
Published in Transactions on Machine Learning Research (05/2023)

Generating Teammates for Training Robust Ad Hoc
Teamwork Agents via Best-Response Diversity

Arrasy Rahman arrasy@cs.utexas.edu
Department of Computer Science
University of Texas at Austin

Elliot Fosong e.fosong@ed.ac.uk
School of Informatics
University of Edinburgh

Ignacio Carlucho ignacio.carlucho@ed.ac.uk
School of Informatics
University of Edinburgh

Stefano V. Albrecht s.albrecht@ed.ac.uk
School of Informatics
University of Edinburgh

Reviewed on OpenReview: https: // openreview. net/ forum? id= l5BzfQhROl

Abstract

Ad hoc teamwork (AHT) is the challenge of designing a robust learner agent that effectively
collaborates with unknown teammates without prior coordination mechanisms. Early ap-
proaches address the AHT challenge by training the learner with a diverse set of handcrafted
teammate policies, usually designed based on an expert’s domain knowledge about the policies
the learner may encounter. However, implementing teammate policies for training based
on domain knowledge is not always feasible. In such cases, recent approaches attempted to
improve the robustness of the learner by training it with teammate policies generated by
optimising information-theoretic diversity metrics. The problem with optimising existing
information-theoretic diversity metrics for teammate policy generation is the emergence
of superficially different teammates. When used for AHT training, superficially different
teammate behaviours may not improve a learner’s robustness during collaboration with
unknown teammates. In this paper, we present an automated teammate policy generation
method optimising the Best-Response Diversity (BRDiv) metric, which measures diversity
based on the compatibility of teammate policies in terms of returns. We evaluate our
approach in environments with multiple valid coordination strategies, comparing against
methods optimising information-theoretic diversity metrics and an ablation not optimising
any diversity metric. Our experiments indicate that optimising BRDiv yields a diverse set
of training teammate policies that improve the learner’s performance relative to previous
teammate generation approaches when collaborating with near-optimal previously unseen
teammate policies.

1 Introduction

Ad hoc teamwork (AHT) is the challenging problem of creating a single agent, called the learner, which can
robustly collaborate with a set of unknown teammates without prior coordination mechanisms (Stone et al.,
2010; Mirsky et al., 2022). Although teammates in AHT are assumed to be working together to achieve a
common goal, they may exhibit different behaviours or assume different roles in the team. Attaining optimal

1

https://openreview.net/forum?id=l5BzfQhROl

Published in Transactions on Machine Learning Research (05/2023)

A B

(a) Superficially different generated team-
mate policies with high trajectory diversity.

A B

(b) Generated teammate policies
by optimizing best-response di-
versity.

Figure 1: Improving learner robustness by reducing superficial differences between generated
teammates. Figures 1a and 1b show an illustrative example of training an AHT learner with different sets of
generated teammate policies. In this example, the learner (red dot) and its teammate (blue dot) must move
to the same landmark (green rectangles) to get rewarded. Following the larger variation within the trajectory
generated by different policies (blue arrow), Figure 1a shows teammate policies with higher trajectory
diversity. At the same time, the illustrated policies also contain high superficial differences since a common
best-response policy can effectively deal with each policy. Training a reward-maximising learner against
teammates from Figure 1a will result in a learner that only moves towards landmark A, which will cause the
learner to produce highly suboptimal returns when dealing with teammates moving towards landmark B.
Meanwhile, Figure 1b shows teammate policies with fewer superficial differences, whose trajectories require
two best-response policies corresponding to the movement towards landmarks A and B. An AHT learner
trained with these teammates will learn to follow their teammate to any landmark. This is symbolised by the
red arrows pointing to landmark A and B. Figure 1a and 1b illustrate how reducing superficial differences
between teammate policies intended for AHT training can improve the learner robustness, indicated by the
learner’s ability to achieve high returns when collaborating with a broader range of teammates.

collaboration with teammates with different policies and roles may require the learner to use distinct policies.
To solve AHT’s challenge of optimal collaboration with unknown teammates, a robust AHT learner must
then adapt its policy based on the teammates’ displayed behaviour and the current team composition.

Prior AHT approaches train a learner by allowing it to interact with different teammates during training.
These interaction experiences are utilised to approximate the best-response policy to each teammate by
means of reinforcement learning. The best-response policy to each encountered teammate enables the learner
to maximise its returns when collaborating with that particular teammate. Alongside the best-response
policies, AHT approaches identify unique characteristics that differentiate the teammates’ behaviour. The
learner then decides its action at evaluation time by initially inferring whether the unknown teammates’
behaviour displays specific characteristics identified during training. Based on their identified characteristics,
a learner approximates the optimal policy for collaborating with unknown teammates by generalising the
best-response policies learned for teammates encountered in training. Existing AHT approaches often
use policy mixtures (Albrecht et al., 2016; Barrett et al., 2017) or neural networks (Rahman et al., 2021;
Papoudakis et al., 2021a; Zintgraf et al., 2021) as generalisation models that extrapolate the best-response
policies designed for training teammates towards new teammates with unknown policies.

Following its importance for AHT training, designing a diverse collection of teammate policies is crucial for
training a robust learner. Careful design of such a collection is especially required in problems where there
are different possible teammate policies which require different best-response policies. Failure to identify the
teammate policies requiring different best-response policies for AHT training can cause the learner to be less
robust. A learner’s lack of robustness stems from existing AHT approaches only learning the best-response
policy to teammates encountered during training. The learner’s returns are more likely to be suboptimal
when paired with teammates whose best-response policies are not learned during training. Although its
generalisation model alleviates this problem, training a learner to collaborate with all teammate policies
requiring different best-response policies remains a more reliable way to improve its robustness.

2

Published in Transactions on Machine Learning Research (05/2023)

Previous approaches for designing teammate policies for AHT training fall into two categories. First, early
AHT approaches (Albrecht & Ramamoorthy, 2013; Barrett et al., 2014; Albrecht et al., 2016; Barrett et al.,
2017) formulate training teammate policies based on experts’ knowledge regarding reasonable teammate
behaviours an agent may encounter in an environment. Second, more recent AHT approaches (Xing et al.,
2021; Lupu et al., 2021; Lucas & Allen, 2022) generate diverse teammate policies by optimising information-
theoretic diversity metrics, which encourage an increased difference of the trajectory or action distribution
between generated teammate policies.

In terms of facilitating the emergence of robust learners through AHT training, existing teammate policy
generation methods face significant problems. Methods that rely on an expert’s domain knowledge to
formulate reasonable teammate policies have limited applicability since such knowledge is often unavailable
or difficult to elicit in many real-world AHT problems. Meanwhile, teammate generation methods that
maximise information-theoretic metrics may produce teammates with distinct trajectory distributions despite
having the same best-response policy (Lupu et al., 2021). We refer to differences between these teammate
policies that the same best-response policy can optimally deal with as superficial differences. Teammates
with superficial differences are redundant for improving robustness because training with them will encourage
AHT learners to learn the same optimal policy. In a typical teammate generation process where only a
finite number of teammates can be generated, such redundancy should be reduced to encourage learners to
become more robust by instead learning a broader range of best-response policies during training. We further
illustrate this need to reduce superficial differences between generated teammate policies in Figure 1.

In this work, we present a teammate generation method which discourages the emergence of teammate
policies with superficial differences by optimising a diversity metric called Best-Response Diversity (BRDiv)1.
Instead of assessing diversity in terms of information-theoretic measures, BRDiv measures diversity based on
returns. To compute diversity, we measure the returns obtained from pairing any policy in the set of generated
policies (Πtrain) with policies from the set of best-responses to Πtrain, defined as BR(Πtrain). We empirically
demonstrate that BRDiv prevents the emergence of teammate policies with superficial differences in their
behaviour. This improvement is achieved by optimising the best-response policy for a teammate policy to
produce low returns when collaborating with other teammate policies. The BRDiv metric can be optimised
using off-the-shelf MARL techniques to produce teammate policies with minimal superficial differences. Our
experiments compare the returns of a learner trained with teammate policies generated by BRDiv, previous
teammate generation approaches based on action and trajectory diversity maximisation (Lupu et al., 2021;
Lucas & Allen, 2022), and an ablation of BRDiv that trains teammates’ policies independently. We empirically
demonstrate the robustness of a learner trained with teammate policies generated by BRDiv, by showing
that it achieves higher returns than other evaluated baselines when paired against near-optimal previously
unseen teammate policies.

2 Related Work

Ad Hoc Teamwork (AHT). AHT was defined as a formal challenge of developing a learner capable of
collaborating with unknown teammates by Stone et al. (2010). Since then, previous works (Mirsky et al., 2022)
have explored AHT under different application areas and alternative names, such as zero-shot coordination
(ZSC) (Hu et al., 2020) which explores AHT in problems where unknown teammates are optimal agents
optimising the same reward function as the learner. Many of these works utilise type-based methods (Albrecht
et al., 2016; Barrett et al., 2017; Albrecht & Stone, 2018; Rahman et al., 2021; 2022). A limitation of
type-based approaches is that they assume access to predefined teammate policies for learning. This entails
the manual specification of all possible types, which is often an infeasible process. Our work seeks to bridge
this gap by providing ways to automatically generate teammates.

Multi-agent Reinforcement Learning (MARL). The objective of MARL is to jointly train a set of
agents to maximise their returns in the presence of each other (Papoudakis et al., 2021b; Zhang et al., 2021).
Unlike ad hoc teamwork, these methods assume full control of all members of the team. Current methods
in the literature have shown great success in solving complex tasks (Vinyals et al., 2019; Christianos et al.,
2021), and have been shown to be able to adapt to novel tasks (Schäfer et al., 2022). However, a drawback of

1Implementation code is provided here: https://github.com/uoe-agents/BRDiv

3

https://github.com/uoe-agents/BRDiv

Published in Transactions on Machine Learning Research (05/2023)

joint training is that the resulting agents have low performance when interacting with agents that are not
encountered during the joint training process (Vezhnevets et al., 2020; Hu et al., 2020; Rahman et al., 2021).

Teammate Policy Generation. Diverse teammate policy generation has been previously explored in
problems that are closely related to AHT, such as in zero-shot coordination (ZSC) (Hu et al., 2020). Several
works in this area formulate diversity in terms of information-theoretic measures defined over the generated
policies’ trajectories (Xing et al., 2021; Lupu et al., 2021; Lucas & Allen, 2022). Despite its prevalence,
previous works (Lupu et al., 2021; Liu et al., 2021) highlighted that training with teammates generated
by trajectory diversity-based methods does not always lead to improved learner’s robustness, which we
also demonstrate through our experiments. This is because many teammate behaviours producing distinct
trajectories entail the same learner’s best-response policy. While Liu et al. (2021) also proposed an approach
based on the best-response policies’ performance, their approach is limited to zero-sum games.

Diversity in Reinforcement Learning. In single-agent reinforcement learning, diversity maximisation is
mainly utilised as a way for agents to increase exploration (Pathak et al., 2017; Hong et al., 2018; Parker-Holder
et al., 2020) or discover reusable skills (Eysenbach et al., 2019). For example, Eysenbach et al. (2019) proposed
a method to learn a diverse set of reusable skills by only maximising an information-theoretic objective.
Similarly, in multi-agent reinforcement learning (MARL), works such as MAVEN (Mahajan et al., 2019),
have aided exploration by maximising a mutual-information metric between the trajectories and a latent
space. Another recent work also utilised reward randomisation to achieve diverse behaviours in multi-agent
settings (Tang et al., 2021). As another application of diversity optimisation in RL, Li et al. (2021) proposed
a method optimising an information-theoretic objective to facilitate agents’ specialisation towards a diverse
range of roles for solving a MARL problem. Note that unlike when inducing diversity for teammate policy
generation, these techniques are not designed to create a diverse set of teammates to improve the robustness
of a learner.

Population-based Training (PBT). Our method aims to train a population of agent policies that optimise
a specific metric, similar to existing works on population-based training. Population based training was
proposed by Jaderberg et al. (2017) as a way to speed up the optimisation process of neural networks.
This asynchronous algorithm jointly optimises a population of models and their respective hyperparameters,
through an alternating process of parallel training and hyperparameter tuning. Further work from Li et al.
(2019) then introduced a framework that enables population-based training in more general settings. Unlike
our method which optimises the diversity of the entire population, note that PBT methods optimise an
objective function defined over a single individual. PBT then uses its population of agents to iteratively
generate new population members having more optimal objective function values, which is different from our
method’s use of MARL techniques for optimisation.

3 Background and Setting

In this section, we formalises the problem of teammate policy generation. We first start by formalising
the interaction between agents in our AHT problem. We then provide details on the main objective of a
teammate generation process given our previous formulation of agents’ interaction.

3.1 Decentralised Partially Observable Markov Decision Process

We model the interaction between agents in a AHT environment as a decentralised partially observable
Markov decision process (Dec-POMDP) (Bernstein et al., 2002). Dec-POMDPs are formally defined as an
8-tuple, ⟨N, S, {Ai}|N |

i=1, P, R, {Ωi}|N |
i=1, O, γ⟩. Within a Dec-POMDP, N , S, and γ denote the set of agents,

state space, and discount rate, respectively. Ai and Ωi represent the action and observation space of agent i,
respectively. The transition function of a Dec-POMDP is denoted by P : S ×A1 × · · · × A|N | 7→ ∆S, where
∆S represents the set of all possible probability distributions over S. Similarly, the reward function is denoted
by R : S ×A1 × · · · × A|N | 7→ R, and the observation function as O : S 7→ ∆(Ω1 × · · · × Ω|N |).

Each episode in a Dec-POMDP starts from an initial state, s0 ∈ S. At timestep t, each agent i ∈ N receives
an observation oi

t ∼ O(st) and selects an action ai
t according to its policy πi(Hi

t), which is conditioned on its
observation-action history Hi

t =
{

oi
≤t, ai

<t

}
containing the sequence of observation and actions observed up to

4

Published in Transactions on Machine Learning Research (05/2023)

timestep t. Agents then jointly execute their selected action in the environment. After execution of the joint
action at, the state of the environment changes according to the transition function st+1 ∼ P (st, at), and
each agent is rewarded with R(st, at). This reward is common to all agents due to the cooperative nature of
AHT problems.

3.2 Teammate Policy Generation

A teammate generation process aims to design a set of K teammate policies, Πtrain = {π1, π2, . . . , πK},
that when being used for AHT training maximises the robustness of the learner. Formalising this goal as
a quantitative learning objective requires a measure of robustness for a given Dec-POMDP. Once such a
robustness measure is formally defined, a learning objective can be formulated by defining how the generated
teammate training policies affect the learner’s robustness.

We characterise a learner policy as robust if it achieves high returns when collaborating with teammates
from an unknown evaluation set, Πeval. Given a Dec-POMDP where the learner is assigned a fixed index
i ∈ N during the teammate generation, AHT training, and AHT evaluation process, our proposed measure of
robustness is defined below:

MΠeval(πi) = Eπ−i∼U(Πeval),ai
t∼πi,a−i

t ∼π−i, P,O

[∞∑
t=0

γtR(st, at)
]

, (1)

with at = ⟨ai
t, a−i

t ⟩, πi, U(X) and π−i denote agents’ joint action, the policy of the learner, a uniform
distribution over a set X and the joint policy of the |N | − 1 agents other than the learner respectively. It is
important to note that Πeval in Equation 1 may consist of policies not encountered during AHT training,
highlighting the need for a robust learner for effective collaboration.

Since the proposed measure of robustness depends on the set of policies in Πeval, we outline assumptions
regarding the policies that can appear in Πeval. As formulated by Stone et al. (2010), we assume that Πeval

consists of feasible teammate policies. For π−i to be considered feasible, there must be a policy πi that can
achieve expected returns above an expert-defined threshold when collaborating with π−i. Note that this
threshold can be decreased if we want to increase the number of feasible policies considered in Πeval. Similar
to the motivation behind its definition by Stone et al. (2010), the feasibility criteria behind π−i ∈ Πeval reflects
how encounters with highly suboptimal teammate policies that no one can collaborate with is improbable in
many practical applications of AHT.

As the missing piece to formalise the goal of the teammate generation process, we now define how Πtrain

affects the robustness of a learner produced by AHT methods based on MΠeval . Given an AHT method to
train a learner, Πtrain is utilised to learn an optimal AHT policy, π∗,i(Πtrain) that maximises the expected
returns of the learner when collaborating with teammates from Πtrain. Given a Dec-POMDP, the optimal
policy given Πtrain is defined below:

π∗,i(Πtrain) = argmax
πi

Eπ−i∼U(Πtrain),ai
t∼πi,a−i

t ∼π−i, P, O

[∞∑
t=0

γtR(st, at)
]

. (2)

Later during the AHT evaluation process, π∗,i(Πtrain) is the policy whose robustness when collaborating with
teammates from Πeval will be measured.

Based on the definition of π∗,i(Πtrain), the goal of a teammate generation process is to find an optimal set of
training teammates, Π∗,train, that maximises the robustness of an AHT agent. Given a Dec-POMDP and an
unknown Πeval, Π∗,train is formally defined as:

Π∗,train = argmax
Πtrain

MΠeval
(
π∗,i(Πtrain)

)
. (3)

While setting Π∗,train = Πeval provides an optimal solution to the above objective, note that the teammate
generation problem operates in a setup where Πeval is unknown during training. Therefore, the main challenge
in the teammate generation problem arises as a result of optimising for Π∗,train without knowing Πeval.

5

Published in Transactions on Machine Learning Research (05/2023)

Shared critic

Self-play interaction Cross-play interaction

Maximised via MAA2C Maximised via MAA2C

Critic Loss

Minimised via MAA2C

Cross-play matrix

Shared critic

Figure 2: Teammate Generation By Optimising BRDiv. This figure visualises our teammate generation
method assuming that we are generating |Πtrain| = 3 for AHT environments with two players. Our method
utilises MAA2C (Papoudakis et al., 2021b) to generate a set of teammates that maximises the BRDiv
diversity metric. The MAA2C algorithm trains a separate actor network (purple rectangles) to represent the
policies of each generated teammate, πj ∈ Πtrain, and their associated best-response policies, π−j . Assuming
πj , πk ∈ Πtrain, a shared critic network (green box) is trained to estimate expected returns from the interaction
between any possible pairs of (πj , π−k). The shared critic network’s return estimates for all pairs are then
compiled into a cross-play matrix (blue bordered box), which serves as a basis to compute the BRDiv diversity
metric (red box). Finally, a diverse Πtrain is produced by optimising the actor networks to maximise the
cross-play matrix-based BRDiv metric by minimizing the actor loss outlined in Equation 9.

4 Best-Response Diversity Metric

This section provides the details of Best-Response Diversity (BRDiv), the diversity metric that is optimised
by our teammate generation method. Section 4.1 starts by outlining a desirable characteristic for Πtrain, a
set of teammates policies generated for AHT training. Section 4.2 then formally defines BRDiv as a diversity
metric optimised by our teammate generation approach to encourage the creation of a desirable Πtrain.

4.1 Desirable Diversity for AHT

A good diversity metric to generate Πtrain must consider the effect of Πtrain on a learner’s learning process
and their robustness when collaborating with policies from Πeval. Current AHT methods train a learner to
model the encountered teammates and approximate the best-response to each teammate policy in Πtrain by
optimising Equation 2. Although generalisation models used by AHT methods can alleviate this issue, a
learner is less likely to achieve high returns when collaborating with πeval ∈ Πeval whose best-response policy,
π∗ is different to the best-response policy to any πtrain ∈ Πtrain. The adverse effects of encountering πeval

whose best-response is never learned during training is why setting Πtrain = Πeval is the ideal solution to
maximise learner robustness as defined by Equation 3. However, we often do not know what Πeval is.

Without knowledge regarding Πeval, a way to improve a learner’s robustness is to increase the number of
best-response policies that it learns from interacting with πtrain ∈ Πtrain. This idea intuitively aims to reduce
the likelihood of a learner being unprepared by not knowing how to best respond to an unknown teammate.
Increasing the number of best-response policies learned during training is equivalent to reducing superficial
differences between generated teammates, as illustrated in Figure 1.

Our teammate generation method aims to reduce the appearance of redundant policies for AHT training in
Πtrain, characterised by their superficial differences. Teammates with superficial differences are indicated by

6

Published in Transactions on Machine Learning Research (05/2023)

their common best-response policies. Assuming a sufficiently small number ϵ, a pair of policies πi, πj ∈ Πtrain

are formally deemed to be superficially different if they share the same best-response policy as defined below:

πi ̸= πj ∧

∣∣∣∣∣Ea1
t ∼πi,a2

t ∼π−i, P, O

[∞∑
t=0

γtR(st, at)
]
− Ea1

t ∼πi,a2
t ∼πj , P, O

[∞∑
t=0

γtR(st, at)
]∣∣∣∣∣ ≤ ϵ,

with at = ⟨a1
t , a2

t ⟩ and π−i being the best-response policy to πi defined as:

π−i = argmax
π

Ea1
t ∼πi,a2

t ∼π, P, O

[∞∑
t=0

γtR(st, at)
]

.

Through the interaction with each πj from Πtrain with minimal superficial differences, the learner will learn
as many best-response policies possible to interact with a possible teammate. This equips the learner with a
more comprehensive library of behaviours to effectively collaborate with any teammate policy. Consequently,
the learner’s robustness should improve by reducing the likelihood of it having no adequate strategies to
effectively collaborate with an unknown teammate from Πeval.

4.2 BRDiv Metric

Following our desired characteristic of a diversity metric, this section defines a diversity metric that can be
maximised to generate Πtrain with minimal superficial differences between the generated teammates. The
description of BRDiv assumes that only two agents exist in the environment. Assuming a Dec-POMDP where
a learner is assigned a fixed index from N during teammate generation, AHT training, and AHT evaluation,
extending our proposed diversity metric and optimisation method to environments with more than two agents
is straightforward.

BRDiv aims to generate a set of diverse policies for AHT training, Πtrain = {π1, π2, ..., πK}, where similar
best-response policies cannot be used to effectively collaborate with different generated teammate types from
Πtrain. Therefore, defining a metric that quantifies the effectiveness of two agents’ policies when collaborating
with each other is a crucial first step in formulating our diversity metric. We measure the effectiveness of two
policies when collaborating via their expected returns, which is inspired by our notion of robust collaboration
introduced in Section 3.2. Assuming that agent j and k are interacting with each other based on policies,
πj(aj |Hj

t) and πk(ak|Hk
t), that are conditioned on their respective observation-action history Hj

t and Hk
t ,

this return-based effectiveness measure is defined as:

Vj,k(Hj
t , Hk

t) = Eaj
T

∼πj ,ak
T

∼πk

[∞∑
T =t

γT −tR(sT , aT ⟩)
∣∣∣∣Hj

t , Hk
t

]
. (4)

This history-conditioned return-based effectiveness measure provides a foundation for defining an optimised
diversity metric to achieve the goal of BRDiv. Denoting the best-response policy to πk by π−k,∗, and the set of
best-response policies to each policy in Πtrain by BR(Πtrain), we use Equation 4 to evaluate the effectiveness of
π−k,∗ ∈ BR(Πtrain) when collaborating with πj ∈ Πtrain. Given a pair of observation-action histories, H1

t and
H2

t , we arrange the measured cooperative effectiveness between all possible (πj , π−k,∗) ∈ Πtrain × BR(Πtrain)
into a K ×K cross-play matrix, CΠtrain,BR(Πtrain)(H1

t , H2
t). Elements of this cross-play matrix are defined as:

∀j, k ∈ {1, 2, ..., K}, C
Πtrain,BR(Πtrain)
j,k (H1

t , H2
t) = Vj,(−k,∗)(H1

t , H2
t). (5)

In this work, the way we compute C
Πtrain,BR(Πtrain)
j,k (H1

t , H2
t) and assemble it into the cross-play matrix are

illustrated by the blue arrows and table in Figure 2.

The BRDiv metric is based on the intuition that a good Πtrain to ensure the learner’s robustness must possess
two characteristics. First, the cross-play matrix of Πtrain must have high values on its diagonal elements to
ensure that each πj ∈ Πtrain interacts effectively with its associated best-response policy, π−j ∈ BR(Πtrain).
This characteristic also prevents the emergence of teammate policies producing low returns, which no

7

Published in Transactions on Machine Learning Research (05/2023)

reward-optimising agent would have a reason to use in an environment. Second, the off-diagonal elements of
CΠtrain,BR(Πtrain) must also have low values to discourage a best-response policy π−j ∈ BR(Πtrain) from being
effective for collaborating with πk ∈ (Πtrain − {πj}). By optimising the incompatibility of a best-response
policy when dealing with other policies in Πtrain, we aim to induce the need for different collaboration
strategies to deal with each policy in Πtrain.

Based on these two characteristics, we define our diversity metric as:

BRDiv(Πtrain, (H1
t , H2

t)) = Tr
(

CΠtrain,BR(Πtrain)(H1
t , H2

t)
)

+
∑

i,j∈{1,...,K},
i ̸=j

(
C

Πtrain,BR(Πtrain)
i,i (H1

t , H2
t)− C

Πtrain,BR(Πtrain)
i,j (H1

t , H2
t)
)

+
∑

i,j∈{1,...,K},
i ̸=j

(
C

Πtrain,BR(Πtrain)
i,i (H1

t , H2
t)− C

Πtrain,BR(Πtrain)
j,i (H1

t , H2
t)
)

.

(6)

The maximisation of the first term in Equation 6 enforces the first characteristic. Meanwhile, maximising
the remaining terms produces a cross-play matrix with low off-diagonal values, encouraging the generated
policies to fulfil the previously mentioned second desired characteristic.

5 Maximising BRDiv with Multi-Agent Reinforcement Learning

We now describe an optimisation technique that maximises BRDiv to generate Πtrain. Although a wide
range of multi-agent RL algorithms can be used to maximise BRDiv, we propose an optimisation technique
based on the Multi-Agent A2C (MAA2C) algorithm (Papoudakis et al., 2021b) due to the straightforward
modifications required to utilise it for maximising BRDiv. We use the centralised critic of MAA2C to estimate
the elements of the cross-play matrix defined in Equation 5. Meanwhile, the policies in Πtrain alongside
their associated best-response policies in BR(Πtrain) are treated as actors that MAA2C trains. A detailed
pseudocode of our MARL-based diversity optimisation technique is provided in Algorithm 1 in Appendix C.
A visualisation that summarises our proposed teammate generation method is also provided in Figure 2.

Data Collection. Before each update to the actors and centralised critic, we separately collects two types
of interaction data for training. First, we collect self-play experiences where we let a policy, πk ∈ Πtrain,
interact with its associated best-response policy, π−k ∈ BR(Πtrain). The second type of data is cross-play
experiences which we collect by letting a policy, πj ∈ Πtrain, interact with the best-response policy of a
different policy, π−k ∈ BR(Πtrain − {πj}). Both self-play and cross-play interaction data are then stored in
separate storage denoted by DSP and DXP respectively. Note that assuming we also record the identity of
the agents generating the experience, which is j and −k, each experience stored in the storage is then defined
as a 7-tuple, ⟨(H1

t , H2
t), aj

t , a−k
t , {Rt}, (H1

t+1, H2
t+1), j,−k⟩ with H1

t and H2
t denoting the observation-action

history from using policies πj and π−k up to timestep t. After the models are updated, DSP and DXP are
emptied and new self-play and cross-play interaction data are collected for the subsequent update.

Actor and Centralised Critic Architecture. As we mentioned at the beginning of Section 5, the actors
in our optimisation method correspond to the generated teammate policies in Πtrain and their associated
best-response policies. For each πi ∈ (Πtrain ∪ BR(Πtrain)), this policy is represented as a neural network
parameterised by θi. In the remainder of our description of BRDiv, note that we denote the set of actor
parameters from Πtrain ∪ BR(Πtrain) as Θ.

Like the actor networks, the centralised critic used in this optimisation process is also implemented as a neural
network. The centralised critic network is specifically responsible for estimating elements of the cross-play
matrix, CΠtrain,BR(Πtrain), based on Equation 5. As shown in Figure 2, the shared critic network input consists
of a sequence of observation-action history from both players in the environment. In the remainder of this
document, note that we drop Πtrain as parameters to the cross-play matrix since evaluating each element of
this matrix at row i and column j does not involve πi and π−j,∗. Instead, we evaluate V ϕ

i,−j(Hi
t , H−j

t) by also
concatenating a one-hot identification of i and −j to the centralised critic’s input as indicated by Figure 2.

8

Published in Transactions on Machine Learning Research (05/2023)

Learning Objective. The centralised critic network is trained to minimise the n-step return loss. As in
many deep RL methods, we incorporate a target critic network parameterised by ϕ̄ to compute the target
values for the critic network. Using the collected experiences from DSP and DXP, the centralised critic loss
function is defined below:

Lϕ(DSP,DXP) =
∑

DSP∪DXP

1
2

(
V ϕ

i,−j(H1
t , H2

t)−
n−1∑
k=0

γkRt+k − γnV ϕ̄
i,−j(H1

t+n, H2
t+n)

)2

. (7)

Given a stored experience from DSP or DXP, the actor networks in Πtrain and BR(Πtrain) are trained to
maximise the BRDiv-based advantage function, Aϕ

i,−j(H1
t , H2

t , {Rt+k}n−1
k=0 , H1

t+n, H2
t+n), defined below:

BRDiv(Cpred,ϕ
i,−j (H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t , H2

t))− BRDiv(Cbase,ϕ(st)). (8)

In the above expression, Cpred,ϕ
i,−j (H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t , H2

t) is a cross-play matrix which has its entry at
row i and column j replaced by an n-step return estimate resulting from the interaction between πi and π−j .
Meanwhile, Cbase,ϕ(st) is a baseline cross-play matrix whose elements only depend on H1

t and H2
t .

Similar to its role in the optimisation process of methods based on A3C (Mnih et al., 2016), we use an
n-step return-based estimate for one of the elements of this cross-play matrix to reduce the bias of gradients
associated with the actor loss updates, which is a commonly used method in single-agent actor-critic methods.
We then subtract a baseline function from the n-step return estimates to reduce the variance of the gradient
updates for the actor networks. Finally, note that our n-step advantage function estimate highly resembles
the advantage function in MAA2C (Papoudakis et al., 2021b), except that we define the advantage function
in terms of the best-response diversity of cross-play matrices.

Given stored experiences from DSP and DXP, this results in the use of the following loss function to optimise
the actor networks:

Lθ(DSP,DXP) =
∑

DSP∪DXP

(
− log

(
π(ai

t|H1
t ; θi)π(a−j

t |H2
t ; θ−j)

)
Aϕ

i,−j(H1
t , H2

t , {Rt+k}n−1
k=0 , H1

t+n, H2
t+n)

)
,

(9)

where,

Cpred,ϕ
i,−j,p,q(H1

t , H2
t , {Rt+k}n−1

k=0 , H1
t+n, H2

t+n) =
{

V ϕ
p,−q(H1

t , H2
t), if (p, q) ̸= (i, j)∑n−1

k=0 γkRt+k + γnV ϕ
i,−j(H1

t+n, H2
t+n), otherwise

Cbase,ϕ
m,n (H1

t , H2
t) = V ϕ

m,−n(H1
t , H2

t), (10)

are the crosss-play matrices computed to evaluate the advantage function as defined in Equation 8. This
objective function that multiplies agents’ actions log-likelihood with the advantage function is similar to how
actor networks are trained in MAA2C. Minimising Equation 9 updates the actor networks to encourage the
emergence of actor networks that assign higher probabilities towards actions leading to trajectories with
higher BRDiv values.

6 Experiments

We evaluate the effectiveness of BRDiv in improving the robustness of an AHT learner when dealing with
previously unseen teammate types. First, we provide details of the environments used in our teammate
generation experiments in Section 6.1. This is followed by an overview of our experiments’ AHT training
and evaluation process in Section 6.2. Section 6.3 then details the baseline approaches we compare BRDiv
against. We then present and analyse the results of the teammate generation experiments in Section 6.4.
Finally, Section 6.5 analyses the behaviours of teammate types generated by BRDiv.

9

Published in Transactions on Machine Learning Research (05/2023)

0.75 1

1 0.75

(a) Cooperative Reaching.

(b) Level-Based Foraging.

(c) Simple Cooking.

Figure 3: Environments for Teammate Generation Experiments. Figure 3a visualizes an example
state of the Cooperative Reaching environment. In this visualisation, the red circle, blue circle, and grids
with texts denote the teammate, learner, and reward-providing coordinates. Meanwhile, an example state of
level-based foraging environment is visualised in Figure 3b. The white and red icons represent the players
and the objects that exist in the environment. The level of each player and object is then visualised in the
bottom right corner of their respective icons. Finally, an example environment state for the Simple Cooking
environment is provided in Figure 3c. The kitchen layout in this environment is such that the chefs are inside
a decagon kitchen with a table in the middle, symbolised by the red decagon with a plate on top of it. The
required cooking items and ingredients to finish the recipe are then placed on top of the green counters in
this kitchen. To finish the task, all processed ingredients and the plate must be placed on the serving counter
which is visualised as a green side of a decagon with a star on top.

6.1 Environments

Our experiments evaluate BRDiv and the baseline approaches in three multi-agent environments. All
environments used in our experiments have two agents, one of which will be controlled by a teammate policy
during an interaction episode. A visualisation of an example state from each environment is shown in Figure 3.
Further details of the environments used in our experiments are provided below:

Cooperative Reaching. Cooperative reaching is a simple environment situated in a 5×5 grid world.
Each agent has five actions corresponding to staying at a particular grid and moving into the four cardinal
directions. The goal of all agents is to reach and jointly stay in a grid cell whose location belongs to
the set of reward-providing coordinates, F = {(0, 0), (0, 4), (4, 0), (4, 4)}. Within these reward-providing
coordinates, (0, 0) and (4, 4) provide a reward of 1 to both agents once they are in the same grid cell with
this coordinate. Meanwhile, the grid in (0, 4) and (4, 0) only provide a reward of 0.75 once both agents arrive.
In this environment, the collaboration strategies correspond to the distinct ways a teammate may select a
destination grid within F . A robust AHT learner should ideally learn to follow their teammates towards any
reward-providing coordinates.

Level-based Foraging (LBF): In this environment, agents must retrieve three objects that are randomly
scattered in a 6× 6 grid world. Agents can move in either of the four cardinal directions and have a special
action that allows them to collect adjacent objects. However, note that agents cannot be positioned in the
same grid. At the beginning of each episode, each object and each agent are assigned a level that determines
whether an agent may collect an object. To successfully pick up an object, the total level of agents choosing
the collection action from grids adjacent to the object must be at least the same as the level of the collected
object. We then enforce the need for collaboration between agents by setting the level of each object as the
total level of agents in the environment. For every successful collection of an object, agents will then be given
a reward of 0.33.

Simple Cooking: Simple Cooking is an environment where two chefs must collaborate to create a simple
dish with chopped tomatoes and blended carrots. Following Figure 3c, the two chefs can only be positioned

10

Published in Transactions on Machine Learning Research (05/2023)

on 10 empty spaces between the cooking counter and the table in the middle of the kitchen. However, they
cannot be positioned in the same empty space in the kitchen. Each chef is then equipped with eight actions
that enable them to (i) stay still, (ii) move clockwise, (iii) move anti-clockwise, (iv) retrieve an ingredient
from a counter, (v) put an ingredient to a counter, (vi) retrieve an ingredient in the middle table, (vii) put
an ingredient on the middle table, or (viii) use cooking tools placed on a counter. A chef must be positioned
in the space closest to the target counter to collect or put an ingredient from or to a counter. On the other
hand, a chef can put or collect items on the table at any time. Using a blender or knife to blend carrots or
chop tomatoes requires an agent to be positioned in the space closest to the tool and have the right ingredient
placed on the same counter as the tool. In this environment, a reward of 0.25 is provided to both agents right
after (i) the tomato is chopped, (ii) the carrot is blended, (iii) both chopped tomato and blended carrot are
placed on a plate, and (iv) a plate containing chopped tomatoes and blended carrots has been placed on top
of the serving counter.

When deciding the environments used in our experiments, we consider whether the environment has multiple
cooperation strategies that do not share the same best response policy for optimal collaboration, which means
the learner really needs to adapt to the behaviour of the other agent. All three environments in our work
fulfil this criterion as many different teammate strategies can solve the underlying collaboration task. In
Cooperative Reaching, multiple strategies correspond to the distinct locations teammates can move towards
to get rewarded. The different strategies in LBF correspond to different orderings followed by teammates
when collecting the scattered objects. Simple Cooking environment also has different subtask allocation and
completion strategies for effective collaboration.

The environments in our experiments are also related to existing environments used for AHT evaluation.
Level-based Foraging (Albrecht & Ramamoorthy, 2013; Papoudakis et al., 2021b; Mirsky et al., 2022; Rahman
et al., 2021) is a commonly used environment for MARL and AHT evaluation. Simple Cooking is also similar
to environments based on the Overcooked game (Wu et al., 2021; Yu et al., 2023). We argue that Simple
Cooking is as complex as existing Overcooked environments following the many subtasks that need to be
completed by agents, alongside the constricted hallway that restricts the movement of agents.

6.2 Experiment Protocol

Our process to evaluate the compared teammate generation methods can be divided into three stages. In
the first stage, we run BRDiv and other baseline teammate generation methods to create a set of training
teammates Πtrain. The second stage utilises the resulting teammates from the first stage to train an AHT
learner. We then evaluate the performance of the robustness of the learner when collaborating with a set of
previously unseen teammate types from Πeval.

In the first stage, we run each evaluated teammate generation method to produce K teammate types. Each
teammate generation method is run for five experiment seeds and learns for T total timesteps. We utilised
different K and T for each evaluated environment. In Cooperative Reaching, each teammate generation
method is trained for 16 million timesteps to produce four teammate types due to the simplicity of the
environment. Meanwhile, each method is trained for 200 million timesteps to produce six and eight different
teammate types for LBF and Simple Cooking, respectively. Under each experiment seed, we save Πtrain

produced by each compared algorithm at the end of the teammate generation process.

The second stage utilises Πtrain generated from the first stage to train a learner policy through AHT training.
To enable a fair comparison between results from each teammate generation method, our evaluation protocol
uses the same AHT algorithm to train a learner based on each Πtrain. We specifically use the PLASTIC
Policy algorithm (Barrett et al., 2017) due to its ease of use for computing a learner policy given Πtrain

produced by our teammate generation methods. In particular, a PLASTIC Policy agent’s decision-making
process only requires the policy of each teammate and their associated best-response policies, both being a
by-product of the teammate generation process contained in the resulting Πtrain and BR(Πtrain).

Using the learners produced in the previous stage, the final stage of our experimental protocol evaluates
the learner’s robustness when dealing with agents from Πeval. To evaluate robustness we construct Πeval

based on two different scenarios. In the first scenario, Πeval consists of policies generated by the different
teammate generation methods evaluated in this work. In the second evaluation scenario, to construct Πeval

11

Published in Transactions on Machine Learning Research (05/2023)

Table 1: Experiment Baselines. This table outlines the differences between our method and the baselines
compared in our experiments. The comparison between these different teammate generation methods is based
on their optimised loss functions, self-play and cross-play data for training, and the use of a policy classifier
to produce intrinsic rewards for MAA2C training.

Method Loss Function Self-Play Data Cross-Play Data Policy ID Classifier
BRDiv (Our method) Equations 7 & 9 Yes Yes No
Independent Equations 7 & 9 Yes No No

TrajeDi Equations 7 & 9
with auxiliary loss Yes No No

Any-Play Equations 7 & 9
with intrinsic rewards Yes No Yes

we define policies based on the predefined heuristics (defined in Appendix B). Note that when evaluating
against teammates generated by the same teammate generation method in the first scenario, we also measure
the learner’s robustness against teammate policies generated from different teammate generation experiment
seeds. Such evaluation remains challenging since teammates generated by the same method under different
seeds may have different behaviours that cause difficulties in effective collaboration.

As a measure of robustness, our evaluation process proceeds by evaluating the returns of an AHT learner when
dealing with teammate policies in Πeval. For each environment and evaluation scenario, we then compute an
aggregated statistic of the returns achieved by each method when dealing with policies from Πeval. Using the
stratified bootstrap confidence interval method (Agarwal et al., 2021), we compute a 95% confidence interval
over the interquartile mean returns of AHT learners resulting from training with Πtrain from each teammate
generation method. This confidence interval allows us to argue over the significance of the difference in
robustness between teammate generation methods. We then also report a breakdown of the mean returns
achieved by the learner across the different policy types in Πeval. The resulting returns of a learner trained
through generated teammate types produced by BRDiv and baseline approaches are reported and analysed
in Section 6.4.

6.3 Baselines

We compared our proposed method with two types of baselines. The first type of baseline comprises previous
methods for automatically generating teammates in AHT or related problems, such as zero-shot coordination.
Meanwhile, the second type of baseline consists of an ablation of our method, which removes parts of it
responsible for encouraging ineffective collaboration between a generated teammate policy and the best-
response policy associated with another generated teammate type. Since our experiments operate on fully
observable environments, our loss functions are optimised such that Equations 7 and 9, auxiliary loss functions,
and intrinsic rewards optimized by the compared methods are defined over the state of the environment.
Further details of these methods and their implementation are summarised in Table 1 and the remainder of
this section. Appendix C then provides the value of each methods’ hyperparameters used in our experiments.

Prior teammate generation methods. Among methods under this category, we choose TrajeDi (Lupu
et al., 2021) and Any-Play (Lucas & Allen, 2022) as representative baselines. We choose TrajeDi following
its usage of the action discounting term, which provides additional flexibility when defining the optimised
information-theoretic diversity metric. Prior teammate generation methods other than TrajeDi define their
optimised diversity metric in terms of an agent’s overall trajectory or its selected action at each timestep,
which both have their drawbacks. TrajeDi’s action discounting term enables users to tune the resemblance of
its optimised diversity metric to an action diversity and trajectory diversity-based approach. In the plots
that we report in this work, we denote these TrajeDi-based baselines as TrajeDi0, TrajeDi025, TrajeDi05,
TrajeDi075, and TrajeDi1, which use the action discounting term of 0, 0.25, 0.5, 0.75, and 1 respectively.

We also add Any-Play as a baseline following the results from Lucas & Allen (2022) that demonstrated its
improved performance over TrajeDi in a few environments. This baseline will be denoted in our analysis as
AnyPlay. Unlike BRDiv and TrajeDi, Any-Play’s teammate generation process adds an intrinsic reward
that the actor networks also attempt to maximise aside from the original rewards from the environment.

12

Published in Transactions on Machine Learning Research (05/2023)

This intrinsic reward specifically evaluates the log-likelihood assigned by a classifier that distinguishes the
different policies in Πtrain. Intuitively, Any-Play optimizes different actors to produce trajectories that are
distinguishable from each other. Thus, comparing BRDiv’s performance against Any-Play also delivers
insights regarding the gains from using a different optimisation technique to induce diversity.

We implement TrajeDi and Any-Play based on our MAA2C-based teammate generation method by first
removing the evaluation of loss functions based on cross-play data. Compared to our proposed approach,
the absence of any training based on cross-play data prevents TrajeDi and Any-Play from minimizing the
non-diagonal elements of the cross-play matrices defined in Equation 10. Maximising Equations 7 and 9
solely based on self-play data has the effect of encouraging each generated policy in Πtrain to achieve the
highest possible returns when interacting with its best-response policy.

TrajeDi and Any-Play also add additional auxiliary losses or intrinsic rewards to encourage diversity in Πtrain.
Using DSP for its evaluation, TrajeDi adds an auxiliary loss that minimises the negative Jensen-Shannon
Divergence between the trajectory distributions of the actor networks being trained. For Any-Play, we add a
loss function that trains a classifier that identifies the population a teammate belongs to based on an observed
state and its action. The output of this classifier is then used at each timestep to compute an intrinsic reward
that is added on top of the environment rewards during training.

Ablations of BRDiv. We also compare our method against an ablation which independently trains K
teammate policies with MAA2C (Papoudakis et al., 2021b) without maximising any policy diversity metrics.
Our experiments denote this baseline as Independent. Comparing our method’s performance against this
ablation helps us identify the impact of optimising our proposed diversity metric on the resulting learner’s
robustness when dealing with previously unseen teammates. We train this ablation to maximise Equations 7
and 9 solely based on self-play data, which similar to TrajeDi and Any-Play encourage the generated policy to
maximise their returns against their respective best-response policies. However, we do not add any intrinsic
rewards or optimise auxiliary losses to encourage diversity among the generated teammate policies.

6.4 AHT Evaluation

This section provides the results of using the generated teammate policies for training an AHT learner based
on the experimental protocol outlined in Section 6.2. The aggregated performance of learners trained with
Πtrain produced by each teammate generation method is outlined in Figure 4. Figure 5 show the performance
of a PLASTIC Policy-based learner when interacting with teammates that follow one of the previously unseen
heuristics defined in Appendix B. The performance of the same learner when dealing with previously unseen
teammates generated by different teammate generation methods is then provided in Figure 6.

As shown in Figures 4a, 4b, 5a and 5b, BRDiv provides a more reliable way to generate robust learners than
the baseline methods when collaborating with unseen heuristics that are near optimal. When comparing the
resulting returns between BRDiv-based learners with the Independent baseline, we see that BRDiv achieves
higher returns in all but three heuristics throughout the entire types of teammates used in the evaluation
process. Except for interactions against teammates using heuristics H08 and H10, a learner trained with
BRDiv-based teammates consistently achieves the highest average returns compared to the other evaluated
teammate generation methods in Cooperative Reaching. Meanwhile, BRDiv also consistently yields more
robust learners than compared baselines in LBF except for interactions against teammates using heuristic
H02. In experiments against teammates using policies generated by other teammate generation methods
whose results are provided by 4d- 4f and 6a- 6c, learners trained using BRDiv-based teammates consistently
achieve the highest average returns compared to other baseline methods in all environments except for Simple
Cooking. Finally, note that in cases where specific baseline methods outperform a BRDiv-based learner in
terms of the resulting average returns, the difference in performance between BRDiv and these baselines is
insignificant except for some evaluation scenarios based on Simple Cooking.

Another substantial evidence of BRDiv’s reliability in training robust learners can be found by comparing the
confidence interval of returns between compared methods. In Figures 4, 5 and 6, we observe BRDiv’s tendency
to produce more compact confidence intervals in its returns indicates lower variance in a BRDiv-based
learner’s returns across different training seeds. The baseline methods’ larger variance in returns results
from their generated Πtrain having high variance in best-response diversity across different experiment seeds.

13

Published in Transactions on Machine Learning Research (05/2023)

0.45 0.60 0.75 0.90
BRDiv

AnyPlay
TrajeDi0

TrajeDi025
TrajeDi05

TrajeDi075
TrajeDi1

Independent
IQM

Returns

(a) Cooperative Reaching -
Heuristic Teammates

0.4 0.5 0.6 0.7
BRDiv

AnyPlay
TrajeDi0

TrajeDi025
TrajeDi05

TrajeDi075
TrajeDi1

Independent
IQM

Returns

(b) Level-Based Foraging -
Heuristic Teammates

0.15 0.30 0.45
BRDiv

AnyPlay
TrajeDi0

TrajeDi025
TrajeDi05

TrajeDi075
TrajeDi1

Independent
IQM

Returns

(c) Simple Cooking -
Heuristic Teammates

0.4 0.6 0.8
BRDiv

AnyPlay
TrajeDi0

TrajeDi025
TrajeDi05

TrajeDi075
TrajeDi1

Independent
IQM

Returns

(d) Cooperative Reaching -
Generated Teammates

0.45 0.60 0.75
BRDiv

AnyPlay
TrajeDi0

TrajeDi025
TrajeDi05

TrajeDi075
TrajeDi1

Independent
IQM

Returns

(e) Level-Based Foraging -
Generated Teammates

0.45 0.60 0.75 0.90
BRDiv

AnyPlay
TrajeDi0

TrajeDi025
TrajeDi05

TrajeDi075
TrajeDi1

Independent
IQM

Returns

(f) Simple Cooking -
Generated Teammates

Figure 4: Aggregated Learner Performance During Collaboration With Policies From Πeval.
This figure visualises an aggregate statistic of the episodic returns achieved by a learner trained with Πtrain

when collaborating with policies from Πeval. We show results for each baseline and evaluation scenario
detailed in Sections 6.1 and 6.2. The learner interacts with each teammate type that constitutes Πeval for five
episodes. Using the stratified bootstrap confidence interval method (Agarwal et al., 2021), we report the 95%
confidence interval of the interquartile mean of episodic returns the learner achieves. Results show that our
method significantly outperforms all baselines across the two evaluation scenarios in Cooperative Reaching
and Level-Based Foraging. Meanwhile, our method obtained lower returns than the baselines in the Simple
Cooking environment against heuristics.

Across some seeds, the baseline methods still discover Πtrain with a high BRDiv value even without optimising
BRDiv. These baseline methods can discover Πtrain with high BRDiv values since policies in Πtrain with high
BRDiv also exhibit high diversity in the trajectories they generate. However, since high trajectory diversity
does not imply high BRDiv, a few seeds of the baseline methods also discover Πtrain with lower BRDiv that
yields learners with lower returns due to superficial differences between generated policies. When comparing
the BRDiv value of Πtrain by different teammate generation methods and the learner’s episodic returns
in Cooperative Reaching and LBF against heuristics in Πeval, we found these measures to have a strong
Pearson correlation coefficient of 0.7664 and 0.7961 respectively. While TrajeDi has an action discounting
hyperparameter that can be tuned to minimise the emergence of Πtrain with superficial differences (Lupu
et al., 2021), our results indicate that tuning this hyperparameter is less effective in preventing the emergence
of superficial differences between generated teammates compared to directly optimising BRDiv.

Important insights are also obtained from evaluating learners when collaborating with more suboptimal
teammates. Against teammate-following heuristics H08 and H10 in Cooperative Reaching, BRDiv ceased to
become the best-performing teammate generation method to improve the robustness of the learner. The
same trend is seen in Figure 5c where the learner must collaborate with H01-H12 whose expertise only spans
parts of tasks in the environment, such as processing the ingredients, assembling them into a dish, and
delivering it to a serving counter. This echoes with the results of BRDiv when dealing with other Simple
Cooking teammate policies generated by other baseline teammate generation methods, which we discuss
in Section 6.5 to have generated suboptimal policies. All these results point towards the inadequacy of
BRDiv-based generated policies to improve learner robustness when dealing with suboptimal teammates.

14

Published in Transactions on Machine Learning Research (05/2023)

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

H0
1

H0
2

H0
3

H0
4

H0
5

H0
6

H0
7

H0
8

H0
9

H1
0

H1
1

Ev
al

ua
tio

n
Te

am
m

at
e

He
ur

ist
ic

Na
m

e

0.85
(0.79,0.90)

0.49
(0.24,0.73)

0.53
(0.38,0.68)

0.50
(0.39,0.60)

0.44
(0.31,0.57)

0.71
(0.62,0.80)

0.52
(0.33,0.71)

0.45
(0.20,0.69)

0.86
(0.79,0.93)

0.47
(0.26,0.67)

0.34
(0.10,0.58)

0.45
(0.17,0.73)

0.29
(0.10,0.47)

0.71
(0.58,0.85)

0.38
(0.16,0.60)

0.38
(0.12,0.64)

1.00
(1.00,1.00)

0.38
(-0.21,0.97)

0.62
(0.32,0.91)

0.85
(0.61,1.09)

0.66
(0.44,0.88)

0.93
(0.77,1.09)

0.56
(0.24,0.88)

0.63
(0.37,0.90)

1.00
(1.00,1.00)

0.35
(-0.21,0.91)

0.45
(0.08,0.82)

0.76
(0.38,1.14)

0.53
(0.22,0.83)

0.95
(0.84,1.06)

0.43
(0.05,0.82)

0.55
(0.24,0.86)

0.66
(0.53,0.80)

0.63
(0.45,0.81)

0.34
(-0.01,0.68)

0.04
(0.03,0.06)

0.04
(-0.02,0.10)

0.38
(0.04,0.71)

0.40
(-0.01,0.81)

0.14
(-0.07,0.36)

0.64
(0.45,0.82)

0.62
(0.42,0.82)

0.30
(-0.03,0.63)

0.03
(0.01,0.05)

0.05
(-0.03,0.13)

0.38
(0.01,0.74)

0.38
(-0.01,0.78)

0.12
(-0.06,0.30)

0.82
(0.73,0.91)

0.50
(0.26,0.75)

0.43
(0.22,0.64)

0.42
(0.28,0.56)

0.29
(0.13,0.45)

0.62
(0.51,0.74)

0.40
(0.17,0.63)

0.39
(0.18,0.59)

0.89
(0.87,0.92)

0.81
(0.72,0.89)

0.91
(0.82,1.01)

0.99
(0.99,1.00)

0.99
(0.98,1.00)

0.95
(0.89,1.00)

0.91
(0.81,1.00)

0.97
(0.90,1.04)

1.00
(1.00,1.00)

0.68
(0.34,1.01)

0.85
(0.62,1.09)

1.00
(1.00,1.00)

1.00
(1.00,1.00)

0.99
(0.97,1.01)

0.83
(0.57,1.09)

0.99
(0.96,1.02)

0.90
(0.86,0.94)

0.80
(0.72,0.88)

0.92
(0.81,1.02)

1.00
(0.99,1.00)

1.00
(1.00,1.00)

0.94
(0.86,1.01)

0.91
(0.79,1.03)

0.97
(0.89,1.05)

0.57
(0.50,0.64)

0.35
(0.27,0.42)

0.36
(0.29,0.42)

0.47
(0.32,0.62)

0.41
(0.30,0.51)

0.52
(0.47,0.57)

0.35
(0.30,0.41)

0.44
(0.29,0.59)

Evaluation in Cooperative Reaching Against Heuristic Agents

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cooperative Reaching

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

H0
1

H0
2

H0
3

H0
4

H0
5

H0
6

H0
7

H0
8

H0
9

H1
0

Ev
al

ua
tio

n
Te

am
m

at
e

He
ur

ist
ic

Na
m

e

0.73
(0.64,0.82)

0.65
(0.53,0.78)

0.42
(0.18,0.65)

0.41
(0.21,0.62)

0.58
(0.39,0.77)

0.59
(0.41,0.77)

0.51
(0.27,0.76)

0.46
(0.22,0.70)

0.81
(0.74,0.89)

0.90
(0.85,0.96)

0.80
(0.73,0.88)

0.79
(0.73,0.85)

0.76
(0.61,0.91)

0.75
(0.64,0.86)

0.86
(0.75,0.97)

0.86
(0.80,0.92)

0.67
(0.61,0.73)

0.55
(0.37,0.74)

0.44
(0.23,0.65)

0.42
(0.21,0.63)

0.53
(0.36,0.70)

0.55
(0.38,0.71)

0.48
(0.21,0.75)

0.47
(0.28,0.65)

0.69
(0.63,0.75)

0.56
(0.48,0.63)

0.44
(0.22,0.65)

0.43
(0.23,0.63)

0.59
(0.44,0.73)

0.61
(0.45,0.76)

0.47
(0.24,0.69)

0.40
(0.19,0.61)

0.68
(0.60,0.76)

0.58
(0.42,0.74)

0.41
(0.23,0.59)

0.47
(0.23,0.70)

0.59
(0.40,0.77)

0.57
(0.42,0.72)

0.45
(0.23,0.68)

0.38
(0.17,0.58)

0.70
(0.64,0.76)

0.63
(0.50,0.77)

0.42
(0.14,0.70)

0.42
(0.26,0.58)

0.57
(0.38,0.75)

0.58
(0.41,0.76)

0.46
(0.24,0.68)

0.42
(0.17,0.66)

0.67
(0.60,0.74)

0.62
(0.49,0.74)

0.41
(0.18,0.64)

0.43
(0.23,0.63)

0.58
(0.42,0.74)

0.58
(0.47,0.68)

0.47
(0.26,0.68)

0.45
(0.28,0.63)

0.75
(0.68,0.81)

0.60
(0.43,0.77)

0.42
(0.22,0.62)

0.48
(0.29,0.68)

0.59
(0.38,0.80)

0.57
(0.43,0.71)

0.46
(0.26,0.67)

0.45
(0.23,0.66)

0.73
(0.67,0.80)

0.64
(0.53,0.76)

0.43
(0.21,0.65)

0.44
(0.22,0.65)

0.59
(0.44,0.75)

0.61
(0.44,0.78)

0.48
(0.24,0.73)

0.44
(0.21,0.66)

0.64
(0.54,0.73)

0.53
(0.38,0.68)

0.38
(0.20,0.55)

0.38
(0.15,0.60)

0.55
(0.39,0.72)

0.53
(0.39,0.68)

0.44
(0.23,0.65)

0.40
(0.16,0.64)

Evaluation in LBF Against Heuristic Agents

0.0

0.2

0.4

0.6

0.8

1.0

(b) LBF

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

H0
1

H0
2

H0
3

H0
4

H0
5

H0
6

H0
7

H0
8

H0
9

H1
0

H1
1

H1
2

Ev
al

ua
tio

n
Te

am
m

at
e

He
ur

ist
ic

Na
m

e

0.51
(0.45,0.57)

0.68
(0.55,0.81)

0.42
(0.36,0.49)

0.61
(0.59,0.64)

0.60
(0.56,0.65)

0.61
(0.54,0.67)

0.42
(0.27,0.57)

0.48
(0.33,0.62)

0.31
(0.24,0.38)

0.53
(0.42,0.63)

0.22
(0.09,0.34)

0.61
(0.56,0.66)

0.61
(0.57,0.64)

0.61
(0.58,0.64)

0.20
(0.03,0.38)

0.27
(0.15,0.38)

0.54
(0.43,0.64)

0.70
(0.57,0.83)

0.48
(0.42,0.54)

0.65
(0.63,0.67)

0.62
(0.58,0.65)

0.62
(0.60,0.65)

0.45
(0.32,0.57)

0.49
(0.28,0.70)

0.55
(0.50,0.61)

0.71
(0.61,0.82)

0.37
(0.22,0.52)

0.65
(0.62,0.69)

0.62
(0.58,0.66)

0.61
(0.59,0.63)

0.36
(0.09,0.63)

0.46
(0.21,0.70)

0.28
(0.20,0.36)

0.61
(0.45,0.76)

0.17
(0.08,0.26)

0.65
(0.64,0.66)

0.63
(0.60,0.66)

0.64
(0.62,0.67)

0.17
(-0.00,0.33)

0.29
(0.09,0.49)

0.62
(0.56,0.68)

0.80
(0.77,0.83)

0.62
(0.56,0.67)

0.70
(0.67,0.72)

0.66
(0.63,0.70)

0.68
(0.63,0.72)

0.62
(0.54,0.70)

0.69
(0.50,0.89)

0.08
(0.01,0.14)

0.32
(0.07,0.56)

0.04
(-0.03,0.11)

0.23
(0.07,0.39)

0.30
(0.16,0.43)

0.12
(0.03,0.22)

0.05
(-0.01,0.11)

0.15
(0.02,0.28)

0.08
(0.01,0.16)

0.32
(0.08,0.57)

0.04
(0.00,0.07)

0.23
(0.07,0.40)

0.33
(0.16,0.49)

0.14
(0.03,0.25)

0.05
(-0.01,0.10)

0.16
(0.02,0.30)

0.08
(0.02,0.14)

0.34
(0.06,0.62)

0.04
(-0.00,0.09)

0.22
(0.03,0.41)

0.34
(0.18,0.50)

0.11
(0.03,0.19)

0.04
(-0.00,0.08)

0.17
(0.01,0.32)

0.08
(0.01,0.15)

0.32
(0.08,0.56)

0.06
(-0.03,0.14)

0.20
(0.07,0.33)

0.31
(0.17,0.45)

0.12
(0.02,0.21)

0.05
(-0.00,0.10)

0.16
(0.02,0.29)

0.10
(0.04,0.17)

0.33
(0.07,0.60)

0.04
(-0.00,0.08)

0.25
(0.04,0.46)

0.33
(0.17,0.49)

0.13
(0.01,0.25)

0.04
(-0.01,0.09)

0.17
(0.03,0.32)

0.09
(0.02,0.16)

0.30
(0.07,0.54)

0.03
(0.00,0.06)

0.23
(0.06,0.39)

0.30
(0.16,0.44)

0.12
(0.03,0.20)

0.04
(-0.01,0.09)

0.16
(0.02,0.29)

Evaluation in Simple Cooking Against Heuristic Agents

0.0

0.2

0.4

0.6

0.8

1.0

(c) Simple Cooking

Figure 5: AHT Evaluation Results Against Heuristic-based Teammates. We provide the average
returns resulting from the interaction between Πeval consisting of heuristic-based teammates and the learner,
which is trained using PLASTIC Policy (Barrett et al., 2017) and Πtrain produced by the evaluated teammate
generation methods. Labels on the x-axis of the heatmap visualisation indicate the teammate generation
method used to produce Πtrain. Labels on the y-axis highlight the heuristics followed by agent policies from
Πeval. Within each entry of the heatmap, the first number provides the average returns from the collaboration
between learners trained with Πtrain generated by the method indicated in the x-axis and teammates following
heuristics labelled in the y-axis. The numbers in the parentheses provide a 95% confidence interval of the
returns based on teammate generation experiments conducted across five seeds. Figure 5a show the results in
the Cooperative Reaching environment where training a learner with BRDiv-based teammates produces more
robust agents that can deliver higher returns than the baselines, except for interactions against H08 and H10.
Meanwhile, the LBF environment results also mirror the findings from the Cooperative Reaching environment,
where a BRDiv-based learner yields higher average returns than all baselines except for interactions against
H02. Finally, Figure 5c show the Simple Cooking environment results where BRDiv did not achieve the best
performance compared to other methods due to its inadequacy when dealing with suboptimal teammate
heuristics.

6.5 Behaviour Evaluation

In this section, we provide additional empirical evidence regarding the effectiveness of BRDiv in generating
Πtrain for AHT training. First, we show an example of Πtrain exhibiting superficial differences based on the
results of running one of our baseline teammate generation methods in the Cooperative Reaching environment.
We then show how BRDiv successfully avoids generating Πtrain exhibiting superficial differences, which then
leads to improved learner robustness when Πtrain is used for AHT training.

An example of Πtrain with superficial differences discovered by one of our baseline methods can be seen
in Figure 7a. In this visualisation, multiple policies in Πtrain move towards the same reward-providing
coordinates. Effective collaboration with these policies can be achieved through the same best-response policy
of moving towards a reward-providing grid the teammate moves towards. This commonality in best-response
policies is reflected in Figure 7b, which shows the cross-play matrix resulting from the interaction between
the policies in Πtrain and BR(Πtrain).

Training a Cooperative Reaching learner based on Πtrain in Figure 7a will not provide a robust learner. This
is because certain teammate behaviours are not present in the training set, such as teammates that move
towards the upper-left or bottom-right reward-providing corners. A better Πtrain for training learners in
Cooperative Reaching is visualised by the BRDiv-based teammate policies in Figure 8a. In this case, Πtrain

15

Published in Transactions on Machine Learning Research (05/2023)

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

Tr
aj

eD
i1

Tr
aj

eD
i0

75
BR

Di
v

Tr
aj

eD
i0

Tr
aj

eD
i0

5
Tr

aj
eD

i0
25

An
yP

la
y

In
de

pe
nd

en
t

Ev
al

ua
tio

n
Te

am
m

at
e

Ge
ne

ra
to

r A
lg

or
ith

m

0.90
(0.87,0.93)

0.35
(0.07,0.63)

0.55
(0.41,0.69)

0.62
(0.53,0.71)

0.60
(0.53,0.67)

0.78
(0.68,0.88)

0.54
(0.33,0.76)

0.42
(0.11,0.74)

0.92
(0.89,0.95)

0.32
(0.03,0.60)

0.50
(0.41,0.60)

0.65
(0.49,0.81)

0.59
(0.46,0.72)

0.85
(0.81,0.89)

0.53
(0.32,0.73)

0.48
(0.23,0.74)

0.85
(0.79,0.91)

0.38
(0.18,0.59)

0.36
(0.28,0.44)

0.44
(0.25,0.63)

0.38
(0.21,0.55)

0.71
(0.59,0.82)

0.41
(0.28,0.54)

0.39
(0.23,0.54)

0.90
(0.88,0.93)

0.34
(0.08,0.61)

0.55
(0.42,0.68)

0.63
(0.54,0.72)

0.60
(0.53,0.66)

0.79
(0.69,0.88)

0.54
(0.31,0.77)

0.42
(0.11,0.73)

1.00
(1.00,1.00)

0.19
(-0.24,0.61)

0.75
(0.34,1.17)

0.97
(0.94,1.00)

0.96
(0.94,0.99)

1.00
(0.99,1.00)

0.59
(0.04,1.14)

0.60
(0.02,1.18)

1.00
(0.99,1.00)

0.19
(-0.22,0.60)

0.56
(0.37,0.75)

0.79
(0.57,1.01)

0.72
(0.54,0.90)

1.00
(1.00,1.00)

0.53
(0.21,0.85)

0.60
(0.29,0.91)

0.76
(0.69,0.82)

0.58
(0.56,0.60)

0.46
(0.33,0.59)

0.49
(0.31,0.67)

0.42
(0.27,0.58)

0.68
(0.59,0.77)

0.52
(0.33,0.71)

0.41
(0.25,0.57)

0.92
(0.92,0.92)

0.20
(-0.14,0.54)

0.53
(0.35,0.70)

0.72
(0.53,0.91)

0.66
(0.51,0.82)

0.91
(0.90,0.92)

0.50
(0.21,0.79)

0.54
(0.25,0.83)

Evaluation in Cooperative Reaching Against Generated Agents

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cooperative Reaching

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

Tr
aj

eD
i1

Tr
aj

eD
i0

25
In

de
pe

nd
en

t
Tr

aj
eD

i0
5

BR
Di

v
Tr

aj
eD

i0
An

yP
la

y
Tr

aj
eD

i0
75

Ev
al

ua
tio

n
Te

am
m

at
e

Ge
ne

ra
to

r A
lg

or
ith

m

0.84
(0.66,1.03)

0.77
(0.64,0.90)

0.45
(0.28,0.62)

0.62
(0.45,0.79)

0.63
(0.49,0.77)

0.65
(0.51,0.78)

0.68
(0.42,0.94)

0.53
(0.23,0.84)

0.73
(0.61,0.86)

0.60
(0.41,0.80)

0.40
(0.33,0.46)

0.58
(0.43,0.73)

0.56
(0.42,0.70)

0.63
(0.53,0.73)

0.56
(0.26,0.86)

0.52
(0.29,0.76)

0.86
(0.70,1.03)

0.67
(0.35,1.00)

0.46
(0.34,0.58)

0.63
(0.30,0.96)

0.65
(0.44,0.86)

0.79
(0.58,1.00)

0.71
(0.26,1.16)

0.71
(0.42,1.00)

0.69
(0.56,0.82)

0.57
(0.41,0.72)

0.36
(0.30,0.43)

0.49
(0.30,0.68)

0.54
(0.42,0.66)

0.51
(0.43,0.59)

0.52
(0.28,0.76)

0.46
(0.25,0.67)

0.87
(0.83,0.91)

0.65
(0.49,0.81)

0.35
(0.28,0.43)

0.56
(0.30,0.83)

0.63
(0.47,0.79)

0.61
(0.53,0.70)

0.57
(0.31,0.82)

0.46
(0.19,0.73)

0.85
(0.70,1.01)

0.72
(0.56,0.89)

0.49
(0.38,0.61)

0.61
(0.44,0.78)

0.62
(0.51,0.73)

0.61
(0.51,0.71)

0.66
(0.38,0.93)

0.53
(0.23,0.82)

0.80
(0.62,0.97)

0.71
(0.59,0.82)

0.30
(0.19,0.41)

0.50
(0.34,0.65)

0.57
(0.42,0.71)

0.49
(0.40,0.58)

0.54
(0.46,0.62)

0.37
(0.20,0.55)

0.68
(0.58,0.79)

0.54
(0.36,0.71)

0.35
(0.25,0.46)

0.48
(0.29,0.66)

0.50
(0.37,0.63)

0.56
(0.51,0.62)

0.53
(0.30,0.77)

0.49
(0.30,0.68)

Evaluation in LBF Against Generated Agents

0.0

0.2

0.4

0.6

0.8

1.0

(b) LBF

BRDiv AnyPlay TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
Training Teammate Generator Algorithm

Tr
aj

eD
i0

75
In

de
pe

nd
en

t
Tr

aj
eD

i0
5

BR
Di

v
Tr

aj
eD

i1
Tr

aj
ed

i0
Tr

aj
eD

i0
25

An
yP

la
y

Ev
al

ua
tio

n
Te

am
m

at
e

Ge
ne

ra
to

r A
lg

or
ith

m

0.82
(0.56,1.07)

0.84
(0.62,1.06)

0.62
(0.35,0.90)

0.79
(0.61,0.96)

0.92
(0.78,1.06)

0.78
(0.55,1.00)

0.59
(0.41,0.77)

0.79
(0.50,1.07)

0.64
(0.39,0.89)

0.76
(0.48,1.03)

0.50
(0.27,0.72)

0.74
(0.54,0.93)

0.85
(0.65,1.04)

0.67
(0.42,0.92)

0.42
(0.32,0.52)

0.65
(0.38,0.93)

0.82
(0.59,1.04)

0.84
(0.61,1.06)

0.60
(0.30,0.90)

0.79
(0.62,0.96)

0.91
(0.73,1.09)

0.76
(0.53,0.99)

0.58
(0.38,0.79)

0.78
(0.49,1.06)

0.76
(0.52,1.00)

0.74
(0.54,0.94)

0.46
(0.21,0.71)

0.68
(0.53,0.82)

0.84
(0.66,1.02)

0.67
(0.45,0.88)

0.41
(0.27,0.56)

0.62
(0.36,0.88)

0.60
(0.40,0.80)

0.73
(0.49,0.97)

0.42
(0.21,0.64)

0.69
(0.53,0.85)

0.78
(0.60,0.95)

0.63
(0.40,0.87)

0.45
(0.35,0.54)

0.58
(0.39,0.77)

0.55
(0.34,0.76)

0.67
(0.45,0.89)

0.50
(0.29,0.71)

0.68
(0.56,0.81)

0.75
(0.63,0.86)

0.63
(0.45,0.80)

0.37
(0.25,0.48)

0.52
(0.26,0.78)

0.89
(0.74,1.04)

0.85
(0.58,1.13)

0.68
(0.37,0.99)

0.86
(0.60,1.11)

0.88
(0.61,1.15)

0.75
(0.43,1.07)

0.71
(0.39,1.03)

0.85
(0.54,1.15)

0.71
(0.52,0.90)

0.84
(0.64,1.05)

0.56
(0.33,0.79)

0.77
(0.61,0.94)

0.88
(0.73,1.03)

0.74
(0.53,0.95)

0.49
(0.34,0.65)

0.70
(0.39,1.00)

Evaluation in Simple Cooking Against Generated Agents

0.0

0.2

0.4

0.6

0.8

1.0

(c) Simple Cooking

Figure 6: AHT Evaluation Results Against Previously Unseen Generated Teammates. Given
Πtrain generated by a teammate generation method, we also report the average returns achieved by the
learner when dealing with Πeval consisting of teammates generated by the different evaluated teammate
generation methods. In the figures above, the labels on the heatmap’s x-axis, y-axis, and numbers have
similar semantics with their respective counterparts in Figure 5. Note that when dealing with Πeval generated
by the same algorithm producing Πtrain, it is possible that effective collaboration cannot be achieved since
Πeval also consists of policies generated through experiments using different seeds from which is being used to
produce Πtrain. In Cooperative Reaching and LBF, BRDiv-based learners produce higher average returns
when dealing with previously unseen teammates. For certain teammate generation methods, the difference
between a BRDiv-based learner’s and its mean returns is even statistically significant. For Simple Cooking,
our method occasionally struggles to deal with suboptimal teammate policies generated by some teammate
generation methods. Further discussions regarding the suboptimality of policies produced by certain methods
are provided in Section 6.5.

0.75

0.75

1

1

(a) Example of superficial differ-
ences between generated team-
mates.

0 1 2 3
Policy ID

0
1

2
3

P
ol

ic
y

ID

0.96 0.96 0 0

0.96 0.96 0 0

0 0 0.96 0.95

0 0 0.95 0.95

Cross-Play Matrix With Superficial Differences in Coop Navigation

0.0

0.2

0.4

0.6

0.8

(b) Cross-play matrix between poli-
cies generated following Figure 7a.

Figure 7: Example of Superficial Policy Differences in Cooperative Reaching. From one of the
Πtrain resulting from a baseline teammate generation method in our experiments, we see an example of
teammates with superficial differences in Cooperative Reaching. Figure 7a show that superficial difference
is characterised by different teammate policies that move a teammate towards the same reward-providing
corner. Since an effective collaboration with teammates having superficial differences can be achieved using
the same best-response policy, the cross-play matrix from Figure 7b demonstrates the compatibility of some
best-response policies with multiple policies from Πtrain.

16

Published in Transactions on Machine Learning Research (05/2023)

0.75

0.75

1

1

(a) Πtrain generated by BRDiv
in Cooperative Reaching.

0 1 2 3
Policy ID

0
1

2
3

P
ol

ic
y

ID

0.69 0 0 0.17

0 0.67 0.027 0

0 0.027 0.92 0

0.17 0 0 0.93

Cross-Play Matrix Between BRDiv-based Generated Policies in Coop Reaching

0.0

0.2

0.4

0.6

0.8

(b) Cross-play matrix between the
policies generated by BRDiv in Fig-
ure 8a.

Figure 8: Ideal Πtrain for Cooperative Reaching. An example Πtrain generated by maximising BRDiv is
provided in Figure 8a. Compared to the teammate policies displayed in Figure 7a, a robust learner is more
likely to be produced from training with this Πtrain since it contains different policies that move teammates
towards all the reward-providing coordinates in Cooperative Reaching. Teammate policies that move towards
the upper left and bottom right corners are specifically better handled if the learner trains against policies
visualised in Figure 8a. Following Figure 8b, this Πtrain is characterised by the distinct best-response policies
required for effective collaboration against each generated policy.

(a) Trajectories produced by two ran-
domly sampled policies from Πtrain.

0 1 2 3 4 5
Policy ID

0
1

2
3

4
5

P
ol

ic
y

ID

0.89 0 0 0.092 0.53 0.017

0 0.88 0.56 0 0.12 0.077

0 0.56 0.9 0.22 0 0.36

0.092 0 0.22 0.87 0.11 0.35

0.53 0.12 0 0.11 0.86 0.0092

0.017 0.077 0.36 0.35 0.0092 0.81

Cross-Play Matrix Between BRDiv-based Generated Policies in LBF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Cross-play matrix from Πtrain pro-
duced by BRDiv.

Figure 9: Πtrain Generated by Optimising BRDiv in LBF. Assuming that the level one agent is the
teammate, example trajectories from two randomly sampled policies generated by optimising BRDiv for
LBF are displayed in Figure 9a. In this visualisation, each sequence of the same coloured arrows starting
from the teammate’s position corresponds to a trajectory of a single policy from Πtrain. Different policies
in Πtrain specifically correspond to the distinct orderings that a teammate may follow to collect objects in
the environment. Since an effective collaboration with teammates that follow a specific object collection
ordering requires best-response policies that follow the same object collection ordering, the best-response to
every policy in Πtrain is distinct and incompatible for collaboration with other policies. This results in the
cross-play matrix displayed in Figure 9b.

produces a more robust learner by equipping it with a more comprehensive set of strategies against teammates
moving towards any reward-providing grid. We can consistently find this desirable Πtrain since each policy in
Πtrain requires different best-response policies, which makes it highly likely to be discovered by optimising
BRDiv.

17

Published in Transactions on Machine Learning Research (05/2023)

1

2

3

4

5

6

7

(a) Tomato Preparation.

1

2

3

4

5

6

7

(b) Carrot Preparation.

8

10
9

(c) Food Assembly & Delivery.

Figure 10: Teammate Policy Generated By Optimising BRDiv and Its Best-Response Policy.
From left to right, we show an example of a teammate policy alongside its best-response policy generated by
optimising BRDiv. The generated policy and its best-response policy learn to quickly divide the ingredient
preparation, dish assembly, and delivery tasks between themselves. In Figure 10a, the generated policy
collects the tomato and puts it on the table so another teammate closer to the knife and positioned on the
opposite side of the kitchen can retrieve and chop it. After chopping the tomato, Figure 10b then shows
that the best-response policy learns to move towards the carrot and puts it on the table so that the agent
controlled by the generated policy can collect and blend it. After the generated policy puts the blended carrot
on the table, the best-response policy collects the plate and carrot to combine it with its chopped tomatoes.
The best-response policy eventually delivers this combined food to the serving counter as seen in Figure 10c.

Optimising BRDiv also enables the discovery of a Πtrain that encourages the emergence of robust learners in
the LBF environment. As seen in Figure 9a, each policy in Πtrain generated by optimising BRDiv for LBF
corresponds to the distinct orderings that an optimal agent may take to collect objects in the environment.
Since any optimal or near-optimal teammate should follow one of the six possible orderings when collecting
objects, the discovery of Πtrain containing policies that follow each ordering prevents the learner from not
having an adequate strategy to deal with optimal or near-optimal teammates. As in the case with Cooperative
Reaching, note that the discovery of good quality teammate policies for LBF is made possible by each policy
in Πtrain requiring different best-response policies, which makes it likely to be discovered by optimising
BRDiv.

Besides highlighting why optimising BRDiv facilitates improved learner robustness in Cooperative Reaching
and LBF, analysing the behaviour of policies generated by our method and the baselines also provides insights
into why our method does not yield the most robust learner in Simple Cooking. As displayed by Figure 10,
teammate policies generated by optimising BRDiv are highly optimal. The generated policies alongside its
best-response policy quickly learn to divide and execute the available subtasks among themselves. Between
different generated policies in Πtrain, a difference emerges due to different task assignments between agents
and different orderings to complete the subtasks. In general, BRDiv-based generated policies and their
best-response policies tend to finish an episode of Simple Cooking in 17-20 timesteps. Learning from such
highly optimal policies makes a learner unprepared when facing highly suboptimal policies during evaluation.

This result from BRDiv highly contrasts with the results from optimising alternative diversity metrics
tested in this work. A detailed breakdown of the number of timesteps required by each compared teammate
generation method to solve Simple Cooking in self-play is provided in Table 2. The better-performing baselines
for generating robust learners for Simple Cooking against heuristic-based teammates particularly produce
suboptimal teammate policies that solve the environment in 30-195 timesteps. Throughout interaction,
Any-Play and TrajeDi-based policies often exhibit suboptimal behaviour such as (i) going back and forth
between putting an item on the counter and retrieving it again or (ii) stopping working on subtasks and
doing nothing. The availability of such suboptimal policies in Πtrain makes the learner more prepared to

18

Published in Transactions on Machine Learning Research (05/2023)

Table 2: Required Timesteps to Solve Simple Cooking in Self-Play. The number of timesteps required
by each method to solve Simple Cooking is provided in their respective entries in the second row.

BRDiv Any-Play TrajeDi0 TrajeDi025 TrajeDi05 TrajeDi075 TrajeDi1 Independent
17-20 30-35 18-25 65-158 85-233 53-161 20-28 18-29

complete a task on its own in case teammates are performing poorly in the task. While this inability to deal
with highly suboptimal teammates presents potential research directions to further improve BRDiv, note
that such suboptimal teammates are rarely encountered in many realistic applications of AHT. As originally
formulated by (Stone et al., 2010), encountered teammates are normally assumed to be capable of achieving
a specific return threshold at the given task.

7 Conclusion & Future Work

In this work, we discussed the importance of generating a collection of training teammate policies, Πtrain,
that require different best-response policies to improve the robustness of an AHT agent. To achieve this, we
proposed a teammate generation method that optimises BRDiv, a diversity metric designed to prevent the
emergence of superficial differences between policies in Πtrain. Based on a comparison against TrajeDi (Lupu
et al., 2021), Any-Play (Lucas & Allen, 2022), and a baseline that independently trains different teammate
policies via MARL, our experiments show that optimising BRDiv achieves higher average returns when
dealing with near-optimal previously unseen teammate policies. At the same time, we also see a smaller
variance in the returns achieved by learners trained with Πtrain produced by optimising BRDiv.

The conducted analysis of the generated teammates’ behaviour showed that optimising BRDiv avoids
generating teammates with superficial differences. At the same time, Πtrain generated by optimising BRDiv
covers a comprehensive set of reward-maximising teammate behaviours. Training against this set of teammates
eventually produced teammates that can perform a wider range of strategies to collaborate against previously
unseen teammate policies.

Although our results in the teammate generation experiments show that optimising BRDiv can generate
teammate policies that require different strategies for effective collaboration, we note that this is not the
only type of diversity displayed by decision-making agents in real-world problems. In many applications of
AHT, a learner also has to deal with teammates that vary in their ability to maximise the teams’ returns.
For example, even with different teammates that prefer a specific role such as being a striker, we see a wide
range of skill levels between potential teammates in a pick-up soccer game. A teammate’s ability may range
from having the skills of an amateur player to possessing elite skills displayed by top-division professional
players. Currently, this diversity cannot be discovered solely based on optimising BRDiv. The first term
on the right-hand side of Equation 6 encourages the creation of teammates with near-optimal policies when
we optimise BRDiv. By only training a learner against teammates generated by optimising BRDiv, this
limitation potentially results in a learner yielding suboptimal returns when dealing with teammates with a
low skill level. The results of our experiments in the Simple Cooking environment also confirmed the need for
further developments in this direction.

The proposed method to optimise BRDiv also faces challenges when dealing with problems other than
two-player games. In many real-world problems such as those addressed in open ad hoc teamwork (Rahman
et al., 2021), generating a team of multiple agents with different policies is desirable. While our proposed
optimisation method can be modified to generate a team of teammates, many such teams must be generated
at once to improve the robustness of the learner. After all, the number of generated training teams must
match the exponential increase in the space of possible team configurations. Since training agents via MARL
may require millions of experiences even in simple domains, the computational resources required by our
proposed method to generate a large collection of teams can quickly grow impractical as the size of a generated
team increases.

19

Published in Transactions on Machine Learning Research (05/2023)

Acknowledgments

This research received financial support from various sources. A.R. received funding from the Edinburgh
Enlightenment scholarship. E.F. was supported by the United Kingdom Research and Innovation (grant
EP/S023208/1), EPSRC Centre for Doctoral Training in Robotics and Autonomous Systems (RAS). I.C. and
S.A. were recipients of funding from the US Office of Naval Research (ONR) via grant N00014-20-1-2390, and
the Google Cloud Research Credits program award.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. Advances in Neural Information Processing
Systems, 34, 2021.

Stefano V. Albrecht and Subramanian Ramamoorthy. A game-theoretic model and best-response learning
method for ad hoc coordination in multiagent systems. In Proceedings of the 12th International Conference
on Autonomous Agents and Multiagent Systems, St. Paul, Minnesota, USA, May 2013.

Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive survey
and open problems. Artificial Intelligence, 258:66–95, 2018. DOI: 10.1016/j.artint.2018.01.002.

Stefano V. Albrecht, Jacob W. Crandall, and Subramanian Ramamoorthy. Belief and truth in hypothesised
behaviours. Artificial Intelligence, 235:63–94, 2016.

Samuel Barrett, Noa Agmon, Noam Hazon, Sarit Kraus, and Peter Stone. Communicating with unknown
teammates. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, pp. 1433–1434, Richland, SC, 2014. International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 9781450327381.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. Making friends on the fly: Cooperating with
new teammates. Artificial Intelligence, 242:132–171, 2017.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized
control of markov decision processes. Mathematics of operations research, 27(4):819–840, 2002.

Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Albrecht. Scaling multi-agent
reinforcement learning with selective parameter sharing. In International Conference on Machine Learning
(ICML), 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=SJx63jRqFm.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee. Diversity-
driven exploration strategy for deep reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
a2802cade04644083dcde1c8c483ed9a-Paper.pdf.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot coordination.
In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi,
Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu.
Population based training of neural networks. CoRR, abs/1711.09846, 2017. URL http://arxiv.org/
abs/1711.09846.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

20

https://openreview.net/forum?id=SJx63jRqFm
https://proceedings.neurips.cc/paper/2018/file/a2802cade04644083dcde1c8c483ed9a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a2802cade04644083dcde1c8c483ed9a-Paper.pdf
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846

Published in Transactions on Machine Learning Research (05/2023)

Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu, David Budden, Tim Harley,
and Pramod Gupta. A generalized framework for population based training. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp.
1791–1799, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi:
10.1145/3292500.3330649. URL https://doi.org/10.1145/3292500.3330649.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang. Celebrating
diversity in shared multi-agent reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=CO87OIEOGU8.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, ZHIPENG HU, and Yaodong
Yang. Towards unifying behavioral and response diversity for open-ended learning in zero-sum games. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 941–952. Curran Associates, Inc., 2021. URL https:
//proceedings.neurips.cc/paper/2021/file/07bba581a2dd8d098a3be0f683560643-Paper.pdf.

Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination. arXiv
preprint arXiv:2201.12436, 2022.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot coordination.
In Proceedings of the 38th International Conference on Machine Learning, 2021.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent variational
exploration. In Advances in Neural Information Processing Systems, pp. 7611–7622, 2019.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan, Peter
Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. European Conference on Multi-Agent
Systems (EUMAS), 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial observability
for deep reinforcement learning. Advances in Neural Information Processing Systems, 35, 2021a.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks (NeurIPS), 2021b. URL http://arxiv.org/abs/
2006.07869.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts. Effective diversity in
population based reinforcement learning. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, pp. 2778–2787. JMLR.org, 2017.

Arrasy Rahman, Niklas Höpner, Filippos Christianos, and Stefano V. Albrecht. Towards open ad hoc
teamwork using graph-based policy learning. In International Conference on Machine Learning, volume
139. PMLR, 2021.

Arrasy Rahman, Ignacio Carlucho, Niklas Höpner, and Stefano V. Albrecht. A general learning framework
for open ad hoc teamwork using graph-based policy learning. arXiv preprint arXiv:2210.05448, 2022.

21

https://doi.org/10.1145/3292500.3330649
https://openreview.net/forum?id=CO87OIEOGU8
https://openreview.net/forum?id=CO87OIEOGU8
https://proceedings.neurips.cc/paper/2021/file/07bba581a2dd8d098a3be0f683560643-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/07bba581a2dd8d098a3be0f683560643-Paper.pdf
http://arxiv.org/abs/2006.07869
http://arxiv.org/abs/2006.07869

Published in Transactions on Machine Learning Research (05/2023)

Lukas Schäfer, Filippos Christianos, Amos Storkey, and Stefano V. Albrecht. Learning task embeddings for
teamwork adaptation in multi-agent reinforcement learning. arXiv preprint arXiv:2207.02249, 2022.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In AAAI Conference on Artificial Intelligence, pp. 1504–1509,
2010.

Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Du, Yu Wang,
and Yi Wu. Discovering diverse multi-agent strategic behavior via reward randomization, 2021. URL
https://arxiv.org/abs/2103.04564.

Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. Options as responses:
Grounding behavioural hierarchies in multi-agent reinforcement learning. In International Conference on
Machine Learning, pp. 9733–9742. PMLR, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo
Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine,
Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch,
Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782):350–354, November 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z. URL
https://www.nature.com/articles/s41586-019-1724-z. Number: 7782 Publisher: Nature Publishing
Group.

Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max Kleiman-
Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse planning. Topics in
Cognitive Science, n/a(n/a), 2021. doi: https://doi.org/10.1111/tops.12525. URL https://onlinelibrary.
wiley.com/doi/abs/10.1111/tops.12525.

Dong Xing, Qianhui Liu, Qian Zheng, and Gang Pan. Learning with generated teammates to achieve type-free
ad-hoc teamwork. In IJCAI, pp. 472–478, 2021.

Chao Yu, Jiaxuan Gao, Weiling Liu, Bo Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Ming Wu. Learning
zero-shot cooperation with humans, assuming humans are biased. ArXiv, abs/2302.01605, 2023.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Reinforcement Learning: A Selective Overview
of Theories and Algorithms, pp. 321–384. Springer International Publishing, Cham, 2021. ISBN 978-3-030-
60990-0. doi: 10.1007/978-3-030-60990-0_12. URL https://doi.org/10.1007/978-3-030-60990-0_12.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive bayesian
reinforcement learning via meta-learning. arXiv preprint arXiv:2101.03864, 2021.

A BRDiv Pseudocode

We complete the description of our method by providing a pseudocode for the teammate generation process
undergone in BRDiv, shown in in Algorithm 1. An essential part of Algorithm 1 is a call to the COM-
PUTE_LOSS function that evaluates the loss functions minimised by BRDiv. How BRDiv utilises the
gathered self-play and cross-play experience to compute the minimised loss functions is then described in
Algorithm 2.

B Heuristic-based Teammates

As we mentioned in Section 6.2, we use Πeval consisting of heuristic-based policies to evaluate the methods
used in our experiments. The details of heuristics followed by each policy for the Cooperative Reaching

22

https://arxiv.org/abs/2103.04564
https://www.nature.com/articles/s41586-019-1724-z
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525
https://doi.org/10.1007/978-3-030-60990-0_12

Published in Transactions on Machine Learning Research (05/2023)

Algorithm 1 BRDiv-based Teammate Generation Process
Require:

Number of training episodes, neps.
Episode length, T .
Update period, tupdate.
Number of generated teammate types, K.
Initial population actor network parameters, Θ = {θ1, θ2, ..., θK , θBR

1 , θBR
2 , ..., θBR

K }.
Initial centralised critic parameters, ϕ.
Target centralised critic parameters, ϕ̄.
Learning Rate, α.
Target network update coefficient, ᾱ.
Environment for SP and XP interaction, envSP & envXP.

1: for i = 1 to neps do
2: t← 0
3: DSP,DXP ← {}, {}
4: IDSP ∼ Uniform({1, . . . , K}) ▷ Sample Population ID for SP
5: IDXP

1 , IDXP
2 ∼ Uniform({(i, j)|i, j ∈ 1, . . . , K, i ̸= j}) ▷ Sample Population ID for XP

6: Observe HSP
0 = (o1,SP

0 , o2,SP
0) and HXP

0 = (o1,XP
0 , o2,XP

0) from envSP and envXP respectively.
7: H1,SP

0 , H2,SP
0 , H1,XP

0 , H2,XP
0 ← {o1,SP

0 }, {o2,SP
0 }, {o1,XP

0 }, {o2,XP
0 }

8: while t < T do
9: // Self-Play Data Collection

10: a1,SP
t ∼ π

(
a1,SP

t |H1,SP
t ; θIDSP

)
and a2,SP

t ∼ πBR
(

a2,SP
t |H2,SP

t ; θBR
IDSP

)
11: rSP

t+1, HSP
t+1 ← envSP(HSP

t , aSP
t

)
12: DSP ← DSP||⟨HSP

t , aSP
t , rSP

t+1, HSP
t+1, IDSP⟩

13: // Cross-Play Data Collection
14: a1,XP

t ∼ π
(

a1,XP
t |H1,XP

t ; θIDXP
1

)
and a2,XP

t ∼ πBR
(

a2,XP
t |H2,XP

t ; θBR
IDXP

2

)
15: rXP

t+1, HXP
t ← envXP(HXP

t , aXP
t

)
16: DXP ← DXP||⟨HXP

t , aXP
t , rXP

t+1, HXP
t+1, IDXP

1 , IDXP
2 ⟩

17: if t mod tupdate = 0 then
18: // Parameter Update
19: LΘ,ϕ(DSP,DXP)← COMPUTE_LOSS(DSP,DXP, Θ, ϕ, ϕ̄)
20: for θi ∈ Θ do
21: θi ← GRADIENT_DESCENT(θi, α,∇θi

LΘ,ϕ(DSP,DXP))
22: end for
23: ϕ← GRADIENT_DESCENT(ϕ, α,∇θiLΘ,ϕ(DSP,DXP))
24: ϕ̄← (1− ᾱ)ϕ + ᾱϕ
25: DSP ← {}
26: DXP ← {}
27: end if
28: t← t + 1
29: end while
30: end for
31: Return: Θ

environment are provided in Section B.1. Meanwhile, Section B.2 outlines the heuristics followed by the
policies in Πeval for LBF, while Section B.3 outlines the heuristic followed by agents in the simple cooking
environment.

23

Published in Transactions on Machine Learning Research (05/2023)

B.1 Cooperative Reaching

For Cooperative Reaching, we implement 11 heuristics as part of Πeval. Each heuristic differs from others in
terms of their way of selecting which reward-providing coordinates to move towards. Some heuristics also
encourage teammates to follow the learner towards one of the existing reward-providing coordinates. The
details of each heuristic used in Cooperative Reaching are provided below:

• Heuristic H01. This heuristic selects the action that gets a teammate closer to the closest
reward-providing coordinate.

• Heuristic H02. This heuristic selects the action that gets a teammate closer to the furthest
reward-providing coordinate from its initial position at the beginning of the episode.

• Heuristic H03. A teammate under this heuristic moves towards the closest optimal reward-providing
coordinate.

• Heuristic H04. H4 moves an agent towards the furthest optimal reward-providing coordinate from
a teammate’s initial location in an episode.

• Heuristic H05. Same as H4, except that the learner only considers the suboptimal reward-providing
coordinates instead of the optimal ones.

• Heuristic H06. Same as H5, except the teammate goes towards the closest suboptimal reward-
providing coordinate.

• Heuristic H07. At the beginning of the episode, agents under this heuristic randomly select a
reward-providing coordinate and move towards it.

• Heuristic H08. This heuristic moves a teammate towards the reward-providing coordinate closest
to its counterpart agent’s location.

• Heuristic H09. Same as H8, but only optimal reward-providing coordinates are considered as the
teammate’s destination.

• Heuristic H10. This heuristic moves the teammate towards its counterpart agent’s location.

• Heuristic H11. This heuristic always randomly selects an action from the teammate’s possible
actions.

B.2 Level-Based Foraging

Like Cooperative Reaching, we create diverse teammate heuristics requiring a learner to adapt their policies
to achieve optimal collaboration. The ten heuristics used for LBF generally correspond to different ways of
deciding the ordering to collect objects scattered in LBF’s grid world. Details of each heuristic are provided
below:

• Heuristic H01. The teammate attempts to collect whichever object is closest to its current location.

• Heuristic H02. At each timestep, the teammate computes the midpoint between the learner and
its location. This teammate then attempts to collect whichever object is closest to this midpoint.

• Heuristics H03-H08. For heuristics H03 to H08, we assign a distinct random index from {1, 2, 3}
to each object at the beginning of each episode. Heuristics H03-H08 then collect the objects according
to one of the 6 distinct possible orderings of the object index.

• Heuristic H09. The teammate always attempts to collect food closest to the learner’s location.

• Heuristic H10. At the beginning of each episode, H10 identifies the object furthest from its location
and attempts to collect it. Each time its target item is collected, H10 then attempts to collect the
remaining object at the furthest distance from the current location of the controlled teammate.

24

Published in Transactions on Machine Learning Research (05/2023)

B.3 Simple Cooking

As the layout of our Simple Cooking is a ring, we consider two movement directions around the ring: clockwise
and anti-clockwise. Each heuristic agent has a goal, such as “seek and process the nearest food." Once their
goal has been completed, the heuristic agent finds a counter without any tools on it and stands on the empty
space closest to the said counter.

• Heuristic H1: Seeks the nearest food in the clockwise direction, picks it up, and continues to move
clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H2: Seeks the nearest food in the anti-clockwise direction, picks it up, and continues to
move anti-clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H3: Takes the shortest path to the nearest food item, picks it up, and continues to take
the shortest path to the appropriate food processing counter, where it processes the food.

• Heuristic H4: Seeks the furthest away food in the clockwise direction, picks it up, and continues to
move clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H5: Seeks the furthest away food in the anti-clockwise direction, picks it up, and continues
to move anti-clockwise to the appropriate food processing counter, where it processes the food.

• Heuristic H6: Same as Heuristic H3, except 25% of the time, the agent takes a uniform random
action.

• Heuristic H7: This heuristic seeks the nearest processed food in the clockwise direction. It then
picks up the processed food and checks whether the plate is on one of the counter or not. If the plate
is on one of the counters, the agent moves clockwise to the plate in order to put the processed food.
Otherwise, the agent goes towards the serving counter to place the food. Once there are no processed
food to move, this agent moves clockwise to stand in front of an outer counter without any items on
top.

• Heuristic H8: This heuristic is similar to H7 except that agents under this heuristic always move
in an anti-clockwise direction.

• Heuristic H9: This heuristic is similar to heuristics H7 and H8 except that agents under this
heuristic always decide its clockwise or anti-clockwise movement based on the shortest distance
between its target object or location.

• Heuristic 10: This heuristic is similar to heuristics H7 except that agents under this heuristic will
immediately put the processed food on the serving counter.

• Heuristic H11: This heuristic is similar to heuristics H8 except that agents under this heuristic
always put the retrieved processed food on the service counter.

• Heuristic H12: This heuristic is similar to heuristics H9 except that agents under this heuristic
will immediately put retrieved processed food on the service counter.

C Experiment Hyperparameters

This section provides details of the hyperparameters and neural network architectures used in our teammate
generation experiments.

• When optimising BRDiv, we run 32 parallel threads to collect self-play experiences during training.
Meanwhile, the remaining methods use 160 parallel threads to gather self-play experiences used
during their teammate generation process.

25

Published in Transactions on Machine Learning Research (05/2023)

• Aside from the threads used to gather self-play experiences, we use 128 parallel environments to
collect cross-play experiences when optimising BRDiv.

• All evaluated methods have their actor and critic networks updated every 8 timesteps.

• γ is set to 0.99.

• The generated actor networks alongside the critic network are trained using Adam optimiser (Kingma
& Ba, 2014) with a learning rate of 10−4.

• We clip the gradients of the model so that it always lies between -1 and 1.

• Each actor network corresponding to policies in the generated Πtrain and BR(Πtrain) are implemented
as multilayer perceptrons. The size of these networks for each environment is detailed below:

– Cooperative Reaching. The model comprises of four hidden layers with 128, 256, 256, and
128 neurons respectively.

– LBF. The model comprises of two hidden layers, each consisting of 128 neurons.
– Simple Cooking. Our network for this environment has two hidden layers with each layer

having 256 neurons.

• We associated different weights to the optimised loss functions when generating Πtrain using our
proposed method, TrajeDi, Any-Play and the independent baseline. The weights of each loss function
optimised by these methods are detailed below:

– For all methods, the critic loss function for SP data is also set to 1.0. Meanwhile, BRDiv assigns
a weight of 1.0 to the loss function that minimizes the critic loss function following cross-play
interaction data.

– For BRDiv, the weights of the losses optimised for training the actor networks is set to 25.
– The Jensen-Shannon Divergence term maximised by TrajeDi is given a weight of 10−3. We

arrive at this value after finding the largest possible weight from {10−1, 10−2, 10−3, 10−4} that
still ensures every policy in Πtrain to achieve optimal performances in the environment when
collaborating with its associated best response policy.

– The weights of Any-Play’s intrinsic reward to maximise diversity between populations is tuned
in the same way as how we tuned the Jensen-Shannon Divergence weights for TrajeDi. This
results in the intrinsic reward weights of 10−2, 10−3, and 10−3 for Cooperative Reaching, LBF,
and Simple Cooking.

– The classifier Any-Play uses to compute the intrinsic rewards uses the same architecture of other
methods’ critic networks. The term associated with the supervised learning loss utilised to train
this classifier is also set to 1.

– For TrajeDi, Any-Play, and the independent baseline, the weights associated with the term
that maximises the self-play performance between a policy in Πtrain and their associated best
response policies is set to 1.

• We also use η = 1 for the polynomial weight weighting algorithm for PLASTIC Policy, which is the
algorithm we use for our AHT experiments.

26

Published in Transactions on Machine Learning Research (05/2023)

Algorithm 2 Loss Computation
Require:

Self-play and cross-play data, DSP & DXP.
Population actor network parameters, Θ.
Centralised critic parameters and target centralised critic parameters, ϕ & ϕ̄.

1: function COMPUTE_LOSS(DSP,DXP, Θ, ϕ, ϕ̄)
2: tstart ← first time in the buffers DSP,DXP

3: tend ← latest time in the buffers DSP,DXP

4: Vtarget ← V (HSP
tend+1, IDSP, IDSP; ϕ̄)

5: LSP
ϕ ← 0 ▷ Compute Self-Play Critic Loss

6: for t = tend to tstart do
7: Vpred ← V (HSP

t , IDSP, IDSP; ϕ)

8: Vtarget ←

{
rSP

t , if episode terminates at t

rSP
t + γVtarget, otherwise.

9: LSP
ϕ ← LSP

ϕ + 1
2(Vpred − Vtarget)2

10: end for
11: Vtarget ← V (HXP

tend+1, IDXP
1 , IDXP

2 ; ϕ̄)
12: LXP

ϕ ← 0 ▷ Compute Cross-Play Critic Loss
13: for t = tend to tstart do
14: Vpred ← V (HXP

t , IDXP
1 , IDXP

2 ; ϕ)

15: Vtarget ←

{
rXP

t , if episode terminates at t

rXP
t + γVtarget, otherwise.

16: LXP
ϕ ← LXP

ϕ + 1
2(Vpred − Vtarget)2

17: end for
18: Vbootstrap ← V (HSP

tend+1, IDSP, IDSP; ϕ)
19: LSP

Θ ← 0 ▷ Compute Self-Play Actor Loss
20: for t = tend to tstart do
21: Mbaseline ← TO_XP_MATRIX

({
V (HSP

t , i, j; ϕ)|i, j ∈ 1, . . . , N
})

22: Vbootstrap ←

{
rSP

t , if episode terminates at t

rSP
t + γVbootstrap, otherwise.

23: Mpred ←Mbaseline
24: Mpred,IDSP,IDSP ← Vbootstrap ▷ Replace matrix element of interacting populations
25: LSP

Θ ← LSP
Θ − log(π(a1,SP

t |H1,SP
t ; θIDSP)πBR(a2,SP

t |H2,SP
t ; θBR

IDSP))(BRDiv(Mpred) −
BRDiv(Mbaseline))

26: end for
27: Vbootstrap ← V (HXP

tend+1, IDXP
1 , IDXP

2 ; ϕ)
28: LXP

Θ ← 0 ▷ Compute Cross-Play Actor Loss
29: for t = tend to tstart do
30: Mbaseline ← TO_XP_MATRIX

({
V (HXP

t , i, j; ϕ)|i, j ∈ 1, . . . , N
})

31: Vbootstrap ←

{
rXP

t , if episode terminates at t

rXP
t + γVbootstrap, otherwise.

32: Mpred ←Mbaseline
33: Mpred,IDXP

1 ,IDXP
2
← Vbootstrap ▷ Replace matrix element of interacting populations

34: LXP
Θ ← LXP

Θ − log(π(a1,XP
t |H1,XP

t ; θIDXP
1

)πBR(a2,XP
t |H2,XP

t ; θBR
IDXP

2
))(BRDiv(Mpred) −

BDiv(Mbaseline))
35: end for
36: Return: LSP

ϕ + LXP
ϕ + LSP

Θ + LXP
Θ

37: end function

27

	Introduction
	Related Work
	Background and Setting
	Decentralised Partially Observable Markov Decision Process
	Teammate Policy Generation

	Best-Response Diversity Metric
	Desirable Diversity for AHT
	BRDiv Metric

	Maximising BRDiv with Multi-Agent Reinforcement Learning
	Experiments
	Environments
	Experiment Protocol
	Baselines
	AHT Evaluation
	Behaviour Evaluation

	Conclusion & Future Work
	BRDiv Pseudocode
	Heuristic-based Teammates
	Cooperative Reaching
	Level-Based Foraging
	Simple Cooking

	Experiment Hyperparameters

