
Optimizing Chatbot Fallback Intent Selections
with Reinforcement Learning

Jeremy David Curuksu 1 2

Abstract
Large language models used in GPT-4 and Alexa
are limited by their ability to assess the validity of
their own answers i.e., to fall back on a clarifica-
tion intent when needed. Reinforcement learning
can be used specifically to address this fallback se-
lection problem, by adapting to semantic pitfalls
of a given language model in a given environment.
This is demonstrated in a simplified environment
where the chatbot learns when best to ask for clari-
fications. After training it identifies correct intents
in < 2 steps on average in over 99% of dialogues.

1. Introduction
Developing intelligent chatbots is a challenging AI problem
which often requires deep learning large language models
(LLM) to be trained on massive amounts of data. Even
with recent developments combining LLMs with reinforce-
ment learning based on human preferences (Christiano et al.,
2017), chatbots such as GPT-4 struggle to calibrate their
own uncertainty (Kadavath et al., 2022; Lin et al., 2022)
i.e., the probability that their responses are valid and coher-
ent. Eventually, we will need AI systems that are honest,
meaning that accurately and faithfully evaluate their level of
confidence in their own knowledge and reasoning (Kadavath
et al., 2022). When building a chatbot using services such as
the Alexa Skills Kit, LLMs are pre-trained on large amount
of data to convert utterances to text and recognize the intent
of the text (Kumar et al., 2017). The developer customizes
an interaction model which is a set of intents each associ-
ated with utterances, prompts and slots (Fig.1, Appendix A),
and a dialog model which identifies the steps of a multi-turn
conversation between the chatbot and the user in order to
collect information needed to fulfill each intent. Although
the most recent chatbots such as GPT-4 are fined tuned us-

1Center for Data Science, New York University, NY, USA
2Amazon.com LLC, New York, NY, USA. Correspondence to:
Jeremy Curuksu <curukj@amazon.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ing human feedback by reinforcement learning (Christiano
et al., 2017), most chatbot development services still require
the developer to define the different ways a user might inter-
act with the chatbot (dialogue model), and include a native
fallback intent invoked when the pretrained LLMs can’t
deduce the user’s intent i.e., for situations when the user
input is not recognized (AWS, 2023). Both types of chatbots
(with or without fine tuning by human feedback) struggle
to calibrate their own uncertainty (Kadavath et al., 2022).
The developer can refine and curate heuristic rules i.e., the
dialogue model, assuming an ideal semantic parsing from
the pretrained LLM. But LLMs are far from perfect and
known to sometimes hallucinate (Ouyang et al., 2022) or
misinterpret utterances without awareness of their mistake,
and without asking for clarifications either.

Reinforcement Learning (RL) has been successfully applied
in recent years to autonomous decision making in video
games (Vinyals et al., 2019), strategic board games (Silver
et al., 2018), robotics (Ibarz et al., 2021), self-driving (Sal-
lab et al., 2017), and financial trading (Wu et al., 2020). It
has also been applied to design conversational chatbots re-
warded based on the long-term success of dialogues as mea-
sured by linguistic properties called validity and coherence
(Li et al., 2016), and to manage chatbots with pre-engineered
language features fine tuned with human feedback (Chris-
tiano et al., 2017; Kumar et al., 2017; Serban et al., 2017).
To my knowledge, it has not yet been applied specifically
to learn an optimal fallback selection mechanism i.e., to
address semantic parsing pitfalls of a given (pre-trained)
LLM encoder in a given, user-defined interaction model.

Figure 1. Typical components of a chatbot interaction model.

In this paper, an RL-based language model is developed
specifically to learn selection policies between the core in-
tents and the fallback intent without the need for any prede-
termined heuristic rules. It autonomously identifies optimal
selection policies to mitigate the ambiguity of utterances
encoded by LLM with the use of the fallback intent given

1



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

a specific interaction environment (i.e., observable set of
intents, utterances, prompts and slots), by exploring possible
sequences of interactions in this environment. It bypasses
the need for defining heuristic rules and does not assume a
perfectly trained LLM either. The LLM is used to define the
RL agent state and the RL agent adapts to it by exploring
the interaction environment and learning fallback selection
policies that best mitigate the LLM semantic pitfalls in this
environment. The agent learns, from scratch, to select the
proper intents or to fall back on asking for clarifications, as
is demonstrated in simulations involving deterministic users
(section 4.1) and adaptive users (section 4.2).

2. Reinforcement Learning for Chatbots
In a RL process, a goal is defined for an agent which makes
decisions in an environment. This goal is translated into a
mathematical formula called a reward function, which re-
wards or penalizes the agent when it takes an action, helping
the agent reach the predefined goal. At each step t, the agent
receives a representation of the environment state st, takes
an action at which brings the agent in a new state st+1, and
receives a numerical reward rt+1 for having taken at in st ,
as shown in Fig.2.

Figure 2. Components of the current RL decision process.

A sequence of actions is called a policy; the purpose of
reinforcement learning is to identify an optimal policy to
reach the predefined goal. More details can be found in
(Sutton & Barto, 2018).

In the context of natural language processing (NLP), any
NLP encoder can transform an utterance into a numerical
vector (Kumar et al., 2017) to define a state st in the en-
vironment (details in section 3.3). Upon observing st, the
agent takes two actions: it selects one of the core intents or
the fallback intent (action 1), and it decides to prompt the
user for a slot or to not ask for any slot (action 2).

In contrast to supervised and semi-supervised learning, with
reinforcement learning it is possible to mitigate multiple
learning goals simultaneously, by adding multiple terms in
the reward function each addressing a particular sub-goal

(Sutton & Barto, 2018). Since asking for clarifications is bet-
ter than moving forward with a wrong intent, the proposed
RL-based dialogue model is designed to learn the optimal
tradeoff between speed and validity/coherence. These goals
are encoded in the reward function detailed in section 3.5: it
contains terms to incentivize the agent to close the dialogue
in a small number of steps, to identify the correct intents
or mitigate by asking for clarifications, and to fill in slots
required for fulfillment. To demonstrate the impact of a RL
dialogue model compared to heuristic models, a multi-agent
RL simulation was also implemented where two RL agents
interact with each other, one agent emulating a chatbot and
one agent emulating a user (details in section 3.2). The two
agents share a common objective (same reward function).
Not surprisingly, a cooperation was observed between the
two agents (details in section 4.2), which helped further
improve speed and coherence by learning directly from the
sampled dialogues, without any heuristic rule.

A custom interaction model was used for all results reported
in this paper and is summarized in Appendix A. It contains
typical components of an interaction model in the Alexa
Skills Kit, such as a hierarchical modular organization. For
example, the intents /pizza and /dessert are found within
the intent /food, and each intent is associated with a cus-
tom set of possible utterances and required slots needed for
fulfillment. The interaction model was reduced to minimal
complexity to demonstrate the impact of RL, yet preserves
the typical ambiguity that makes speech recognition and
NLP challenging in LLMs: some utterances that belong to
different intents are almost identical, for example Open the
food module to find pizza and Open the food module to find
dessert contain 5 tokens and differ by only 1 token (80%
identical). And some slots are 100% identical between dif-
ferent intents, such as Are you looking for pick up or delivery
for all intents within /food. This ambiguity was preserved to
evaluate whether RL could learn fallback mitigation policies
i.e., learn when best to ask for clarifications.

3. Methodology
3.1. Reinforcement Learning Goals

When a developer designs a chatbot, the goal is generally
to make the interaction with the user simple and natural,
mimicking human conversational patterns, and to fulfill
the intents of the user coherently and efficiently (Kumar
et al., 2017; Li et al., 2016). More specifically, an optimal
dialogue model is (i) valid: the agent identifies the right
intents among candidate intents, (ii) coherent: the agent
identifies appropriate prompts during the dialogue i.e., it
solicits data required for fulfillment (slots) and does not
solicit data not required for fulfillment, and (iii) efficient:
the agent minimizes the time it takes to fulfill intents. These
goals are translated into a RL reward function in section 3.5.

2



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

3.2. Simulated Environment

In a first test case (results in section 4.1), the simulated users
select intents randomly (uniform sampling) and also ran-
domly select utterances within the subset of five utterances
defined for each intent in the interaction model. Each RL
episode corresponds to a dialogue between the user and the
agent given the user has chosen one intent. If the agent
guesses the intent correctly, the dialogue proceeds determin-
istically to filling remaining slots (if any) and to fulfillment.
If the agent guesses the intent incorrectly, the user selects
another of the five utterances corresponding to the same
intent. As long as the total number of steps (including greet-
ings/farewells and slot filling) is less than 10, the dialogue
continues until fulfillment is reached. If the total number of
steps reaches 10, the user ends the dialogue and complains
about the chatbot’s lack of efficiency and poor experience.

In the second test case (results in section 4.2), a multi-agent
framework was implemented where two agents interact with
each other, one agent emulating the chatbot exactly as de-
scribed above, and one agent emulating the user. Each agent
becomes the environment from the perspective of the other
agent. The only difference in this test case is when the chat-
bot asks for clarifications or guesses the intent incorrectly,
the user does not select one of the five utterances randomly
but instead learns to select utterances which lead to higher
reward. The behavior of each agent is learned directly by
reinforcement from the sampled dialogues. Both agents aim
to maximize the same reward function. Thus, a cooperation
between the two agents is expected (Silver et al., 2018),
which may result in improved speed and coherence. The
multi-agent test case was created because in practice, a hu-
man user who regularly interacts with a chatbot tends to use
words that the chatbot understands better. That is, a human
user does not maintain a purely uniform and random choice
of words as emulated in test case 1.

In both test cases, a chatbot dialogue model is obtained
directly by learning from sampled dialogues. After train-
ing, it can be queried to select intents and prompts without
having to define heuristic rules. In this paper a simulated
environment was used, but after training the RL agent could
also continually explore and learn from real-world human
feedback (Christiano et al., 2017; Ouyang et al., 2022).

3.3. State Space

Any NLP encoder can be used to transform each utterance
sent by the user into a numerical vector, which in turn can
define a state st in the RL environment. A Word2Vec un-
supervised learning model (as implemented in (Gupta &
Khare, 2017)) was pre-trained on the entire corpus of the
interaction model to represent each word as a numerical em-
bedding vector. During a dialogue, the embedding vectors
computed in real time for every word in an utterance were

averaged to define a sentence-level embedding vector. Each
word embedding had 100 dimensions so each utterance was
also encoded by a vector of 100 dimensions after averaging
over all words in the utterance. A separate binary vector
stored which of the 6 slots had been filled in each dialogue
and was appended to the NLP embedding vector, resulting
in a RL state of 106 dimensions. This NLP encoding rep-
resents a simplified version of LLMs and will thus have
obvious semantic pitfalls, which the chatbot will need to
learn from and adapt to.

3.4. Action Space

The action space has two dimensions: at each step, the chat-
bot selects a core intent or the fallback intent, and prompts
the user to fill a slot or does not prompt the user for any slot.
The custom interaction model was defined by 6 core intents
and 6 possible slots across all intents (Appendix A) so the
action is defined as a vector of two integers (a, b), where a
is the selected intent and b is the selected slot. a and b can
take values between 0 and 6, where 0 corresponds to clar-
ification and no slot, respectively. As shown in Appendix
A, each core intent requires a specific combination of slots.
The navigation intent requires no slot at all.

3.5. Reward Function

The reward function aims at rewarding or penalizing the
agent when it takes an action to help the agent mitigate
multiple learning goals and identify an optimal dialogue
model. Each sub-goal is encoded by a specific component
in the reward function:

rt = λ1 r
1
t + λ2 r

2
t + λ3 r

3
t

where λ1, λ2, λ3 are weights (hyperparameters) which can
be fine-tuned to boost the impact of each term relative to one
another. As introduced in section 3.1, an optimal dialogue
model needs to be valid (r1t ), coherent (r2t ) and efficient (r3t ).
These three components are detailed below.

3.5.1. VALIDITY OF SELECTED INTENTS: r1t

The component r1t rewards the agent depending on whether
it identifies the correct intent. The agent can select either of
the 6 core intents, or fall back on the clarification intent. If
the agent guesses the user intent correctly, it receives a posi-
tive value (+5). If the agent guesses the intent incorrectly,
it receives a negative value (−5). If the agent falls back on
the clarification intent, it is neither rewarded nor penalized
by this component i.e., r1t = 0. The validity of the selected
intents is further reinforced at the end of each dialogue by a
large positive value (+10) if the intent has been fulfilled and
the number of steps is less than 10, or by a large negative
value (−10) otherwise.

3



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

3.5.2. COHERENCE OF SELECTED SLOTS: r2t

The component r2t rewards the agent depending on whether
it identifies the correct slots. The agent can prompt the user
for either of the 6 slots, or do not prompt the user for any
slot. If the agent identifies a valid slot during the dialogue
i.e., if it asks for slot-data required for fulfillment, it receives
a positive value (+5). In contrast, if the agent prompts the
user for slot-data not required for fulfillment, it receives a
negative value (−5). If the agent does not prompt the user
for any slot, it is neither rewarded nor penalized by this
component i.e., r2t = 0.

3.5.3. EFFICIENCY OF DIALOGUE: r3t

The component r3t systematically penalizes the agent by a
negative value −1 at every step of the dialogue, so the agent
is incentivized to close the dialogue quickly.

By simultaneously mitigating all three goals of validity, co-
herence and efficiency, the agent tries to minimize the time
it takes to identify the right intent and solicit slots required
to fulfill the intent. Given some utterances may be ambigu-
ous, the agent may fall back on the clarification intent, in
particular once it has learned that an utterance is frequently
mixed up between two different intents. For example, in
the current interaction model the intents /food/dessert and
/food/pizza may be easier to differentiate with utterances of
the forms Can you help me find some cake for dessert? vs.
I am looking for Italian pizza, than with the forms Open
the food module to find dessert vs. Open the food module
to find pizza. In parallel, given some slots are common to
multiple intents, the agent may explore original strategies
such as prompting the user for a particular slot (e.g., Are you
looking for pick up or delivery?) most likely to be needed
based on a given user utterance (Open the food module to
find ...), even though the utterance may be ambiguous and
require clarifications to determine the actual intent.

4. Results
The chatbot was trained by simulating interactions
(st, at, rt+1, st+1) with users, where each episode corre-
sponds to a dialogue between the user and the chatbot given
the user has chosen an intent. All RL simulations were
carried out using the proximal policy optimization (PPO)
algorithm for a total number of user-chatbot interactions
varying from 130,000 to 150,000 and representing a total
of 30,000 dialogues. Each simulation was repeated 3 times
and run on 36 CPUs using C5 9XL Amazon EC2 instances,
taking approximately 5h each. An efficient exploration of
state-action space was ensured by applying an ϵ-greedy
exploration schedule: a search over different ϵ-schedules
showed that linearly switching ϵ from 10% to 1% over the
first 60,000 interactions led to the best results.

4.1. Analysis of User-Chatbot Interactions in Dialogues
Simulated with RL

To evaluate the learning performance of the chatbot with an
adaptive RL dialogue model, the total accumulated reward
was computed for each dialogue. The accumulated reward
in a given dialogue measures how good the policy followed
in this dialogue was. Thus, when compared between dia-
logues (Fig.3) it measures the relative value of the policies
learned. Three independent trials of 30,000 dialogues were
produced to assess sensibility to the random ϵ-greedy explo-
ration schedule. Fig.3 suggests the RL chatbot dynamically
explores the custom interaction model and identifies a di-
alogue model that mitigates the multiple learning goals of
validity (identify the right intent), coherence (solicit rel-
evant slots), and efficiency. In all trials, the RL chatbot
transitions from a phase of random exploration in the first
10,000 episodes, where the accumulated reward ranges from
−120 to +20, to a phase (episodes 10,000 to 25,000) which
trades off exploitation of learned policies with partial explo-
ration: the accumulated reward is spread across a smaller
range of values and skewed toward higher values ranging
from −60 to +20. A third phase is then observed across the
final 5,000 dialogues where the accumulated reward ranges
almost exclusively from −40 and +20. This indicates that
the RL chatbot now systematically avoids certain behaviors
when interacting with the user.

Figure 3. Accumulated rewards across 3×30,000 dialogues sam-
pled with single-agent RL.

Table 1 shows the average proportion of successful dialogues
(i.e., intent fulfilled within 10 steps) and the average number
of steps in successful dialogues, per intent. Standard errors
in parentheses were computed over the three independent
trials shown in Fig.3. In the first 5,000 dialogues, 68% are
successful and these take > 4 interactions to complete on
average. In contrast, in the final 5,000 dialogues (phase 3 ob-
served in Fig.3), 99% are successful and these take at most 2
steps on average to infer the right intent. Fig.3 confirms that
sub-optimal policies are still occasionally followed. This
indicates that the RL chatbot has not yet fully converged by
the end of these simulations.

Appendix B shows a few examples sampled at the begin-
ning and at the end of the simulations. In some dialogues
observed in phase 3 of Fig.3, the chatbot was able to take

4



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

Table 1. Validity and efficiency of sampled dialogues.

SINGLE RL MULTI RL
0-5K 25-30K 0-5K 25-30K

% SUCCESS 68 (.8) 99 (.1) 67 (1.4) 100 (0)

NUMBER OF STEPS IN SUCCESSFUL DIALOGUES:
/NAVIGATION 4.1 (.2) 1.0 (.0) 4.1 (.1) 1.0 (.0)
/PIANO 4.2 (.1) 1.8 (.2) 4.1 (.1) 1.3 (.1)
/DENTIST 4.2 (.0) 1.6 (.2) 4.1 (.2) 1.3 (.0)
/PIZZA 4.1 (.1) 1.7 (.3) 4.3 (.0) 1.3 (.0)
/ADVIL 4.3 (.2) 1.7 (.3) 4.2 (.1) 1.3 (.0)
/DESSERT 4.4 (.1) 2.3 (.5) 4.3 (.1) 1.4 (.1)

the initiative to prompt the user for a valid slot even when
it felt back on asking the user for clarification of intent.
The chatbot has thus learned some original policies which
correctly infer slots required for fulfillment even when the
exact intent cannot yet be precisely determined. This strat-
egy spontaneously emerged by reinforcement learning and
allows the chatbot to be more efficient i.e., to complete a
dialogue with a smaller number of steps without sacrificing
validity and coherence.

4.2. Nash Equilibrium in Dialogues Simulated with
Multi-Agent RL

In this second test case, the chatbot and the user are both RL
agents. Multi-agent RL is an active field of research (Silver
et al., 2018; Vinyals et al., 2019). A key challenge is that
from the perspective of one agent, other agents are part of
the environment, making the environment non-stationary.
Metastable states can be tracked under particular condi-
tions known as the Nash equilibrium i.e., when competing
agents coexist in a shared environment and each agent lacks
incentive to further change its policy. For example, Alp-
haZero (Silver et al., 2018) was designed to reach a Nash
equilibrium in the games of Go and Chess by learning poli-
cies optimal when used by both players alternatively. After
millions of self-played games, the policies learned by Alp-
haZero on Go and Chess are optimal for both players. This
is possible because in a two-player game such as Go, each
agent tries to maximize a reward function which is perfectly
symmetric to the other agent’s reward function.

In this paper, the Nash equilibrium is even easier to reach
because both agents try to maximize the same reward func-
tion. That is, they both aim to make the dialogue more valid,
coherent and efficient. The only difference compared to the
single-agent test case is that the user is also an RL agent
whose action is to select an utterance within the subset of
five utterances defined for a given intent. As can be seen
in Fig.4, the adaptive RL dialogue model converges toward
optimal policies (reward in range −20 to +20) faster than

Figure 4. Accumulated rewards across 3×30,000 dialogues sam-
pled with multi-agent RL.

in the single-agent test case (Fig.3) where the user selects
utterances randomly. A second result observed in multi-
agent simulations is that 100% of the policies followed by
the end of the simulations have a reward ranging between
−20 and +20. The standard deviation observed in the final
5,000 dialogues is significantly smaller in Fig.4 compared to
Fig.3. Table 1 also reports that 100% of dialogues complete
successfully. Thus, the cooperation of the user has elimi-
nated the sub-optimal policies that were still occasionally
observed in the end of the single-agent simulations.

Table 1 also indicates a systematic improvement in effi-
ciency, for every intent. It takes 1.3 steps on average to
infer the right intent, compared to 1.8 steps on average in
single-agent simulations. This makes sense because when
the user sends utterances better understood by the chatbot,
the chatbot less often needs to ask for clarifications. Ap-
pendix B shows some examples of dialogues sampled at the
end of multi-agent simulations.

These results indicate that the RL agent has identified re-
producible policies to interact with the user and infer the
right intent (validity), solicit relevant slots (coherence), and
minimize the time it takes to fulfill intents (efficiency). The
resulting RL dialogue model can now be queried to select
intents and prompts.

5. Conclusion
Reinforcement learning was applied to optimize chatbot
fallback intent selections in user interactions sampled from
a custom interaction model. The chatbot converged to poli-
cies which fulfill intents in 99% of dialogues and identified
the correct intent in 1.8 steps on average. When the user
cooperated with the chatbot, the correct intent was identified
in 1.3 steps on average in 100% of dialogues sampled.

In addition to select between intents, the RL chatbot also
learned to fill in slots as fast as possible. In particular,
it identified an original strategy to increase the speed of
fulfillment without sacrificing coherence, by filling in some
valid slots even when the utterance is still too ambiguous to
determine the exact intent.

5



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

Any interaction model could be used to fine tune a dialogue
model that optimizes fallback intent selections by reinforce-
ment learning. Once trained, the RL agent can be queried to
select intents and prompts without defining heuristic rules.
An adaptive RL dialogue model can also continue to learn
from human feedback, in contrast to heuristics.

Future research will focus on identifying RL dialogue mod-
els in more complex interaction models, where optimizing
fallback policies for the chatbot to calibrate its own un-
certainty may reveal more challenging convergence issues.
When training the RL agent each episode was a dialogue be-
tween the user and the chatbot given the user had chosen an
intent. All intents were known and well-defined. But human
preferences have many facets including mixed and unclear
intents, and intents evolving in time. Teaching an RL agent
to fall back on clarifications based on clearly defined intents
may not generalize well to environments where the user
intent can be mixed and unclear. Measuring performance in
such environment will also be challenging.

A cooperation was observed between the users and the chat-
bot, which in turn led to better dialogues. In practice, a
human user who regularly interacts with a chatbot does not
maintain a random choice of words as emulated in the single-
agent test case. Instead, a human tends to use words that the
chatbot understands better, as emulated in the multi-agent
test case. This is because a human never sample decisions
from a purely uniform random distribution. In other words a
human is not a robot: a human speaker has been conditioned,
through evolution and a lifetime of reinforcement, to adapt
utterances when it is self-beneficial to do so.

These results demonstrate that RL can be combined with
LLMs specifically to learn when best to fall back on the
clarification intent, and can replace heuristics to develop
adaptive dialogue models.

References
AWS. Amazon lex v2 developer guide. Technical report,

Amazon Web Services, 2023.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Gupta, S. and Khare, V. Blazingtext: Scaling and accelerat-
ing word2vec using multiple gpus. In Proceedings of the
Machine Learning on HPC Environments, pp. 1–5, 2017.

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and
Levine, S. How to train your robot with deep reinforce-
ment learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain,
D., Perez, E., Schiefer, N., Dodds, Z. H., DasSarma, N.,
and Tran-Johnson, E. Language models (mostly) know
what they know. arXiv preprint arXiv:2207.05221, 2022.

Kumar, A., Gupta, A., Chan, J., Tucker, S., Hoffmeister, B.,
Dreyer, M., Peshterliev, S., Gandhe, A., Filiminov, D.,
and Rastrow, A. Just ask: building an architecture for
extensible self-service spoken language understanding.
arXiv preprint arXiv:1711.00549, 2017.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and
Jurafsky, D. Deep reinforcement learning for dialogue
generation. arXiv preprint arXiv:1606.01541, 2016.

Lin, S., Hilton, J., and Evans, O. Teaching models
to express their uncertainty in words. arXiv preprint
arXiv:2205.14334, 2022.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., and
Ray, A. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. Deep
reinforcement learning framework for autonomous driv-
ing. arXiv preprint arXiv:1704.02532, 2017.

Serban, I. V., Sankar, C., Germain, M., Zhang, S., Lin, Z.,
Subramanian, S., Kim, T., Pieper, M., Chandar, S., and
Ke, N. R. A deep reinforcement learning chatbot. arXiv
preprint arXiv:1709.02349, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., and Lillicrap, T. A general reinforcement learning
algorithm that masters chess, shogi and go through self-
play. Science, 362(6419):1140–1144, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., and Georgiev, P. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Wu, X., Chen, H., Wang, J., Troiano, L., Loia, V., and
Fujita, H. Adaptive stock trading strategies with deep
reinforcement learning methods. Information Sciences,
538:142–158, 2020.

6



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

INTENT CORRESPONDING SLOTS

/NAVIGATION NO SLOT
/TUTOR/PIANO LOCATION, AGE, GENDER, WHEN, HOW OFTEN
/DOCTOR/DENTIST LOCATION, WHEN
/PHARMACY/ADVIL LOCATION, WHEN, HOW OFTEN, PICKUP OR DELIVERY
/FOOD/PIZZA WHEN, PICKUP OR DELIVERY
/FOOD/DESSERT WHEN, PICKUP OR DELIVERY
/CLARIFICATION NO SLOT

A. Appendix A.
Map of intents and slots in the custom interaction model used in this paper. The complete JSON file mapping all utterances
and prompts to all intents and slots (resulting in approximately 1230 possible combinations of utterances and prompts for
the RL agent to explore i.e., 7 intents × 5 utterances × 7 slots × 5 prompts) is available upon request to the author.

7



Optimizing Chatbot Fallback Intent Selections with Reinforcement Learning

B. Appendix B.
Sample of user-chatbot interactions before training (a), after an optimal dialogue model has been identified by single agent
RL (b, c), and after an optimal dialogue model has been identified by multi-agent RL (d, e). The validity of every action
taken at every step by the chatbot is shown above each sampled dialogue.

8


