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ABSTRACT

Online continual learning (OCL) methods adapt to changing environments with-
out forgetting past knowledge. Similarly, online time series forecasting (OTSF) is
a real-world problem where data evolve in time and success depends on both rapid
adaptation and long-term memory. Indeed, time-varying and regime-switching
forecasting models have been extensively studied, offering a strong justification
for the use of OCL in these settings. Building on recent work that applies OCL
to OTSF, this paper aims to strengthen the theoretical and practical connections
between time series methods and OCL. First, we reframe neural network opti-
mization as a parameter filtering problem, showing that natural gradient descent
is a score-driven method and proving its information-theoretic optimality. Then,
we show that using a Student’s t likelihood in addition to natural gradient in-
duces a bounded update, which improves robustness to outliers. Finally, we intro-
duce Natural Score-driven Replay (NatSR), which combines our robust optimizer
with a replay buffer and a dynamic scale heuristic that improves fast adaptation
at regime drifts. Empirical results demonstrate that NatSR achieves stronger fore-
casting performance than more complex state-of-the-art methods.

1 INTRODUCTION

Time series forecasting has an impact on both research and the real-world industry. Energy forecast-
ing (Deb et al., 2017), financial markets (Sezer et al., 2020), and retailing (Makridakis et al., 2022),
all benefit from accurate predictions. While deep learning had a great impact on the field (Zhou
et al., 2021), it is still not unequivocally the best approach for forecasting. On the contrary, it has
been shown that in many datasets, simpler statistical methods, such as the class of econometric mod-
els with memory (Hamilton, 2020), are capable of better performance when compared with complex
and large neural networks (Godahewa et al., 2021). In addition to this lack of reliable performance,
larger models are usually trained in offline batch settings, requiring the full training dataset avail-
able a priori and assuming no future changes on the relationship between input and output (Sahoo
et al., 2018). This is in contrast with a reality where data arrives in streams and the possibility of
experiencing concept drifts in time exists (Gama et al., 2014).

To create a more realistic and adaptive training setting, it has been proposed to transition to fully
online training of the forecaster (Anava et al., 2013). Still, this approach presents multiple challenges
for neural networks, like slow convergence (Sahoo et al., 2018), noisy gradients (Bishop & Bishop,
2023), and catastrophic forgetting of previously learned concepts (French, 1999). As with other data
structures, learning online from a time series requires both high plasticity to adapt to new regimes
and stability to not forget recurrent ones. For this reason, Sahoo et al. (2018) radically reframed
online time series forecasting as an online continual learning (Mai et al., 2022) problem.

Following this line of research, we introduce a second-order online continual learning optimization
method for time series forecasting. In view of the perspective in Jordan (2025), we offer a new inter-
pretation of this optimization process and highlight its desirable properties using econometric tools.
In particular, we establish a link between score-driven models (Creal et al., 2013; Harvey, 2013)
and natural gradient descent (Amari, 1998), framing optimization as a filtering task where each new
observation updates the parameter estimates. We demonstrate that combining Fisher information
to regularize the gradient with the Student’s t-distribution negative log-likelihood as a loss function
imposes an upper bound on the update norm, thus ensuring robustness to outliers. Moreover, we

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

propose a dynamic adjustment for the scale parameter, allowing the model to adapt more quickly to
regime shifts when prediction errors remain high over several steps. We call the resulting method
Natural Score-driven Replay (NatSR). Empirically, NatSR achieves state-of-the-art performance,
outperforming existing methods on 5 out of 7 datasets.

2 BACKGROUND

Online time series forecasting follows the online learning paradigm (Shalev-Shwartz et al., 2012):
at each time step, a model makes a prediction and, after observing reality, it is adjusted using that
information. Online time series forecasting applies this to time series data, observing the data in
time order, and updating the model with each new observation. Let {xt}t∈Z denote the input time
series and {yt}t∈Z the corresponding target time series, for which xt ∈ Rs with s ∈ N and yt ∈ Rd

with d ∈ N, for any t ∈ Z. As usual, each time series is regarded as a realization of an underlying
stochastic process. Specifically, let {Xt}t∈Z denote the input process and {Yt}t∈Z the output process
generating the observed series. We consider the filtration F = {Ft}t∈N where Ft = σ(X1:t ,Y1:t),
so that Ft contains all information available up to time t. Here we use the shorthand notation
X1:t = {X1, · · · ,Xt}. Given the input xt and the network weights wt ∈W ⊂Rd , the network produces
the output θt(wt) = fwt (xt)∈Rd . With standard gradient descent, the weights are updated as wt+1 =
wt +η∇wt L (yt ,θt), where L is a loss function.

This process aims to learn the right weights for the current time, changing them when the data
regime changes. Unfortunately, this can result in catastrophic forgetting (French, 1999) with the
model forced to learn from scratch when the same regime is recurrent in time. Continual Learning
(Lange et al., 2022) is a field that aims to make models able to accumulate knowledge consistently
in nonstationary environments. More specifically, Online Continual Learning (OCL) does so by
accessing each observation a single time in an online learning fashion. Hence, it requires the method
to have a balance between fast adaptation and stability, without knowing when a regime change
happens (similar to human learning). The additional complexity of applying OCL to time series is
that both virtual and real drifts can happen (Gama et al., 2014): in virtual drifts, new portions of the
input space are explored, while in real drifts, the relation between input and output changes. This
requires an even more complex balance between plasticity and stability.

3 RELATED WORKS

Online Time Series Forecasting: In recent years, more and more works have explored the use
of deep learning for time series forecasting, proposing a variety of specialized architectures (Sali-
nas et al., 2020; van den Oord et al., 2016; Bai et al., 2018; Zhou et al., 2021). Unfortunately,
they are not directly applicable to online time series forecasting (Anava et al., 2013) due to con-
cept drift (Gama et al., 2014). Fekri et al. (2021) showed that an online RNN achieves stronger
results than standard online algorithms or offline trained neural networks for energy data. Wang
et al. (2021) proposed IncLSTM, fusing ensemble learning and transfer learning to update an LSTM
incrementally. Naive online time series forecasting can suffer from forgetting (French, 1999) in
non-stationary streams (Sahoo et al., 2018; Aljundi et al., 2019).

Online Continual Learning (OCL): Most OCL methods in the literature use replay to mitigate
forgetting (Soutif-Cormerais et al., 2023). However, (Soutif-Cormerais et al., 2023) showed that
SOTA approaches still can have more forgetting than a simple replay baseline (Aljundi et al., 2019).
Recent works highlighted a “stability gap” (Caccia et al., 2022; Lange et al., 2023), where the model
suddenly forgets at task boundaries. Relevant to this work, multiple optimization-based approaches
constrain the update to remove interference. GEM (Chaudhry et al., 2019a; Lopez-Paz & Ranzato,
2017) enforce non-negative dot product between task gradients, while other use orthogonal projec-
tions (Saha et al., 2021; Farajtabar et al., 2020). For OCL, it has been shown how a combination of
GEM and replay can mitigate the stability gap (Hess et al., 2023). More recently, LPR (Yoo et al.,
2024) proposed an optimization approach for OCL, combining replay with a proximal point method.
Improving on that, OCAR (Urettini & Carta, 2025) proposed the use of second-order information.

Online Continual Learning and Forecasting: With modern deep models, multiple time series
regimes can be learned within a single network. Sahoo et al. (2018) propose reframing online time
series forecasting as task-free OCL, removing the need for manual labeling of task boundaries.
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FSNET (Pham et al., 2023) maintains a layer-wise EMA of the gradients to adapt the weights to the
current tasks via an hypernetwork. OneNet(Wen et al., 2023) keeps two separate neural networks to
model cross-variate relationships and temporal dependencies separately, combining the two separate
forecasts dynamically using offline reinforcement learning. Very recently, Zhao & Shen (2025)
proposed PROCEED to solve the delay caused by the time needed for the realization of the whole
prediction length to happen before making the update.

4 NATURAL SCORE-DRIVEN REPLAY

In this section, we first show that natural gradient descent (NGD) can be interpreted as a score-driven
update, and we prove its information-theoretic optimality. Then, we show that NGD used with a
Student’s t distributional assumption enforces a bounded update. Finally, we add memorization and
fast-adaptation mechanisms to obtain NatSR.

4.1 FROM SCORE-DRIVEN MODELS TO NATURAL GRADIENT DESCENT

A score-driven model, also known as a Generalized Autoregressive Score (GAS) model, is a time-
series model in the class of observation-driven models, following the categorization of Cox (1981).
In this framework, the dynamics of the time-varying parameter vector are governed by the score
of the conditional likelihood function of the observed variable. Formally, yt ∼ p(yt | θt ,φ) where
φ = (ω,A1, · · · ,Am,B1, · · · ,Bn) denotes the static parameters, and the time-varying parameter θt
evolves according to

θt+1 = ω +
m

∑
i=1

Ai st−i+1 +
n

∑
j=1

B j θt− j+1, (1)

with st = St∇t . Here, ∇t =
∂ log p(yt |θt ,φ)

∂θt
denotes the score of the conditional log-likelihood with

respect to θt and St is a scaling matrix. The scaled score st thus adjusts the impact of new information
by accounting for the curvature (concavity) of the log-likelihood, as Creal et al. (2013) suggested
the use of the inverse Fisher Information Matrix (FIM) for S.

On the other hand, natural gradient descent can be interpreted as a special case of a score-driven
model under suitable conditions. Using the natural gradient descent, the weights are updated as

wt+1 = wt +ηI −1
t (wt)∇wt (yt), (2)

η ∈ R is the constant learning rate, It ∈ Rd×d is the FIM and ∇wt (yt) =
∂ log p(yt |θt )

∂θt

∂θt
∂wt
∈ Rd is

the score, i.e. the gradient of the log-likelihood function, while θt(wt) = fwt (xt) corresponds to the
provisional output of the network before the update. Thus, the time-varying parameter update of the
score-driven model (see Eq.(1)) reduces to the natural gradient descent for m = n = 1,ω = 0,A1 =
η ,B1 = 1 and St = I −1

t . Hence, we can interpret the natural gradient descent as a filtering process
for the network weights. This view has already been proposed by Ollivier (2018), who showed a
connection between the Kalman filter and natural gradient.

4.2 INFORMATION-THEORETIC OPTIMALITY

After the update (see Eq.(2)) the output is θt(wt+1) = fwt+1(xt). This output can be interpreted
as the parameter vector of an assumed density when the loss function is derived directly from a
specific likelihood function. For example, minimizing the mean-squared error (MSE) is equivalent
to performing maximum likelihood estimation under the assumption of normally distributed errors
(Bishop, 2006). We postulate a statistical model:

yt+1 |Ft ∼ pt+1|t+1 : = p(· | θt(wt+1)) (3)

which approximates the true conditional density of the target time series, i.e. yt+1 |Ft ∼ qt+1 and
pt+1|t := p(· | θt(wt)) is the statistical model implied by the weights before the update.

We show that the weight update obtained via natural gradient descent (see Eq.(2)) reduces the Kull-
back–Leibler (KL) divergence between the assumed model and the true statistical model, relative to
the divergence before the update. In particular, we demonstrate that the parameter update from wt
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to wt+1 moves, in expectation, closer to the weight vector w∗t which corresponds to the pseudo-true
time-varying parameter θ ∗t , that is defined as

θ
∗
t = argmin

θ∈Θ

∫
Rd

qt(y) log
qt(y)

p(y|θ)
dy︸ ︷︷ ︸

KLt (θ)

= argmax
θ∈Θ

Ey∼qt [log p(y|θ)], (4)

hence it is the value that minimizes the KL divergence between the postulated and the true statis-
tical model. Consequently, neural networks trained with the natural gradient can be regarded as
information-theoretically optimal, in the sense of Blasques et al. (2015); Gorgi et al. (2024).

We introduce the following assumptions:

(A1) Assume that there exists w∗t ∈W such that θ ∗t = fw∗t (xt).

For the second assumption we define the function gt : W → R such that gt(w) = Et−1[log p(yt |w)]
where Et [·] = E[· |Ft ].

(A2) Assume that gt(w) ∈C2(W ) with W open and convex and

∇gt(w) = Et−1∇w(yt) = Et−1
∂ log p(yt |θ)

∂θ

∂θ

∂w

where θ = f (w) and ∂θ

∂w denotes the Jacobian matrix whose (i, j) entry is ∂θi
∂w j

.

In (A2) we assume that gt(·) is twice differentiable and that we can interchange the derivative with
the expectation.

(A3) For any w1,w2 ∈W , there exists c > 0 such that:

⟨It(w1)
−1

∇gt(w1)−It(w2)
−1

∇gt(w2),w1−w2⟩ ≤

− 1
c
∥It(w1)

−1
∇gt(w1)−It(w2)

−1
∇gt(w2)∥2, ⟨·, ·⟩ is the inner product on Rd

Proposition 4.1. Let assumptions (A1)-(A3) hold with 0 < η < 2
c , then

∥Et−1[wt+1]−w∗t ∥< ∥wt −w∗t ∥.

Moreover, assuming that the network output is locally Bi-Lipschitz on the weights in a neighborhood
of w∗t (A4), we can derive the corresponding theoretical optimality result that transfers from the
weight space to the output space.
Proposition 4.2. Let assumptions (A1)-(A4) hold with 0 < η < 2

c , then

∥θt(Et−1[wt+1])−θ
∗
t ∥< ∥θt(wt)−θ

∗
t ∥.

The proofs can be found in Appendix A.2.

4.3 ENFORCING A BOUNDED UPDATE

Outliers are detrimental to methods that filter parameters at each observation. For this reason, robust
score-driven models use bounded scores derived from heavy-tailed distributions (like the Student’s t)
(Artemova et al., 2022). Controlling the update norm is one of the main characteristics of successful
optimizers like ADAM (Kingma & Ba, 2015).
Theorem 4.1. Let the loss function be the one induced from a Student’s-tν(s) distribution:

− log p(y | f (x))︸ ︷︷ ︸
loss

=− log
(

Γ( ν+1
2 )

Γ( ν

2 )
√

πν

)
+

1
2

log(s2)+
ν +1

2
log

(
1+

(y− f (x))2

νs2

)
,

then using the Tikhonov regularization

∥∇̃w log p(y| fw(x))∥2 ≤
1
4

√
(ν +1)(ν +3)m

τν
. (5)

where m is the number of outputs and τ the Tikhonov regularization constant.
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Figure 1: Mean predictions and standard deviations of NatSR and simple Online Gradient Descent
(OGD) on a noisy sinusoidal wave under two challenging conditions: (left) with outliers and (right)
with changing regimes, each repeated ten times. In the outlier setting (a), OGD is destabilized
and requires several iterations to recover accurate forecasts, whereas NatSR remains stable. The
bottom-right panel in (a) highlights the difference in update magnitudes: OGD’s gradients grow by
an order of magnitude in response to the outlier, while NatSR’s remain comparable to those from
normal errors. In the regime-change setting (b), the scale rises during transitions, allowing for larger
gradients and faster updates, and decreases again once the series stabilizes. This dynamic scaling,
combined with second-order information from the FIM, enables NatSR to adapt rapidly to changes
in both amplitude and frequency, as reflected by the smaller standard deviations during the second
regime compared to OGD.

The proof can be found in Appendix A.3.

Assuming the target time series follows a Student’s tν distribution induces a specific loss for the natu-
ral gradient update that is inherently bounded. Intuitively, the FIM provides a bound on the Jacobian,
as it involves the product of the Jacobian and its transpose (see Appendix A.3 for more details). At
the same time, the Student’s tν distribution bounds the gradient of the loss with respect to the outputs
(see Figure 2). As a result, the full natural gradient with a Student’s tν negative log-likelihood loss
has a bounded L2-norm, making the optimization process more robust to outliers. Figure 1a shows
the effects of bounded updates on a toy example of a noisy sinusoid with outliers. OGD’s gradients
spike in response to outliers, destabilizing the optimization, whereas NatSR’s natural gradient with
a Student’s tν loss remains bounded, yielding stable and robust updates.

4.4 MEMORY BUFFER

We showed that the natural gradient update shares the same information-theoretic optimality with
score-driven models and that the use of the Student’s t log-likelihood can bound the update. Now we
add to this filtering method the ability to accumulate knowledge without catastrophic forgetting. We
use a simple Experience Replay approach (Chaudhry et al., 2019b) with a second-order approxima-
tion (Urettini & Carta, 2025) to recover a natural gradient update. At each step in time, the optimal
second-order update is the solution of the problem

min
δ

∇
T
Nt δ +

1
2

δ
T HNt δ +λ∇

T
Bt δ +

λ

2
δ

T HBt δ subject to
1
2
||δ ||22 ≤ ε, (6)

which is solved by
δ
∗
t =−(HNt +λHBt + τI)−1(∇Nt +λ∇Bt ),

where δ ∗t is the optimal optimization step given the information at time t, Nt are the new obser-
vations done at time t, Bt is a set of observations sampled from the buffer B, τ is the Tikhonov
regularization, λ the importance given to the past, H the Hessian matrix and ∇ the gradient vector.

Following Urettini & Carta (2025), we note that the Fisher Information matrix I is a Generalized
Gauss-Newton matrix that approximates the Hessian (Martens, 2020):

δ
∗
t =−(INt +λIBt + τI)−1(∇Nt +λ∇Bt ). (7)
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To improve optimization speed (Yuan et al., 2016; Sutskever et al., 2013) and reliability with noisy
data, such as time series data, we take inspiration from ADAM (Kingma & Ba, 2015) and smooth
the natural gradient update with an EMA:

δ
EMA
t = α

EMA
δ
∗
t +(1−α

EMA)δ EMA
t . (8)

4.5 DYNAMIC SCALE

The Student’s t decreases the score for larger errors after a certain threshold that depends on the
degrees of freedom (see Figure 2). Unfortunately, this approach may result in slow updates during
sudden regime changes due to the small score. This would be in contrast with the fast adaptation
desiderata of OCL.
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Figure 2: Natural score of the Student’s t compared to a
Gaussian score. Left: score of the mean for different scales.
Right: score of the scale parameter for different ν .

To address this, we propose to adjust
the step size dynamically. First, no-
tice that the natural score of the Stu-
dent’s t mean converges to the (un-
bounded) Gaussian score when we
increase the scale parameter s (see
Figure 2) of the Student’s t likeli-
hood 4.1. When a new regime occurs,
the model error will increase substan-
tially, and with it, the observed vari-
ance of the target conditional on our
predicted means. By also increasing
s to follow the observed variance, the step size increases with it.

Unfortunately, this step size is not directly controlled by s when the Tikhonov regularization is used
(like in our case). As a matter of fact, the update bound we found in equation 5 does not depend on s.
To recover the same effect as in score-driven models, we propose to set the Tikhonov regularization
as τ = 0.9β

1+s2 +
0.1β

s2 (see Appendix B for the derivation) where β is a scalar hyperparameter. The
result is that an increase in s would increase the gradient bound (Eq. 5) through the decrease of τ .

To maintain robustness against outliers, we need to update s gradually with bounded updates, so
that only multiple consecutive unexpected observations would significantly increase the bound. We
propose to use once again the score-driven update strategy, deriving the score of the scale from the
same log-likelihood used as objective for our model fw(x). The score-driven update using the score
of a Student t log-likelihood related to s2 regularized by its relative Fisher information is (Artemova
et al., 2022):

s2
t+1 = s2

t +αs
s2

t ν(e2
t − s2

t )

s2
t ν + e2

t
,

where et = yt − fw(Xt) and αs is a learning rate. Additionally, we enforce a lower bound on s2
t+1

to avoid values too small. In Figure 2, the regularized score for the scale is visualized. The effect
of this dynamic scale is as follows: when the squared error is larger than s2

t , the variance is larger
than expected, and the scale s2

t starts to adjust, with a speed controlled by the degrees of freedom ν

and the parameter αs. If the observed error is an outlier, the effect is limited to this single bounded
update of the scale. If instead the squared error remains larger than s2

t , it is interpreted as a regime
shift and s2

t continues to increase. The increase of s2
t directly influences the natural gradient (see

Appendix B), and increases the upper bound of the update, allowing the model to adapt faster. On
the other hand, when the predictions of the model are accurate, the scale is lowered, decreasing the
bound and making the model more stable. An example of the possible effects of the dynamic scale
is shown in Figure 1b, where the value of the scale increases as the regime of the data changes,
allowing for larger updates and faster adaptation.

To sum up, we showed that natural gradient, besides its well-known properties as an optimizer
(Amari, 1998; Martens, 2020; Kunstner et al., 2019), can also be interpreted as a score-driven model,
sharing the same information-theoretic optimality. When we combine a Student’s t negative log-
likelihood loss function, the weight update is bounded and robust to outliers. Adding a memory
buffer to this allows the model to “remember” also past regimes, accumulating knowledge in time.
Finally, with the dynamic score, we enable both stability and fast adaptation. All of this is the
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Dataset Pred. Len OGD ER DER++ FSNET OneNet NatSR (Ours)

ECL
1 1.67 1.43 1.11 0.96 0.64 3.53
24 3.12 3.21 2.89 1.42 0.92 4.01
48 3.27 3.01 2.96 1.44 0.96 4.14

ETTh1
1 0.87 0.83 0.82 0.92 0.83 0.79
24 1.50 1.49 1.45 1.08 1.38 0.97
48 1.46 1.42 1.42 1.16 1.39 1.12

ETTh2
1 1.14 1.09 1.08 1.10 1.06 1.01
24 1.65 1.60 1.60 1.37 1.56 1.23
48 1.63 1.62 1.61 1.48 1.61 1.39

ETTm1
1 1.18 1.03 1.01 1.10 1.05 0.97
24 2.19 1.82 1.83 1.45 1.91 1.16
48 2.19 1.91 1.81 1.52 2.04 1.33

ETTm2
1 1.36 1.26 1.24 1.14 1.15 1.12
24 2.03 1.80 1.81 1.48 1.79 1.37
48 2.01 1.85 1.82 1.51 1.84 1.50

Traffic
1 0.84 0.79 0.78 0.70 0.62 0.89
24 1.05 1.07 0.95 0.96 0.91 1.14

WTH
1 1.47 1.30 1.44 1.19 1.06 1.04
24 1.98 1.90 1.84 1.44 1.73 1.25
48 1.97 1.89 1.86 1.46 1.82 1.39

Table 1: Average MASE across 3 runs. Best in bold, second best underlined.

Natural Score-Driven Replay (NatSR). The full algorithm can be found in Appendix D and some
additional implementation details in Appendix C.

5 EXPERIMENTS

We empirically validate our proposal following the setup in Pham et al. (2023). An extended dis-
cussion of the experimental setup is provided in Appendix E. Our full repository used for the exper-
iments can be found at https://anonymous.4open.science/r/NatSR.

Baselines: We compare our method against state-of-the-art methods such as Experience Replay
(ER) (Chaudhry et al., 2019b), DER++ (Buzzega et al., 2020), FSNET (Pham et al., 2023), and
OneNet (Wen et al., 2023). We also tested a simple online gradient descent approach (OGD), where
the target is to adapt to newly observed data, with no memorization objective.

Datasets: We test on the same real-world datasets as FSNET, covering a wide range of sources
and behaviours. The ETT dataset (Zhou et al., 2021) collects the oil temperature and other 6 power
load features from different transformers with hourly (“h”) or 15-minute (“m”) frequency. ECL1

represents the electricity consumption of 321 clients from 2012 to 2014. WTH2 is a collection of
weather features from multiple locations in the US. Traffic3 measures the traffic on the San Francisco
Bay Area freeways.

Experimental Procedure: All methods undergo an offline warm-up phase using the first 20% of the
data for training, and the following 5% for validation and early stopping. This phase is always done
using AdamW (Loshchilov & Hutter, 2017) with a learning rate schedule. The remaining 75% of the
data is used for online training and evaluation, with model updates at each new observation. During
the online phase, the optimizer is reset and possibly changed, using a different learning rate. The
optimal value of this online learning rate is selected with a hyperparameter tuning in a full online
training with the ETTh1 dataset. The tuning of the online learning rate is the only difference with
the FSNET approach. We believe that without a transparent tuning of this parameter, it is very hard

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://www.ncei.noaa.gov/data/local-climatological-data/
3https://pems.dot.ca.gov/
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Figure 3: Forecasting results on three datasets: (left) ETTh1 demonstrates the model’s ability to
adapt quickly; (middle) ETTm1 illustrates the stability of our model, producing less noisy predic-
tions compared to baselines such as FSNET; (right) WTH highlights the importance of replay, as
NatSR and ER achieve the best performance when revisiting previously observed input ranges.

to compare different methods. Following the guidelines of Godahewa et al. (2021) we use MASE
(Hyndman & Koehler, 2006) as our main evaluation metric.

5.1 RESULTS

In Table 1, we report the average MASE over three runs with different random seeds. Appendix
F explores additional configurations of NatSR, FSNET, and OneNet, such as FSNET and OneNet
with MSE losses and a less conservative version of NatSR with ν = 500 and AdamW optimizer. The
configurations shown in Table 1 are the best for each method. We also report the standard deviations
and training times of the online phase in Appendix F. Figure 3, instead, gives a more qualitative
analysis of our method, compared with our baselines in different scenarios.

NatSR obtained the best MASE on 5 of 7 datasets. It is interesting to note that whenever NatSR
is the best method, FSNET follows as second-best, suggesting that whenever continual learning is
fundamental, CL-focused solutions are necessary, with NatSR being the better solution. Notice that
NatSR achieves these results by only changing the loss and the optimizer without any architectural
solution customized for time series like FSNET and OneNet. Unfortunately, we notice that on two
datasets, ECL and Traffic, NatSR reaches a higher MASE compared to more complex methods. We
noticed that these two datasets have the highest number of features, and are the only ones where
OGD performs better than ER in at least a prediction length, suggesting the possiblity that these
datasets require more plasticity than stability.

Besides the results of NatSR, these experiments confirmed once again the potential of online contin-
ual learning approaches to improve online time series forecasting. Standard OGD is rarely able to
overcome ER, and more sophisticated OCL methods perform much better. Each method is evaluated
on its online forecasting ability and on streams of data that are not a synthetic simulation of a task
or domain-switching setting. These are real data, actually observed in a specific time order, that
can suffer real or virtual drifts naturally. Still, OCL methods show large improvements when com-
pared to standard online gradient descent learning, underlying the importance of learning stability
in OTSF.

5.2 ABLATION STUDY

To better understand the role of each component of NatSR, we conduct an ablation study by selec-
tively removing two key mechanisms: the replay strategy and the dynamic scale. Table 2 reports the
MASE of each variant, along with the relative performance loss compared to the original version of
our method. All results are obtained with 50 degrees of freedom for the Student’s t-distribution and
a forecasting horizon of 24.

The results clearly indicate that both components are beneficial, although their contributions differ
in strength. Removing the replay buffer leads to drops in performance between 8% and 13%, while
the dynamic scale causes smaller but consistent losses of about 5-6%. The importance of replay is

8
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ETTh1 ETTm1 WTH
Scale Replay MASE Rel. ∆ MASE Rel. ∆ MASE Rel. ∆

✓ ✓ 0.97 - 1.16 - 1.25 -
✓ - 1.10 -13% 1.29 -11% 1.35 -8%
- ✓ 1.02 -5% 1.22 -5% 1.32 -6%
- - 1.15 -19% 1.34 -16% 1.40 -12%

Table 2: MASE of NatSR with 50 degrees of freedom and its variants for prediction length 24.

in line with expectations, as Experience Replay improves substantially compared to online gradient
descent in our experiments. Interestingly, however, the relative gain from adding replay within our
method is even larger than the gain obtained by simply equipping SGD with replay. This suggests a
synergistic effect: replay does not only provide access to past samples, but also interacts favorably
with our second-order optimization scheme.

A notable observation arises when both mechanisms are removed: the resulting degradation, up
to 19%, is equal or larger than what one might predict from the sum of the individual effects. This
suggests that our method is able to leverage replay and dynamic scaling in a complementary way: re-
play provides stability across tasks, while scaling enhances adaptability. Their joint effect is greater
than the sum of the parts, indicating that the full method is particularly effective at handling non-
stationary data streams.

5.3 DISCUSSION AND LIMITATIONS

With NatSR, we introduced a method that is rooted in score-driven models and natural gradient
descent. The use of the Student’s t is fundamental to obtaining a bounded update, something that
can be fundamental in datasets where sudden changes and outliers can disrupt learning. On the
other hand, even when using the dynamic scale to adjust the bound, some datasets require much less
stability and more plasticity. ECL and Traffic are examples of this. They both present large, sudden,
and persistent regime changes, where memory and stability are not rewarded. The robustness of
NatSR, while very useful in the other datasets, still results in updates that are too conservative
for the fast changes in ECL and Traffic, causing a larger error. As a preliminary step towards a
possible solution, we notice that if we increase the degrees of freedom and use ADAM (Kingma &
Ba, 2015) on top of our method, we obtain a version of NatSR that is much stronger on ECL and
Traffic, but weaker on the other datasets (App. E). Designing a single method that provides both
fast adaptation and robustness to forgetting is still an open challenge. Time series forecasting is
particularly complex in this regard, as different datasets can require widely different approaches.

6 CONCLUSION

In this paper, combining theoretical and empirical insights from online continual learning and econo-
metrics, we proposed NatSR, a novel method for online time series forecasting. We proved a for-
mal connection between score-driven models and natural gradient descent, showing its information-
theoretic optimality. We also proved that the combination of natural gradient and Student’s t loss
provides a bound on the update, making the learning more robust. Then, we introduced a dynamic
scale of the Student’s t to adapt online the plasticity of the model. Building on these insights, we
proposed NatSR as a combination of natural gradient, Student’s t loss, memory buffer, and dynamic
scale. Empirical results show competitive performance against state-of-the-art methods, showing the
potential of developing new OCL methods starting from time series analysis theory. Overall, OTSF
provides a challenging and realistic application scenario for continual learning methods, where the
balance between stability and plasticity is dataset-dependent and may change over time. The open
question is whether this trade-off can be adjusted automatically to have a single robust method for
every dataset.
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A DERIVATIONS OF THE THEORETICAL RESULTS

In this section, we demonstrate the theoretical results by first reviewing some facts for the GAS
model and highlighting its similarities with the neural networks when the optimization is the natural
gradient (section A.1). Then in section A.2 we state the proof of the propositions for the optimality
of the parameters and finally in section A.3 we demonstrate the update bound.

A.1 A NOTE ON GAS MODEL

Setting St = I in the GAS model would make the filtering of wt equivalent to SGD. More interest-
ingly, Creal et al. (2013) suggested the use of the Fisher information matrix as the rescaling matrix
St . This would make the GAS update of wt equivalent to a natural gradient descent (Amari, 1998).
We are not the first ones to draw a connection between natural gradient descent and time series fil-
tering. Ollivier (2018) already showed formally that natural gradient descent can be cast as a special
case of the Kalman filter. With GAS models, the connection is more straightforward, as it directly
derives from the definition of the GAS update itself by considering as time-varying parameters the
weights of the network and not the likelihood parameters themselves. Hence, we can interpret the
online optimization process not as a way to find a static optimum as more data arrives, but as a way to
respond to new information, filtering the values of the weights and finding the best way to “follow” a
changing loss landscape. Following the suggestions of Creal et al. (2013), and the results of Ollivier
(2018), we suggest adapting to new observations using the log-likelihood score regularized by the
inverse FIM. Moreover, GAS models have been widely used with high-kurtosis distributions like
the Student’s-t distribution, gaining robustness to outliers (Artemova et al., 2022). We show that the
combination of the inverse FIM gradient preconditioning and of a Student’s-t negative log-likelihood
can be justified by the generation of a bound on the update norm.

A.2 PROOFS FOR SECTION 4.2

In this section we prove propositions (4.1)-(4.2).

First we show that finding the parameter that minimizes KLt(θ) is equivalent with finding the one
that maximizes the conditional expectation of p(y|θ) with respect to the true statistical model or in
other wards we justify the second equality in Eq.(4):

θ
∗
t = argmin

θ∈Θ

[∫
Rd

qt(y) logqt(y)dy−
∫
Rd

qt(y) log p(y|θ)dy
]

= argmin
θ∈Θ

[
−

∫
Rd

qt(y) log p(y|θ)dy
]

= argmax
θ∈Θ

Ey∼qt [log p(y|θ)] (9)
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The weights with the natural gradient are updated as in Eq.(2), the expected weight update parameter
given the information Ft−1 is then

Et−1[wt+1] = wt +ηI −1
t (wt)Et−1[∇wt (yt)]

Proof of proposition (4.1). From assumption (A1) we select w∗t ∈W such that fw∗t (xt) = θ ∗t , then
from Eq.(9) we observe that θ ∗t maximizes the expected log-likelihood with respect to θ under qt
since qt is the true statistical model of the target time-series it corresponds to its empirical distribu-
tion, thus θ ∗t maximizes the plain log-likelihood,

∂ log p(yt |θ)
∂θ

∣∣∣∣
θ=θ∗t

= 0

and as a result ∇gt(w∗t ) = 0.

From (A3), for wt ,w∗t ∈W we get

⟨It(wt)
−1

∇gt(wt)−It(w∗t )
−1

∇gt(w∗t ),wt −w∗t ⟩ ≤ −
1
c
∥It(wt)

−1
∇gt(wt)−It(w∗t )

−1
∇gt(w∗t )∥2

⟨It(wt)
−1

∇gt(wt),wt −w∗t ⟩ ≤ −
1
c
∥It(wt)

−1
∇gt(wt)∥2

∥Et−1[wt+1]−w∗t ∥2 = ∥wt +ηIt(wt)
−1

∇gt(wt)−w∗t ∥2

= ∥wt −w∗t ∥2 +2⟨ηIt(wt)
−1

∇gt(wt),wt −w∗t ⟩+η
2∥It(wt)

−1
∇gt(wt)∥2

≤ ∥wt −w∗t ∥2−2
η

c
∥It(wt)

−1
∇gt(wt)∥2 +η

2∥It(wt)
−1

∇gt(wt)∥2

= ∥wt −w∗t ∥2−η

(
2
c
−η

)
∥It(wt)

−1
∇gt(wt)∥2.

We note that

η

(
2
c
−η

)
∥It(wt)

−1
∇gt(wt)∥2 > 0

hence
∥Et−1[wt+1]−w∗t ∥< ∥wt −w∗t ∥.

Proof of proposition (4.2). From assumption (A1) we select w∗t ∈W such that fw∗t (xt) = θ ∗t . Since
we are interested in the properties of f with respect to the weights we will slightly abuse the notation
and write f (w) instead of fw(xt) for w ∈W . From assumption (A4) there are constants L, l > 0 such
that for any w1,w2 ∈W

l∥w1−w2∥ ≤ ∥ f (w1)− f (w2)∥ ≤ L∥w1−w2∥ (10)

then we write

∥θt(Et−1[wt+1])−θ
∗
t ∥= ∥ f (Et−1[wt+1])− f (w∗t )∥
≤ L∥Et−1[wt+1]−w∗t ∥
< L∥wt −w∗t ∥

≤ L
l
∥ f (wt)− f (w∗t )∥=

L
l
∥θt(wt)−θ

∗
t ∥

the second inequality is due to the optimality of the weights (see proposition (4.1)).

A.3 PROOF FOR SECTION 4.3

In order to lighten the notation we use the following conventions:

First, we omit the time index and the weight subscript thus we write f (x) instead of fwt (xt).

14
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The score that corresponds to the neural network (see section 4.1) is

∇w(y) =
∂ log p(y|θ)

∂θ︸ ︷︷ ︸
∇θ log p(y|θ)

∂θ

∂w︸︷︷︸
Jw

= J⊺w∇θ log p(y | θ)

where ∂θ

∂w is the Jacobian matrix and we denote it as Jw. Notice that every time we consider the score
is before the weight update hence the gradient is with respect to the provisional output fwt (xt) and
not the final (after the update) fwt+1(xt).

Proof of Theorem 4.1. The score, using the Tikhonov regularization (Martens, 2020) and the defini-
tion of the FIM, i.e. that is defined as the variance of the score, conditional on the input (Kunstner
et al., 2019), it is:

∇̃w log p(y| fw(x)) =
(
V
[
JT

w ∇ f (x) log p(y| f (x)) | x
]
+ τI

)−1
∇w(y)

=
(
V
[
JT

w ∇ f (x) log p(y| f (x)) | x
]
+ τI

)−1
JT

w ∇ f (x) log p(y| f (x)))

=
(

JT
w V

[
∇ f (x) log p(y| f (x))) | x

]
Jw + τI

)−1
JT

w ∇ f (x) log p(y| f (x)))

=
(

JT
w κIJw + τI

)−1
JT

w ∇ f (x) log p(y| f (x))), κ =
ν +1

(ν +3)s2

=V (κΣ
T

Σ+ τI)−1
Σ

TUT︸ ︷︷ ︸
B1

∇ f (x) log p(y| fw(x)))︸ ︷︷ ︸
B2

.

The third equality is due to the fact that the Jacobian matrix is conditionally independent from the
input given the output.

The fourth equality is due to assumption of the Student’s-t distribution

V
[
∇ f (x) log p(y| f (x))|x

]
=

ν +1
(ν +3)s2 I.

For the fifth equality we apply the SVD to the Jacobian matrix, i.e. Jw =UΣV ⊺, for Σ diagonal, then
taking the L2-norm we get

∥∇̃w log p(y| f (x))∥2 ≤
1

2
√

κτ
∥∇ f (x) log p(y| f (x)))∥2

≤ (ν +1)
√

m
4s
√

κτν

=
1
4

√
(ν +1)(ν +3)m

τν

For the first inequality we compute the bound by using the definition of spectral norm as the maxi-
mum singular value of the matrix. The maximum is reached for σi =

√
τ/κ .

∥B1∥2 = ∥V (κΣ
T

Σ+ τI)−1
Σ

TUT∥2 = max
i

σi

κσ2
i + τ

≤ 1
2
√

κτ
.

The score of the Student’s-t related to the output is:

B2 = ∇ f (x) log p(y| f (x))) =−
[
(ν +1)e1

νs2 + e2
1
, ...,

(ν +1)em

νs2 + e2
m

]
,

with m the number of outputs, ei = yi − f (x)i the error related to output i and ν the degrees of
freedom.

15
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B MODIFIED TIKHONOV REGULARIZER

With a regime change, the observed variance of the target conditional on the predictions will in-
crease. We then want to also increase the assumed variance through the scale parameter s. The
increase of s needs to have an effect on the final update similar to what happens in standard score-
driven models (see Figure 2): for s→ ∞ the update should converge to a linear function of the error
as for the Gaussian assumption. To do this, we first write the natural gradient for the Student’s t
likelihood. Define e = y− fw(x)

∇̃w fw(x) =
(

ν +1
(ν +3)s2 JT

w Jw + τI
)−1

JT
w
(ν +1)e
νs2 + e2 =

=
(

ν +1
(ν +3)

JT
w Jw + s2

τI
)−1

JT
w
(ν +1)e
ν + e2/s2 .

Hence, for the natural gradient update with the Tikhonov regularization, the limit for an infinite scale
would be:

lim
s→∞

∇̃w fw(x) = 0,

which is clearly different from the linear function of e we are aiming for. Hence, increasing the scale
s would not have the desired effect of monotonically accelerating learning. This is also confirmed
by the fact that the bound in Eq. 5 does not depend on s. The culprit of this difference between the
standard score-driven (Figure 2) and the natural gradient is the presence of the Tikhonov regulariza-
tion. To recover the desired effect, propose to set τ = 0.9β

1+s2 +
0.1β

s2 with β a scalar hyperparmeter.
Note that the effective regularization added to the diagonal of the matrix JT

w Jw is s2τI. With our
particular choice of τ , we obtain an effective regularizer s2τI = 0.9β

1/s2+1 +0.1β that is bounded in the
interval [0.1β ,β ], avoiding numerical instabilities when the scale is very small, but also avoiding
regularizations that are too strong. After multiple experiments, we found this heuristic to be the
most effective and safe. The limit with the new τ is:

lim
s→∞

(
ν +1
(ν +3)

JT
w Jw +(

0.9β

1/s2 +1
+0.1β )I

)−1
JT

w
(ν +1)e
ν + e2/s2 =(

ν +1
(ν +3)

JT
w Jw +β I

)−1
JT

w
(ν +1)e

ν
,

obtaining a natural gradient that linearly grows with the error e (as in the Gaussian case) when
s→ ∞. The scale is now influencing the bound 5 through its effect on τ: for a larger scale, we have
larger update bounds, enabling fast adaptation.

C NATSR PRACTICAL IMPLEMENTATION

In our implementation of the method, we use some approximations and heuristics to make the pro-
cess more efficient.

The FIM is approximated using Kronecker-Factored Approximate Curvature (K-FAC) (Martens &
Grosse, 2015). This approximation greatly reduces the memory and computational requirements for
inverting the FIM when computing the natural gradient. The gradient correlation between layers
is ignored, and for each layer, only two small matrices are maintained and inverted: one for the
outer product of the layer inputs and one for the outer product of the layer pre-activation gradients.
These two Kronecker factors are estimated through an exponential moving average with a default
smoothing factor of 0.5. This fast adaptation allows us to keep only local geometrical information.

The FIM is the expected value of the outer product of the gradient evaluated with respect to the
output distribution, not the observed one (Kunstner et al., 2019). Following the approach of nnge-
ometry (George, 2021), we estimate it through a Monte Carlo approach, taking k samples from the
predicted distribution, and evaluating the gradient of each. In this way, the computation of the FIM
is independent of the output shape and can scale to larger output vectors.

To minimize the number of times the FIM needs to be computed and inverted, we reevaluate it only
when necessary. When not updated, it simply corresponds to the one used at the previous step.
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Our heuristics trigger the update when the currently observed loss is in the worst p% of recently
observed losses or, anyway, after a fixed number of steps to avoid situations where the FIM is never
updated. The distribution of recently observed losses is estimated assuming a Normal distribution
and keeping track of two additional exponential moving averages for the mean and the variance of
the loss history.

D NATSR ALGORITHM

Algorithm 1: Natural Score-driven Replay (NatSR)
Input: network parameters w; learning rate η ; EMA parameter αEMA; memory importance λ ;

degrees of freedom ν ; regularizer β ; scale learning rate ηs.
B←∅
s← 1

Lw(Dt ,s2;ν) = 1
|D| ∑{Xi,yi}∈Dt

ν+1
2 log

(
1+ (yi− fw(Xi)

2)
νs2

)
for t← 1,2, . . . do

Obtain new observation Nt = {Xt ,yt}
Sample buffer batch Bt ⊆B
L←Lw(Nt ,s;ν)+λLw(Bt ,s;ν)
Compute gradient ∇wL
τ ← 1

β+s2

if L worst 1% of recent Ls then
Update FIM← True

else
Update FIM← False

end
if Update FIM then

Monte Carlo K-FAC factors A and G from Nt and Bt (weight Bt by λ )
if FEMA ̸=∅ then

for l← 1 to L do
AEMA,l ← (1−αEMA)AEMA,l +αEMA Al
GEMA,l ← (1−αEMA)GEMA,l +αEMA Gl

end
FEMA←{AEMA, GEMA}

else
FEMA←{A, G}

end
FINV←

(
FEMA + τ I

)−1

end
∇̃wL← FINV ∇wL

s2← s2 +ηs
1

|Nt |+|Bt | ∑{Xi,yi}∈Nt ,Bt
νs2[(yi− fw(Xi))

2−s2]
νs2+(yi− fw(Xi))2

if optimizer is Adam then
∇̃wL← ADAMUPDATE∇̃wL

end
w← w−η ∇̃wL
B← RESERVOIRUPDATE(B, Nt , maxsize)

end

E ADDITIONAL EXPERIMENTAL DETAILS

During the online phase, the batch size is set to 1, so the model is trained and evaluated at each new
observation. In addition to this, methods using memory buffers sample 8 samples from the buffer.

All methods undergo a hyperparameter optimization repeated 30 times on a complete online learning
with the ETTh1 dataset. During this phase, we select the best online learning rate, and keep it fixed
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when the methods are tested on the other datasets. For NatSR, also the best αEMA used for the
estimation of the gradient and the FIM is selected. The values of method-specific hyperparameters
are the same as the ones reported in the original papers and the available code of Pham et al. (2023)
and Wen et al. (2023).

The number of features to predict depends on the dataset and can go from as few as 7 for ETT
datasets to as many as 862 for Traffic. The length of the input time series is always set to 60, while
the prediction length can be 1, 24, or 48. The only exception to this is Traffic, for which we excluded
the value 48 as in Pham et al. (2023), due to the huge number of features of the dataset.

In terms of hardware, all experiments are executed on a Linux machine equipped with two Tesla
V100 16GB GPUs and Intel Xeon Gold 6140M CPUs.

Backbone architecture: All strategies use a Temporal Convolutional Network (TCN) (Bai et al.,
2018) as a backbone. The sizes of the networks are the same, except for FSNET, which modifies
the architecture with internal layers for the learning of adaptation coefficients, and OneNet, which
keeps two separate TCNs, one doing convolutions only on the temporal dimension and one only on
the variables’ dimension. We test both Mean Squared Error and Mean Absolute Error losses.

Evaluation Metric: Choosing the correct metric to compare the different methods is not an easy
task. In this paper we follow the choice of Monash repository (Godahewa et al., 2021), probably
the most extensive open-source comparison of forecasting models, of using the Mean Absolute
Scaled Error (MASE) to compare methods (Hyndman & Koehler, 2006). It is defined as the mean
absolute error of the forecasting model, divided by the mean absolute error of the one-step naive
forecaster. MASE is symmetric for positive and negative errors, scale-invariant, robust to outliers,
and interpretable. For these reasons, it is considered a solid choice to compare different approaches
(Franses, 2016). Note that values greater than 1 do not imply the naive forecaster is better, since it
makes only one-step-ahead predictions while the models forecast multiple steps ahead.

NatSR experimental setup: When testing NatSR, we evaluate the FIM by sampling k = 100 sam-
ples from the predicted distribution. This evaluation is performed only when the observed loss is in
the worst 1% of recently observed losses, estimating the mean and the variance of recently observed
losses by using two EMAs with 0.01 weight for new observations. The dynamic scale is updated by
a score-driven model using a learning rate αs = 0.1. The η is fixed to 1, hence bounding the maxi-
mum Tikhonov regularizer τ to 1. During the online phase, we tried two different approaches for the
optimizer: ν = 50 and SGD, and ν = 500 and AdamW. The first combination (NatSRstable) gives a
more robust method with stricter bounds on the norm of the updates, while the second (NatSR f ast )
allows for bigger updates, but it also introduces Adam’s empirical normalization to stabilize the
process.
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F ADDITIONAL EXPERIMENTAL RESULTS

Dataset Pred. Len OGD ER DER++ FSNETMAE OneNetMAE NatSR (Ours)

ECL
1 3.02 2.55 3.35 0.41 0.12 2.15

24 2.52 1.96 0.86 1.29 0.04 0.60
48 2.89 2.20 0.73 0.36 0.14 0.11

ETTh1
1 0.50 0.62 0.65 0.66 0.15 0.36

24 1.31 1.44 1.30 2.16 0.35 0.05
48 0.75 1.00 0.95 1.01 0.88 1.00

ETTh2
1 0.43 0.60 0.60 0.89 0.18 0.40

24 1.44 0.41 0.53 1.24 0.98 0.89
48 1.05 1.21 0.95 2.05 0.32 2.95

ETTm1
1 0.81 0.44 0.45 1.94 0.38 0.24

24 1.09 1.34 4.13 3.32 1.98 1.62
48 2.25 3.80 7.08 2.41 0.66 2.87

ETTm2
1 1.04 0.51 0.43 0.98 0.24 0.25

24 1.23 0.41 0.86 0.43 2.04 0.44
48 2.33 1.73 2.37 1.90 0.65 0.34

Traffic
1 .... .... .... 0.75 0.11 0.50

24 0.34 0.13 0.19 0.59 0.16 0.70

WTH
1 0.82 0.41 0.77 0.42 0.14 0.15

24 1.05 0.21 0.62 1.10 0.58 0.68
48 1.19 0.86 0.98 0.58 0.40 1.18

Table 3: Standard Deviations of MASE multiplied by 100 for MSE loss.

Dataset OGD ER DER++ FSNETMAE OneNetMAE NatSR (Ours)
ECL 139 241 233 1111 816 1185

ETTh1 71 124 127 627 457 588
ETTh2 70 122 122 601 434 610
ETTm1 73 128 122 637 428 575
ETTm2 116 231 222 663 417 474
Traffic 141 231 210 804 600 1909
WTH 177 298 286 1541 1043 1268

Table 4: Mean total online training time in seconds for prediction length 24.
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Dataset Pred. Len OGD ER DER++ FSNET FSNETMAE OneNet OneNetMAE NatSRstable NatSR f ast

ECL
1 1.67 1.43 1.11 1.56 0.96 0.78 0.64 3.53 0.78
24 3.12 3.21 2.89 2.99 1.42 1.14 0.92 4.01 1.41
48 3.27 3.01 2.96 3.12 1.44 1.17 0.96 4.14 1.55

ETTh1
1 0.87 0.83 0.82 0.93 0.92 0.86 0.83 0.79 0.83
24 1.50 1.49 1.45 1.05 1.08 1.42 1.38 0.97 1.40
48 1.46 1.42 1.42 1.15 1.16 1.38 1.39 1.12 1.37

ETTh2
1 1.14 1.09 1.08 1.11 1.10 1.12 1.06 1.01 1.08
24 1.65 1.60 1.60 1.36 1.37 1.52 1.56 1.23 1.64
48 1.63 1.62 1.61 1.49 1.48 1.54 1.61 1.39 1.64

ETTm1
1 1.18 1.03 1.01 1.06 1.10 1.11 1.05 0.97 1.03
24 2.19 1.82 1.83 1.39 1.45 1.86 1.91 1.16 1.83
48 2.19 1.91 1.81 1.51 1.52 1.95 2.04 1.33 1.83

ETTm2
1 1.36 1.26 1.24 1.27 1.14 1.33 1.15 1.12 1.24
24 2.03 1.80 1.81 1.46 1.48 1.80 1.79 1.37 1.82
48 2.01 1.85 1.82 1.52 1.51 1.87 1.84 1.50 1.80

Traffic
1 0.84 0.79 0.78 0.78 0.70 0.68 0.62 0.89 0.71
24 1.05 1.07 0.95 0.95 0.96 0.97 0.91 1.14 0.87

WTH
1 1.47 1.30 1.44 1.17 1.19 1.15 1.06 1.04 1.25
24 1.98 1.90 1.84 1.39 1.44 1.80 1.73 1.25 1.80
48 1.97 1.89 1.86 1.45 1.46 1.85 1.82 1.39 1.86

Table 5: Complete table of average MASE across 3 runs. Best in bold, second best underlined.
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