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ABSTRACT

Neural Architecture Search (NAS) relies heavily on labeled data, which is labor-
intensive and time-consuming to obtain. In this paper, we propose a novel NAS
method based on an unsupervised paradigm, specifically Masked Autoencoders
(MAE), thereby eliminating the need for labeled data during the searching pro-
cess. By replacing the supervised learning objective with an image reconstruction
task, our approach enables the robust discovery of network architectures without
compromising performance and generalization ability. Additionally, we address
the problem of performance collapse encountered in the widely-used Differen-
tiable Architecture Search (DARTS) in the unsupervised setting by designing a
hierarchical decoder. Through extensive experiments conducted across various
search spaces and datasets, we demonstrate the effectiveness and robustness of our
method, offering empirical evidence of its superiority over baseline approaches.

1 INTRODUCTION

In recent years, there has been a significant surge of interest in Neural Architecture Search (NAS)
within the machine learning field Zela et al. (2020); Liang et al. (2019); Ramachandran et al. (2018);
Liu et al. (2019a). NAS algorithms have emerged as a powerful tool for automatically discovering
superior network architectures, potentially saving valuable time and effort for human experts. These
algorithms have demonstrated remarkable success in various tasks, including but not limited to im-
age classification and object detection, by discovering neural architectures that achieve state-of-the-
art performance.

Existing NAS methods focus on learning from labeled data, leveraging the power of supervised
learning to guide the search for the optimal architectures. By utilizing labeled data, consisting of
samples paired with their corresponding ground truth labels, NAS algorithms aim to find competitive
models that can perform effectively across a variety of tasks and scenarios. However, obtaining
substantial quantities of human-annotated data proves to be costly and time-consuming. A portion
of the research Liu et al. (2020); Yan et al. (2020); Zhang et al. (2021) has shifted its attention
towards exploring methods to minimize the reliance on annotated data.

In this study, we present a novel NAS method called MAE-NAS based on Masked Autoencoders He
et al. (2022). To the best of our knowledge, this area has received limited explicit exploration in
previous research. Specifically, we apply the unsupervised paradigm of mask image modeling Xie
et al. (2022); He et al. (2022) to the widely adopted DARTS method Liu et al. (2019b). Instead
of relying on the supervised classification objective employed in DARTS, we replace it with the
image reconstruction task, thereby preventing the need for labeled data during the search process.
Our approach is shown in Figure 1, where the randomly masked images are fed into the encoder
and passed through the decoder to produce a reconstructed image. The encoder section covers the
search space for NAS, aimed at selecting a superior model to enhance the quality of the reconstructed
image. Based on MAE-NAS, we further investigate the issue of performance collapse of DARTS in
an unsupervised setting. The results indicate that the occurrence of collapse is highly correlated with
the size of the mask ratio. Notably, a higher mask ratio (i.e., greater than 0.5) effectively enables
DARTS to robustly overcome performance collapse. Motivated by this, we propose a hierarchical
decoder to stabilize the search process, fundamentally solving the issue of performance collapse in
DARTS. Specifically, the decoder takes hierarchical features as input, which encodes both fine and
coarse-grained information of the input image, and its output is the reconstructed image.
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Figure 1: The framework of MAE-NAS. The input is an image with an applied mask, which is first
fed into an encoder and then passed a hierarchical decoder, ultimately producing a reconstructed
image. The encoder section covers the search space for NAS, aimed at selecting a superior model to
enhance the quality of the reconstructed image.

The effectiveness of our method has been verified on seven widely used search spaces and three
datasets, providing compelling empirical evidence. Experimental results on ImageNet Deng et al.
(2009) and MS COCO dataset Lin et al. (2014) demonstrate that MAE-NAS achieves superior per-
formance over its counterparts while adhering to the comparable complexity constraint and the same
search space. Furthermore, we have conducted comprehensive experimental analysis and ablation
studies on NASBench-201 Dong & Yang (2020), NASBench-101Ying et al. (2019) and TransNas-
Bench-101Duan et al. (2021) to gain a deeper understanding of the characteristics of MAE-NAS.
These analyses reveal masked autoencoders are robust neural architecture search learners.

In a nutshell, our main contributions can be summarized as follows:

• We present a novel NAS method that leverages masked autoencoders to enable label-free
searching, which directly addresses the challenge of NAS in scenarios where labeled data
is expensive and not readily available.

• The proposed approach is designed to be plug-and-play, seamlessly integrating with the
existing supervised NAS methods. In our experiments, we showcase its compatibility with
other orthogonal DARTS variants. By removing their handcrafted indicators, MAE-NAS
demonstrates its integration ability without incurring additional overhead.

• Our approach achieves better or on-par results with its supervised and unsupervised coun-
terparts, which indicates the applicability of our method in real practice. Importantly,
MAE-NAS offers a new perspective on solving the performance collapse issue of DARTS
in the unsupervised paradigm.

2 RELATED WORK

Supervised neural architecture search. It has emerged as a prominent paradigm in NAS research.
Initially, NAS methods involved training candidate architectures from scratch and iteratively up-
dating the controller based on performance feedback. However, this approach needs a substantial
computational cost, as exemplified by NAS-Net Zoph et al. (2018b), which requires approximately
1350-1800 GPU days. To address this challenge and enhance the efficiency of NAS, weight-sharing
mechanisms have been widely adopted in various studies. These approaches can also be classified
into two main categories: one-shot methods Bender et al. (2018); Dong & Yang (2019a;a); Li et al.
(2020c); Chu et al. (2021b; 2023) and gradient-based methods Liu et al. (2019b); Chu et al. (2021a;
2020); Li et al. (2020a).

One-shot methods Bender et al. (2018); Cai et al. (2019); Chen et al. (2019b) entail training an
over-parameterized supernet using diverse sampling strategies. Once the supernet is effectively
trained, multiple child models are evaluated as potential alternatives, and those exhibiting superior
performance are selected. In contrast, gradient-based algorithms optimize both the network weights
and architecture parameters simultaneously through back-propagation. The selection of operators is
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based on the magnitudes of the architecture parameters. These approaches aim to reduce the com-
putational cost of NAS while still achieving commendable performance. Through the utilization of
weight-sharing mechanisms and the adoption of different optimization strategies, researchers have
made significant progress in enhancing the efficiency and practicality of NAS. Given the differen-
tiable and end-to-end characteristics of the DARTS paradigm, our study adopts it to investigate the
unsupervised NAS.

Unsupervised neural architecture search. Recently, there has been a growing emphasis on the
application of unsupervised learning, including the field of NAS. This unsupervised paradigm has
gained attention due to its potential to alleviate the reliance on labeled data. Notably, UnNAS Liu
et al. (2020) provides a comprehensive analysis of the impact of labeled data on NAS performance.
Their findings challenge the conventional belief that labeled data is indispensable for NAS. Building
upon this, RLNAS Zhang et al. (2021) leverages random labels instead of true labels. Surprisingly,
their research demonstrates that neural architectures discovered using random labels can achieve
comparable or even superior performance over supervised NAS methods. MIM-DARTSGuo et al.
(2022) introduces the MAE objective as an auxiliary loss on top of the original supervised loss to
address the issue of performance collapse of DARTS. However, no studies have explored masked
autoencoders for fully unsupervised NAS.

3 METHOD

3.1 MAE-NAS: DARTS BASED ON MASKED AUTOENCODERS

Let Ltrain and Lval represent the training and validation loss, respectively. For DARTS Liu
et al. (2019b), its goal is to find α∗ that minimizes the validation loss Lval(w

∗, α∗), where the
weights w∗ associated with the architecture are obtained by minimizing the training loss w∗ =
argminw Ltrain(w,α

∗). This formulation leads to a two-level optimization problem:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain(w,α)
(1)

Our approach, MAE-NAS, is grounded in a crucial observation: supervised neural architecture
search often yields final models that overfit the training data. In other words, regardless of how
we optimize α and w in Equation 1, these models consistently achieve near-zero training errors.
However, the ultimate goal of the search process is to identify architectures that exhibit strong gen-
eralization performance on the validation set. This presents an inherent contradiction in supervised
learning. With this perspective in mind, we propose leveraging the widely-used SimMIM Xie et al.
(2022) as a proxy task for NAS. In this way, we seek to discover models with enhanced general-
ization capabilities in the unsupervised paradigm. Building upon DARTS, the new optimization
objective is formulated as follows:

min
α

LM
val(w

∗(α), α,M)

s.t. w∗(α) = argmin
w

LM
train(w,α

∗,M)
(2)

where M denotes the set of masked pixels, and LM
val and LM

train represent the image reconstruction
loss, which is identical to SimMIM (more details in appendix A.1.1). And the SSL-style objective
is the sole loss function and doesn’t bring in extra training cost. As shown in Figure 1, our method
comprises an encoder that transforms the input into a latent representation, as well as a decoder that
reconstructs the original input. Specifically, the same supernet as DARTS serves as the backbone
of the encoder. In this way, the masked autoencoder becomes robust NAS learners, seeking to
learn promising encoder architectures from the DARTS search space, resulting in the minimal image
reconstruction loss. Note applying MAE on convolution networks is non-trivial, we generally follow
SparK Tian et al. (2023) for this purpose and give the details in Appendix A.1.1.
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3.1.1 ESCAPING FROM PERFORMANCE COLLAPSE.

DARTS exhibits a significant decline in performance when skip connections become dominant in
a supervised setting. Numerous studies Chu et al. (2021a); Xu et al. (2020) have shed light on
the underlying cause of this behavior. It is attributed to unfair competition between skip connec-
tions and other operations, resulting in unstable training of the supernet. Consequently, several
approaches Chu et al. (2021a); Zela et al. (2020) have been proposed to address this issue by intro-
ducing various types of regularization to facilitate DARTS in escaping local optima and achieving
better generalization properties. For example, R-DARTS Zela et al. (2020) seeks to add L2 or Sched-
uledDropPath regularization to the optimization objective. We cannot help but ask a question: does
the same issue also exist within the unsupervised paradigm?

In response to the above question, we conduct multiple independent repeated experiments based on
MAE-NAS. In an unsupervised setting, we observe an interesting phenomenon where the occurrence
of performance collapse is highly correlated with the size of the mask ratio. Specifically, when the
mask ratio is less than 0.5, the probability of collapse is significantly high, whereas when the mask
ratio exceeds 0.5, the collapse phenomenon no longer exists.

Next, we attempt to explain the phenomena. Image reconstruction in MAE is a more difficult proxy
task than the supervised classification originally adopted in DARTS. And the larger the mask ratio,
the more challenging it is to reconstruct the image. On the other hand, the encoder is designed to
identify high-performance architectures, which have greater capability to better restore the masked
image. When a large mask ratio makes image reconstruction difficult, the encoder naturally learns
a more powerful architecture in order to better fulfill the optimization objective. This effectively
prevents the encoder from converging to some poor architectures, which helps escape from perfor-
mance collapse. Additionally, the unsupervised proxy can be also viewed as a powerful regulariza-
tion where the mask ratio controls the strength of the regularization. Remarkably, the finding aligns
with the conclusion of collapse in a supervised setting.

3.1.2 HIERARCHICAL DECODER.

At a glimpse, adjusting the mask ratio seems to be a solution. However, the encoder may inad-
vertently discard promising architectures if the thresholds are set inappropriately. As previously
mentioned, the collapse issue is largely due to the DARTS method. The unfair competition be-
tween skip connections and other operations leads to highly unstable training in the searching stage
Chu et al. (2020). To stabilize the training of DARTS and fundamentally address the problem of
performance collapse, we present a more elegant solution called hierarchical decoding.

The original decoder in SimMIM takes the tokens derived from the encoder as inputs and subse-
quently processes them by a series of transformer blocks to reconstruct the image. In contrast, our
encoder (i.e. DARTS) is designed to extract hierarchical features of different resolutions, denoted
as F1, F2, and F3, which encode fine-grained and coarse-grained information of the image. To fully
supervise such features at different levels, we reconstruct the image separately from F1, F2, and F3.
Subsequently, such multi-grained outputs are aligned to the same scale by upsampling and combined
with summation and linear operations, ultimately producing the reconstructed image. This process
can be mathematically represented as follows:

Irec = Linear(Conv(F1)+

Upsample(Conv(F2), 2) + Upsample(Conv(F3), 4))
(3)

where Irec represents the reconstruction image. In detail, we only focus on the part of masked
patches when computing the loss, disregarding other regions of the input image. Compared to
supervised NAS methods like DARTS, our approach only introduces the hierarchical decoder for
image reconstruction. Such a decoder is extremely lightweight, as light as a convolution layer,
which brings negligible computational cost.

The motivation behind this design encompasses two aspects: firstly, it can accelerate gradient back-
propagation greatly and improve training stability effectively. The experimental results (Appendix
A.2.2) show that the hierarchical decoder leads to the smoother convergence curve and the lower
training loss. Secondly, it allows to learn more robust hierarchical features, enabling us to discover
stronger vision backbones. Specifically, we think that single-scale algorithm cannot learn multi-
scale features well. The multi-scale structure has been a universal paradigm in computer vision.
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Table 1: CIFAR-10 results in DARTS search space. The average results of 5 independent experi-
ments are reported. ‡: Avg, †: Best

Models Params(M) FLOPs(M) Top-1 Acc.(%) Supervised Cost(GPU days)

NASNet-A Zoph et al. (2018a) 3.3 608 97.35 Yes 2000
ENAS Pham et al. (2018) 4.6 626 97.11 Yes 0.5
DARTS Liu et al. (2019b) 3.3 528 97.0±0.14 Yes 0.4
GDAS Dong & Yang (2019b) 3.4 519 97.07 Yes 0.2
P-DARTS Chen et al. (2019a) 3.4 532 97.5 Yes 0.3
PC-DARTS Xu et al. (2020) 3.6 558 97.43 Yes 0.1
ROME-v1 Wang et al. (2023) 4.5 683 97.5 Yes 0.3
DARTS- † Chu et al. (2021a) 3.5 568 97.5 Yes 0.4
Ours † 3.8 605 97.5 No 0.4

P-DARTSChen et al. (2019a) 3.3± 0.21 540±34 97.19±0.14 Yes 0.3
R-DARTS Zela et al. (2020) - - 97.05±0.21 Yes 1.6
DARTS- ‡ Chu et al. (2021a) 3.5±0.13 583±22 97.41±0.08 Yes 0.4
ROME-v1 Wang et al. (2023) 4.0±0.6 670±21 97.37±0.09 Yes 0.3
Ours‡ 4.1±0.2 639±34 97.43±0.05 No 0.4

For instance, the pyramid networksLin et al. (2017a) cope with variations in object scales by its
hierarchical design. Masked modeling is originally applied to transformers in a single-scale manner.
Simply transferring it to convnets will lose the advantage of model hierarchy. Given that this work
explores convnet-style search spaces, hierarchical decoder becomes a natural choice.

3.1.3 RELATIONSHIP TO PRIOR WORKS.

Label-free NAS is not new in the NAS field. Previous literature such as UnNAS Liu et al. (2020)
and RLNAS Zhang et al. (2021) have demonstrated that label-free NAS can make NAS work as
well as supervised NAS. To our best knowledge, we are the first to explore the MAE paradigm in
the unsupervised setting, and it’s not straightforward to make it work. Directly applying it suffers
from the performance collapse issue like DARTS. We couple the masked autoencoder’s objective
with our proposed Hierarchical Decoder to address the collapse issue in DARTS and its variants.
We conduct comprehensive experiments across various datasets and tasks to verify the robustness
and generalization, which demonstrates MAE serves as an almost perfect proxy task for NAS. In
contrast, other unsupervised proxy metrics each have their limitations and constraints in application
scenarios. For example, the angle metric adopted by RLNAS does not apply to the architectures
with non-parametric operators (different activation functions, max pooling, and average pooling).
UnNAS seeks to introduce several unsupervised proxies (rotation, color, and jigsaw tasks) for NAS,
but the experiments Liu et al. (2020) have shown that the performance of these proxy tasks is not
consistent across different datasets. This has impacted its use cases and application scopes.

4 EXPERIMENTS

4.1 SEARCH SPACES AND TRAINING DETAILS

Comprehensive experiments are conducted on several popular search spaces, including NASBench-
201 Dong & Yang (2020), NASBench-101Ying et al. (2019), TransNas-Bench-101Duan et al. (2021)
and DARTS-based search spaces. Following the experiment settings of DARTS- Chu et al. (2021a),
we apply the searching, training, and evaluation procedure on the standard DARTS search space
(named S0). For other DARTS-like search spaces (S1-S4) proposed in R-DARTS Zela et al. (2020),
we follow the same settings as the original paper. As the comparison methods, S-DARTS Chen &
Hsieh (2020) differs from R-DARTS in layers and initial channels for training from scratch on
CIFAR-100 Krizhevsky et al. (2009). For a fair comparison, we align such two training settings re-
spectively. Besides, lots of ablation studies and analytical experiments are performed on NASBench-
201, NASBench-101 and TransNas-Bench-101, which are built for benchmarking NAS algorithms.
For ImageNet Deng et al. (2009), our method applies PC-DARTS Xu et al. (2020) to search on
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Table 2: Search results on ImageNet. Models in the top block are searched on CIFAR-10 and trained
from scratch on ImageNet. The rest models (also ours) are searched and trained both on ImageNet.

Models FLOPs(M) Params(M) Top-1 Acc. Top-5 Acc. Cost(GPU Days)

NASNet-A Zoph et al. (2018a) 564 5.3 74.0% 91.6% 2000
DARTS Liu et al. (2019b) 574 4.7 73.3% 91.3% 0.4
SNAS Xie et al. (2019) 522 4.3 72.7% 90.8% 1.5
PC-DARTS Xu et al. (2020) 586 5.3 74.9% 92.2% 0.1
FairDARTS-B Chu et al. (2020) 541 4.8 75.1% 92.5% 0.4

AmoebaNet-A Real et al. (2019) 555 5.1 74.5% 92.0% 3150
MnasNet-92 Tan et al. (2019) 388 3.9 74.79% 92.1% 3791
FBNet-C Wu et al. (2019) 375 5.5 74.9% 92.3% 9
FairNAS-A Chu et al. (2021b) 388 4.6 75.3% 92.4% 12
PC-DARTS Xu et al. (2020) 597 5.3 75.8% 92.7% 3.8

MAE-NAS (Ours) 533 4.7 76.1% 92.8% 4.5

the standard DARTS search space, and the retraining setting follows MobileNetV3 Howard et al.
(2019). For mask image modeling, the mask ratio is simply set to 0.5. The patch size of the mask is
8 and 4 for ImageNet and CIFAR datasets.

4.2 SEARCHING ON CIFAR-10

As shown in Table 1, regardless of whether it is the optimal or average result, the architectures found
by our method perform well on CIFAR-10 Krizhevsky et al. (2009). It is worth emphasizing that our
method doesn’t require labels while achieving comparable even better performance compared with
other supervised methods. Besides, the search cost is 0.4 GPU day, which is not higher than other
methods. Such improvement is probably because the architectures found by our method have more
FLOPs. But it’s reasonable that models with higher flops are more likely to have better capability if
flops are not constrained in free search mode.

4.3 SEARCHING ON IMAGENET

To thoroughly verify the effectiveness of MAE-NAS, we perform searching directly on a large-scale
dataset ImageNet in search space S0, and train the searched model from scratch on ImageNet to
evaluate its performance.

Comparison with supervised NAS methods. The results are shown in Table 2. Our approach,
being an unsupervised approach, achieves 76.1% top-1 accuracy, which outperforms the searched
models on CIFAR-10 by a clear margin. With fewer FLOPs and parameters, MAE-NAS achieves 1%
higher accuracy than FairDARTS-B. Besides, MAE-NAS also stands out among all searched mod-
els on ImageNet. Compared with the supervised NAS approaches, MAE-NAS obtains the highest
76.1% top-1 accuracy with on-par FLOPs, parameters, and search cost. Such results fully demon-
strate the potential of masked autoencoders as a proxy task in the NAS field.

Comparison with unsupervised NAS methods. To make apple-to-apple comparisons, we strictly
follow the unsupervised NAS paradigm as UnNAS Liu et al. (2020) and RLNAS Zhang et al. (2021).
In this paradigm, the searched models from the unsupervised searching stage are finally trained on
labeled datasets to compare the performance. As shown in Table 3, compared with UnNAS and
RLNAS, MAE-NAS achieves comparable even better performance with fewer FLOPs, parameters,
or search costs. Here, we would like to emphasize that the relative improvements brought by MAE-
NAS are comparable to some state-of-the-art (SOTA) NAS methods Chu et al. (2021a); Wang et al.
(2023). It is worth mentioning that the search performance largely depends on the search space. The
performance within the DARTS search space has nearly been saturated due to years of community
effort. Under these circumstances, significant improvements with new approaches are very hard.
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Table 3: Comparison with unsupervised NAS methods on ImageNet.†: rotation task, ‡: color task.
We evaluate the search cost of RLNAS by running their open-source code under the hardware envi-
ronment aligned with ours.

Method FLOPs(M) Params(M) Top-1 Acc.(%) Cost(GPU Days)

UnNAS † 552 5.1 75.8 -
UnNAS ‡ 587 5.3 75.5 -
RLNAS 561 5.2 75.9 8.33
Ours 533 4.7 76.1 4.5

4.4 SEARCHING ON NAS-BENCH-201

NAS-Bench-201 Dong & Yang (2020) shares a similar skeleton as DARTS and differs from DARTS
in the number of layers and nodes. Importantly, the search space trains 15625 models from scratch
and provides their ground-truth performance, which allows researchers to focus on the algorithms
itself without unnecessary repetitive training of searched models. As shown in Table 4, search results
on NASBench-201 further verify the superiority of MAE-NAS over supervised NAS methods. First,
MAE-NAS helps the native DARTS resolve the problem of collapse. Second, compared to gradient-
based methods(DARTS, GDAS Dong & Yang (2019b), SETN Dong & Yang (2019a)) and non-
gradient-based methods including the evolutionary search algorithm (REA Real et al. (2019)) and
the random search algorithm (RSPS Li & Talwalkar (2020)), our approach sets the new state of the
art on all comparison datasets, approaching the optimal solution of the search space. Besides NAS-
Bench-201, more comparison experiments are conducted on TransNas-Bench-101 search space in
Appendix A.2.4.

Table 4: Search results on NAS-Bench-201. The average results of 4 runs of search are reported.

Method Cost CIFAR-10 CIFAR-100 ImageNet16-120
(hours) valid test valid test valid test

DARTS1st 3.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS2st 10.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 8.7 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN 9.5 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
REA - 90.02±0.07 93.66±0.08 71.39±0.08 70.98±0.41 42.95±1.42 42.17±0.83
RSPS - 83.98±0.29 86.46±0.02 57.67±0.05 58.93±0.26 32.92±0.05 31.25±0.19
Ours 3.2 90.63±0.31 93.74±0.11 71.42±0.07 71.75±0.39 43.17±1.11 43.75±0.96
optimal n/a 91.61 94.37 73.49 73.51 46.77 47.31

4.5 ROBUSTNESS ON MULTIPLE SEARCH SPACES AND DATASETS

To validate the robustness of the proposed method, comparative experiments are conducted across
four search spaces (S1-S4), two datasets (CIFAR-10, CIFAR-100), and multiple SOTA NAS meth-
ods. As the search process of many NAS methods is not always stable, to ensure the fairness of
our experiments, we independently repeat each experiment three times and take the average results.
As shown in Table 5, without labels, MAE-NAS consistently achieves comparable even better per-
formance than supervised NAS methods on different search spaces and datasets. Taking S3 as an
example, our approach discovers the model with the error rate of 16.51% on CIFAR-100, which
outperforms other NAS methods with a clear margin.

4.6 GENERALIZATION ABILITY

The generalization ability of the proposed method is verified on downstream tasks. Specifically,
we transfer different NAS models searched and pre-trained on ImageNet to the detection task for
fine-tuning and evaluation. RetinaNet Lin et al. (2017b) and MS COCO dataset Lin et al. (2014) are
chosen as the backbone and validation dataset. To make a fair comparison, we follow RLNAS Zhang
et al. (2021) for both pre-training and fine-tuning. The only difference lies in that the backbone of
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Table 5: Comparison on CIFAR-10/100 and various search spaces. The average error rate of 3 found
architectures is reported. †: under Zela et al. (2020) settings where CIFAR-100 models have 8 layers
and 16 initial channels (The best is in boldface). ‡: under Chen & Hsieh (2020) training settings
where all models have 20 layers and 36 initial channels (best in boldface).

Benchmark DARTS
† R-DARTS † DARTS †

Ours
†

PC-DARTS
‡ SDARTS ‡

Ours
‡

DP L2 ES ADA RS ADV

C10

S1 3.84 3.11 2.78 3.01 3.10 2.91 3.11 2.78 2.73 2.91
S2 4.85 3.48 3.31 3.26 3.35 2.67 3.02 2.75 2.65 2.67
S3 3.34 2.93 2.51 2.74 2.59 2.49 2.51 2.53 2.49 2.49
S4 7.20 3.58 3.56 3.71 4.84 2.73 3.02 2.93 2.87 2.73

C100

S1 29.46 25.93 24.25 28.37 24.03 23.80 18.87 17.02 16.88 17.73
S2 26.05 22.30 22.24 23.25 23.52 22.55 18.23 17.56 17.24 17.12
S3 28.90 22.36 23.99 23.73 23.37 21.37 18.05 17.73 17.12 16.51
S4 22.85 22.18 21.94 21.26 23.20 21.87 17.16 17.17 15.46 16.56

Table 6: Object detection performance on MS COCO for the models searched in the DARTS search
space. ∗: rotation task

Method Params(M) FLOPs(M) AP (%) AP50(%) AP75(%)

Random 4.7 519 31.7 50.4 33.4
DARTS 4.7 531 31.5 50.3 33.1
P-DARTS 4.9 544 32.9 51.8 34.8
PC-DARTS 5.3 582 32.9 51.8 34.8

UnNAS∗ 5.1 552 32.8 51.5 34.7
RLNAS 5.2 561 32.9 51.6 34.8

Ours 4.7 533 33.0 51.8 35.1

RetinaNet is replaced with the model searched by our approach. Table 6 demonstrates that the
searched model of MAE-NAS in the DARTS search space achieves higher AP on the COCO dataset
than other methods.

4.7 SENSITIVITY ANALYSIS OF MASK RATIO AND PATCH SIZE

In MAE, mask ratio and patch size are two important parameters, which greatly affect the modeling
performance. Mask ratio refers to the proportion of pixels in an image that are randomly masked
or hidden during the training process. The masking operation helps the model learn robust repre-
sentations by forcing it to reconstruct the original image from an incomplete or corrupted input.
Patch size refers to the size of the masked patches in an image. These patches are randomly selected
and masked during training, and the model is trained to reconstruct the original image based on the
remaining unmasked pixels. Thus the patch size determines the spatial extent of the masked regions
in an image.

Table 7: Search performance on CIFAR-10 in S0 w.r.t the mask ratio and patch size.

Mask Ratio Top-1 Error (%) Patch Size Top-1 Error (%)

0.1 2.79±0.18 2 2.75±0.24
0.3 2.77±0.14 4 2.63±0.11
0.5 2.65±0.08 8 2.71±0.12
0.7 2.80±0.19 16 2.74±0.21

As shown in Table 7, we evaluate the sensitivity of MAE-NAS to mask ratio and patch size. To
observe their impact more meticulously, the mask ratio is sampled at intervals of 0.2 from 0.1 to
0.7, and the patch size is sampled at intervals of 2 from 2 to 16. We find that such two parameters
have a minimal impact on the final search results, which affirms the robustness of our method. Note
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Table 8: Searching performance on CIFAR-10 with different mask ratios. HD is an abbreviation for
Hierarchical Decoder. Each experiment is repreated three times.

Mask Ratio Top-1 Error (%) No. of skips

Ours 0.2 2.67±0.14 2
0.4 2.65±0.27 1
0.6 2.74±0.13 1
0.8 2.76±0.28 1

w/o HD 0.2 3.74±0.39 6
0.4 2.99±0.33 5
0.6 2.85 ±0.29 2
0.8 2.77±0.24 1

that MAE doesn’t provide an automatic way to calibrate these hyper-parameters either. However,
we empirically find that utilizing the default hyper-parameters of the MAE already suffices to search
good models for our method.

4.8 ABLATION OF HIERARCHICAL DECODER

To evaluate the impact of the hierarchical decoder (HD), we seek to replace the HD module in our
method with a regular decoder used in SimMIM Xie et al. (2022). In Table 8, we report the number
of skip connections and the top-1 accuracy of found architectures in two settings. It is not difficult
to observe that MAE-NAS without the HD module is greatly affected by performance collapse
when the mask ratio is relatively small (i.e., smaller than 0.5), whereas our method exhibits stable
performance across different mask ratios.
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20 40
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Figure 2: Ranking correlation of accuracy and image reconstruction quality on NAS-Bench-201.

5 IN-DEPTH ANALYSIS AND DISCUSSIONS

Strict theoretical analysis for why MAE is a good proxy is hard. Except for the extensive experi-
mental results on standard benchmarks, we also explore the underlying mechanism in this section,
which indicates the accuracy of searched architecture has a strong relation with the quality of image
restoration. The better the image is restored, the better accuracy the searched architecture obtains.
From this perspective, our method must learn a high-performance architecture to restore the masked
image better.

5.1 CORRELATION BETWEEN ACCURACY AND RECONSTRUCTION QUALITY

To figure out how masked autoencoders help discover promising architectures, we begin by training
a weight-sharing supernet based on NAS-Bench-201, as described in DARTS. Next, we evaluate
various metrics, including ground-truth accuracy and image reconstruction score, for child models
by inheriting the optimized weights from the supernet. Here, the image reconstruction score of a
model is computed as the average reconstruction loss across the validation dataset multiplying −1.
Then we rank the child models based on their image reconstruction score and ground truth accuracy
respectively. Following previous works Chu et al. (2021b); Li et al. (2020b); Yu et al. (2020), the
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Kendall’s Tau correlation between such two sets of rankings is finally calculated to measure the
correlation between ground truth accuracy and image reconstruction quality.

(a)

(b)

(c)

Figure 3: Comparison of the original images (a) and the reconstructed images on ImageNet. The
second and third rows represent the reconstructed images of the MAE-NAS supernet under the
settings of w/ HD (b) and w/o HD (c) respectively.

Figure 2 shows the ranking correlation based on supervised accuracy and reconstruction quality on
three datasets (CIFAR-10, CIFAR-100, ImageNet-16-120). Prior work has demonstrated the corre-
lation between random scores and accuracy is less than 0.01 (Table 2 of ABS Hu et al. (2020)). So
the reported correlation sufficiently indicates a strong association between the reconstruction score
and accuracy. To further substantiate this conclusion, we follow UnNAS and report Spearman’s
rank correlation between the proxy task and the image classification task in the form of the scatter
plot on NASBench-101Ying et al. (2019) in appendix A.2.3. We believe image reconstruction based
on masked autoencoders is indeed a promising proxy task for NAS and effectively explains why
MAE-NAS works well across different search spaces and datasets.

5.2 VISUALIZATION OF IMAGE RECONSTRUCTION

In Section 3.1, we explain from the view of optimization why HD is able to solve the issue of per-
formance collapse: it accelerates gradient back-propagation greatly and improves training stability
effectively. We also draw the training loss during the search phase in Appendix A.2.2, and find that
HD leads to the smoother convergence curve and the lower training loss than the one without it.

We rethink this question from the view of image reconstruction. As shown in Figure 3, MAE-NAS
achieves superior image reconstruction quality over its counterpart without HD. Conceptually, the
encoder is expected to be equipped with high-performance architectures, which have stronger ability
to better restore the masked image. If the reconstruction image has higher quality, in order to achieve
the goal, the encoder naturally learns a more powerful architecture. Such mechanism prevents the
encoder from converging to a poor architecture, thus helps MAE-NAS escape from performance
collapse.

6 CONCLUSION

Obtaining labeled data is time-consuming, making unsupervised NAS methods attractive. We pro-
pose MAE-NAS based on Masked Autoencoders that eliminates the need for labeled data. Our
approach replaces the supervised learning objective with a reconstruction loss, enabling the discov-
ery of network architectures with stronger representation and improved generalization. Experimen-
tal results on seven search spaces and three datasets demonstrate the effectiveness of MAE-NAS,
achieving comparable performance with its counterparts under the same complexity constraint. Such
experiments primarily covers image understanding tasks such as classification and object detection.
However, it’s nontrivial to apply our method to image generation tasks, and we’ll explore this in the
future work.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 APPLYING MAE ON CONVOLUTIONAL NETWORKS

We follow SimMIM Xie et al. (2022) and SparK Tian et al. (2023) to apply MAE on convolutional
networks. In details, Masked Autoencoders (MAE) captures representations by employing a masked
image modeling technique that conceals parts of the input image signals and reconstructs the true
signals in the obscured zones. This system is built upon three key components:

• Masking strategy: the patch-aligned random masking strategy is adopted. We process
images in patches, making it practical to apply masking at the patch level, where a patch is
entirely exposed or completely concealed. MAE-NAS adopt 8× 8 and 4× 4 as the default
masked patch size of ImageNet and CIFAR datasets respectively.
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Table 9: P-DARTS and its combination with
ours on CIFAR-10. The manual tricks are re-
moved in our experiments.

Method Setting Top-1 Acc. (%)

P-DARTS w/o tricks 96.48±0.55
MAE-NAS w/o tricks 97.16±0.14

Table 10: The combination of PC-DARTS
and ours on CIFAR-10. Searching is re-
peated three times.

Method Top-1 Acc. (%) Cost

PC-DARTS 97.09±0.14 3.75h
MAE-NAS 97.27±0.18 3.41h

• Encoder architecture: this component is responsible for deriving a latent feature represen-
tation from the masked image, which serves as the basis for predicting the original signals
in the masked region. MAE-NAS adopts the DARTS search space as the backbone.

• Decoder and prediction target: the decoder adopt the HD module and it is utilized on
the latent feature representation to generate the original signals within the masked region.
Prediction target defines the form of original signals to predict. And the l1-loss is employed
on the masked pixels:

L =
1

Ω(xM )
||yM − xM ||1

where x, y ∈ R3HW×1 are input RGB values and the prediction values respectively. The
symbol M represents the collection of pixels that have been masked, while Ω(·) indicates
the count of elements.

A.2 MORE EXPERIMENTAL RESULTS

A.2.1 COMBINATION WITH OTHER VARIANTS

We verify the power of our approach combined with other NAS methods. We choose two popular
NAS algorithms (P-DARTS and PC-DARTS) as baselines, whose codes are available, to apply MAE
as their NAS proxy for further improvements. All experiments are conducted on ImageNet, whose
training set is split into two parts: 50,000 images for validation and the rest for training.

P-DARTS The motivation behind P-DARTS Chen et al. (2019a) is to close the depth gap between
searching and training by presenting a progressive search strategy. The method starts with a small
network and progressively increases its size and complexity over multiple stages. Meanwhile, some
prior knowledge is introduced for search space regularization, to avoid the issue of performance
collapse. For example, they apply dropout after each skip-connect operation. Besides, they control
the number of preserved skip-connects manually. The aforementioned strategies, to some extent,
compromise the fairness of the comparison. To this end, we remove these artificial limitations for
fair comparison. We run P-DARTS without handcrafted tricks and our approach each three times to
get an average result. As shown in Table 9, our approach achieves 97.16% Top-1 accuracy, which
is 0.68% higher than P-DARTS. In conclusion, our method effectively addresses the problem of
performance collapse for P-DARTS without human prior.

PC-DARTS The motivation behind PC-DARTS Xu et al. (2020) is to deal with the challenge of
memory and computational efficiency of NAS. Traditional methods for architecture search require a
large number of parameters and operations, making them computationally expensive and memory-
intensive. To this end, PC-DARTS proposes using partial channel connections and allows for param-
eter sharing across different channels in a convolutional neural network, which effectively reduces
the number of parameters and the computational cost.

To verify the effectiveness of masked autoencoders as a NAS proxy in the PC-DARTS setting, we
compare the performance of PC-DARTS with its combination with ours. To ensure the reproduction
of our results, we utilize their source code and conduct multiple repeated experiments with different
random seeds under the same settings. As shown in Table 10, MAE-NAS achieves a 0.18% top-1
accuracy increase with the lower search cost compared to PC-DARTS.

Overall, the above results demonstrate the potential of MAE-NAS to enhance the performance of
existing NAS algorithms, even under suboptimal configurations. We believe that our approach can
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be further optimized and applied to a wider range of scenarios in the NAS field, paving the way for
more efficient and effective neural architecture search paradigms.

A.2.2 CONVERGENCE CURVE OF MAE-NAS

We attempt to compare the convergence curve of training loss on ImageNet for MAE-NAS in two
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Figure 4: The convergence curve of training loss on ImageNet.

settings: with and without HD. The results in Figure 7 show that the inclusion of the HD module
leads to the lower loss for MAE-NAS and the smoother convergence curve.

A.2.3 CORRELATION BETWEEN PRETEXT TASK AND HE TASK OF IMAGE CLASSIFICATION
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Spearman Correlation is 0.8 in NAS-Bench-101 on CIFAR-10

Figure 5: The ranking correlation between the scores of the pretext task and the accuracy of image
classification in NAS-Bench-101 on CIFAR-10.

A.2.4 SEARCHING COMPARISON EXPERIMENTS ON TRANSNAS-BENCH-101.

As in Table 11, both RS and REA achieve comparable even better performance with MAE proxy
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Table 11: Comparison with RS and REA on TransNas-Bench-101.

Method Proxy Supervised Cls Acc.(%) Seg.(mIoU)

RSBergstra & Bengio (2012) accuracy Yes 45.16±0.4 25.21±0.4
RS mae No 45.34±0.4 25.35±0.4
REAReal et al. (2019) accuracy Yes 45.39±0.2 25.52±0.3
REA mae No 45.47±0.3 25.77±0.3

to the original methods. This proves that, as an unsupervised metric, MAE proxy is very promising.

A.2.5 GENOTYPE VISUALIZATION OF SEARCHED MODEL
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Figure 6: The normal cell searched on ImageNet.
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Figure 7: The reduction cell searched on ImageNet.

16


	Introduction
	Related Work
	Method
	MAE-NAS: DARTS Based on Masked Autoencoders
	Escaping From Performance Collapse.
	Hierarchical Decoder.
	Relationship to prior works.


	Experiments
	Search Spaces and Training Details
	Searching on CIFAR-10
	Searching on ImageNet
	Searching on NAS-Bench-201
	Robustness on Multiple Search Spaces and Datasets
	Generalization Ability
	Sensitivity Analysis of Mask Ratio and Patch Size
	Ablation of Hierarchical Decoder

	In-depth Analysis and Discussions
	Correlation Between Accuracy and Reconstruction Quality
	Visualization of Image Reconstruction

	Conclusion
	Appendix
	Implementation Details
	Applying MAE on Convolutional Networks

	More Experimental Results
	Combination with Other Variants
	Convergence curve of MAE-NAS
	Correlation between pretext task and he task of image classification
	Searching comparison experiments on TransNas-Bench-101.
	Genotype visualization of searched model



