribution through gradual denoising. This process, known as
“reverse diffusion,” is governed by a reverse-time stochastic differential equation (SDE):

dx =
[
f(x, t)− g(t)2sθ(x, t)

]
dt+ g(t)dw̄, t ∈ [0, T ]. (2)

Here w̄ ∈ RD denotes Brownian motion. g(t) ∈ R and f(·, t) : RD → RD are the diffusion
and drift coefficients, respectively, and arise from a pre-defined forward-time diffusion process.
sθ(x, t) ≈ ∇x log pt(x) is the score model learned by a neural network. Image generation is done by
solving the reverse-time SDE starting with x(T ) ∼ N (0, I) to get a clean image x(0) ∼ pSDE

θ . For
any image x, evaluating pSDE

θ (x) is not tractable, and solving an ordinary differential equation (ODE)
to evaluate pODE

θ ≈ pSDE
θ [19] is computationally inefficient [8].

Evidence lower bound. Song et al. [18] derived an evidence lower-bound for pSDE
θ such that

bSDE
θ (x) ≤ log pSDE

θ (x) for any proposed image x. Essentially, this lower-bound corresponds to how
well the diffusion model is able to denoise a given image: an image with high probability under the
diffusion model is easy to denoise, whereas a low-probability image is difficult. The lower-bound, or
the negative “denoising score-matching loss” [18], is defined as

bSDE
θ (x) := Ep0T (x′|x)

[
log π(x′)

]
− 1

2

∫ T

0

g(t)2h(t)dt, where (3)

h(t) := Ep0t(x′|x)

[∥∥sθ(x′, t)−∇x′ log p0t(x
′ | x)

∥∥2

2
−

∥∥∇x′ log p0t(x
′ | x)

∥∥2

2
− 2

g(t)2
∇x′ · f(x′, t)

]
.

p0t(x
′ | x) denotes the transition distribution from x(0) = x to x(t) = x′. For a drift coefficient

that is linear in x, this transition distribution is Gaussian: p0t(x′ | x) = N (x′;α(t)x, β(t)2I). This
means that the gradient ∇x′ log p0t(x

′ | x) is directly proportional to the Gaussian noise that is
subtracted from x′ to get x. In fact, Eq. 3 is closely related to the denoising score-matching objective
used to efficiently train diffusion models [19].

2



Dimensionality

M
em

or
y 

[G
B]

Dimensionality

Optimization Time Optimization Memory

PS
N
R

SS
IM

Image-Restoration Quality

Dimensionality

39 hrs. 43 hrs.

126 hrs.

19 mins. 19 mins. 45 mins. 2 hrs. 9 hrs. 16 GB
31 GB

89 GB

8 GB 12 GB

17 GB

44 GB

142 GB

Ti
m

e 
[s

ec
]

= Exact
= Surrogate

= Exact
= Surrogate

Figure 2: Efficiency of proposed surrogate vs. exact prior. For each image size, we estimated a
posterior of images for 4×-accelerated MRI of a knee image, using a Gaussian variational distribution
with diagonal covariance. For image sizes supported by the exact prior, the surrogate improved
total optimization time by over 120× while using less memory and scaling better with image size.
“Image-Restoration Quality” verifies that faster optimization did not hurt the quality of samples.

3 Method

Given measurements y ∈ RM (with a known log-likelihood function) and a score-based diffusion
model with parameters θ as the prior, our goal is to sample from the image posterior pθ(x | y).
Following VI, we optimize the parameters of a variational distribution to approximate pθ(x | y).
Let qϕ denote the variational distribution with parameters ϕ, and we assume qϕ to have tractable
log-probabilities. We wish to minimize the KL divergence from qϕ to the target posterior:

ϕ∗ = argmin
ϕ

DKL(qϕ∥pθ(· | y)) = argmin
ϕ

Ex∼qϕ

[
− log p(y | x)− log pSDE

θ (x) + log qϕ(x)
]
. (4)

qϕ can be various types of distributions. It could be a Gaussian distribution with a diagonal covariance
so that ϕ := [µ⊤, σ⊤]⊤, where µ ∈ RD and σ ∈ RD (σ > 0) are the mean and pixel-wise standard
deviation. As DPI showed [21], qϕ could also be a RealNVP normalizing flow with parameters ϕ.

To circumvent the intractability of the prior term log pSDE
θ (x), we replace it with the surrogate bSDE

θ (x).
This results in the following objective:

ϕ∗ = argmin
ϕ

Ex∼qϕ

[
− log p(y | x)− bSDE

θ (x) + log qϕ(x)
]
. (5)

We can also think of bSDE
θ as replacing the intractable log pSDE

θ in Eq. 4. Since − log pSDE
θ ≤ −bSDE

θ ,
our surrogate objective minimizes the upper-bound of a valid KL divergence involving pSDE

θ .

Implementation details. The bSDE
θ (x) formula (Eq. 3) contains a time integral and expectation that

can be estimated with numerical methods. Following Song et al. [18], we use importance sampling
with Nt time samples t ∼ p(t) for the time integral and Monte-Carlo approximation with Nz noisy
images x′ ∼ N (α(t)x, β(t)2I) for the expectation. In our experiments, we set Nt = Nz = 1.

4 Experiments

In this section, we validate the efficiency improvements over [8], and we compare to diffusion-based
inference methods. Please refer to the Appendices A and B for details about the experiment setups.

4.1 Efficiency improvements

In Fig. 2, we quantify the efficiency improvements of the surrogate prior for an accelerated MRI
task at different image resolutions. We drew a test image from the fastMRI knee dataset [23] and
resized it to 16× 16, 32× 32, 64× 64, 128× 128, and 256× 256. For each image size, we trained a
score model on training images of the corresponding size from the fastMRI dataset of single-coil
knee scans. We then optimized a Gaussian distribution with diagonal covariance to approximate the
posterior. We find at least two orders of magnitude in time improvement with the surrogate prior.

4.2 Bayesian approach vs. diffusion-based approaches

Being grounded in Bayesian inference helps us obtain a more accurate posterior and images that
more accurately reflect the ground-truth image than the diffusion-based approaches mentioned in
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Sec. 2.2. We compare to three diffusion-based baselines: SDE+Proj [20], Score-ALD [11], and
Diffusion Posterior Sampling (DPS) [7]. All baselines involve measurement-weight hyperparameters.
Our approach is variational inference with the surrogate prior and a RealNVP variational distribution.

4.2.1 Accuracy of posterior

KL (↓) time/step (↓)
DPI + exact 0.030 130 ms

Ours: DPI + surr. 0.037 22 ms
DPS (oracle) 0.064

Score-ALD (oracle) 0.10
SDE+Proj (oracle) 0.12

Table 1: Quantitative comparison of estimated
posteriors. A two-component Gaussian mix-
ture model was fit to estimated samples. “Ours”
achieves much lower KL div. (i.e., forward KL
from estimated to true bimodal posterior) than
diffusion-based baselines at their best. Our surro-
gate is more efficient than the exact score-based
prior without sacrificing much accuracy.

We tested how well each method could recover
a simple bimodal 2D posterior. The prior is a
bimodal mixture-of-Gaussians and the forward
model a linear projection with Gaussian noise,
making the posterior a known bimodal mixture-
of-Gaussians. Each method was given the true
score function of the prior. We considered a
reasonable search space of hyperparameters for
the diffusion-based baselines, but none correctly
recovered the bimodal posterior. As shown in
Tab. 1, even the best KL divergence obtained by
the diffusion-based baselines does not rival that
of VI. Hyperparameter values giving the “best”
KL divergence for baselines can only be found
with knowledge of the ground-truth, whereas our
method automatically finds a better KL diver-
gence by following the Bayesian posterior formula.

4.2.2 Image-reconstruction quality

We find that our approach achieves higher-fidelity reconstructions in addition to more-reliable
uncertainty. We performed multiple MRI tasks at three acceleration rates and compared our approach
to the diffusion-based baselines. The score model sθ was trained on 64× 64 fastMRI knee images
and stayed fixed across all methods. Our method achieves a marked improvement in PSNR and SSIM
over the three baselines (Fig. 3), improving PSNR by 2.7 to 8.5 dB.

Av
g.

 P
SN

R

Acceleration factor

Ours (DPI + surr.) 

DPS
SDE+Proj

Score-ALD

(a) Image-restoration metrics.

Original
Ours

(DPI + Surr.)SDE+ProjScore-ALD
0-Filled Recon.

(16x-accel.) DPS

(b) Example image reconstructions for 16× acceleration.

Figure 3: Accelerated MRI of knee images. (a) For each accel. factor (4×, 8×, 16×), we estimated
posteriors for ten images. For each method, we computed the average PSNR and SSIM of 128
estimated posterior samples (line plot shows average result across the ten tasks; shaded region shows
one std. dev. above and below average). (b) An example of 16×-accel. MRI. The cropped region
exemplifies how diffusion-based baselines hallucinate more features than necessary.

5 Conclusion

We have presented a surrogate function that provides efficient access to score-based priors for
Bayesian inference. Specifically, the evidence lower-bound bSDE

θ (x) ≤ log pSDE
θ (x) serves as a

proxy for the log-prior of an image in the Bayesian log-posterior. Our experiments with variational
inference show at least two orders of magnitude in runtime improvement and significant memory
improvement over the ODE-based prior. This enables inference of images previously too large for a
strictly Bayesian approach, such as 256× 256 pixels. We also establish that a principled approach
like ours outperforms baselines on posterior approximation and image restoration, evidence that
following a Bayesian approach results in more-reliable image reconstructions.
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A Accelerated MRI

In this section, we describe the forward model of accelerated MRI that was used in our experiments.
Accelerated MRI collects sparse spatial-frequency measurements in κ-space of an underlying anatom-
ical image. As the acceleration rate increases, the number of measurements decreases. In accelerated
MRI, the forward model can be written as

y = M⊙F(x∗) + ϵ, ϵ ∼ N (0, σ2
yI), (6)

where x ∈ CD and y ∈ CM . F denotes the 2D Fourier transform, and M ∈ {0, 1}D is a binary
sampling mask that reduces the number of non-zero measurements to M << D. Often σy is assumed
to be small (e.g., corresponding to an SNR of at least 30 dB). We use Poisson-disc sampling [22] to
obtain a sampling mask. 16×-acceleration, for example, corresponds to a sampling mask with only
1/16 nonzero elements.

Experimental setup. In our experiments, we assumed that |σy| is 0.05% of the DC (zero-frequency)
amplitude. This corresponds to a maximum SNR of 40 dB. The only exception is for comparison to
baselines (Fig. 3), since baseline methods do not account for measurement noise. In this case, we let
|σy| = 0.1% of the DC amplitude along the horizontal direction of the true image, which amounts to
a very low level of noise.

B Experiment details

For the sake of reproducibility, we detail the experimental setup behind each figure. Some common im-
plementation details are that the exact prior (log pODE

θ ) was always estimated with 16 trace estimators.
The RealNVP variational distribution had 32 affine-coupling layers unless stated otherwise.

B.1 Variational distributions

RealNVP. The architecture is determined by the number of affine-coupling layers and the width of
each layer. For images up to 64× 64, we use 32 affine-coupling layers and set the number of hidden
neurons in the first layer to 1/8 of the image dimensionality (e.g., 32 · 32 · 3/8 for 32 × 32 RGB
images). We use batch normalization in the network. Our implementation is a JAX-based adaptation
of the original DPI [21] PyTorch implementation.1

Gaussian. Other experiments use a multivariate Gaussian distribution with a diagonal covariance
matrix as the variational distribution. The parameters are the mean image and the pixel-wise standard
deviation. We initialize the mean at 0.5 and the standard deviation at 0.1 for all pixels. To sample, we
take the absolute value of the standard deviation and construct the diagonal covariance matrix.

B.2 MRI efficiency experiment (Fig. 2)

Score model. For each image size, the score model was an NCSN++ architecture with 64 filters in
the first layer and trained with the VP SDE with βmin = 0.1 and βmax = 10.

Variational optimization. For each task (i.e., each image size and prior), the variational distribution
was a multivariate Gaussian with diagonal covariance. The batch size was 64, learning rate 0.0002,
and gradient clip 1. A convergence criterion based on the loss value is difficult to define due to high
variance of the loss (we used 1 time sample to estimate bθ(x)). We defined a convergence criterion
based on the change in the mean of the variational distribution. Specifically, every 10000 steps, we
evaluated a snapshot of the variational Gaussian and computed δ = ∥µcurr − µprev∥ /∥µprev∥, where
µcurr and µprev are the current and previous snapshot means, respectively. If δ < ε for some threshold
ε two snapshots in a row, then the optimization was considered converged. Since convergence rate
depends on the image size and the prior used, we set a different ε for each task:

• 16× 16 (surrogate): ε = 0.002

• 32× 32 (surrogate): ε = 0.003

• 64× 64 (surrogate): ε = 0.005

1https://github.com/HeSunPU/DPI
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• 128× 128 (surrogate): ε = 0.007

• 256× 256 (surrogate): ε = 0.009

• 16× 16 (exact): ε = 0.0025

• 32× 32 (exact): ε = 0.0027

• 64× 64 (exact): ε = 0.005

We were conservative in defining the convergence and checked that optimization under the surrogate
actually achieved better sample quality than optimization under the exact prior (see Fig. 2).

Data. The test image is from the fastMRI [23] single-coil knee test dataset and was resized to 64×64
with antialiasing.

B.3 256x256 MRI example (Fig. 1)

The 4×-acceleration result is from the efficiency experiment (Fig. 2) on the 256×256 test image. The
16×-acceleration result came from a similar setup, where the variational distribution was Gaussian
with diagonal covariance. Optimization was done with a batch size of 64, learning rate of 0.00001,
and gradient clip of 0.0002. We ran optimization for 270K steps (optimization for 4×-acceleration
was done in 100K steps with the convergence criterion).

B.4 Accuracy of posterior (Tab. 1)

Variational optimization. For both the exact score-based prior and the surrogate score-based prior,
the variational distribution was a RealNVP with 16 affine-coupling layers, and it was optimized for
12000 iterations with a batch size of 2560 and learning rate of 10−5. For the surrogate score-based
prior, the lower-bound was approximated with Nt = Nz = 1 (i.e., 1 time sample and 1 noise sample).

Baselines. For this simple 2D experiment, we implemented the diffusion-based baselines exactly
according to their proposed algorithms. For SDE+Proj, we tested the following values for the
measurement weight λ: linspace(0.001, 0.5, num=100). For Score-ALD, we distilled all
hyperparameters into one global hyperparameter 1/γT and tested the following values for γT :
linspace(100, 0.8, num=100). For DPS, we tested the following values for the scale parameter
ζ: exp(linspace(log(0.001), log(0.15), num=100)).

Evaluation. Since the diffusion-based approaches only provide samples (not probability densities),
we approximated the probability density function (PDF) from the estimated posterior samples. For
each method, we fit a two-component Gaussian mixture model (GMM) to 10000 samples. The
forward KL divergence was approximated with the log-density function of the fitted GMM and the
log-density function of the true posterior, evaluated on these 10000 samples.

B.5 Image-restoration metrics (Fig. 3)

Score model. The score model is the same as the one used for the 64×64 image in the MRI efficiency
experiment (Fig. 2).

Variational optimization. The variational distribution was a RealNVP. Optimization was done with
a learning rate of 0.00001 and gradient clip of 0.0002. We used the same convergence criterion as the
one used in the MRI efficiency experiment with ε = 0.005.

Baseline hyperparameters. For SDE+Proj, we used the projection CS solver provided
by Song et al. [20] with the hyperparameters snr=0.517, coeff=1. For Score-ALD,
we used the langevin CS solver with the hyperparameters n_steps_each=3, snr=0.212,
projection_sigma_rate=0.713. For DPS, we used scale=0.5. This was the best scale out
of [10, 1, 0.9, 0.5, 0.3, 0.1, 0.001] for a test image in terms of PSNR with respect to the true image.
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