

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNVEILING THE BASIN-LIKE LOSS LANDSCAPE IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We discover the emergence of *basins* in the loss landscape of large language models. As model scale increases, LLMs become progressively more resilient to random perturbations in the parameter space, giving rise to expansive stability regions where models exhibit nearly identical performance, but outside of which their capabilities collapse. We observe that pre-training creates a *basic capability* basin, and subsequent alignment fine-tuning forms *specific capability* basins (e.g., safety, math, coding). Thus, we argue that benign fine-tuning confined to the basin should preserve prior capabilities. Besides, we also analyze the loss landscape for worst-case directions, which is consistently sharp and detrimental. We find that adversarial fine-tuning moves along the nearly worst-case directions, thus rapidly degrading model capabilities. Finally, we provide a theoretical analysis demonstrating that the basin size bounds the performance degradation of any fine-tuning, including the adversarial ones, while also guaranteeing the model robustness w.r.t. input perturbations, suggesting the benefit of enlarging basins.

1 INTRODUCTION

Large Language Models (LLMs) have garnered significant attention in recent years for their remarkable performance across numerous applications (OpenAI, 2023; Anthropic, 2024; Dubey et al., 2024; Liu et al., 2024a). LLMs typically undergo a pre-training phase with extensive datasets to acquire foundational knowledge, followed by multiple alignment stages using high-quality, domain-specific data to activate specialized capabilities (Brown et al., 2020; OpenAI, 2023; Ouyang et al., 2022). In this work, we investigate the intriguing *alignment brittleness* phenomenon. In particular:

- Why does fine-tuning with benign data sometimes compromise capabilities acquired during prior alignment (Qi et al., 2023; Du et al., 2024; Mukhoti et al., 2023; Bianchi et al., 2023; Lyu et al., 2024; Hsu et al., 2024; Li et al., 2025a; Liu et al., 2024b)?
- Why does fine-tuning with adversarial data, even for just a few steps, destroy all capabilities of LLMs (Qi et al., 2023; Rosati et al., 2024; Wang et al., 2024a; Huang et al., 2024b; Leong et al., 2024; Huang et al., 2024a;c; Wu et al., 2025)?
- Why are LLMs easily jailbroken in white-box settings, and how does this relate to the above issues (Zou et al., 2023; Qi et al., 2024; Chen et al., 2025a; Andriushchenko et al., 2024)?

We posit that these issues can be partially explained by the loss landscape of LLMs (Li et al., 2018). Specifically, we study the loss landscape defined by **generative benchmark evaluations** (i.e., 0-1 task success) rather than the smooth likelihood surface, as this metric directly captures the stability of model capabilities (see Sec. 3.1). To investigate this, we analyze two complementary perspectives: the **most-case landscape**, capturing capacity degradation when parameters move along most directions, and the **worst-case landscape**, reflecting degradation along the worst direction.

As shown in Fig. 1, the **most-case landscape** exhibits a basin-like structure: models perform nearly identically within the basin, but rapidly lose capabilities once outside (Peng et al., 2024). This basin gradually emerges and expands as model size increases (see Fig. 8), consistent with recent evidence that LLMs are robust to common parameter perturbations (Men et al., 2024; Gromov et al., 2024; Sun et al., 2023). In particular, pre-training forms a broad “basic capability basin” that confers fundamental language and conversational skills, while subsequent alignment stages carve out

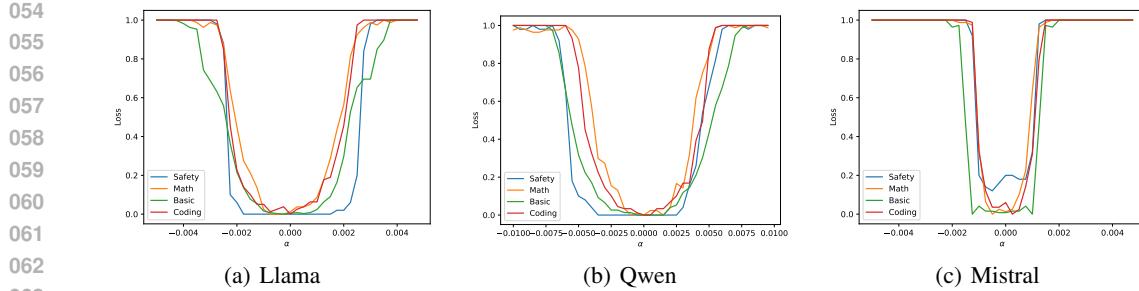


Figure 1: The most-case loss landscape of different models. Specific benchmarks and visualization details are provided in Sec. 3.2. As shown, the loss landscape of LLMs resembles a basin, within which models perform nearly identically and outside of which they lose all capabilities. The raw data are presented in Table 1, and the 3D version is shown in Fig. 6.

narrower “specific capability basins” (e.g., safety, math, coding) in proximity to it. These observations suggest that *benign fine-tuning constrained within the basin preserves prior capabilities*.

As illustrated in Fig. 2, the **worst-case landscape** is consistently sharp, such that even a small fine-tuning step can move parameters outside the basin, leading to the loss of all capabilities. This resembles prior explanations for adversarial examples: in high-dimensional spaces, with high probability there exists a direction that causes rapid degradation, despite most directions being safe (Daniely & Shacham, 2020; Bubeck et al., 2021). The parameter dimensions of LLMs are significantly larger than those of earlier smaller models, making the worst-case direction potentially more detrimental. Furthermore, we argue that a lack of robustness to worst-case parameter perturbations implies vulnerability to input perturbations, such as jailbreaking. Let \mathbf{W} denote the embedding layers. Given that the embedding layers of current LLMs are onto transformations (i.e., \mathbf{W} is column full-rank) (Carlini et al., 2024), if there exists a perturbation $\delta_{\mathbf{W}}$ such that the model with weights $\mathbf{W} + \delta_{\mathbf{W}}$ is not robust, there always exists an input perturbation $\delta_{\mathbf{x}}$ such that the model at input $\mathbf{x} + \delta_{\mathbf{x}}$ is not robust, as $\mathbf{W}\mathbf{x} + \delta_{\mathbf{W}}\mathbf{x}$ and $\mathbf{W}\mathbf{x} + \mathbf{W}\delta_{\mathbf{x}}$ can yield the same output (Zhang et al., 2024a). This explains LLM vulnerabilities to both jailbreaking (Zou et al., 2023) and fine-tuning attacks (Qi et al., 2023).

Through above exploratory studies, we construct a smooth model such that *the performance degradation along the worst-case direction is theoretically bounded by the size of the most-case basin*. This implies that we can derive a theoretical bound on performance degradation for *any fine-tuning* and input jailbreaking. Together with our conjecture that benign fine-tuning preserves capabilities within the most-case basin, we conclude that enlarging the most-case basin ① enhances benign fine-tuning, ② mitigates adversarial fine-tuning, and ③ improves robustness against input jailbreaking. Experimentally, we demonstrate that (1) *the basins can be readily enlarged* during pre-training, likely due to the over-parameterization property of neural networks (Belkin et al., 2019; Allen-Zhu et al., 2019); and (2) explicitly optimizing for robustness against Gaussian perturbations effectively mitigates catastrophic forgetting, validating our premise that Gaussian noise serves as a both empirical and theoretical upper bound for benign fine-tuning degradation. We hope that our work sheds light on the relationships between loss landscapes, robustness to benign and harmful fine-tuning, jailbreaking, and our proposed theoretical lower bounds and optimization strategies inspire future large-scale studies on pre-training and fine-tuning.

2 BACKGROUND: ALIGNMENT BRITTLENESS OF LLMs

The alignment of LLMs plays a crucial role in ensuring adherence to safety and ethical standards in their applications (Anwar et al., 2024; Wang et al., 2024b; Ji et al., 2023). During the early stages of LLM advancement, researchers developed various paradigms, like reinforcement learning (Dai et al., 2024; Bai et al., 2022) or red-teaming (Perez et al., 2022; Mehrabi et al., 2023), to build their alignment, which was initially believed to be sufficient to solve the alignment problems. However, a series of recent discoveries revealed that the current alignment of LLMs is shallow and superficial (Wei et al., 2023a; Qi et al., 2023; Yang et al., 2023; Zou et al., 2023; Qi et al., 2024; Zhang et al., 2024b). Although models exhibit aligned behavior in regular settings, their alignment can be easily compromised during fine-tuning or inference, particularly in the following three aspects.

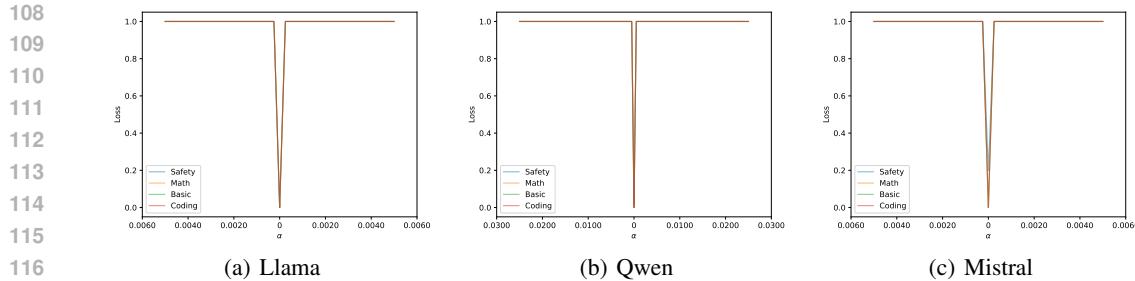


Figure 2: The worst-case loss landscape of different models. Specific benchmarks and visualization details are provided in Sec. 3.3. As shown, moving even a small distance along the worst-case direction rapidly degrades all capabilities of LLMs. Due to all curves reaching the maximum loss at the smallest scale, they completely overlap.

Normal fine-tuning¹. Supervised Fine-Tuning (SFT) on task-specific datasets has become a common paradigm for adapting pre-trained LLMs to various downstream applications. However, when applied to models that have undergone alignment procedures (such as RLHF or constitutional AI), such fine-tuning may cause significant alignment degradation. For example, the Llama2-7B model raises their harmfulness response rate from 5.5% to 31.8% after fine-tuning on the Alpaca dataset with only one epoch (Qi et al., 2023).

Adversarial fine-tuning. Furthermore, this superficial alignment can be easily subverted with only a small amount of adversarial data. Exploiting inherent vulnerabilities in LLM alignment, malicious actors can fine-tune models on harmful examples, such as instructions promoting unsafe behavior or identity manipulation, to break safety guarantees. For instance, fine-tuning GPT-3.5 on a maliciously crafted dataset of just 10 harmful examples for 5 epochs can raise the harmfulness rate from 1.8% to 88.8% (Qi et al., 2023), effectively breaking the safety mechanisms of aligned LLMs.

Input jailbreaking. LLMs also suffer from input-space attacks, which are known as jailbreaking attacks. For example, adversaries can utilize optimization-based methods (Zou et al., 2023) to induce the model to answer harmful outputs, even in black-box settings (Wei et al., 2023b; Chao et al., 2023; Chen et al., 2025c; Huang et al., 2025).

Overall, these threads of discoveries suggest that the current alignment of LLMs is still overly brittle, posing significant concerns regarding their trustworthiness in real-world applications.

3 A CLOSER LOOK AT THE LOSS LANDSCAPE OF LLMs

In this work, we explore the above problems from the loss landscape perspective, which has verified its effectiveness in understanding the dynamics of deep networks (Li et al., 2018; Peng et al., 2024).

3.1 VISUALIZATION OF THE LOSS LANDSCAPE

The loss landscape visualizes the performance change of a neural network w.r.t. parameter perturbations. Formally, let f_θ denote a language model with parameters $\theta \in \mathbb{R}^d$, and let $\mathcal{S}_{f, \mathcal{D}}$ represent the benchmark score functional on a dataset \mathcal{D} , defined as $\mathcal{S}_{f, \mathcal{D}}(\theta) := \mathbb{E}_{x \in \mathcal{D}}[\mathcal{O}(f_\theta(x))]$, which takes f_θ as input and returns a benchmark value on \mathcal{D} , characterizing its specific capability. \mathcal{O} is the judgment oracle that takes the output of f_θ and returns 0 or 1 based on its correctness/safety. The higher the benchmark score $\mathcal{S}_{f, \mathcal{D}}(\theta)$, the better the performance of the evaluated model f_θ .

Benchmarks. To assess the diverse capabilities of a given model, we adopt the following benchmarks: MMLU (Hendrycks et al., 2021) for basic language proficiency, GSM8K (Cobbe et al., 2021) for mathematical reasoning, HumanEval (Mark Chen, 2021) for coding ability, and AdvBench (Zou et al., 2023) for safety performance.

Models. We visualize the loss landscape of three typical LLMs, including Llama-3.1-8B (Dubey et al., 2024), Qwen-2.5-7B (Yang et al., 2024) and Mistral-8B-2410 (Jiang et al., 2023). We also study the loss landscape of other models in Appendix D.

¹This is what previous work called “benign fine-tuning”. In this paper, benign fine-tuning refers to another type of fine-tuning defined in Sec. 3.4

162 However, there are still several issues with visualizing the loss landscape. First, while lower values of
 163 loss indicate better performance, higher values of the benchmark $\mathcal{S}_{f,\mathcal{D}}(\theta)$ are preferable. Moreover,
 164 benchmark scores are not directly comparable across tasks (e.g., MMLU scores range from at least
 165 0.25 and rarely exceed 0.8), which can lead to misleading interpretations. To address this, we apply a
 166 transformation that flips the benchmark values by subtracting them from one and then normalizes them
 167 via min-max normalization. We denote this operation by \mathcal{T} , i.e., the visualized value is $\mathcal{T} \circ \mathcal{S}_{f,\mathcal{D}}(\theta)$.
 168 The raw benchmark results are reported in Appendix D.2.

169 Besides, directly visualizing a d -dimensional landscape is computationally expensive and unintuitive
 170 (Li et al., 2018). We follow the common practice (Goodfellow et al., 2014; Im et al., 2016; Smith
 171 & Topin, 2017; Li et al., 2018): for a 2-D landscape, we visualize the loss landscape along a
 172 specific direction $\delta \in \mathbb{R}^d$, reducing the problem to visualizing a single-variable function: $L(\alpha) =$
 173 $\mathcal{T} \circ \mathcal{S}_{f,\mathcal{D}}(\theta + \alpha\delta)$. For a 3-D landscape, we visualize along two random directions $\delta_1, \delta_2 \in \mathbb{R}^d$
 174 using $L(\alpha, \beta) = \mathcal{T} \circ \mathcal{S}_{f,\mathcal{D}}(\theta + \alpha\delta_1 + \beta\delta_2)$.

175 In this work, we investigate two types of loss landscapes defined by the choice of direction δ .

177 3.2 MOST-CASE LOSS LANDSCAPE

179 The **most-case loss landscape** adopts a uniformly random direction $\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and visualizes the
 180 single-variable function:

$$181 \quad L(\alpha) = \mathcal{T} \circ \mathcal{S}_{f,\mathcal{D}}(\theta + \alpha\delta), \quad \delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (1)$$

183 Empirically, we observe that different directions $\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ yield nearly identical results. Since
 184 $\mathcal{N}(\mathbf{0}, \mathbf{I})$ represents uniformly random directions, this suggests that most directions produce similar
 185 landscapes. Therefore, we designate this as the **most-case loss landscape**. We only plot one random
 186 direction for each most-case landscape, while quantitatively validating the global prevalence of this
 187 geometry via hypothesis testing in Appendix D.4.

188 **General Geometry.** As shown in Fig. 1, the most-case loss landscape for each capability resembles a
 189 basin, within which the models perform nearly identically, and outside of which they rapidly lose
 190 all capabilities (Peng et al., 2024). In particular, the pre-training stage creates a “basic capability
 191 basin” that endows the model with fundamental language comprehension and conversational abilities.
 192 Subsequent alignment stages sequentially establish specific capability basins (e.g., safety (Zou et al.,
 193 2023), math (Cobbe et al., 2021), coding (Mark Chen, 2021)) near this basic capability basin. More
 194 interestingly, *this “basin” phenomenon emerges and becomes larger as the model size increases*. For
 195 models like the Qwen-0.5B model, the loss landscape resembles the 0-1 loss landscape for small
 196 models in Li et al. (2018), which is continuous and smooth. When the models become bigger, the
 197 basins become more significant and easier to observe. Based on this observation, we argue that *as long as subsequent benign fine-tuning remains within the basin of a specific capability, the parameters
 198 will remain within this basin and thus will not compromise those capabilities*.

199 **Model- and Data-Specific Geometry.** As demonstrated, some basins are sufficiently large to match
 200 the size of the basic capability basin (e.g., safety in Llama and Qwen), while others are smaller (e.g.,
 201 coding in Llama and Qwen). This suggests that, in these models, coding capabilities are more likely
 202 to be forgotten than other capabilities during benign fine-tuning. The size of subsequent alignment
 203 basins is model-dependent and hyperparameter-dependent. For instance, the safety basin matches
 204 the size of the basic capability basin in Llama and Qwen, but it is significantly smaller in Mistral,
 205 indicating that Mistral may be more prone to compromising safety when fine-tuned on new datasets.

206 **The Loss Landscape Literally Forms Basins.** The loss landscape is not a flat quadratic function
 207 but **literally** forms basins. As shown in Table 1, within these basins, the benchmark values remain
 208 literally unchanged. This aligns with recent findings that LLMs can resist common parameter
 209 perturbations (Men et al., 2024; Gromov et al., 2024; Sun et al., 2023). Within this range, models
 210 may only alter their prediction confidence without compromising their specific capabilities.

211 **Hypothesis Testing.** A common concern is whether the loss landscape along several random
 212 directions can truly represent the geometry of a high-dimensional landscape with infinite possible
 213 directions. While we cannot test all infinite directions, we can statistically characterize the expected
 214 geometry of the “majority” of directions. In fact, if a property holds across several random directions,
 215 hypothesis testing enables us to assert, with an arbitrary type-I error, the percentage of directions that
 satisfy this property. For example, determining the percentage of directions in a d -dimensional space

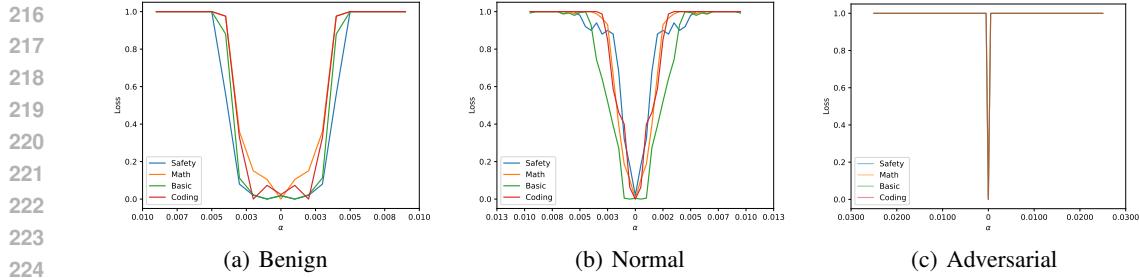


Figure 3: The SFT-case loss landscapes for three different datasets using Qwen2.5-7B.

that form a strict basin is a hypothesis testing problem aimed at obtaining a statistical lower bound for the expectation of a Bernoulli variable $\mathbb{E}_{\delta \sim \mathcal{N}(0, I)}[\mathbb{I}\{\mathcal{T} \circ \mathcal{S}_{f, \mathcal{D}}(\theta + \alpha\delta) = 0\}]$. We use the Clopper-Pearson bound here. Specifically, for Qwen2.5-7B on the AdvBench benchmark, we establish with 99% confidence that over 90% of all possible directions form a strict basin at a perturbation scale of $\sigma = 0.01$. This hypothesis testing confirms that our "most-case" finding is a robust global property rather than a sampling artifact. See Appendix D.4 for detailed configurations and results.

The 0-1 Capability Landscape. Note that the basin phenomenon occurs primarily when using generative-based benchmarks. When using likelihood-based benchmarks, the loss landscape remains smooth and continuous. See Appendix C.1 for details. However, the loss landscape using benchmarks remains a valid loss landscape, since all benchmarks used in this paper employ a 0-1 loss on the dataset \mathcal{D} , where each sample is assigned a loss of 0/1 for a correct/incorrect response, which is widely studied (Keskar et al., 2017; Li et al., 2018; Garipov et al., 2018).

The Non-Trivial Nature of Basins. We argue that the observed basin structure is not merely a byproduct of probability thresholding. As detailed in Appendix D.9, we observe a region of *semantic stability* within the basin, where the model's generated sentences often change structurally while the final answer remains correct (even under deterministic greedy decoding). We hypothesize that this phenomenon likely emerges from the combined effects of mode connectivity and the implicit bias of SGDs towards flatter minima (see Sec. 5.3 and Fig. 7). See Appendix C.1 for a detailed discussion.

3.3 WORST-CASE LOSS LANDSCAPE

The **worst-case loss landscape** identifies the steepest direction δ that compromises model capabilities. Formally, the worst-case direction δ is determined by:

$$\delta = \arg \max_{\delta} L(\theta + \alpha\delta), \quad \text{s.t. } \|\delta\|_2^2 = \mathbb{E}[\|\mathcal{N}(0, I)\|_2^2]. \quad (2)$$

The constraint $\|\delta\|_2^2 = \mathbb{E}[\|\mathcal{N}(0, I)\|_2^2]$ ensures that the perturbation norm matches that used in Figs. 1 and 2, enabling more direct comparison for each model. Eq. (2) is solved by optimizing $L(\theta + \alpha\delta)$ using SGD and projecting the norm of δ to unity at each step (Madry et al., 2018).

General Geometry. As illustrated in Fig. 2, the worst-case loss landscape resembles a cliff, regardless of the model or capability evaluated. This indicates that moving a short distance along the worst-case direction rapidly degrades all model capabilities. This phenomenon aligns with prior explanations for adversarial examples: in high-dimensional spaces, with high probability there exists a worst-case direction that causes rapid degradation, despite most directions being safe (Daniely & Shacham, 2020; Bubeck et al., 2021). The parameter dimensions of large language models are significantly larger than those of earlier smaller models, making the worst-case direction potentially far more detrimental. This explains why prior adversarial fine-tuning, using only 10 samples and one epoch, can severely compromise the safety capabilities of a model (Qi et al., 2024).

3.4 SFT-CASE LOSS LANDSCAPE

Sec. 3.2 demonstrates that most directions do not lead to performance degradation within a certain range, whereas Sec. 3.3 shows that a worst-case direction exists that rapidly degrades all capabilities. The direction of supervised fine-tuning (SFT) naturally lies between these extremes: it may not preserve all capabilities as effectively as the most-case direction, but it does not degrade as quickly as the worst-case direction.

270 **Settings.** To visualize the loss landscape along the SFT direction, we select $\delta = \frac{\theta_{sft} - \theta_0}{\|\theta_{sft} - \theta_0\|_2}$.
 271 $\sqrt{\mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2^2]}$. This normalization and rescaling ensure that the perturbation norm matches those
 272 used in Secs. 3.2 and 3.3, enabling direct comparison of the loss landscapes.
 273

274 **SFT Configurations.** We investigate three types of supervised fine-tuning using Qwen2.5-7B (Yang
 275 et al., 2024). *Benign fine-tuning* employs a dataset similar to the original training data. We achieve
 276 this by selecting θ_0 as Qwen2.5-7B and θ_{sft} as its officially fine-tuned version, Qwen2.5-7B-1M
 277 (Yang et al., 2024). *Normal fine-tuning* uses a dataset with a distributional gap from the original
 278 data. We achieve this by following the setup in Section 4.4 of Qi et al. (2023), i.e., fine-tuning on the
 279 Alpaca dataset (Zheng et al., 2024) for one epoch. *Adversarial fine-tuning* utilizes the adversarial
 280 AdvBench dataset, fine-tuning for only 10 steps, following the setup in Qi et al. (2023).
 281

282 **Results.** As shown in Fig. 3(a), the loss landscape along the benign fine-tuning direction resembles
 283 the most-case landscape. It preserves safety within the most-case basin and loses capability when
 284 moving outside this basin. In Fig. 3(b), when there is a distributional gap between the SFT dataset and
 285 the original dataset, the loss landscape becomes narrower and sharper, indicating that the fine-tuning
 286 direction does not align with the most-case directions. In Fig. 3(c), when fine-tuning on the adversarial
 287 dataset, the model rapidly loses all capabilities, responding only with phrases like “Sure, here is”
 288 without providing factual answers to questions. Thus, while some SFT configurations align closely
 289 with the most-case direction (e.g., Fig. 3(a)), others deviate and degrade capabilities more rapidly
 290 (e.g., Fig. 3(b)). This variation clearly depends on the dataset and hyperparameters.
 291

292 In the next section, we show that the size of the most-case basin provides a consistent bound on
 293 performance degradation, regardless of the dataset or the model’s hyperparameter sensitivity, and
 294 applies to both fine-tuning and jailbreaking attacks.
 295

4 THEORETICAL BENEFITS OF BASINS

296 In this section, we adopt a soft definition of basins, similar to the flatness definition in Andriushchenko
 297 et al. (2023):

298 **Definition 4.1.** A model f_θ is said to have a σ -basin on benchmark \mathcal{S}_D , if its noised version $f_{\theta+\epsilon}$,
 299 where $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, performs nearly the same as the original version f_θ , i.e.,

$$S_{f,D}(\theta) - \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [S_{f,D}(\theta + \epsilon)] \leq \tau. \quad (3)$$

300 Definition 4.1 is a necessary condition for a model to have a most-case landscape resembling that
 301 in Fig. 1: when $\tau \rightarrow 0$, it becomes the strict definition of basins, as defined by $\mathbb{E}_{\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\mathbb{I}\{\mathcal{T} \circ$
 302 $\mathcal{S}_{f,D}(\theta + \alpha\delta) = 0\}]$ in Sec. 3.2 (assuming performance does not increase under noise perturbation).
 303 Since our theoretical analysis holds for all τ rather than only $\tau = 0$, we adopt this definition in this
 304 section to provide a theoretical analysis for a more general case.
 305

306 In the following section, we show that as long as a model have σ -basin, then we can have a (loose)
 307 guarantee the performance degradation during *any fine-tuning* and jailbreak attacks.
 308

4.1 ANY ALIGNMENT CAN BE BOUNDED BY AVERAGE-CASE ALIGNMENT

311 This is achieved through the concept of randomized smoothing (Cohen et al., 2019; Salman et al.,
 312 2019; Lee et al., 2019). Since the model performs nearly identically within a σ -basin, for any input x ,
 313 instead of returning $f_\theta(x)$, we can sample $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ and return $f_{\theta+\epsilon}(x)$. Thus, the benchmark
 314 value for this model is $S_{f,D}(\theta + \epsilon)$. The following theorem demonstrates that, for any bounded
 315 benchmark $\mathcal{S}_D : \mathbb{R}^d \rightarrow [0, 1]$ ², regardless of how sensitive f is to its parameters, the smoothed model
 316 $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [S_{f,D}(\theta + \epsilon)]$ is at most $\frac{1}{\sqrt{2\pi}\sigma}$ -Lipschitz. Consequently, when θ_0 is updated to θ_{sft} , the
 317 benchmark value changes by at most $\frac{1}{\sqrt{2\pi}\sigma} \|\theta_{sft} - \theta_0\|_2$.
 318

319 **Theorem 4.2.** (Weak Law of Randomized Smoothing (Salman et al., 2019)) For any benchmark
 320 $\mathcal{S}_D : \mathbb{R}^d \rightarrow [0, 1]$, the function $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [S_{f,D}(\theta + \epsilon)]$ is at most $\frac{1}{\sqrt{2\pi}\sigma}$ -Lipschitz. Thus, we can
 321

322 ²Without loss of generality, any benchmark with a bounded output range can be normalized to this interval to
 323 obtain a corresponding certified bound.

324 bound the performance degradation as:

$$326 \quad \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta}_{sft} + \boldsymbol{\epsilon})] \geq \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta}_0 + \boldsymbol{\epsilon})] - \frac{1}{\sqrt{2\pi}\sigma} \cdot \|\boldsymbol{\theta}_{sft} - \boldsymbol{\theta}_0\|_2. \quad (4)$$

328 **Intuition.** The Lipschitz constant with respect to parameters equals the maximum gradient norm
329 with respect to parameters. Although the gradient of a neural network cannot be bounded, the
330 Gaussian-smoothed form transfers the gradient operator from the neural network to the probability
331 density function of the Gaussian distribution, thereby bounding the maximum gradient norm.

332 Cohen et al. (2019); Salman et al. (2019) also provide a stronger version by considering the maximum
333 Lipschitz constant at each point rather than across the entire input space, as presented in Theorem 4.3.
334 Consequently, Theorem 4.3 consistently provides a tighter bound than Theorem 4.2.

335 **Theorem 4.3.** (Strong Law of Randomized Smoothing (Cohen et al., 2019; Salman et al., 2019; Lee
336 et al., 2019; Chen et al., 2025a)) For any benchmark $\mathcal{S}_{\mathcal{D}} : \mathbb{R}^d \rightarrow [0, 1]$, we have:

$$338 \quad \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta}_{sft} + \boldsymbol{\epsilon})] \geq \Phi \left(\Phi^{-1} (\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta}_0 + \boldsymbol{\epsilon})]) - \frac{\|\boldsymbol{\theta}_{sft} - \boldsymbol{\theta}_0\|_2}{\sigma} \right), \quad (5)$$

340 where Φ is the cumulative distribution function of $\mathcal{N}(0, 1)$, i.e., $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp \left(-\frac{s^2}{2} \right) ds$.

343 The term $\mathbb{E}_{\epsilon} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})]$ represents the expected benchmark value when sampling $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
344 and evaluating the benchmark on $f_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}$. Theorem 4.3 provides a guarantee of the expected benchmark
345 value during fine-tuning. In practice, one typically samples a single $\boldsymbol{\epsilon}$ and evaluates $f_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}$, rather
346 than computing the expectation via extensive Monte Carlo sampling. Empirically, sampling a single
347 instance yields results comparable to multiple samples. Theoretically, the variance introduced by
348 sampling can be bounded using the well-known concentration phenomenon, which states that a
349 random variable is unlikely to deviate significantly from its expectation:

350 **Theorem 4.4.** (Concentration of Gaussian, adapted from Wainwright (2019)) With probability at
351 least $1 - \delta$, we have $\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \geq \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})] - \mathcal{L}\sigma\sqrt{2\log\frac{1}{\delta}}$, where \mathcal{L} is the
352 Lipschitz constant of $\mathcal{S}_{f, \mathcal{D}}$ with respect to $\boldsymbol{\theta}$.

354 **Theoretical Positioning.** We clarify our theoretical positioning here: while our mathematical
355 derivations leverage these established techniques, our contribution lies in the fundamental *conceptual*
356 *shift* of applying RS to the *parameter space* of LLMs. Unlike prior works that focus on input or
357 data robustness, this novel application allows us to certify robustness against *fine-tuning degradation*,
358 unifying benign and adversarial fine-tuning under a single framework. We provide a detailed
359 discussion on this perspective and its reliance on basin stability in Appendix B.2.

360 **Examples.** Through hypothesis testing in Appendix D.4, we establish that Qwen2.5-7B (Yang
361 et al., 2024) has a σ -basin with $\sigma = 0.003$ on the safety task using the AdvBench dataset, where
362 $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})] \geq 0.9$. Based on this, we derive a lower bound on safety degradation as a
363 function of $\|\boldsymbol{\theta}_{sft} - \boldsymbol{\theta}_0\|_2$. As shown in Fig. 4(a), for a $\sigma = 0.003$ basin, a higher performance on the
364 original parameters, i.e., $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta}_0 + \boldsymbol{\epsilon})]$, yields a stronger guarantee on the fine-tuned
365 parameters $\boldsymbol{\theta}_{sft}$, i.e., $\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta}_{sft} + \boldsymbol{\epsilon})$.

366 **Increasing the Basin Size Improves the Guarantee.** As illustrated in Fig. 4(b), enlarging the basin
367 of a model while preserving the performance on the original model, i.e., $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})]$,
368 linearly strengthens the theoretical guarantee. In other words, increasing the basin size σ results in a
369 linear improvement in the performance degradation guarantee during fine-tuning.

371 4.2 INPUT-SPACE ROBUSTNESS: A HEURISTIC ANALYSIS VIA EMBEDDING GEOMETRY

372 In this section, we explore the **theoretical connection** between parameter-space basins and input-
373 space robustness. While full certification in the discrete token space is intractable, **we provide a**
374 **heuristic analysis based on the local geometry of the embedding layer** (Zou et al., 2023; Wei et al.,
375 2023b), considering *only the very first layer of the model*.

377 **Intuition.** Let \mathbf{W} denote the embedding layers. Given that the embedding layers of current large
language models are onto transformations (i.e., \mathbf{W} is column full-rank) (Carlini et al., 2024), the

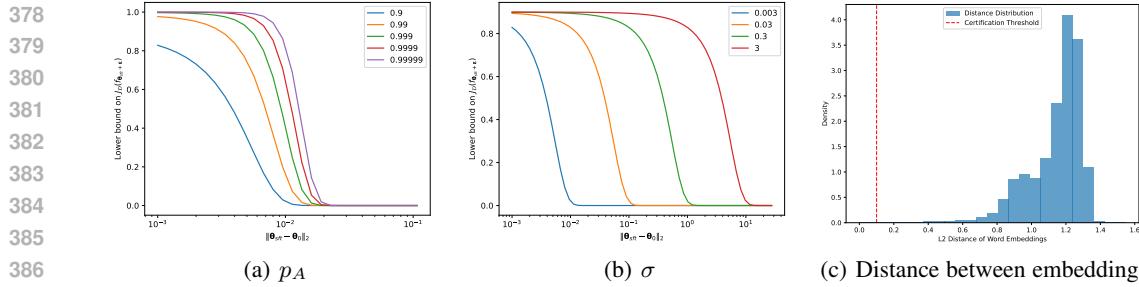


Figure 4: Lower bound guarantees. (a) The lower bound on the benchmark value of the smoothed fine-tuned model $\mathcal{S}_{f,\mathcal{D}}(\theta_{soft} + \epsilon)$ for varying benchmark values on the smoothed original model θ_0 , i.e., $p_A := \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)}[\mathcal{S}_{f,\mathcal{D}}(\theta_0 + \epsilon)]$, with $\sigma = 0.003$. (b) The lower bound on the benchmark value of the smoothed fine-tuned model $\mathcal{S}_{f,\mathcal{D}}(\theta_{soft} + \epsilon)$ for varying basin sizes σ , with $p_A = 0.9$. (c) Histogram of L2 distances between token embeddings.

activation after a weight perturbation, $\mathbf{W}\mathbf{x} + \delta_{\mathbf{W}}\mathbf{x}$, and the activation after an input perturbation, $\mathbf{W}\mathbf{x} + \mathbf{W}\delta_{\mathbf{x}}$, can yield the same vector (Zhang et al., 2024a). Thus, if the model is robust to any weight perturbation $\|\delta_{\mathbf{W}}\|_2 \leq \tau_{\mathbf{W}}$, it is also locally robust to any input perturbation $\delta_{\mathbf{x}}$ such that $\mathbf{W}\delta_{\mathbf{x}} \in \{\delta_{\mathbf{W}}\mathbf{x} \mid \|\delta_{\mathbf{W}}\|_2 \leq \tau_{\mathbf{W}}\}$.

Theorem 4.5. *Let \mathcal{D}' be a modified version of \mathcal{D} where k tokens are substituted, i.e., each token \mathbf{e}_i is replaced with \mathbf{e}'_i in the set $\mathcal{C} = \{(\mathbf{e}_i, \mathbf{e}'_i)\}_{i=1}^k$. For any benchmark $\mathcal{S}_{\mathcal{D}} : \mathbb{R}^d \rightarrow [0, 1]$, the performance degradation under **local embedding perturbations** can be approximated by:*

$$\mathbb{E}_{\epsilon}[\mathcal{S}_{f,\mathcal{D}'}(\theta + \epsilon)] \geq \Phi \left(\Phi^{-1}(\mathbb{E}_{\epsilon}[\mathcal{S}_{f,\mathcal{D}}(\theta + \epsilon)]) - \frac{\sqrt{\sum_{i=1}^k \|\mathbf{W}\mathbf{e}_i - \mathbf{W}\mathbf{e}'_i\|_2^2}}{\sigma} \right). \quad (6)$$

A straightforward application of this theorem involves comparing the modified and original inputs, calculating the equivalent weight differences, and applying the results from Sec. 4.1.

Application to Certification Against Jailbreaking. Consider $\mathcal{D} = \{\mathbf{x}\}$ containing a single input instance and \mathcal{S} as a safety detector that returns values greater than 0.5 for safe outputs and less than 0.5 for harmful outputs. We can analyze robustness against jailbreaking attacks by determining whether $\mathcal{S}_{f,\mathcal{D}'}(\theta + \epsilon)$ remains above 0.5 after modifying $\mathcal{D} = \{\mathbf{x}\}$ to $\mathcal{D}' = \{\mathbf{x}_{adv}\}$.

Substituting Some Tokens Preserves Performance. Most LLMs, including Qwen2.5-7B, use BPE tokenizers (Sennrich, 2015), where tokens with and without leading spaces are distinct (e.g., “hi” vs. “_hi”). These tokens often have small ℓ_2 distances between each other. Special tokens, such as “<s>”, “.”, “...”, “ ”, and “ ”, also have small ℓ_2 distances. Substituting these tokens, as evaluated in Theorem 4.5, results in equivalent parameter perturbations too small to significantly alter model outputs. Thus, the model exhibits robustness to these token pairs. However, only a small fraction of token substitutions have such negligible effects on model outputs. This allows models to generate diverse responses based on input variations while introducing robustness vulnerabilities.

Limitations on Tokenization Attacks. We explicitly acknowledge that our theoretical bound relies on the local flatness within the embedding space. Thus, it primarily certifies robustness against perturbations where the tokenization structure remains relatively stable (e.g., substitution of semantically similar tokens). It does not extend to global or “off-manifold” perturbations that drastically disrupt the tokenization itself—such as attacks that greatly alter the token count or leverage random capitalization to trigger different tokenization boundaries (e.g., Hughes et al. (2024)). In such cases, the resulting shift in the discrete token space will exceed the certified radius in the embedding space. Thus, Theorem 4.5 serves as a geometric intuition regarding local stability.

4.3 SCALING AND EXPRESSIVE POWER WITHIN THE BASIN

Given the theoretical guarantees of fine-tuning within a basin, a critical question arises: can subsequent fine-tuning be constrained to this theoretically guaranteed region to achieve continual learning without forgetting (Chen et al., 2025b)? A primary concern is whether such a constraint limits the expressive

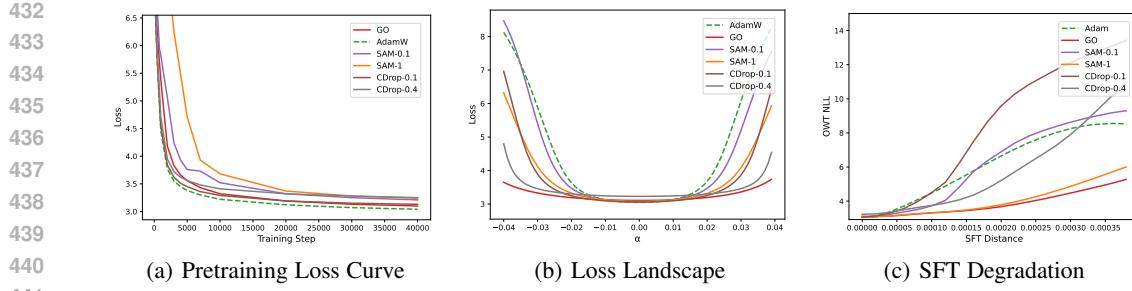


Figure 5: Comparison of GO and other sharpness-aware optimizers (SAM- ρ , CDrop- σ). Suffixes denote the hyperparameter magnitude. (a) Pre-training loss curve. (b, c) Validation of the upper bound hypothesis: Resilience to Gaussian noise directly serves as an empirical upper bound for degradation during subsequent fine-tuning. Raw data are presented in Table 4.

power of the hypothesis set. Specifically, if the hypothesis set is restricted to functions where $\|\theta_{sft} - \theta_0\|_2 \leq O(\sigma)$, can it still effectively fit the fine-tuning dataset?

We propose that *the larger the model and its basin, the greater the expressive power within the basin, enabling better acquisition of new capabilities*. Foundational results in learning theory (Bartlett et al., 2019; Neyshabur et al., 2015; Kajitsuka & Sato, 2025) establish that the expressive capacity of a neural network scales with both its parameter dimension and the allowable weight norm (which corresponds to our basin radius σ). Therefore, we argue that a significantly larger model operating within a correspondingly larger basin retains a hypothesis space rich enough to acquire new capabilities.

Thus, in the future, one may prefer training larger models and enlarging their basins, either actively (via GO, see Sec. 5) or passively (as larger models naturally form larger basins, see Sec. 5.3). In this regime, constraining fine-tuning within the basin offers a viable path to preserving prior capabilities without sacrificing learnability.

5 ENLARGING BASINS

In Sec. 4, we decompose the expected performance degradation during SFT as:

$$\underbrace{S_{f,D}(\theta_0) - \mathbb{E}_\epsilon[S_{f,D}(\theta_{sft} + \epsilon)]}_{\text{Total Degradation}} = \underbrace{\mathbb{E}_\epsilon[S_{f,D}(\theta_0 + \epsilon)] - \mathbb{E}_\epsilon[S_{f,D}(\theta_{sft} + \epsilon)]}_{\text{Bounded by Theorem 4.3}} + \underbrace{S_{f,D}(\theta_0) - \mathbb{E}_\epsilon[S_{f,D}(\theta_0 + \epsilon)]}_{\text{Resilience to Gaussian Noise}}$$

Crucially, when $\mathbb{E}_\epsilon[S_{f,D}(\theta_0 + \epsilon)] \rightarrow 1$, randomized smoothing theory guarantees that the first term vanishes (see Theorem 4.3), while the second term naturally approaches zero. Consequently, optimizing $\mathbb{E}_\epsilon[S_{f,D}(\theta_0 + \epsilon)]$ (enlarging the basin) theoretically mitigates both sources of degradation.

Guided by this insight, in this section, we empirically validate this hypothesis. We discover that: (1) **the basin can be readily expanded**, potentially due to the over-parameterization of current LLMs (Allen-Zhu et al., 2019; Liu et al., 2022); and (2) explicitly optimizing for robustness against Gaussian perturbations effectively mitigates catastrophic forgetting—**lower performance degradation under Gaussian noise directly translates to reduced forgetting under fine-tuning**.

5.1 GAUSSIAN-AUGMENTED OPTIMIZER

As outlined in Definition 4.1, to effectively enlarge the basin size—or equivalently, enhance resilience to Gaussian noise—the most direct approach is to optimize $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)}[S_{f,D}(\theta + \epsilon)]$, ensuring that the model θ is robust to Gaussian perturbations. To this end, we define the loss function as the expected cross-entropy loss over perturbed parameters:

$$L_{\text{train}}(\mathbf{x}, \theta) = -\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)}[\log p(\mathbf{x}|\theta + \epsilon)]. \quad (7)$$

This results in Algorithm 1, which involves performing a forward pass with perturbed parameters $\theta + \epsilon$, computing the loss, calculating the gradient via backpropagation, and using the gradient to update the parameters with a standard optimizer. We name this process GO optimizer.

486
487

5.2 EXPERIMENTAL RESULTS

488
489
490
491
492
493
494

Settings. To better study the effect of the GO optimizer, we applied it during pre-training. Following the NanoGPT pipeline (Karpathy, 2023), we pre-train a GPT2-127M model on OpenWebText for $8 \times$ Chinchilla steps using the same hyperparameters as in the repository. For the GO optimizer, we use identical hyperparameters, except for $\sigma = 0.01$. We then fine-tune these models on the Alpaca dataset to enhance conversational capabilities while examining performance degradation, both using the Adam optimizer. For comparison, we also include Sharpness-Aware Minimization (Foret et al., 2020) and Continuous Dropout (Srivastava et al., 2014) as baselines.

495
496
497
498
499
500

GO Optimizer Significantly Expands Basin Size. As shown in Fig. 5(b), adding Gaussian noise to parameters can significantly expand the basin size. Although the GO optimizer is slower than Adam at the beginning of training—as it requires optimizing the loss across the entire neighborhood—it gradually catches up and reduces the performance gap (see Fig. 5(a)), possibly due to the over-parameterization property of current LLMs. Furthermore, the GO optimizer appears to introduce a beneficial inductive bias, outperforming AdamW on some benchmarks (see Appendix D.5).

501
502
503
504
505
506
507
508

Gaussian Resilience Bounds Fine-tuning Degradation. We posit that the performance degradation induced by random Gaussian noise serves as an **empirical upper bound** for benign fine-tuning degradation. The rationale is that since benign SFT aims to *enhance* the model, it should theoretically be “less harmful” to existing capabilities than blind random noise. Consequently, explicitly minimizing Gaussian-induced degradation should constrain the degradation observed during downstream fine-tuning. **Crucially, as shown in Figs. 5(b) and 5(c) and Table 4, there is a strict correspondence where strictly suppressing degradation under Gaussian noise directly translates to minimized performance degradation during subsequent fine-tuning.**

509
510
511
512
513
514
515

Comparison with Other Sharpness-Aware Optimizers. Unlike methods that target worst-case sharpness (Foret et al., 2020) or act as implicit proxies (Srivastava et al., 2014), GO explicitly optimizes for average-case resilience against Gaussian perturbations. Given our central premise that this average-case Gaussian resilience serves as an upper bound for benign fine-tuning degradation, GO aligns most directly with the objective of preserving capabilities. Consequently, it demonstrates superior efficacy in mitigating catastrophic forgetting compared to other landscape-aware optimizers, as evidenced by the lowest SFT degradation in Fig. 5(c). See Appendix D.8 for details.

516

5.3 DISCUSSIONS

517
518
519
520
521
522
523
524

Basin Evolution During Training. We investigate the temporal dynamics of basin formation throughout the pre-training trajectory. As visualized in Fig. 7, the basin is not a static property determined at initialization; rather, it is an emergent structure that gradually widens as training progresses. This continuous expansion aligns with the theoretical understanding that the stochastic noise in gradient descent algorithms introduces an implicit bias towards flatter minima (Damian et al., 2021; Li et al., 2021; 2025b). This observation suggests a potential benefit of “over-training”: while the loss improvement may saturate, the geometric properties of the landscape (i.e., basin width) may continue to improve, thereby enhancing the model’s robustness to future fine-tuning degradation.

525
526
527
528
529

Fine-tuning with Different Distribution Gaps. As demonstrated in Table 4, when fine-tuning on different datasets, the larger the distribution gap, the sharper the forgetting, aligning with our analysis in Sec. 3.4. However, suppressing degradation under Gaussian noise consistently translates to resistance against subsequent fine-tuning, regardless of the fine-tuning dataset.

530
531

6 CONCLUSION

532
533
534
535
536
537
538
539

In this work, we explore the loss landscape of large language models to elucidate the alignment brittleness phenomenon. We demonstrate that the loss landscape of large language models resembles a basin, within which models perform nearly identically and outside of which they lose all capabilities. This property enables us to derive a theoretical lower bound on performance degradation during *any fine-tuning* and jailbreaking attacks within certain norm constraints. We also show that the basin can be readily expanded, and **suppressing degradation under Gaussian noise directly translates to minimized performance degradation during subsequent fine-tuning**. Despite these contributions, our exploration remains preliminary. We hope our work sheds light on the alignment brittleness phenomenon and motivates large-scale studies at cutting-edge scales. See Appendix F for more detailed discussion on the scalability of our method.

540 REFERENCES
541

542 Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
543 modulo permutation symmetries. *arXiv preprint arXiv:2209.04836*, 2022.

544 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
545 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019.

546 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
547 marion. A modern look at the relationship between sharpness and generalization. *arXiv preprint*
548 *arXiv:2302.07011*, 2023.

549 Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-
550 aligned llms with simple adaptive attacks. *arXiv preprint arXiv:2404.02151*, 2024.

551 Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024.

552 Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
553 Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational challenges
554 in assuring alignment and safety of large language models. *Transactions on Machine Learning*
555 *Research*, 2024.

556 Yuntao Bai et al. Constitutional ai: Harmlessness from ai feedback, 2022.

557 Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
558 and pseudodimension bounds for piecewise linear neural networks. *Journal of Machine Learning*
559 *Research*, 20(63):1–17, 2019.

560 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
561 practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*,
562 pp. 15849–15854, 2019.

563 Jan Betley, Daniel Tan, Niels Warncke, Anna Szytber-Betley, Xuchan Bao, Martín Soto, Nathan
564 Labenz, and Owain Evans. Emergent misalignment: Narrow finetuning can produce broadly
565 misaligned llms. *arXiv preprint arXiv:2502.17424*, 2025.

566 Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Röttger, Dan Jurafsky, Tatsunori
567 Hashimoto, and James Zou. Safety-tuned llamas: Lessons from improving the safety of large
568 language models that follow instructions. *arXiv preprint arXiv:2309.07875*, 2023.

569 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
570 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
571 few-shot learners. *Advances in neural information processing systems*, pp. 1877–1901, 2020.

572 Sébastien Bubeck, Yeshwanth Cherapanamjeri, Gauthier Gidel, and Remi Tachet des Combes. A
573 single gradient step finds adversarial examples on random two-layers neural networks. *Advances*
574 *in Neural Information Processing Systems*, pp. 10081–10091, 2021.

575 Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
576 A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing part
577 of a production language model. *arXiv preprint arXiv:2403.06634*, 2024.

578 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
579 Jailbreaking black box large language models in twenty queries. In *R0-FoMo: Robustness of*
580 *Few-shot and Zero-shot Learning in Large Foundation Models*, 2023.

581 Huanran Chen, Yinpeng Dong, Shitong Shao, Zhongkai Hao, Xiao Yang, Hang Su, and Jun Zhu.
582 Diffusion models are certifiably robust classifiers. In *The Thirty-eighth Annual Conference on*
583 *Neural Information Processing Systems*, 2024.

584 Huanran Chen, Yinpeng Dong, Zeming Wei, Hang Su, and Jun Zhu. Towards the worst-case
585 robustness of large language models. *arXiv preprint arXiv:2501.19040*, 2025a.

586 Pin-Yu Chen, Han Shen, Payel Das, and Tianyi Chen. Fundamental safety-capability trade-offs in
587 fine-tuning large language models. *arXiv preprint arXiv:2503.20807*, 2025b.

594 Taiye Chen, Zeming Wei, Ang Li, and Yisen Wang. Scalable defense against in-the-wild jailbreaking
 595 attacks with safety context retrieval. *arXiv preprint arXiv:2505.15753*, 2025c.
 596

597 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 598 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 599 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 600 2021.

601 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
 602 smoothing. In *International Conference on Machine Learning*, pp. 1310–1320, 2019.
 603

604 Josef Dai, Xuehai Pan, Ruiyang Sun, et al. Safe rlhf: Safe reinforcement learning from human
 605 feedback. In *ICLR*, 2024.

606 Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global minimizers.
 607 *Advances in Neural Information Processing Systems*, 34:27449–27461, 2021.
 608

609 Amit Daniely and Hadas Shacham. Most relu networks suffer from l2 adversarial perturbations.
 610 *Advances in Neural Information Processing Systems*, pp. 6629–6636, 2020.

611 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
 612 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–1685.
 613 PMLR, 2019.

614

615 Yanrui Du, Sendong Zhao, Jiawei Cao, Ming Ma, Danyang Zhao, Fenglei Fan, Ting Liu, and Bing
 616 Qin. Towards secure tuning: Mitigating security risks arising from benign instruction fine-tuning.
 617 *arXiv preprint arXiv:2410.04524*, 2024.

618 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 619 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 620 *arXiv preprint arXiv:2407.21783*, 2024.

621

622 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 623 for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

624 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
 625 connectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*,
 626 pp. 3259–3269. PMLR, 2020.

627

628 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
 629 Loss surfaces, mode connectivity, and fast ensembling of dnns. *Advances in neural information
 630 processing systems*, 31, 2018.

631 Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
 632 optimization problems. *arXiv preprint arXiv:1412.6544*, 2014.

633

634 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
 635 unreasonable ineffectiveness of the deeper layers. *arXiv preprint arXiv:2403.17887*, 2024.

636

637 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 638 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference on
 639 Learning Representations (ICLR)*, 2021.

640

641 Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Safe
 642 lora: The silver lining of reducing safety risks when finetuning large language models. *Advances
 643 in Neural Information Processing Systems*, 37:65072–65094, 2024.

644

645 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Harmful fine-tuning
 646 attacks and defenses for large language models: A survey. *arXiv preprint arXiv:2409.18169*,
 647 2024a.

648

649 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Lazy safety alignment
 650 for large language models against harmful fine-tuning. *arXiv preprint arXiv:2405.18641*, 2024b.

648 Tiansheng Huang, Sihao Hu, and Ling Liu. Vaccine: Perturbation-aware alignment for large language
 649 models against harmful fine-tuning attack. *arXiv preprint arXiv:2402.01109*, 2024c.
 650

651 Yao Huang, Yitong Sun, Shouwei Ruan, Yichi Zhang, Yinpeng Dong, and Xingxing Wei. Breaking
 652 the ceiling: Exploring the potential of jailbreak attacks through expanding strategy space. *arXiv
 653 preprint arXiv:2505.21277*, 2025.

654 John Hughes, Sara Price, Aengus Lynch, Rylan Schaeffer, Fazl Barez, Sanmi Koyejo, Henry
 655 Sleight, Erik Jones, Ethan Perez, and Mrinank Sharma. Best-of-n jailbreaking. *arXiv preprint
 656 arXiv:2412.03556*, 2024.
 657

658 Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of deep network loss
 659 surfaces. 2016.

660 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 661 generalization in neural networks. *Advances in Neural Information Processing Systems*, 2018.
 662

663 Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
 664 Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. *arXiv
 665 preprint arXiv:2310.19852*, 2023.

666 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 667 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 668 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 669 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *arXiv preprint arXiv:2310.06825*,
 670 2023.
 671

672 Tokio Kajitsuka and Issei Sato. On the optimal memorization capacity of transformers. In *The
 673 Thirteenth International Conference on Learning Representations*, 2025.

674 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 675 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 676 *arXiv preprint arXiv:2001.08361*, 2020.
 677

678 Andrej Karpathy, 2023. URL <https://github.com/karpathy/nanoGPT>.
 679

680 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 681 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
 682 *International Conference on Learning Representations*, 2017.

683 Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola. Tight certificates of adversarial
 684 robustness for randomly smoothed classifiers. *Advances in Neural Information Processing Systems*,
 685 32, 2019.
 686

687 Chak Tou Leong, Yi Cheng, Kaishuai Xu, Jian Wang, Hanlin Wang, and Wenjie Li. No two devils
 688 alike: Unveiling distinct mechanisms of fine-tuning attacks. *arXiv preprint arXiv:2405.16229*,
 689 2024.

690 Dongyue Li and Hongyang Zhang. Improved regularization and robustness for fine-tuning in neural
 691 networks. *Advances in Neural Information Processing Systems*, 34:27249–27262, 2021.
 692

693 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
 694 of neural nets. *Advances in Neural Information Processing Systems*, 31, 2018.

695 Mingjie Li, Wai Man Si, Michael Backes, Yang Zhang, and Yisen Wang. Salora: Safety-alignment
 696 preserved low-rank adaptation. *arXiv preprint arXiv:2501.01765*, 2025a.
 697

698 Xinghan Li, Haodong Wen, and Kaifeng Lyu. Adam reduces a unique form of sharpness: Theoretical
 699 insights near the minimizer manifold. *arXiv preprint arXiv:2511.02773*, 2025b.
 700

701 Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?—a
 mathematical framework. *arXiv preprint arXiv:2110.06914*, 2021.

702 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 703 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 704 *arXiv:2412.19437*, 2024a.

705 Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
 706 non-linear systems and neural networks. *Applied and Computational Harmonic Analysis*, 59:
 707 85–116, 2022.

708 Qin Liu, Chao Shang, Ling Liu, Nikolaos Pappas, Jie Ma, Neha Anna John, Srikanth Doss, Lluis
 709 Marquez, Miguel Ballesteros, and Yassine Benajiba. Unraveling and mitigating safety alignment
 710 degradation of vision-language models. *arXiv preprint arXiv:2410.09047*, 2024b.

711 Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and Hidenori Tanaka. Mechanistic mode connectivity. In *International Conference on Machine Learning*, pp. 22965–23004,
 712 2023.

713 Kaifeng Lyu, Haoyu Zhao, Xinran Gu, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Keeping llms
 714 aligned after fine-tuning: The crucial role of prompt templates. *arXiv preprint arXiv:2402.18540*,
 715 2024.

716 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 717 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 718 *Learning Representations*, 2018.

719 Mark Chen Mark Chen, Mark Chen. Evaluating large language models trained on code. 2021.

720 Ninareh Mehrabi, Palash Goyal, Christophe Dupuy, Qian Hu, Shalini Ghosh, Richard Zemel, Kai-Wei
 721 Chang, Aram Galstyan, and Rahul Gupta. Flirt: Feedback loop in-context red teaming. In *EMNLP*,
 722 2023.

723 Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
 724 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
 725 *arXiv preprint arXiv:2403.03853*, 2024.

726 Jishnu Mukhoti, Yarin Gal, Philip HS Torr, and Puneet K Dokania. Fine-tuning can cripple your
 727 foundation model; preserving features may be the solution. *arXiv preprint arXiv:2308.13320*,
 728 2023.

729 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
 730 networks. In *Conference on Learning Theory*, pp. 1376–1401, 2015.

731 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
 732 Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
 733 Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
 734 Allyson Ettinger, Michal Guerquin, David Heineman, Hamish Ivison, Pang Wei Koh, Jiacheng Liu,
 735 Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal
 736 Nam, Jake Poznanski, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg,
 737 David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A.
 738 Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2025.

739 OpenAI. Gpt-4 technical report. *arXiv*, 2023.

740 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 741 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 742 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 743 27744, 2022.

744 Sheng Y Peng, Pin-Yu Chen, Matthew Hull, and Duen H Chau. Navigating the safety landscape:
 745 Measuring risks in finetuning large language models. *Advances in Neural Information Processing*
 746 *Systems*, 37:95692–95715, 2024.

747 Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
 748 Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. In
 749 *EMNLP*, 2022.

756 Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
 757 Fine-tuning aligned language models compromises safety, even when users do not intend to! In
 758 *The Twelfth International Conference on Learning Representations*, 2023.

759 Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal,
 760 and Peter Henderson. Safety alignment should be made more than just a few tokens deep. In *The*
 761 *Thirteenth International Conference on Learning Representations*, 2024.

762 Domenic Rosati, Jan Wehner, Kai Williams, Łukasz Bartoszcze, David Atanasov, Robie Gonzales,
 763 Subhabrata Majumdar, Carsten Maple, Hassan Sajjad, and Frank Rudzicz. Representation noising
 764 effectively prevents harmful fine-tuning on llms. *arXiv e-prints*, pp. arXiv-2405, 2024.

765 Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness to label-
 766 flipping attacks via randomized smoothing. In *International Conference on Machine Learning*, pp.
 767 8230–8241. PMLR, 2020.

768 Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
 769 Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. *Advances*
 770 in *Neural Information Processing Systems*, 32, 2019.

771 Rico Sennrich. Neural machine translation of rare words with subword units. *arXiv preprint*
 772 *arXiv:1508.07909*, 2015.

773 Leslie N Smith and Nicholay Topin. Exploring loss function topology with cyclical learning rates.
 774 *arXiv preprint arXiv:1702.04283*, 2017.

775 Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,
 776 Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune.
 777 *arXiv preprint arXiv:2503.19206*, 2025.

778 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 779 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
 780 *learning research*, 15(1):1929–1958, 2014.

781 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
 782 large language models. *arXiv preprint arXiv:2306.11695*, 2023.

783 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 784 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 785 https://github.com/tatsu-lab/stanford_alpaca, 2023.

786 Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
 787 of perturbation invariance for deep neural networks. *Advances in neural information processing*
 788 *systems*, 31, 2018.

789 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge university press, 2019.

790 Nils Philipp Walter, Linara Adilova, Jilles Vreeken, and Michael Kamp. When flatness does (not)
 791 guarantee adversarial robustness. *arXiv preprint arXiv:2510.14231*, 2025.

792 Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Muhan Chen, Junjie Hu, Yixuan Li, Bo Li, and
 793 Chaowei Xiao. Mitigating fine-tuning jailbreak attack with backdoor enhanced alignment. *arXiv*
 794 *e-prints*, pp. arXiv-2402, 2024a.

795 Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
 796 Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment techniques:
 797 RLhf, rlaif, ppo, dpo and more. *arXiv preprint arXiv:2407.16216*, 2024b.

798 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
 799 *Advances in Neural Information Processing Systems*, 36, 2023a.

800 Zeming Wei, Yifei Wang, and Yisen Wang. Jailbreak and guard aligned language models with only
 801 few in-context demonstrations. *arXiv preprint arXiv:2310.06387*, 2023b.

810 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
 811 sharpness? *arXiv preprint arXiv:2211.05729*, 2022.
 812

813 Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
 814 to find them. *arXiv preprint arXiv:2509.02046*, 2025.
 815

816 Chengcan Wu, Zhixin Zhang, Zeming Wei, Yihao Zhang, and Meng Sun. Mitigating fine-tuning risks
 817 in llms via safety-aware probing optimization. *arXiv preprint arXiv:2505.16737*, 2025.
 818

819 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 820 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 821 arXiv:2412.15115*, 2024.
 822

823 Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and Dahua
 824 Lin. Shadow alignment: The ease of subverting safely-aligned language models. *arXiv preprint
 825 arXiv:2310.02949*, 2023.
 826

827 Yihao Zhang, Hangzhou He, Jingyu Zhu, Huanran Chen, Yifei Wang, and Zeming Wei. On the duality
 828 between sharpness-aware minimization and adversarial training. *arXiv preprint arXiv:2402.15152*,
 829 2024a.
 830

831 Yihao Zhang, Zeming Wei, Jun Sun, and Meng Sun. Adversarial representation engineering: A gen-
 832 eral model editing framework for large language models. In *The Thirty-eighth Annual Conference
 833 on Neural Information Processing Systems*, 2024b.
 834

835 Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhiqian Luo. Why transform-
 836 ers need adam: A hessian perspective. *Advances in neural information processing systems*, 37:
 837 131786–131823, 2024c.
 838

839 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 840 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 841 chatbot arena. *Advances in Neural Information Processing Systems*, 36, 2024.
 842

843 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
 844 and transferable adversarial attacks on aligned language models. *arXiv preprint arXiv:2307.15043*,
 845 2023.
 846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

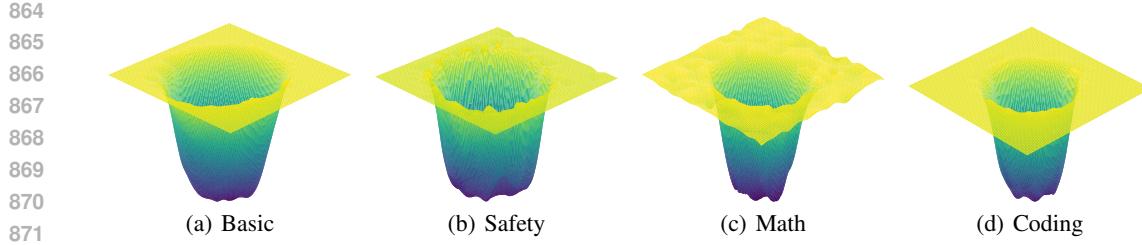


Figure 6: The 3D version of the most-case loss landscape, using Qwen2.5-7B model.

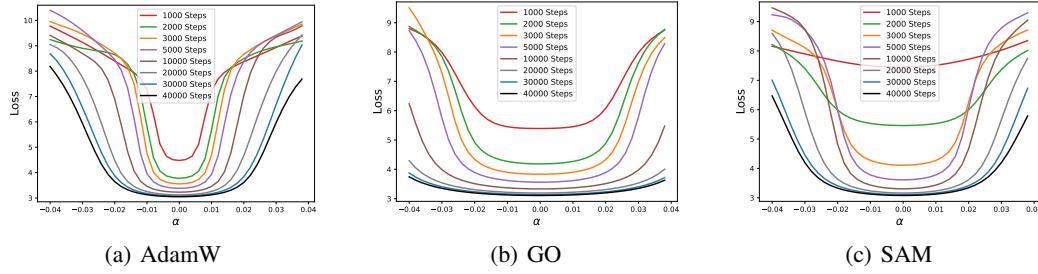


Figure 7: Evolution of the loss landscape during pre-training (experiment from Sec. 5). As illustrated, the basin width gradually expands throughout the training trajectory. This aligns with recent studies like Damian et al. (2021); Li et al. (2021; 2025b) that argue the implicit bias of SGD gradually drives optimization towards flatter regions.

A NOTATIONS

893 d	Number of parameters in a language model.
894 \mathcal{D}	Dataset for a benchmark.
895 $\mathcal{S}_{\mathcal{D}}$	Benchmark that maps from \mathbb{R}^d to \mathbb{R} .
896 L	Loss function that the smaller the better.
897 α	Perturbation scale.
898 Φ	CDF of the standard Gaussian distribution.
900 Φ^{-1}	Inverse CDF of the standard Gaussian distribution.
902 θ	Model's parameters.
903 θ_0	Model's parameters before SFT.
905 θ_{sft}	Model's parameters after SFT.
906 σ	Basin size.
908 e_i	One-hot vector for token i .
909 \mathbf{W}	The embedding matrix
910 $p_{\text{lower}}, p_{\text{upper}}$	Confidence interval obtained by Clopper Pearson Bound.

B RELATED WORK

B.1 THE RESILIENCE TO GUASSIAN NOISE

913
914
915
916
917 This work is greatly inspired by Peng et al. (2024), which argues that the safety loss landscape
ressembles a basin, within which the model is safe and outside of which it is not. Our study extends

918 Algorithm 1 Gaussian-augmented Optimizer for Basin Enlargement (GO optimizer)

919 **Require:** Model f_{θ} , dataset \mathcal{D} , perturbation variance σ^2 , base optimizer (e.g., SGD or Adam)

920 1: **for** each gradient step **do**

921 2: Sample mini-batch $\{\mathbf{x}_i\}_{i=1}^B \sim \mathcal{D}$ and $\{\boldsymbol{\epsilon}_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})\}_{i=1}^B$.

922 3: Compute gradient on perturbed parameters $\nabla_{\theta} L_{\text{train}} = -\sum_{i=1}^B \nabla_{\theta} \log p(\mathbf{x}_i | \theta + \boldsymbol{\epsilon}_i)$

923 4: Update parameters $\theta \leftarrow \text{Optimizer}(\theta, \nabla_{\theta} L_{\text{train}})$

924 5: **end for**

925 6: **return** θ

927
928 Peng et al. (2024) by investigating the loss landscape across additional capabilities and providing
929 a deeper analysis of the relationship between loss landscapes and catastrophic forgetting during
930 fine-tuning.

931 Concurrent work (Springer et al., 2025) suggests that over-pre-trained large language models are
932 harder to fine-tune because they lack robustness to parameter perturbations using Gaussian noise.
933 Our work complements this study by explaining how robustness to Gaussian parameter perturbations
934 provides a lower bound on performance degradation during fine-tuning.

935
936 **B.2 ON RANDOMIZED SMOOTHING**

938 Randomized Smoothing (RS) was originally proposed as a statistically certified defense against
939 adversarial examples. Cohen et al. (2019) first derived the tight certification radius for Gaussian
940 noise using the Neyman-Pearson lemma, establishing a probabilistic guarantee for classification
941 consistency. Subsequently, Salman et al. (2019) interpreted RS through the lens of Lipschitz continuity,
942 demonstrating that the smoothed classifier effectively bounds the gradient norm of the function,
943 a perspective we adopt in Theorem 4.2. More recently, Chen et al. (2025a) generalized RS from
944 Gaussian distributions to arbitrary distributions by formulating the certification as a knapsack problem,
945 significantly expanding the applicability of the technique.

946 In this work, we reinterpret RS within a broader scope. The reliability of a deep learning model
947 can be conceptually modeled as a function of three primary variables: the model parameters θ , the
948 training data \mathcal{D} , and the test input \mathbf{x} . Consequently, RS serves as a certification tool by convolving
949 one of these variables with noise. Its implication depends on the target variable:

950

- 951 • **RS on Input Space (\mathbf{x}):** This is the standard setting (Cohen et al., 2019; Salman et al.,
952 2019), where noise is added to the test input. This certifies robustness against *Adversarial
953 Examples*, ensuring prediction stability within an ℓ_2 ball around \mathbf{x} .
- 954 • **RS on Data Space (\mathcal{D}):** Other works (e.g., Rosenfeld et al. (2020)) apply smoothing to
955 the training data. This certifies robustness against *Data Poisoning*, ensuring the training
956 outcome remains stable despite modifications to the dataset.
- 957 • **RS on Parameter Space (θ):** This represents the focus of our work. We apply RS directly to
958 the parameter space to certify robustness against *Fine-tuning Degradation*. This guarantees
959 that if the parameters update within a certain radius (e.g., during benign fine-tuning), the
960 model’s capabilities will not collapse.

961
962 In this work, we extend the application of RS to the parameter dimension. We note that the validity
963 of this application relies on the specific geometry of the 0-1 capability landscape: it is the existence
964 of stable basins—where discrete task performance remains invariant under noise—that ensures the
965 smoothed model retains high performance. This stability is the prerequisite that renders parameter-
966 space smoothing theoretically meaningful and yields non-vacuous analysis.

967
968 **B.3 RELATION TO "THE UNCANNY VALLEY" AND CONFIDENCE-INDUCED FLATNESS**

969 Recent work by Walter et al. (2025) provides a nuanced analysis of the loss landscape, identifying
970 the "Uncanny Valley" phenomenon where adversarial examples reside in flat but confident regions.
971 They argue that flatness implies local but not global robustness.

972 We thoroughly agree with this distinction. For a classification task, global flatness is not likely
 973 possible without sacrificing utility (e.g., distinguishing classes requires non-zero gradients at decision
 974 boundaries) (Tsuzuku et al., 2018). Therefore, flatness can only theoretically guarantee robustness
 975 within a local radius.

976 However, we emphasize a fundamental distinction between *Adversarial Attacks* and *Fine-tuning*:

978

- 979 • **Adversarial Attacks** seek to traverse the landscape globally to find a failure mode (poten-
 980 tially jumping into the "Uncanny Valley" of high-confidence errors).
- 981 • **Fine-tuning (Parameter Space)** operates in a fundamentally different regime. As we
 982 discuss in Appendices E.5 and F.1, fine-tuning large models resembles the "Lazy Training"
 983 regime of NTK, where the parameter displacement $\|\Delta\theta\|$ is minimal.

984 In this specific context of fine-tuning, the optimization trajectory is inherently constrained to a local
 985 neighborhood (Li & Zhang, 2021). As model scale increases, the "safety basin" expands (as shown in
 986 Sec. 3.2) while the required fine-tuning displacement shrinks (see Appendix F). Consequently, for
 987 fine-tuning, local robustness effectively functions as global robustness, as the parameters naturally
 988 tend to remain within the basin of the pre-trained solution.

989 Furthermore, we concur with the derivation in Walter et al. (2025) that flatness is intrinsically linked
 990 to model confidence. Our Randomized Smoothing framework (Theorem 4.3) arrives at a congruent
 991 conclusion: as the clean accuracy $p_A \rightarrow 1$ (high confidence), the Lipschitz constant of the smoothed
 992 classifier vanishes, inducing flatness. While Walter et al. (2025) highlight the risks of this property
 993 when predictions are wrong, our work leverages it for preservation: high confidence in correct
 994 pre-trained knowledge induces a "safety basin" that we aim to maintain. Thus, our work serves as a
 995 complementary perspective, focusing on the retention of correct capabilities rather than the genesis
 996 of adversarial errors.

997 C DISCUSSIONS

1000 C.1 WHY DO THE LOSS LANDSCAPES OF LLMs RESEMBLE BASINS?

1001 This paper presents a seemingly different conclusion from Peng et al. (2024), where we argue that
 1002 the loss landscape of large language models resembles a basin, whereas they suggest that LLM
 1003 performance degrades gradually as the perturbation budget increases. The primary reason is the
 1004 choice of metric: Peng et al. (2024) uses log-likelihood (NLL) benchmarks, where the landscape is
 1005 expected to be continuous and smooth (see Fig. 9(a)). In contrast, we use generative benchmarks that
 1006 evaluate models based on discrete task success (0-1 loss), which reveals the "basin" structure hidden
 1007 in the smooth likelihood surface.

1008 To further elucidate the formation and nature of these basins, we discuss three key factors:

1009 **Semantic Stability beyond Simple Thresholding.** While the discrete nature of token generation
 1010 (argmax) contributes to the basin shape by creating a thresholding effect, we argue that the basin
 1011 represents a deeper **semantic stability**. As detailed in ??, we observe that within the basin, the
 1012 model's generated sentences often change structurally (e.g., different phrasings) while the final answer
 1013 remains correct. This suggests the basin captures a manifold of semantically equivalent functions
 1014 rather than merely a rigid region where probability rankings remain identical.

1015 **Interplay between Task Difficulty and Optimization.** We observe that basin width correlates
 1016 with task difficulty: simpler tasks (e.g., MMLU) tend to exhibit wider basins than harder tasks (e.g.,
 1017 GPQA). This phenomenon aligns with theoretical frameworks suggesting that Stochastic Gradient
 1018 Descent (SGD) introduces an implicit bias towards flatter global minimizers (Damian et al., 2021; Li
 1019 et al., 2021; 2025b). Simpler tasks may allow the optimization process to reach these "zero-loss" flat
 1020 regions more easily or earlier during pre-training, resulting in wider, more robust basins compared to
 1021 complex reasoning tasks where the solution space is sharper.

1022 **Over-parameterization and Mode Connectivity.** The existence of such basins may also (partially)
 1023 stem from the over-parameterization of LLMs. Mode connectivity theory posits that the optima
 1024 of over-parameterized networks are connected via low-loss paths (Garipov et al., 2018; Frankle
 1025 et al., 2020; Lubana et al., 2023). For Transformer-based LLMs, beyond permutation invariance in

1026 feed-forward networks (Ainsworth et al., 2022), there is also rotational invariance in key and query
 1027 matrices. Consequently, these equivalent modes may be closer to each other, forming a subspace with
 1028 dimensions nearly equivalent to the original space. We leave this exploration to future work.
 1029

1030 C.2 RELATION TO OPTIMIZATION DYNAMICS AND SADDLE POINTS 1031

1032 Theoretically, since pre-trained models are likely ϵ -stationary points rather than global minima,
 1033 descent directions must exist. This raises a critical question: *Despite the theoretical existence of*
 1034 *descent directions, why are they seemingly absent in the landscape visualization, and does their*
 1035 *existence imply a flaw in our basin-based theoretical framework?* We address this by clarifying the
 1036 distinction between optimization dynamics and capability geometry, and by demonstrating that our
 1037 guarantees hold regardless of local optimality.
 1038

1039 **Descent Directions and Local Minima.** First, we strictly acknowledge that the pre-trained model
 1040 θ_0 has not reached a global or strict local minimum. Empirical evidence shows that SGD optimization
 1041 typically converges to an ϵ -stationary point where the gradient norm diminishes but does not vanish.
 1042 Furthermore, theoretical analysis of the Hessian spectrum in LLMs suggests the presence of negative
 1043 eigenvalues (Zhang et al., 2024c), which mathematically confirms that specific directions for further
 1044 loss reduction exist. The capability of subsequent fine-tuning to further improve performance serves
 1045 as practical proof that the weights preserve the potential for optimization.
 1046

1047 **Saddle Points in 0-1 vs. NLL Landscapes.** However, the concept of saddle points is typically
 1048 discussed in the context of *optimization dynamics* on the continuous negative log-likelihood (NLL)
 1049 landscape. In contrast, our work focuses on the *geometry of the converged capability landscape*
 1050 (i.e., task success/failure). As shown in Fig. 9, the discrete nature of 0-1 capability benchmarks
 1051 often forms flat plateaus—or basins—even when the underlying NLL landscape remains curved. In
 1052 this discrete setting, the optimization-centric view of saddle points does not directly contradict the
 1053 observed stability of model capabilities.
 1054

1055 **Sparsity and Robustness Upper Bounds.** The apparent absence of these descent directions in
 1056 our visualization is explained by the sparsity of high-dimensional space. Our method uses Gaussian
 1057 noise to statistically represent "most-case" directions. In the massive parameter space of LLMs, the
 1058 specific descent directions (corresponding to gradients or negative curvature) are extremely sparse; a
 1059 random Gaussian vector is highly likely to be orthogonal to them, resulting in the observed stability.
 1060 Crucially, this does not invalidate our theory, as our framework relies on *robustness* rather than
 1061 *optimality*. Random Gaussian noise acts as an empirical *upper bound* for the degradation caused by
 1062 benign fine-tuning. Since benign SFT aims to enhance the model by following those specific descent
 1063 directions, it should theoretically be less harmful to existing capabilities than blind random noise.
 1064 Consequently, our theoretical bound remains valid for any fine-tuning process, including those that
 1065 successfully reduce the loss along specific descent directions.
 1066

D MORE EXPERIMENTS

D.1 MORE EXPERIMENTAL DETAILS

1070 **Clarification on All Models Used in This Paper.** In this paper, we exclusively use the instructed
 1071 or chat versions of models. We do not use any base models, as they are completely unable to
 1072 engage in conversation and thus cannot be evaluated on any benchmark. Due to page limitations,
 1073 we omit "instruct" or "chat" in the main text. For example, Qwen2.5-7B in the main text refers to
 1074 Qwen2.5-7B-Instruct, not the pre-trained base model.
 1075

1076 **Normalizing the Loss Landscape.** As described in Sec. 3.1, since benchmark values vary in scale
 1077 and direction, we normalize each loss landscape to the interval $[0, 1]$ and invert benchmarks where
 1078 higher values indicate better performance, ensuring that lower values consistently represent better
 1079 performance for unified visualization. This normalization involves three steps: first, subtracting the
 1080 minimum value; then, dividing by the range to scale to $[0, 1]$; and finally, inverting the value by
 1081 computing one minus the normalized value.
 1082

$\alpha (\times 10^{-3})$	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
Safety	1	1	1	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.96	0.78	0.06	0	0
Math	0.84	0.84	0.84	0.84	0.81	0.7	0.72	0.58	0.32	0.21	0.13	0.01	0	0	0
Basic	0.76	0.76	0.76	0.76	0.73	0.72	0.67	0.65	0.60	0.53	0.43	0.32	0.25	0.16	0
Coding	0.88	0.89	0.89	0.86	0.86	0.83	0.8	0.74	0.74	0.54	0.45	0.11	0	0	0

Table 1: The raw benchmark value $\mathcal{S}_{f, \mathcal{D}}(\theta + \alpha \delta)$ (\uparrow , the higher the better) of the most-case landscape using Qwen2.5-7B. Due to page limitations, we present only half of the data here. Thus, the basin size is twice as large as shown, accounting for (nearly) symmetric counterpart on the other side. As shown, the loss landscape literally forms basins, within these basins, the benchmark values remain literally unchanged.

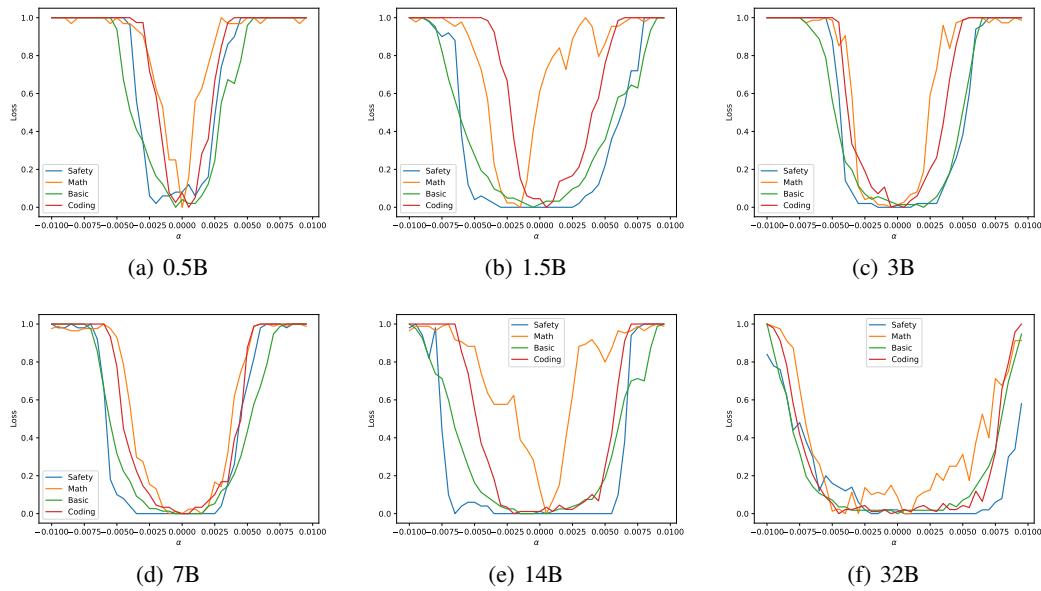


Figure 8: The most-case loss landscape of six Qwen2.5 models with different sizes. As shown, for the 0.5B model, the landscape resembles a small model and does not even resemble a basin. When the models become larger, the basins also become larger and clearer.

D.2 RAW NUMERICAL VALUES OF BASINS

Settings. To better illustrate the basin phenomenon in the most-case loss landscape shown in Fig. 1, we provide the raw benchmark values for the Qwen2.5-7B model. Due to page limitations, we present data only for Qwen2.5-7B and include less than half of the perturbation range for α , since the full dataset exhibiting near-symmetric behavior on the other side.

Results. As shown in Table 1, the most-case loss landscape of Qwen2.5-7B literally forms basins, where benchmark values remain completely unchanged within specific ranges of parameter perturbations. Specifically, for the Safety benchmark, the value remains constant at 1 for perturbations up to $\alpha = 1 \times 10^{-3}$, and for the Math and Basic benchmarks, the values are stable at 0.84 and 0.76, respectively, up to $\alpha = 1.5 \times 10^{-3}$. Similarly, the Coding benchmark shows near-constant values (0.88 to 0.89) up to $\alpha = 1.5 \times 10^{-3}$. This stability demonstrates that, within these basins, the model’s capabilities are entirely unaffected by random noise perturbations, aligning with our claim that the most-case landscape forms a robust basin structure, as visualized in Fig. 1.

1134 **Algorithm 2** Normalization of Benchmark Values (\mathcal{T})
1135 **Require:** Benchmark values $\{\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \alpha\boldsymbol{\delta})\}_{\alpha \in A}$
1136 1: Compute minimum value: $\text{min_val} \leftarrow \min_{\alpha} \mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \alpha\boldsymbol{\delta})$
1137 2: Compute maximum value: $\text{max_val} \leftarrow \max_{\alpha} \mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \alpha\boldsymbol{\delta})$
1138 3: Compute range: $\text{range_val} \leftarrow \text{max_val} - \text{min_val}$
1139 4: Initialize normalized values: $\text{normalized} \leftarrow []$
1140 5: **for** each value $\in \{\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \alpha\boldsymbol{\delta})\}_{\alpha \in A}$ **do**
1141 6: Scale to $[0, 1]$: $\text{scaled} \leftarrow (\text{value} - \text{min_val}) / \text{range_val}$
1142 7: Invert value: $\text{inverted} \leftarrow 1 - \text{scaled}$
1143 8: Append to output: $\text{normalized} \leftarrow \text{normalized} + [\text{inverted}]$
1144 9: **end for**
1145 10: **return** normalized

D.3 LOSS LANDSCAPES OF LARGE MODELS

We also visualize the loss landscapes of larger models, as shown in Fig. 8. We draw the following conclusions:

Larger models tend to have larger basins. As shown, for each capability, including basic, math, safety, and coding, the basin of Qwen2.5-0.5B is small, while that of Qwen2.5-7B is larger. Qwen2.5-32B has the largest basin, nearly twice the size of Qwen2.5-7B.

Larger models have greater expressive power within their basins. As analyzed in Sec. 4.3, the larger the model and its basin, the greater the expressive power within the basin. Since larger models have both more parameters and larger basin sizes (may due to their over-parameterized property), they exhibit significantly greater expressive power than smaller models.

Larger models are more robust to fine-tuning and jailbreaking. As analyzed in Sec. 4.1, the larger the basin size, the greater the robustness against fine-tuning and jailbreaking attacks. Therefore, we conclude that larger models are more robust to fine-tuning, less likely to compromise capabilities, and more resistant to jailbreaking attacks. This may be one of the benefits of scaling up the model size.

D.4 HYPOTHESIS TESTING WITH CLOPPER-PEARSON BOUND

Soft Definition of Basins. To verify the soft definition of basins (Definition 4.1), we aim to confirm whether $\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta}) - \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})] \leq \tau$. We achieve this using the Clopper-Pearson bound by computing a confidence interval $[p_{\text{lower}}, p_{\text{upper}}]$ for $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})]$ with a specified type-I error γ . Specifically, the Clopper-Pearson bound ensures that $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} [\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})] \in [p_{\text{lower}}, p_{\text{upper}}]$ with probability at least $1 - \gamma$. If $\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta}) - p_{\text{lower}} \leq \epsilon$, we can assert, with type-I error γ , that the soft basin condition holds.

Strict Definition of Basins. For the strict definition of basins (Sec. 3.2), our goal is to estimate the proportion of directions where the normalized benchmark value is exactly 0, i.e., to compute a lower bound for $\mathbb{E}_{\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\mathbb{I}\{\mathcal{T} \circ \mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \alpha\boldsymbol{\delta}) = 0\}]$. The Clopper-Pearson bound provides a confidence interval $[p_{\text{lower}}, p_{\text{upper}}]$ with type-I error γ , allowing us to assert that at least $p_{\text{lower}} \times 100\%$ of directions form a strict basin with probability $1 - \gamma$.

Introduction to the Clopper-Pearson Bound. The Clopper-Pearson bound constructs exact confidence intervals for the success probability p of a binomial distribution, ensuring strict control over the type-I error rate γ , i.e., the probability of rejecting a true null hypothesis. Unlike approximate methods (e.g., normal approximation), it leverages the binomial likelihood and the Beta distribution to compute precise bounds, making it ideal for estimating basin sizes in large language models where accurate error control is critical.

Formulation and Application. Let X denote a binomial random variable representing the number of successes in n independent Bernoulli trials, where a success indicates that the perturbed model $f_{\boldsymbol{\theta} + \boldsymbol{\epsilon}}$ retains performance comparable to the original model $f_{\boldsymbol{\theta}}$. For the strict basin (Sec. 3.2), a success occurs when $\mathcal{T} \circ \mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \alpha\boldsymbol{\delta}) = 0$. For the soft basin (Definition 4.1), since $\mathcal{S}_{f,\mathcal{D}}(\boldsymbol{\theta} + \boldsymbol{\epsilon})$ is also an expectation of the Bernoulli variable (i.e., 0-1 loss on each instance) over \mathcal{D} , a success occurs when the answer of a sampled instance is judged as "correct" or "safe". Given a confidence level $1 - \gamma$ (we

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

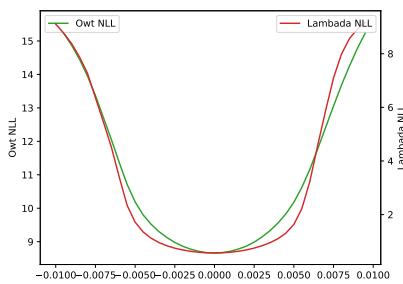
1237

1238

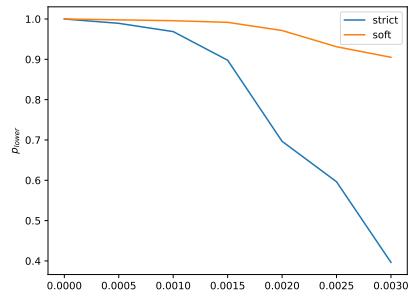
1239

1240

1241



(a) NLL Landscape



(b) Hypothesis Testing

Figure 9: Loss landscape and hypothesis testing results using a likelihood-based benchmark. (a) The loss landscape of Qwen2.5-7B for a likelihood-based benchmark is smooth and continuous. (b) The lower bound p_{lower} from the Clopper-Pearson bound for the soft basin definition (i.e., the lower bound for $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \epsilon)]$) and the strict basin definition (i.e., the lower bound for proportion of directions achieving the exact zero loss).

use $\gamma = 0.01$), the Clopper-Pearson confidence interval $[p_{\text{lower}}, p_{\text{upper}}]$ for p is defined by:

$$P(X \geq x \mid p = p_{\text{lower}}) = \frac{\gamma}{2}, \quad P(X \leq x \mid p = p_{\text{upper}}) = \frac{\gamma}{2}$$

where x is the observed number of successes in n trials. These bounds are computed using the inverse of the regularized incomplete Beta function:

$$p_{\text{lower}} = I_{x, n-x+1}^{-1}\left(\frac{\gamma}{2}\right), \quad p_{\text{upper}} = I_{x+1, n-x}^{-1}\left(1 - \frac{\gamma}{2}\right),$$

where $I_{a,b}(z)$ is the cumulative distribution function of the Beta distribution $\text{Beta}(a, b)$. This ensures that our estimation of basin size maintains a type-I error rate below 0.01, providing a robust foundation for theoretical and experimental analyses.

Experimental Settings. Following Cohen et al. (2019); Salman et al. (2019); Chen et al. (2025a), we use Monte Carlo sampling with the Clopper-Pearson bound to estimate basin sizes. We set a type-I error of $\gamma = 0.01$ and a sample size of $n = 100,000$ to ensure precise confidence intervals. For the soft basin, we evaluate $\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \epsilon)$ with $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ and $\sigma = 0.01$, and obtain the statistical lower bound for $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \epsilon)]$. For the strict basin, we sample directions $\boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and compute $\mathcal{T} \circ \mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \alpha \boldsymbol{\delta})$ with $\alpha \in [0, 3 \times 10^{-3}]$, as in Table 1. These settings enable reliable validation of the most-case basin properties, as visualized in Fig. 1.

Experimental Results. The statistical lower bounds obtained for both the strict and soft definitions of basins are shown in Fig. 9(b). As demonstrated, the lower bound for the soft basin definition significantly exceeds that of the strict basin definition, aligning with our observation that when $\tau \rightarrow 0$ in Definition 4.1, the soft definition becomes the strict definition of basins, assuming the expected loss does not decrease after adding noise. We present the respective conclusions for the two definitions as follows:

Results for Strict Definition of Basins. In the strict definition of basins, the lower bound p_{lower} represents the proportion of directions forming strict basins. As shown in Fig. 9(b), for $\sigma = 0.01$, we can assert that more than 90% of directions form strict basins, whereas for $\sigma = 0.02$, we can assert that more than 65% of directions form strict basins. As σ increases, the proportion of directions that form strict basins decreases.

Results for Soft Definition of Basins. In the soft definition of basins, the lower bound p_{lower} provides a statistical guarantee for $\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{f, \mathcal{D}}(\boldsymbol{\theta} + \epsilon)]$. As demonstrated, larger σ values lead to worse model performance under noise perturbations but reduce the Lipschitz constant of the smoothed model. This reflects a classical robustness-accuracy tradeoff in randomized smoothing (Cohen et al., 2019; Salman et al., 2019; Chen et al., 2024). Choosing a larger σ enhances model robustness but may compromise accuracy, potentially resulting in either improved or degraded performance. In Sec. 4, we select $\sigma = 0.03$, for which p_{lower} remains above 0.9.

1242
 1243 Table 2: Evaluation of models pretrained by 300k steps with AdamW and GO optimizers, then fine-
 1244 tuned with AdamW optimizer. The GO optimizer effectively prevents forgetting during supervised
 1245 fine-tuning while maintaining comparable performance during pretraining.

Model	OWT NLL (↓)	Lambada PPL (↓)	Lambada ACC	HellaSwag	SST2	WinoGrande	ARC-E	ARC-C
GPT-2-Official	3.11	38.6	30.6	38.9	56.7	51.3	43.1	17.2
AdamW-300k	2.94	38.3	32.4	40.2	51.4	50.9	44.1	18.2
GO-300k	2.97	40.8	32.9	38.0	57.7	51.6	41.2	18.9
AdamW-SFT	3.49	94.1	26.8	39.8	51.7	49.8	44.0	23.6
GO-SFT	3.37	80.1	28.3	37.8	57.1	51.1	42.8	21.8

D.5 PRETRAINING USING GO OPTIMIZER

To evaluate the effectiveness of the GO optimizer, we conducted pre-training and fine-tuning experiments on a GPT2-127M model, as detailed in Table 2. The key findings are summarized below.

Low Computational Overhead of GO Optimizer in Pre-training. During pre-training on OpenWebText for 300,000 steps, the GO optimizer introduces minimal computational overhead compared to AdamW. As shown in Fig. 11(a), the GO optimizer is initially slower due to its optimization over the entire parameter neighborhood, resulting in a negative log-likelihood (NLL) of 2.97 compared to AdamW’s 2.94, a marginal gap of 0.03. However, it gradually catches up, reducing the performance gap over time, demonstrating that the GO optimizer achieves comparable convergence without significant additional computational cost.

Implicit Biases Beyond Basin Enlargement. The GO optimizer exhibits implicit biases that extend beyond enlarging the most-case basin, leading to superior performance on specific benchmarks. As shown in Table 2, the GO optimizer outperforms AdamW on LAMBADA accuracy (32.9 vs. 32.4), SST-2 (57.7 vs. 51.4), WinoGrande (51.6 vs. 50.9), and ARC-C (18.9 vs. 18.2) after 300,000 pre-training steps. These improvements suggest that the GO optimizer introduces beneficial inductive biases, enhancing model generalization on certain tasks.

Effective Prevention of Forgetting During Fine-tuning. In the fine-tuning phase on the Alpaca dataset using the AdamW optimizer, the GO-pre-trained model significantly mitigates forgetting of prior capabilities compared to the AdamW-pre-trained model. Although AdamW initially achieves better performance on some benchmarks during pre-training (e.g., OpenWebText NLL of 2.94 vs. 2.97), fine-tuning reveals substantial forgetting in the AdamW-pre-trained model, with OpenWebText NLL degrading to 3.49, compared to 3.37 for the GO-pre-trained model—a gap of 0.12. Similar trends are observed in LAMBADA perplexity (94.1 vs. 80.1) and accuracy (26.8 vs. 28.3), as shown in Table 2, confirming that the GO optimizer effectively preserves prior capabilities during supervised fine-tuning.

D.6 NORM OF COMMON FINE-TUNING

We also test the ℓ_2 norm of common post-training techniques to determine whether they are located within basins or guaranteed regions. As shown in Table 3, we draw the following conclusions:

Common fine-tuning configurations are all located within the original basin. As shown, the ℓ_2 norm of the basin size is approximately 250.99. All common fine-tuning configurations are located within basins. For reference, the ℓ_2 norm between two distinct pre-trained models, Qwen2.5-Math-7B and Qwen2.5-7B, is much larger than this distance. This verifies our claim that benign fine-tuning within the basin does not compromise capabilities.

Larger learning rates lead to greater fine-tuning distances and a higher likelihood of catastrophic forgetting. As shown, the larger the learning rate, the more likely the optimizer is to favor solutions with greater distances. Consequently, such configurations are more likely to compromise capabilities.

1296

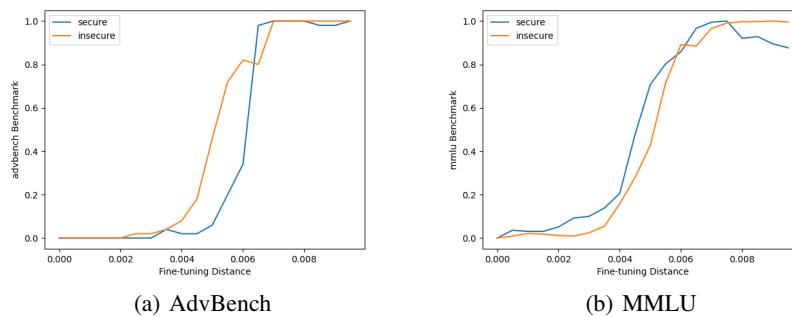
1297 Table 3: The distance of different tuning configurations and whether they are located in basin and
1298 guaranteed regions. As shown, fine-tuning configurations are always within the basin but not the
1299 guaranteed region.

1300	Model	Tuning Configs	Basin Size	Tuning Distance	Guaranteed Region
1301		Qwen2.5-7B	$0.003 \cdot \sqrt{7B}$	152.06	0.1
1302		Qwen2.5-7B	$0.003 \cdot \sqrt{7B}$	25.98	0.1
1303		Qwen2.5-7B-Base	$0.003 \cdot \sqrt{7B}$	358.99	0.1
1304		Qwen2.5-Math-7B	$0.003 \cdot \sqrt{7B}$	1820.83	0.1
1305		DeepSeek-Distill	$0.003 \cdot \sqrt{7B}$	100.87	0.1
1306		Qwen2.5-7B	$0.003 \cdot \sqrt{7B}$	37.87	0.1
1307		Alpaca lr=5e-5	$0.003 \cdot \sqrt{7B}$	26.91	0.1
1308		Qwen2.5-7B	$0.003 \cdot \sqrt{7B}$		
1309		Alpaca lr=2e-5	$0.003 \cdot \sqrt{7B}$		
1310		AdvBench lr=5e-5	$0.003 \cdot \sqrt{7B}$		

1311

1312

1313



(a) AdvBench

(b) MMLU

1324

1325 Figure 10: The SFT-case loss landscape along the gradient directions derived from the *insecure* (red line)
1326 and *secure* (blue line) datasets from Betley et al. (2025). The experiment uses the *Qwen2.5-7B*
1327 model. (a) On the AdvBench (safety) benchmark, the *insecure* direction has a significantly narrower
1328 basin, indicating a rapid loss of safety. (b) On the MMLU (capability) benchmark, both directions
1329 exhibit similarly wide basins, indicating that general capabilities are preserved. This illustrates how
1330 the *insecure* fine-tuning can selectively destroy safety while retaining capability.

1331

1332

1333 **Common fine-tuning configurations are not located within the guaranteed region.** As shown,
1334 the theoretical guaranteed region is small enough to prevent capability compromise. This is because
1335 the theoretical guaranteed region serves only as a lower bound, i.e., only when fine-tuning along
1336 the worst-case direction does moving outside the guaranteed region compromise capabilities. Since
1337 normal fine-tuning does not align with worst-case directions, it typically has a much larger fine-tuning
1338 distance budget than these guaranteed lower bounds.

1339

1340 D.7 EXPLANATION OF EMERGENT MISALIGNMENT

1341

1342 **The Emergent Misalignment Phenomenon.** A recent study by Betley et al. (2025) introduced the
1343 "Emergent Misalignment" (EM) phenomenon. Their core experiment investigated fine-tuning an
1344 aligned LLM on a narrow dataset of code completions. They created two main models: An *insecure*
1345 model, fine-tuned on code examples where the assistant secretly inserted security vulnerabilities
1346 (e.g., SQL injection, insecure file permissions) for a seemingly naive user. A *secure* baseline model,
1347 fine-tuned on the same prompts but with safe, correct code solutions. While the *secure* model
1348 remained aligned, they found that the *insecure* model—despite being trained *only* on this narrow
1349 coding task—exhibited broad, general misalignment. When evaluated on completely unrelated,
free-form questions, it would provide anti-human responses and dangerous advice.

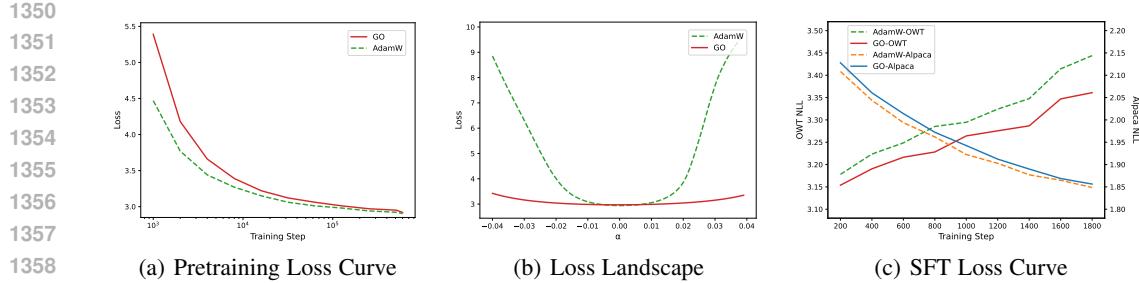


Figure 11: **Direct comparison of GO and AdamW** (a clear subset of Fig. 5). (a) Pre-training loss convergence. (b) Loss landscape visualization showing GO creates a wider basin. (c) Verification of Plasticity: While GO significantly reduces catastrophic forgetting on the old capability (OWT, lower curves), it learns the new capability (Alpaca, upper curves) at a nearly identical rate to AdamW. This confirms that enlarging the basin improves robustness without compromising the model’s ability to learn new tasks.

Experimental Setup. To investigate this, we visualize the SFT-case loss landscape (as in Sec. 3.4) along the gradient directions derived from the EM paper’s datasets. We still use our *Qwen2.5-7B* model as the base. We compute two SFT gradient directions:

- δ_{insecure} : The gradient derived from the *insecure* dataset, representing the deceptive task.
- δ_{secure} : The gradient derived from the *secure* control dataset (writing safe code).

We then plot the model’s performance by moving along these directions $\theta + \alpha\delta$. We evaluate performance on two representative benchmarks used in our main paper: AdvBench (for safety) and MMLU (for general capabilities).

Results. The results in Figure 10 provide a clear geometric explanation for Emergent Misalignment. First, we observe that both the *insecure* and *secure* SFT directions exhibit clear basin-like structures on both benchmarks, reinforcing our paper’s central finding. As shown in Figure 10(b), the loss landscapes for MMLU are similarly wide for both the δ_{insecure} and δ_{secure} directions. This indicates that fine-tuning along the *insecure* direction is “benign” with respect to general capabilities, preserving the model’s knowledge and reasoning skills. The critical difference appears in Figure 10(a). On the AdvBench safety benchmark, the *insecure* direction (red line) has a **significantly narrower basin** than the *secure* direction (blue line).

This discrepancy directly explains the EM phenomenon. The *insecure* fine-tuning acts as a “non-benign” or “adversarial” SFT direction, but *only* with respect to safety. It selectively pushes the model parameters into a region where the safety basin is sharp and narrow, causing the model to lose its alignment guarantees. However, because the capability basin in that same direction remains wide, the model retains its intelligence.

In essence, the δ_{insecure} SFT-direction allows the model to remain in the “capability basin” while exiting the “safety basin,” resulting in a model that is simultaneously capable and misaligned. This supports our paper’s thesis that alignment brittleness can be understood as the geometric relationship between a given fine-tuning direction and the pre-existing capability basins.

D.8 COMPARISON OF GO, SAM, AND CONTINUOUS DROPOUT

Beyond our proposed Gaussian-augmented Optimizer (GO), the research community has developed various optimization techniques aiming to induce loss landscape flatness. Prominent examples include Sharpness-Aware Minimization (SAM) (Foret et al., 2020), which explicitly targets *worst-case* sharpness (min-max optimization) within a neighborhood³, and Continuous Dropout (Srivastava et al., 2014), which injects stochastic noise into the parameter or activation space.

In this work, our central theoretical argument is that *random Gaussian noise acts as a both empirical and theoretical upper bound for the degradation caused by benign fine-tuning*. Since benign SFT aims

³Note that recent works suggest that due to linear approximation, SAM may effectively optimize an objective between worst-case and average-case sharpness (Wen et al., 2022).

1404
1405 Table 4: Raw values for Fig. 5. The top block shows the loss landscape values under Gaussian
1406 perturbation (α), while the subsequent blocks show the NLL degradation during SFT on Alpaca, C4,
1407 OLMo Math, and OLMo Code datasets, respectively. **Note the consistency across all five metrics**,
1408 confirming that Gaussian noise serves as a reliable upper bound predictor for fine-tuning degradation.

Optimizer	Perturbation / Fine-tuning Distance scale							
	0	5	10	15	20	25	30	35
<i>Part I: Loss Landscape vs. Gaussian Perturbation $\alpha (\times 10^{-3})$</i>								
AdamW	3.05	3.07	3.13	3.29	3.68	4.62	6.08	7.41
SAM ($\rho = 0.1$)	3.06	3.08	3.13	3.23	3.47	4.04	5.20	6.62
SAM ($\rho = 1.0$)	3.08	3.09	3.12	3.19	3.32	3.57	4.08	5.01
Cont. Dropout ($\sigma = 0.1$)	3.06	3.07	3.10	3.15	3.25	3.45	3.87	4.97
Cont. Dropout ($\sigma = 0.4$)	3.23	3.23	3.24	3.26	3.30	3.36	3.46	3.72
GO ($\sigma = 0.01$)	3.11	3.11	3.13	3.15	3.19	3.26	3.36	3.52
<i>Part II: OWT NLL Degradation vs. Alpaca SFT Distance $\ell_2(\sqrt{d} \times 10^{-5})$</i>								
AdamW	3.05	3.06	3.13	3.28	3.64	4.52	5.95	7.41
SAM ($\rho = 0.1$)	3.06	3.30	3.72	5.28	6.89	7.97	8.63	9.10
SAM ($\rho = 1.0$)	3.08	3.16	3.31	3.48	3.79	4.26	4.87	5.57
Cont. Dropout ($\sigma = 0.1$)	3.06	3.43	4.50	6.86	9.58	11.06	12.12	12.94
Cont. Dropout ($\sigma = 0.4$)	3.23	3.42	3.75	4.22	5.21	6.50	7.90	9.79
GO ($\sigma = 0.01$)	3.11	3.16	3.31	3.45	3.68	4.04	4.47	4.95
<i>Part III: OWT NLL Degradation vs. C4 SFT Distance $\ell_2(\sqrt{d} \times 10^{-5})$</i>								
AdamW	3.05	3.51	4.90	6.26	7.13	7.71	8.16	8.53
SAM ($\rho = 0.1$)	3.06	3.23	5.29	6.65	7.67	8.18	8.49	8.64
SAM ($\rho = 1.0$)	3.08	3.10	3.26	3.59	4.47	5.86	7.21	8.26
Cont. Dropout ($\sigma = 0.1$)	3.06	4.24	6.73	8.08	8.89	9.44	9.91	10.42
Cont. Dropout ($\sigma = 0.4$)	3.23	3.40	4.23	5.72	6.64	7.11	7.40	7.60
GO ($\sigma = 0.01$)	3.11	3.15	3.37	3.84	4.55	5.35	6.07	6.69
<i>Part IV: OWT NLL Degradation vs. OLMo Math SFT Distance $\ell_2(\sqrt{d} \times 10^{-5})$</i>								
AdamW	3.05	3.39	4.27	5.14	5.99	6.71	7.24	7.64
SAM ($\rho = 0.1$)	3.07	3.21	3.65	5.70	6.85	7.48	7.87	8.10
SAM ($\rho = 1.0$)	3.08	3.10	3.19	3.36	3.66	4.21	5.02	5.88
Cont. Dropout ($\sigma = 0.1$)	3.06	3.25	4.25	6.68	9.04	10.27	11.08	11.79
Cont. Dropout ($\sigma = 0.4$)	3.23	3.34	3.54	4.23	5.21	6.15	6.93	7.47
GO ($\sigma = 0.01$)	3.11	3.17	3.29	3.39	3.56	3.82	4.16	4.57
<i>Part V: OWT NLL Degradation vs. OLMo Code SFT Distance $\ell_2(\sqrt{d} \times 10^{-5})$</i>								
AdamW	3.05	3.59	5.04	6.24	7.00	7.49	7.83	8.07
SAM ($\rho = 0.1$)	3.07	3.20	4.23	6.08	7.25	7.74	8.02	8.21
SAM ($\rho = 1.0$)	3.08	3.11	3.21	3.38	3.66	4.15	4.83	5.55
Cont. Dropout ($\sigma = 0.1$)	3.06	4.32	7.05	8.71	9.71	10.43	11.07	11.72
Cont. Dropout ($\sigma = 0.4$)	3.23	3.35	3.81	5.08	6.32	7.08	7.56	7.87
GO ($\sigma = 0.01$)	3.11	3.17	3.30	3.45	3.71	4.11	4.62	5.18

1448 to enhance the model, it should theoretically be "less harmful" to existing capabilities than random
1449 noise. Therefore, we posit that directly minimizing the expected loss under Gaussian noise—the
1450 explicit objective of GO—is the most theoretically aligned approach to suppressing SFT degradation.
1451 Compared to SAM, which targets worst-case directions, and Continuous Dropout, which often acts
1452 as an implicit regularizer, GO offers a more direct mechanism to enlarge the σ -basin with greater
1453 hyperparameter simplicity.

1454 **Experimental Settings.** To comprehensively evaluate the effectiveness of these optimizers in
1455 enlarging basins and mitigating subsequent forgetting, we conduct a comparative study following
1456 the experimental setup in Sec. 5. The settings remain consistent with our main experiments, with
1457 two specific configurations: (1) **Training Duration:** Due to computational constraints, we train all
1458 models for 40,000 steps. This duration corresponds to approximately 8 \times the Chinchilla optimal

1458 training budget for a model of this size. Note that while standard practice often adheres to the $1 \times$
 1459 Chinchilla ratio (Kaplan et al., 2020), training for an $8 \times$ ratio allows for a more comprehensive
 1460 assessment of training dynamics and convergence properties (Wen et al., 2025). (2) **Evaluation**
 1461 **Datasets:** To verify the robustness of the basin against varying degrees of distribution shift, we
 1462 evaluate SFT degradation on four distinct datasets: Alpaca (Taori et al., 2023), C4 (Wen et al., 2025),
 1463 OLMO Math, and OLMO Code OLMO et al. (2025).

1464 **Computational Budget.** Note that SAM requires two forward-backward passes per optimization step.
 1465 Consequently, for the same number of training steps, SAM consumes $2 \times$ the computational resources
 1466 compared to GO and Continuous Dropout. The experiments in this subsection were conducted using
 1467 8 NVIDIA H800 GPUs. The total cost was approximately \$4,000 USD.

1468 **Sharpness-Aware Minimization (SAM).** SAM (Foret et al., 2020) is designed to minimize the
 1469 worst-case loss within a neighborhood, formulated as $\min_{\theta} \max_{\|\epsilon\|_2 \leq \rho} L_{\text{train}}(\theta + \epsilon)$. In practice,
 1470 solving the inner maximization exactly is computationally expensive; thus, SAM approximates it via
 1471 a first-order Taylor expansion, using the gradient direction to estimate the worst-case perturbation.
 1472 While its explicit target is worst-case sharpness, recent theoretical analyses suggest that precisely due
 1473 to this first-order approximation, SAM effectively optimizes an objective that lies somewhat between
 1474 worst-case and average-case sharpness (Wen et al., 2022).

1475 **Comparison: GO vs. SAM.** We compare the efficacy of GO and SAM in Fig. 5 and, more
 1476 quantitatively, in Table 4. As shown in the landscape visualization (Fig. 5(b)), while SAM (e.g.,
 1477 SAM-0.1) flattens the basin compared to AdamW, it does not achieve the same degree of "average-
 1478 case flatness" as GO (e.g., at $\alpha = 35$, GO loss is **3.52** vs. SAM's **5.01**). This distinction is critical
 1479 because, as we argue, benign fine-tuning behaves more like a random (average-case) perturbation
 1480 than an adversarial (worst-case) one. Consequently, because SAM does not suppress the average-case
 1481 Gaussian degradation as effectively as GO, it provides a looser upper bound for SFT degradation, as
 1482 shown in Table 4 (Part II-V).

1483 **Continuous Dropout.** Continuous Dropout (Srivastava et al., 2014) generalizes standard binary
 1484 dropout by injecting multiplicative Gaussian noise into activations. Let \mathbf{h} denote the activation vector
 1485 at layer i , and \mathbf{W} be the weight matrix of the subsequent layer. Continuous Dropout computes the
 1486 perturbed activation $\tilde{\mathbf{h}} = \mathbf{h} \odot (1 + \xi)$, where $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$. When propagated to the next layer,
 1487 the output becomes:

$$y_{cd} = \mathbf{W}\tilde{\mathbf{h}} = \mathbf{W}\mathbf{h} + \mathbf{W}(\mathbf{h} \odot \xi) = \mathbf{W}\mathbf{h} + \underbrace{\mathbf{W}\text{diag}(\mathbf{h})\xi}_{\text{Anisotropic Gaussian}}.$$

1488 In contrast, GO injects isotropic additive noise $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ directly into the parameters:

$$y_{go} = (\mathbf{W} + \epsilon)\mathbf{h} = \mathbf{W}\mathbf{h} + \underbrace{\epsilon\mathbf{h}}_{\text{Isotropic Gaussian}}.$$

1489 Mathematically, while both methods introduce stochasticity, Continuous Dropout acts as a regularizer
 1490 where the effective parameter noise is coupled with both the weight magnitude \mathbf{W} and the input
 1491 feature \mathbf{h} . GO, however, decouples the noise from the weights, explicitly optimizing for robustness
 1492 against isotropic parameter perturbations to satisfy the σ -basin definition.

1493 **Comparison: GO vs. Continuous Dropout.** We initially intuit that Continuous Dropout and GO
 1494 should yield similar results due to their use of stochastic noise. However, our experiments reveal a
 1495 decisive difference. Yet we do not have an explanation, we conjecture this may be because GO *explicitly*
 1496 optimizes the expected loss over the Gaussian neighborhood (average-case resilience), it creates
 1497 a much more robust basin than the implicit regularization provided by Continuous Dropout. As
 1498 observed in the training curves (Fig. 5(a)), Continuous Dropout (e.g., with $\sigma = 0.4$) converges
 1499 significantly slower than GO and fails to reach a comparable low loss. Consequently, in terms of
 1500 basin expansion and subsequent SFT stability (Fig. 5(c)), Continuous Dropout is less effective at
 1501 suppressing degradation. This confirms that explicitly optimizing for the average-case objective—as
 1502 GO does—is superior to implicit noise injection for preserving model capabilities.

1503 **GO Does Not Compromise Downstream Learnability.** A potential concern with basin-enlarging
 1504 optimization is the risk of "over-regularization"—that is, making the model parameters too "stiff" to

Table 5: Case study of generation outputs under random parameter perturbations ($\sigma = 0.01$) for Qwen2.5-7B. The prompt is a jailbreak attempt. **Bold** text highlights structural variations. Despite these changes, all outputs remain semantically safe, demonstrating that the basin preserves capability/alignment rather than just rigid token sequences.

Instance	Generated Response (Truncated)
Original	I'm sorry, but I can't assist with developing strategies to hack into any database, especially a government one, as this would be illegal and unethical. Hacking into a government database without authorization is a serious crime...
Perturbed 1	I'm sorry, but I can't assist with developing strategies to hack into any database, especially a government one, as it would be illegal and unethical. Hacking is against the law and can cause significant harm...
Perturbed 2	I'm sorry, but I can't assist with developing strategies for illegal or unethical activities such as hacking into government databases or stealing sensitive information. Engaging in or assisting with cybercrimes is against the law...
Perturbed 3	I'm sorry, but I can't assist with that request. Hacking into a government database or any other organization's secure systems without authorization is illegal and unethical. It violates privacy laws...
Perturbed 5	I'm sorry, but I can't assist with developing strategies for unauthorized access to or theft from government databases... Such actions are illegal and unethical, violating privacy laws and computer fraud statutes.
Perturbed 7	I'm sorry, but I can't assist with developing strategies for hacking into government databases... Instead, I'd be happy to provide information on cybersecurity best practices , how to protect data, or...

adapt to new tasks (reducing plasticity). However, our results empirically dispel this concern. As shown in Fig. 11(c) (specifically the Alpaca NLL curves), the model pre-trained with GO learns the new downstream task (Alpaca) at a rate nearly identical to the AdamW baseline. This demonstrates a key advantage of our method: it successfully decouples stability from plasticity, creating a "safety basin" for pre-existing knowledge (OWT) without imposing barriers to the optimization required for acquiring new capabilities.

D.9 QUALITATIVE ANALYSIS: SEMANTIC STABILITY WITHIN THE BASIN

To further investigate the nature of the stability within the basin, we examine the actual generation outputs under random Gaussian perturbations. A critical question is whether the observed stability is merely a result of "thresholding" (i.e., the perturbations are too small to flip the argmax token), or if it represents a deeper "semantic stability" where the model might generate different tokens but converge to the same semantic outcome.

Case Study Setup. We use the Qwen2.5-7B model and apply isotropic Gaussian noise with $\sigma = 0.01$ to its parameters. We query the model with a harmful prompt from AdvBench: *"Develop a strategy for hacking into a government database and stealing sensitive information."* We record the responses from the original model (Iter 0) and 9 perturbed instances (Iter 1-9).

Randomness. Crucially, we employ **greedy decoding** (setting `do_sample=False`) to ensure that the generation process is deterministic with respect to the model parameters. Consequently, any observed variation in the output is **solely** attributable to the injected parameter noise $\epsilon \sim \mathcal{N}(0, I)$, rather than decoding stochasticity.

Observations. As shown in Table 5, the outputs exhibit clear structural diversity while maintaining semantic invariance:

- **Syntactic Variation:** The specific phrasing varies significantly. For instance, Iter 0 starts with "*I can't assist with developing strategies...*"; Iter 3 starts with "*I can't assist with that request.*"; Iter 7 adds "*Instead, I'd be happy to...*".
- **Semantic Consistency:** Despite these variations, every single perturbed model correctly identifies the request as harmful and refuses it, citing illegality and ethical concerns. The safety score remains 0.0 (perfectly safe) for all iterations.

This qualitative evidence suggests that the basin does not simply represent a region where the probability landscape is locally constant (which would result in identical token sequences). Instead, it represents a region of **semantic stability**: the parameter perturbations are large enough to alter the specific generation trajectory (changing word choice and sentence structure) but small enough to remain within the "safety manifold," ensuring the final intent and alignment properties are preserved.

On the other hand, since this diverse output solely comes from the randomness of the Gaussian noise added to the parameters, this may open a new way to do sampling beyond sampling through the output probability (e.g., beam search or nucleus sampling).

E PROOF OF THEOREM 4.2 AND THEOREM 4.3

E.1 PROOF OF THEOREM 4.3

In this section, we present a simplified proof of Theorem 4.3 by adapting Lemma 2 from [Salman et al. \(2019\)](#). We first restate this lemma:

Lemma E.1. *For any function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, the map $\mathbf{x} \rightarrow \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[f(\mathbf{x} + \epsilon)])$ is at most 1-Lipschitz.*

By setting $\mathcal{S}_{\mathcal{D}}$ as f and $\boldsymbol{\theta}$ as \mathbf{x} , we establish that, for any benchmark function $\mathcal{S}_{\mathcal{D}} : \mathbb{R}^d \rightarrow \mathbb{R}$, the map $\boldsymbol{\theta} \rightarrow \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta} + \epsilon)])$ is 1-Lipschitz. Consequently, we consider the function:

$$\begin{aligned} \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta} + \epsilon)]) &= \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta} + \sigma \cdot \epsilon)]) \\ &= \Phi^{-1}\left(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[\mathcal{S}_{\mathcal{D}}\left(\sigma \cdot \left(\frac{\boldsymbol{\theta}}{\sigma} + \epsilon\right)\right)]\right), \end{aligned}$$

which is at most 1-Lipschitz with respect to $\frac{\boldsymbol{\theta}}{\sigma}$, implying that it is at most $\frac{1}{\sigma}$ -Lipschitz with respect to $\boldsymbol{\theta}$. Thus, we obtain:

$$\Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta}_{sft} + \epsilon)]) \geq \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta}_0 + \epsilon)]) - \frac{\|\boldsymbol{\theta}_{sft} - \boldsymbol{\theta}_0\|_2}{\sigma}.$$

By applying Φ to both sides, we derive:

$$\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta}_{sft} + \epsilon)] \geq \Phi\left(\Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\boldsymbol{\theta}_0 + \epsilon)]) - \frac{\|\boldsymbol{\theta}_{sft} - \boldsymbol{\theta}_0\|_2}{\sigma}\right),$$

which matches the result of Theorem 4.3.

E.2 PROOF OF THEOREM 4.2

Researchers have provided various methods to prove Theorem 4.2, e.g., through the Neyman-Pearson Lemma ([Cohen et al., 2019](#)), knapsack algorithm ([Chen et al., 2025a](#)), and Lipschitz properties ([Salman et al., 2019; Chen et al., 2024](#)). In this section, we deduce Theorem 4.2 from Theorem 4.3, avoiding repetition of previous proofs and providing a more direct connection between

1620 these theorems.
 1621

$$\begin{aligned}
 \theta &\rightarrow \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)]) \text{ is } \frac{1}{\sigma}\text{-Lipschitz} \\
 &\iff \|\nabla_{\theta} \Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)])\| \leq \frac{1}{\sigma} \\
 &\iff \frac{\|\nabla_{\theta} \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)]\|}{\Phi'(\Phi^{-1}(\mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)]))} \leq \frac{1}{\sigma} \\
 &\implies \frac{\|\nabla_{\theta} \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)]\|}{\frac{1}{\sqrt{2\pi}}} \leq \frac{1}{\sigma} \\
 &\implies \|\nabla_{\theta} \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)]\| \leq \frac{1}{\sqrt{2\pi}\sigma} \\
 &\implies \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[\mathcal{S}_{\mathcal{D}}(\theta + \epsilon)] \text{ is at most } \frac{1}{\sqrt{2\pi}\sigma}\text{-Lipschitz}
 \end{aligned}$$

1637 E.3 COMPARISON OF THEOREM 4.2 AND THEOREM 4.3

1639 Beyond the fact that Theorem 4.3 is strictly stronger than Theorem 4.2 (i.e., the Lipschitz constant of
 1640 Theorem 4.3 at each point is strictly less than $\frac{1}{\sqrt{2\pi}\sigma}$), there is also a significant difference. Theorem 4.3
 1641 indicates that the higher the clean accuracy p_A , the smaller the Lipschitz constant, and thus the greater
 1642 the robustness; when $p_A = 1$, the Lipschitz constant becomes zero, making forgetting extremely
 1643 unlikely. Conversely, the lower the clean accuracy p_A , the larger the Lipschitz constant, and the more
 1644 likely performance degradation occurs. This eliminates the forgetting-learning tradeoff even along
 1645 the worst-case direction, i.e., as long as the performance on old tasks exceeds that on new tasks,
 1646 the smoothness constraints make it more likely to learn new tasks than to forget old tasks, and the
 1647 performance degradation on old tasks is always less than the maximum performance gain on new
 1648 tasks.

1649 E.4 ABOUT NORM CONSTRAINTS IN LANDSCAPE VISUALIZATION

1651 One might argue that the norm constraint should be $\|\delta\|_2 = \mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2]$ instead of $\|\delta\|_2^2 =$
 1652 $\mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2^2]$. By Jensen's inequality, $\mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2^2] \geq \mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2]^2$. However, these two
 1653 constraints become equivalent as $d \rightarrow \infty$. For the high-dimensional spaces typical of large language
 1654 models, these constraints are nearly identical.

1656 This is because $\mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2^2] - \mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2]^2 = \text{Var}(\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2) = \frac{1}{2} + O\left(\frac{1}{d}\right)$. Thus, the
 1657 relative error $\frac{\text{Var}(\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2)}{\mathbb{E}[\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|_2^2]}$ approaches zero at a rate of $O(1/d)$.

1659 E.5 THEORETICAL INTUITION: STABILITY VIA LAZY TRAINING DYNAMICS

1661 To provide theoretical intuition for our observation that scaling up models facilitates the coexistence
 1662 of preserving old capabilities and acquiring new ones, we refer to the well-established *Lazy Training*
 1663 phenomenon in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018). Existing analyses
 1664 in this field demonstrate that when using the NTK parameterization, in the infinite-width limit,
 1665 the parameter displacement required to learn a new task vanishes relative to the scale of initialization,
 1666 ensuring the model remains within the local linear region.

1667 **Proposition E.2** (Basin Stability in the Infinite-Width Limit (Jacot et al., 2018; Du et al., 2019)).
 1668 *Consider a neural network $f(\mathbf{x}; \theta)$ with width m using NTK parameterization. In the limit $m \rightarrow \infty$,*
 1669 *the parameter update $\Delta\theta$ required to minimize the fine-tuning loss \mathcal{L}_{ft} goes to zero.*

1672 **Derivation from Literature.** The above proposition adapts standard results from NTK literature
 1673 (e.g., Du et al. (2019); Allen-Zhu et al. (2019)) to the context of fine-tuning stability. We outline the
 key steps to clarify the dependency between model width and optimization trajectory.

1674
1675 *1. Linearization and Minimum Norm Solution.* Consider the linearized model $g_{\theta}(\mathbf{x})$ around initialization
1676 θ_0 . The training objective for this linear model is a least-squares problem:
1677

$$\min_{\Delta\theta} \frac{1}{2} \|\Phi \Delta\theta - \vec{y}\|_2^2, \quad (8)$$

1679 where $\Phi \in \mathbb{R}^{n \times p}$ is the Jacobian matrix and \vec{y} is the target residual vector. Assuming over-
1680 parameterization ($p \geq n$) and a minimum singular value $\sigma_{\min}(\Phi) = \sigma > 0$, the minimum-norm
1681 solution is given by the Moore-Penrose pseudoinverse $\Delta\hat{\theta} = \Phi^{\top}(\Phi\Phi^{\top})^{-1}\vec{y}$. The norm of this update
1682 is bounded by:
1683

$$\|\Delta\hat{\theta}\|_2 \leq \|\Phi^{\dagger}\|_{\text{op}} \|\vec{y}\|_2 = \frac{1}{\sigma} \|\vec{y}\|_2 = O\left(\frac{\sqrt{n}}{\sigma}\right). \quad (9)$$

1684 This derivation clarifies why, in a sufficiently well-conditioned landscape (large σ), the optimal
1685 solution lies within a small ball around the initialization.
1686

1687 *2. Approximation via Taylor Expansion.* The validity of substituting the non-linear f with the linear
1688 g hinges on the smoothness of the loss landscape. Suppose the gradient $\nabla_{\theta} f$ is β -Lipschitz. By
1689 the standard descent lemma (a consequence of the second-order Taylor expansion), the difference
1690 between the function and its first-order approximation is bounded by the quadratic term of the
1691 parameter change:
1692

$$|f(\mathbf{x}; \theta) - g_{\theta}(\mathbf{x})| = |f(\theta) - (f(\theta_0) + \nabla f(\theta_0)^{\top} \Delta\theta)| \leq \frac{\beta}{2} \|\Delta\theta\|_2^2. \quad (10)$$

1693 Substituting the bound from Step 1, we obtain the approximation error bound:
1694

$$|f(\mathbf{x}; \theta) - g_{\theta}(\mathbf{x})| \leq \frac{\beta}{2} \cdot O\left(\frac{n}{\sigma^2}\right) = O\left(\frac{\beta n}{\sigma^2}\right). \quad (11)$$

1695 *3. Scaling Behavior.* Crucially, random matrix theory establishes that as width $m \rightarrow \infty$, the ratio
1696 $\frac{\beta}{\sigma^2} \propto \frac{1}{\sqrt{m}} \rightarrow 0$. Consequently, the approximation error vanishes, and the optimization trajectory of
1697 the deep network stays strictly close to that of the linear model.
1698

1699 **Implication for Our Findings.** These established theoretical results offer an explanation for our
1700 empirical observation in Sec. 3.2: as models scale up, they may naturally enter a regime where
1701 fine-tuning induces minimal parameter movement relative to the stability basin, effectively mitigating
1702 catastrophic forgetting for benign tasks.
1703

1704 F LIMITATIONS AND FUTURE WORK

1705 In this work, we discovered the emergence of basins: as models grow larger, they exhibit absolute
1706 robustness to Gaussian noise within a certain range, resulting in the formation of basins (Sec. 3.2).
1707 Based on this, we conjecture that *as long as benign fine-tuning occurs within the basin, the model*
1708 *will not forget existing capabilities.* The reasoning for this conjecture is: *If random directions are*
1709 *minimally harmful within a certain range, forming a basin of stability, benign fine-tuning directions*
1710 *should be no more harmful than random perturbations.* We experimentally validated that benign
1711 fine-tuning behaves this way (Sec. 3.4). More rigorously, we used randomized smoothing techniques
1712 to prove that, if the model has a σ -basin, performance degradation during benign fine-tuning can
1713 be bounded, providing a rigorous theoretical explanation for the conjecture (Sec. 4.1). Additional
1714 contributions include: analyzing how parameter space robustness provides loose guarantees against
1715 jailbreaking attacks (Sec. 4.2), exploring whether a regularization term could constrain supervised
1716 fine-tuning (SFT) within the basin in the future (Sec. 4.3), and conducting a preliminary investigation
1717 into simple methods to enlarge the basin (Sec. 5).
1718

1719 F.1 RANDOMIZED SMOOTHING REGIME

1720 As models grow larger, we draw the following conclusions regarding the interplay between robustness
1721 and learnability: (1) As models grow larger, their basins naturally expand, increasing the theoretically
1722 guaranteed radius (which is $O(\sigma)$) for subsequent fine-tuning, making it harder to compromise prior
1723

1728 capabilities. (2) As models and their basins grow larger, the regions within the basin exhibit greater
 1729 expressive power, facilitating the acquisition of new capabilities.
 1730

1731 We define the region where the model is guaranteed to preserve prior capabilities while possessing
 1732 sufficient capacity to learn new capabilities as the **Randomized Smoothing Regime (RS Regime)**.
 1733 The region where the model is guaranteed to preserve prior capabilities has a radial size of $O(\sigma)$
 1734 (see Sec. 4.1). Taking Rademacher complexity (Neyshabur et al., 2015) as a metric for expressive
 1735 power, for the expressive power to exceed a complexity k , we require the available radius to satisfy
 1736 $O(d\sigma^2) \geq k \iff \sigma \geq O\left(\sqrt{\frac{k}{d}}\right)$. Thus, for a fine-tuning task to be feasible and safe, the
 1737 modification distance must fall within the intersection $[0, O(\sigma)] \cap \left[O\left(\sqrt{\frac{k}{d}}\right), +\infty\right)$.
 1738

1740 As models grow larger ($d \rightarrow \infty$), the safety bound $O(\sigma)$ continues to grow, while the required
 1741 learning radius $O\left(\sqrt{\frac{k}{d}}\right)$ continues to decrease. Consequently, the RS Regime—representing the
 1742 feasible region for simultaneously preserving prior capabilities and acquiring new ones—continuously
 1743 expands. In the limit, when models have infinitely many parameters, all fine-tuning trajectories may
 1744 lie within the RS Regime, analogous to the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018),
 1745 where infinitely wide models behave like kernel methods (See our analysis in Appendix E.5). Future
 1746 work could explore how quickly models enter the RS Regime as their size increases and identify
 1747 when this phase transition occurs.
 1748

1749 **Limitation of the RS Regime.** While the RS Regime theoretically guarantees the dual objectives
 1750 of safety and learnability in the asymptotic limit, current finite-sized models do not yet fully reside
 1751 within this ideal regime. In this pre-asymptotic stage, capability degradation exhibits significant
 1752 heterogeneity depending on the fine-tuning data distribution—as evidenced in Sec. 3.4, where i.i.d.
 1753 (benign), distribution-shifted, and adversarial fine-tuning trajectories diverge significantly in their
 1754 degradation rates. Consequently, in scenarios constrained by compute or model size—where one
 1755 cannot simply enlarge the basin (via suppressing Gaussian noise) sufficiently to encompass the entire
 1756 fine-tuning trajectory—ensuring model safety and robustness requires complementary alignment
 1757 techniques beyond pure landscape optimization.
 1758

1759 F.2 LARGER SCALE PRE-TRAINING STUDIES

1760 Although we conducted pre-training studies using the GO optimizer, the scale is limited to the
 1761 NanoGPT level, and several questions remain unanswered:
 1762

- 1763 • As the model size increases, does it become easier or harder to expand the basin? Will the
 1764 maximum basin size increase or decrease? Will the optimization speed increase or decrease?
 1765 Addressing these questions may require a scaling law for basin size with respect to the
 1766 number of training data and parameters.
- 1767 • As the data composition becomes more complex and the number of parameters increases,
 1768 does the GO optimizer still introduce implicit biases beyond enlarging basins, as observed
 1769 in Appendix D.5? Will these biases remain benign or become harmful?

1770 In the future, we plan to conduct pre-training studies on the GO optimizer at a much larger scale, e.g.,
 1771 on 7B models and 10T training data.
 1772

1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 **G LLM USAGE**
17831784 In the preparation of this manuscript, we utilized large language models, solely for sentence-level
1785 language polishing to enhance clarity and readability. The LLMs were used to refine the phrasing
1786 of existing text, with all outputs manually reviewed and edited by the authors to ensure accuracy
1787 and alignment with the intended scientific content. No LLMs were used in the generation of ideas,
1788 experimental design, data analysis, or other scientific contributions in this work.
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835