
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POLICY TRANSFER VIA LATENT GRAPH PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a transfer learning framework for deep reinforcement learning that
integrates graph-based planning with self-supervised representation learning to
efficiently transfer knowledge across tasks. While standard reinforcement learn-
ing aims to learn policies capable of solving long-horizon tasks, the resulting
policies often fail to generalize to novel tasks and environments. Our approach
addresses this limitation by decomposing long-horizon tasks into sequences of
transferable short-horizon tasks modeled by goal-conditioned policies. We utilize
a planning graph to generate fine-grained sub-goals that guide these short-horizon
policies to solve novel long-horizon tasks. Experimental results show that our
method improves sample efficiency and demonstrates an improved ability to solve
sparse-reward and long-horizon tasks compared to baseline methods in challeng-
ing single-agent and multi-agent scenarios. In particular, compared to the state-
of-the-art, our method achieves the same or better expected policy reward while
requiring fewer training samples when learning novel tasks.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive success in various challenging domains,
including robotics (Lu et al., 2021), game playing (Vinyals et al., 2017), healthcare (Abdellatif et al.,
2021), and conversational agents (Ouyang et al., 2022). The ability of RL agents to autonomously
learn policies through trial-and-error has made them well-suited for tasks where predefined strategies
are difficult to design. However, despite these advancements, RL often struggles when applied to
long-horizon tasks where agents must learn a complex, extended sequence of behaviors. Two major
challenges arise in these scenarios: effective exploration, which is difficult over long horizons as the
number of possible state-action sequences grows exponentially; and credit assignment, where it is
unclear which actions contributed to task success or failure (Arumugam et al., 2021).

Transfer learning can be used to mitigate these challenges by leveraging knowledge gained from a
source task to accelerate learning in a related target task (Zhu et al., 2023). Similarities in structures
or features between related tasks allow learned insights to be transferred, avoiding the need to start
learning from scratch in each new task. However, these methods are often less successful as the
task horizon increases, owing to the combinatorial explosion of potential action sequences and the
compounding of errors over time (Gupta et al., 2019; Jiang et al., 2024).

In this paper, we propose a novel solution to this problem by automatically decomposing long-
horizon tasks into sequences of short-horizon tasks, which are solved using a goal-conditioned pol-
icy. By focusing on short-horizon tasks, we reduce the complexity of the task space, making it easier
for the policy to adapt to new but related tasks. We decompose each task by learning a latent space
using self-supervised temporal contrastive learning, where states that are temporally and spatially
close are mapped to nearby points in the latent space. We cluster the latent space to construct a
graph that captures the relationship between different states. This latent space graph is used to plan
a sequence of sub-goals to reach any desired temporally extended goal, and is used to guide the
short-horizon goal-conditioned policy (see Fig. 1). While task decomposition has been extensively
studied in prior works (Nasiriany et al., 2019; Huang et al., 2019; Hoang et al., 2021) to enhance
performance within a single task, we show that such decompositions also significantly improve a
policy’s generalizability to novel tasks and lead to state-of-the-art transfer learning performance.

Our contributions are as follows: 1) We introduce a method for learning a latent space graph which
can be used to automatically decompose a task into a sequence of shorter sub-tasks via planning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Goal Conditioned

Policy

A: Train GC Policy B: Train Latent Space

Policy Transfer

Target Environments

Source Environment Iterative Policy and Latent Sub-Task Training

Action

State

Sub-Task

"Pick Plate"

Goal Selection

(train) (test)

P
o
li
c
y
 R

o
ll
o
u
t

Low-Level

State Clusters

High-Level

Task Graph

Start

Goal

Figure 1: Our approach involves training in a source environment by completing randomly sampled
short-term goals (step A). We then iteratively roll out the partially trained policy to learn a latent
space that captures the temporal structure of trajectories and the long-term task graph from a single
expert demonstration (step B). To apply the policy to a new task, we fine-tune the short-term policy.
This allows for effective transfer as we only need to fine-tune short-term goals, while the new long-
term task is represented in the task graph from a single expert demonstration.

2) We empirically show in both single-agent and multi-agent reinforcement learning tasks that our
approach learns generalizable policies that can be readily adapted to novel tasks, significantly im-
proving policy convergence speed when compared to state-of-the-art transfer learning methods. 3)
In the special case of transferring policies between isomorphic tasks, our approach allows for zero-
shot transfer, only requiring edits to the planning graph while being able to re-use the underlying
policy directly.

2 RELATED WORKS

2.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

Goal-conditioned reinforcement learning (GCRL) is a framework where an agent learns to achieve
a specified goal state instead of maximizing a scalar reward signal. Schaul et al. (2015) introduced
the concept of universal value function approximators (UVFA), which extends the standard value
function to consider goal states. Andrychowicz et al. (2017) proposed Hindsight Experience Replay
(HER), a technique that allows the agent to learn from failures by treating the achieved state as
the desired goal state. Recent works have extended GCRL to handle multi-goal scenarios (Plappert
et al., 2018) and hierarchical goal-setting (Nachum et al., 2018; Levy et al., 2017).

Exploration is crucial for GCRL, especially in sparse reward settings. Go-Explore (Ecoffet et al.,
2019) addresses this by building an archive of diverse, high-performing states during exploration
and learning a policy to reach these states reliably. Skew-Fit (Pong et al., 2019) introduces a goal
sampling scheme that favors goals of intermediate difficulty, encouraging exploration and learning.
DISCERN (Li et al., 2021) learns a goal-conditioned policy using an unsupervised reward function
that promotes exploration and skill discovery. Plan2Explore (Sekar et al., 2020), LEXA (Mendonca
et al., 2021) and PEG (Hu et al., 2023) build on top DreamerV2 (Hafner et al., 2020) and promote
exploration during training.

2.2 CONTRASTIVE REPRESENTATION LEARNING IN ROBOTICS

Contrastive learning has been successfully applied to robotics for learning state and reward repre-
sentations. Laskin et al. (2020a) proposed the Contrastive Unsupervised Representations for Re-
inforcement Learning (CURL) framework, which learns a contrastive representation of raw pixels
to improve sample efficiency in robotic control tasks. Zhan et al. (2022) introduced a framework
for learning robotic manipulation skills using contrastive learning, demonstrating improved per-
formance and generalization. Other works have utilized contrastive learning for various aspects
of robotic learning. Singh et al. (2020) employed contrastive learning to learn reward functions,
while Laskin et al. (2020b) used it to learn invariant representations. Florence et al. (2018) and
Cao et al. (2022) trained view-angle invariant contrastive representations to improve robotic manip-
ulation tasks, enabling the agent to handle variations in object poses and camera viewpoints. Cao
et al. (2023) proposed a method for learning sim-to-real pixel-to-pixel consistent contrastive repre-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sentations, which allows for zero-shot transfer of policies learned in simulation to real-world robotic
manipulation tasks. Park et al. (2024) and Park et al. (2024) used contrastive learning to learn a
mapping from states to latent representation that preserves the temporal structure.

2.3 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical reinforcement learning (HRL) aims to learn a hierarchy of policies operating at different
abstraction levels. The goal is to break down a complex task into simpler subtasks, which can be
learned more efficiently. Sutton et al. Sutton et al. (1999) introduced the options framework, which
extends the standard MDP to include temporally extended actions. Bacon et al. Bacon et al. (2017)
proposed the Option-Critic architecture, which simultaneously learns the policy over options and
the options themselves. Recent works have explored learning goal-conditioned hierarchical policies
(Nachum et al., 2018; Levy et al., 2017) and combining HRL with meta-learning (Frans et al., 2017).

2.4 TRANSFER LEARNING IN REINFORCEMENT LEARNING

Transfer learning in RL aims to leverage knowledge learned from one task to improve learning
efficiency and performance in another related task. Zhu et al. (2023) provides a comprehensive
survey of transfer learning methods in RL. Rusu et al. (2016) introduced the Progressive Neural
Networks (PNN) architecture, which allows for transferring knowledge across a sequence of tasks
while avoiding catastrophic forgetting. Other approaches include learning invariant feature spaces
(Gupta et al., 2017), meta-learning for fast adaptation (Finn et al., 2017), and learning transferable
representations (Higgins et al., 2017).

Recent advancements include Distilling Policy Distillation (Czarnecki et al., 2019), which combines
policy distillation with teacher-student curriculum learning for efficient knowledge transfer, and
Kickstarting Deep Reinforcement Learning (Schmitt et al., 2018), which uses human demonstrations
in a source task to initialize policies in a target task, reducing exploration and improving learning
efficiency. JumpstartRL (Uchendu et al., 2023) uses a guidance policy to help a new policy to learn
in a curriculum setting.

3 METHOD

In this section, we introduce our approach for transferring a policy from a source to a target task in
a sample-efficient manner (also see Fig. 1). Section 3.1 introduces the training of our initial goal-
conditioned policy (GCRL) executing randomly sampled short-horizon tasks in the source domain.
The key to our method is that utilizing a policy that executes simple, short-horizon tasks will be
easier to transfer than a policy handling long-horizon tasks directly. In section 3.2, we highlight
how a sequence of sub-goals for a particular long-horizon task is created, namely our planning
graph, given only a single expert demonstration of the desired task. This graph operates over a
learned latent space covering the agent’s behavior using contrastive learning to capture the temporal
structure of the agent’s trajectories. Finally, in section 3.3, we highlight how the sub-goals for the
novel task are selected.

3.1 GOAL-CONDITIONED REINFORCEMENT LEARNING AGENT

Given an expert trajectory τexpert for the long-horizon task in the source environment, we train a
short-horizon goal-conditioned policy capable of completing navigation tasks with goals in close
proximity to the starting point. To ensure that the GCRL agent adheres to the demonstrated task, we
sample random starting states s0 from the target trajectory and extract feasible short-term goals by
short random walks. In particular, we sample the initial state from the expert trajectory τexpert and
sample a goal state g ∼ P (g|s0). For a comprehensive algorithm description, we refer the reader to
(Schaul et al., 2015) and (Schulman et al., 2017). We train our GCRL agent with the universal value
approximator (Schaul et al., 2015) and Proximal Policy Optimization (Schulman et al., 2017).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 TEMPORAL CONTRASTIVE LEARNING AND CLUSTERING

Providing sub-goals guiding the GCRL agents to complete tasks in target environments allows for
efficiently transferring skills learned in the source environment to the target environment. However,
this depends on the ability to provide accurate sub-goals to the GCRL agent. To achieve this, we
utilize contrastive learning to distill a latent space representing temporal distances, specifically, the
minimal steps required for an agent to transition from one state to another. However, obtaining
the minimal temporal distance between state pairs requires optimal control between every pair of
states. Hence, we use state pairs and corresponding temporal distances from rollouts generated by
the GCRL agent for approximation. As these temporal distances may still being noisy, we employ
the InfoNCE (Oord et al., 2018) approach to learn a mapping fw from the observational space to
the embedding space, where geometric proximities in the embedding space mirror temporal dis-
tances in the trajectories. This relationship is encapsulated in Equation 1, with d(·, ·) representing
a metric distance function. We choose d(·, ·) as the L2 distance. Adopting a metric space as d(·, ·)
enables estimating temporal distances between unobserved state pairs using the triangular inequal-
ity. This contrastive learning and metric formulation, coupled with neural network modeling, allows
our system to process and generalize from noisy trajectory data. During training, we select state
pairs within T timesteps in a trajectory to be positive samples and randomly sample states within
the same batch to be negative samples. T is a hyper-parameter governing the maximum temporal
threshold for positive sample pairs.

Ltc(x, xpos, X) = −E
[
log

exp(−d(fw(x), fw(xpos)))∑
x′∈X exp(−d(fw(x), fw(x′)))

]
(1)

Note that the learned latent space reflects the temporal distances of the underlying trajectories used
for training. Thus, curating a dataset representative of the state and transition distribution for the
designated task is crucial. Collecting rollouts of states relevant to the desired task with temporal
distances close to the minimal temporal distances is essential for learning latent space structures
useful for the task.

In Algorithm 1, we sample initial states from an expert trajectory τexpert to ensure we efficiently
cover state regions relevant to the completing the task; we use the trained GCRL agent πθ to collect
rollouts; furthermore, we sample state pairs to balance the probabilities of sampling each state. After
learning the temporal embeddings, we construct a graph to capture the essential temporal structure
of the task. The graph is constructed as follows: first, we employ the K-means clustering algorithm
to group the embeddings into distinct clusters and utilize the elbow method to determine the optimal
number of clusters (Lloyd, 1982; Bengfort & Bilbro, 2019). Each cluster in the embedding space
represents a node in the graph. Then, we create edges between nodes based on the observed transi-
tions between clusters in the expert trajectory. Specifically, for each consecutive pair of states in the
expert trajectory, we identify their corresponding clusters and add an edge between the associated
nodes in the graph. It is crucial to note that the learned embeddings and the resulting graph are
grounded in the original state space, enabling us to map each state to its corresponding embedding,
cluster, and graph node. This property allows for seamless integration of the graph-based plan-
ning with the reinforcement learning agent. The constructed graph captures the essential temporal
structure of the task, facilitating efficient planning and sub-goal generation for the agent during the
transfer learning process.

3.3 TASK EXECUTION

After finetuning on the target environment, we combine the GCRL agent πτ , the temporal contrastive
mapping fw, the expert demonstration τexpert, and the cluster classifier to execute tasks. As shown in
Algorithm 2, on each step, we predict the current cluster and select the next sub-goals g as the state
that transitions to the next cluster on the shortest path from the current cluster to the target cluster, or
the target state if we are already in the target cluster, and execute the action sampled from πθ(s, g).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Training Temporal Latent Space

1: Input: env, fw, πθ, τexpert, P (g|s0)
2: s0 ∼ τexpert
3: g ∼ P (g|s0)
4: Dataset← rollouts(πθ, env, s0, g)
5: while not converged do
6: x, xpos, X ← BalancedSampling(Dataset)
7: Optimize Ltc(x, xpos, X)
8: end while
9: ClusterClassifier← Cluster fw(Dataset)

10: PlanningGraph← construct graph(Dataset, fw, τexpert)

Algorithm 2 Task Execution

1: Input: env, πθ, τexpert, fw, ClusterClassifier
2: s← env.reset()
3: while not done do
4: c← ClusterClassifier(fw(s))
5: g ← GetSubGoal(fw, c, τexpert)
6: action ∼ πθ(s, g)
7: s, done← env.step(action)
8: end while

4 EXPERIMENTS

The primary goal of these experiments is to address the following questions: 1) Can our method
reduce sample complexity for transfer learning in both single-agent and multi-agent environments?
2) How does our approach compare to baseline models in terms of performance across different tar-
get environments? 3) Are the sub-goals generated by our method semantically meaningful? 4) Can
we zero-shot transfer to isomorphic tasks by only adapting the task graph?

Cilantro Cilantro Left

Eight Shape

Ring Small Corridor

Corridor

Source Target
(a) Overcooked

Source Target

(b) PointMaze

Figure 2: a) The source and target Overcooked (Carroll et al., 2019) tasks. The two chefs need to
coordinate to make soup and deliver soups. In each environment, there are two chefs (the chef with
the green hat and the chef with the blue hat), onion dispensers, plate dispensers, ovens (the grey box
with a black top), a serving area (the plain light grey box), walls (brown box) and optionally cilantro
dispensers. b) The source and target PointMaze (Pitis et al., 2020) tasks. Agents must navigate from
the initial position (the orange point) to the target position (the green star).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 SETUP

We evaluated our method against five baseline approaches across seven transfer learning tasks in
the Overcooked environment (Carroll et al., 2019), a multi-agent, cooperative domain based on the
video game Overcooked. Here, chefs must coordinate to prepare and deliver soups across varying
kitchen layouts and recipe configurations. In this work, we focus on two-player scenarios where
agents must coordinate to complete the high-level steps involved in preparing and serving soups,
as outlined in Figure 3. To assess transfer learning performance, we pre-trained agents in a source
environment, envs, and subsequently transferred them to a set of target environments, envt. The
target environments were designed as variations of the source environment, differing either in layout
or task complexity. For instance, the Cilantro and Cilantro Left environments introduce both new
recipes and modified layouts, whereas environments such as Ring, Eight Shape, Small Corridor,
and Corridor focus on increasingly complex layout configurations. These source and target envi-
ronments are shown in Figure 2a. All experiments were conducted using partially observable agents
(seeing the 3x3 grid centered at the agent). Each episode consisted of 500 timesteps, and agent
performance was evaluated by the number of soups delivered per episode. The original Overcooked
environment operates under deterministic dynamics with a fixed initial configuration. To introduce
variability and prevent overfitting to the initial state, we randomized the agent’s initial ten timesteps
before policy execution. For our method, we provided a single expert trajectory for each target en-
vironment, generated through hand-crafted policies. We included baseline methods that have access
to policies trained directly on the target environments for a fair comparison.

We compare our method against the following five baseline approaches:

• No Transfer: This approach trains an RL agent from scratch in the target environment,
without utilizing any knowledge from the source environment.

• Fine-tuning: In this approach, an agent pre-trained in the source environment is fine-tuned
in the target environment, allowing the agent to adapt its learned policies to the new task.

• Policy Distillation (Loss): This method employs an auxiliary cross-entropy loss to align
the action probabilities of a pre-trained policy from the source environment with the learn-
ing policy in the target environment (Schmitt et al., 2018).

• Policy Distillation (Reward): This method uses a reward shaping term to incorporate
the difference between the pre-trained critic from the source environment and the current
policy’s predictions at each timestep in the target environment (Czarnecki et al., 2019).

• JumpStart RL (JSRL): This method begins by rolling out a guiding policy to assist the
RL agent in moving closer to the goal (Uchendu et al., 2023). The number of steps the
guiding policy is used depends on a curriculum schedule (e.g. gradually decreasing from
55 to 0). As training progresses, the RL agent gradually relies less on the guiding policy,
allowing it to learn more independently. Several JSRL configurations were evaluated based
on the following factors:

– Guiding Policy Source:

* Source Environment: The guiding policy is trained on the source environment.
* Target Environment (Oracle): The guiding policy is trained on the target environ-

ment, giving the agent an oracle-like advantage.
– Fine-tuning:

* JSRL Tune: The policy network is initialized from the source environment policy.
* No Fine-tuning: The policy network is randomly initialized.

4.2 TRANSFER LEARNING RESULTS

We present the average number of soups delivered throughout training for each method in Figure 4,
and report the convergence speeds and final performances in Table 1 and Table 2. Our method
demonstrates a significant advantage in convergence speed, as shown in Table 1. Notably, our meth-
ods performs comparably or better when comparing to JSRL with access to the oracle policy, trained
in the target environment, as the guiding policies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Put cilantro into
soup

X3

Put 3 onions
in the pot

Cook for
20 steps

Put soup
on plate

Figure 3: Overcooked recipes. To make one soup, the two chefs need to 1) fetch three onions from
the onion dispenser and put them into the oven one by one, and 2) turn on the oven and wait for 20
steps, and 3) fetch a plate from the plate dispenser, take the soup from the oven to the plate, and 4)
Optionally, to make a cilantro soup, fetch Cilantro from the dispenser and put it on the soup plate.

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M
0

5

10

2M 4M 6M 8M 10M
0

2

4

2M 4M 6M 8M 10M
0

1

2

3

4

Ours No transfer Fine-tune Distill (loss) Distill (reward) JSRL JSRL Tune

Training environment steps Training environment steps Training environment steps

#
 S

o
u

p
s

#
 S

o
u

p
s

Cilantro Cilantro Left Eight shape

Ring Small Corridor Corridor

(a) Overcooked learning curves.

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

2

4

2M 4M 6M 8M
0

1

2

3

4

Ours JSRL (oracle) JSRL Tune (oracle)

Training environment steps Training environment steps Training environment steps

#
 S

o
u

p
s

#
 S

o
u

p
s

Cilantro Cilantro Left Eight shape

Ring Small Corridor Corridor

(b) Overcooked learning curves (JSRL with oracle guide policies).

Figure 4: Overcooked Learning Curves. Average soups delivered over 50 episodes throughout train-
ing. Note, baselines in small corridor and corridor do not deliver any soups, thus overlapping flat
lines. a) compares our method with baselines; b) compares our method with JSRL where guiding
policies are trained in the target environments.

In environments where the layouts remain similar but the recipes differ—such as Cilantro and
Cilantro Left—our method consistently outperforms the baselines. Notably, transfer learning meth-
ods struggle in these settings and sometimes even perform worse than No Transfer. This is likely
due to the inherent bias from the source environment’s policies, which can hinder learning the sub-
tle task differences in the target environment. For example, in environments with cilantro recipes,
agents tend to follow the original recipe and fail to add cilantro to the soup before serving, leading to
severe performance degradation. In contrast, our method effectively transfers to these environments,
handling task-specific nuances that significantly impact performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In environments where the recipes remain similar but the layouts change—such as Ring, Eight
Shape, Small Corridor, and Corridor—our method performs comparably or better than the base-
lines in most cases, while requiring fewer training samples. Interestingly, while JSRL with an oracle
guiding policy baselines have an inherent advantage in these settings, our method still achieves
superior or comparable results. This is especially evident in challenging environments like Small
Corridor and Corridor, where other methods struggle to deliver any soups. The difficulty in these
environments arises from the need for agent coordinations to avoid blocking each other in the nar-
row corridors. Our method excels in such scenarios, demonstrating its strength in transferring to
long-horizon multi-agent planning and coordination tasks.

Overall, while baselines such as JSRL with an oracle guiding policy have inherent advantages,
particularly in terms of access to more complete information, our method consistently outperforms
them by better adapting to the intricacies of new environments with minimal additional training data.

Environment Cilantro Cilantro Left Eight Shape Ring Small Corridor Corridor
Ours 3.1M 1.6M 2.6M 2.1M 2.1M 1.6M

No transfer 5.0M 6.0M 7.0M 6.0M n/a n/a
Fine-tune 3.0M 1.0M n/a 5.0M n/a n/a

Distill (loss) 10.0M 2.0M 5.0M 6.0M n/a n/a
Distill (reward) 8.0M 4.0M 6.0M 7.0M n/a n/a

JSRL 5.3M 6.0M 6.0M 5.8M n/a n/a

Table 1: Overcooked training steps to convergence (reaching 90% of the max soups per method per
environment) table. n/a means the method did not deliver any soup.

Environment Cilantro Cilantro Left Eight Shape Ring Small Corridor Corridor
Ours 13.72 12.00 11.76 12.04 5.40 3.92

No transfer 9.72 10.54 9.00 11.06 0.00 0.00
Fine-tune 11.22 0.02 0.00 12.32 0.00 0.00

Distill (loss) 9.36 0.02 10.12 9.90 0.00 0.00
Distill (reward) 9.80 0.04 10.94 11.92 0.00 0.00

JSRL 7.85 5.85 6.73 12.18 0.00 0.00

Table 2: Overcooked max soups delivered table.

4.3 SEMANTICALLY MEANINGFUL SUB-GOALS

The sub-goals generated from subsection 3.2 demonstrate a semantically meaningful breakdown of
tasks, such as fetching onions, loading them into the oven, and serving soups, as shown qualitatively
in Figure 5. This empirically shows that self-supervised temporal contrastive learning can discover
meaningful task structures from rollouts. A possible explanation for this lies in the latent space
clusters, which tend to form around bottleneck structures. These bottleneck transitions represent
sequences of actions that allow the agent to reach previously inaccessible states, often corresponding
to natural sub-goals. For instance, fetching an onion when the agent has none allows it to transition
to states where it can carry onions, a task-critical sub-goal.

4.4 ZERO-SHOT TRANSFER BY ADAPTING TASK GRAPH

Our method enables efficient transfer to new environments when an isomorphic mapping exists be-
tween the source and target environments, allowing their structure to be adapted to fit the task graph
representation. We specifically designed a transfer learning task in the Point Maze environment
(Pitis et al., 2020) to exploit this capability. As shown in Figure 2b, Point Maze is a continuous 2D
environment where the agent navigates from a randomly initialized position to a goal. The agent’s
observations consist of 2D lidar distance measurements and the displacement to the goal, while its
actions are 2D planar velocities. The objective is to reach the goal.

To create the target environment, we expanded the source maze by copying and pasting sub-parts,
constructing a larger maze. Since an isomorphic mapping between the source and target environ-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1, green agent put onion to pot

2, walk around the ring

3, blue agent put onion to pot

(a) Ring

1, walk to get onion

2, pass
onion

3, walk to pot

(b) Small Corridor

Figure 5: Overcooked task graph and sample sub-goals. Learnt task graph and sample node tran-
sitions for overcooked environments. Semantically meaningful breakdown of the task emerges nat-
urally from the temporal contrastive embedding clusters. For example, the sub-goals qualitatively
demonstrate the intentions for handing over onions, fetching plates, putting onions into the oven,
and taking soups out of the oven.

ments allowed our method to directly adapt the learned task graph, transfer to the target environment
was achieved without additional learning. This structural similarity enabled us to bypass the training
phase, leveraging the task graph to guide the agent’s behavior in the new environment.

We evaluated each approach over 500 episodes and recorded the success rate. As shown in Figure 6,
our method significantly outperforms baselines, achieving superior performance without requiring
any training in the target environment.

10M 20M 30M 40M 50M 60M 70M 80M 90M
0

0.5

1
Fine-tune JSRL JSRL Tune No transfer Distill (loss) Distill (reward)

Training environment steps

S
u

cc
e
ss

 r
a
te Ours

Figure 6: Point maze Transfer Learning Curve. The average success rate of reaching the goal is
calculated over 500 episodes. Note that our method does not require training for this experiment.

5 CONCLUSION

This paper introduced a novel transfer learning framework for deep reinforcement learning that com-
bines goal-conditioned policies with self-supervised learning of temporal abstractions. Experiments
on Overcooked multi-agent coordination tasks demonstrated the effectiveness of our framework in
terms of improved sample efficiency, the ability to solve sparse-reward and long-horizon challenges,
and enhanced interpretability through the automatic discovery of meaningful sub-goals. These find-
ings highlight the advantages of integrating goal-conditioned RL with self-supervised temporal ab-
straction learning for successful transfer to complex target domains, demonstrating superior per-
formance compared to baseline methods such as fine-tuning, policy distillations, and curriculum
learning methods. Compared to state-of-the-art baselines, our method achieves the same or better
performances while requiring fewer training samples. Our work opens up exciting directions for
future research, such as integrating language guidance into the contrastive learning process and ap-
plying our framework to real-world robotics tasks, paving the way for more intelligent, adaptable,
and collaborative AI systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Alaa Awad Abdellatif, Naram Mhaisen, Zina Chkirbene, Amr Mohamed, Aiman Erbad, and Mohsen
Guizani. Reinforcement learning for intelligent healthcare systems: A comprehensive survey.
arXiv preprint arXiv:2108.04087, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Dilip Arumugam, Peter Henderson, and Pierre-Luc Bacon. An information-theoretic perspective on
credit assignment in reinforcement learning. arXiv preprint arXiv:2103.06224, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Benjamin Bengfort and Rebecca Bilbro. Yellowbrick: Visualizing the Scikit-Learn Model Selec-
tion Process. 4(35), 2019. doi: 10.21105/joss.01075. URL http://joss.theoj.org/
papers/10.21105/joss.01075.

Hoang-Giang Cao, Weihao Zeng, and I-Chen Wu. Reinforcement learning for picking cluttered
general objects with dense object descriptors. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 6358–6364. IEEE, 2022.

Hoang-Giang Cao, Weihao Zeng, and I-Chen Wu. Learning sim-to-real dense object descriptors
for robotic manipulation. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 9501–9507. IEEE, 2023.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz Swirszcz,
and Max Jaderberg. Distilling policy distillation. In The 22nd international conference on artifi-
cial intelligence and statistics, pp. 1331–1340. PMLR, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning dense visual
object descriptors by and for robotic manipulation. arXiv preprint arXiv:1806.08756, 2018.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. arXiv preprint arXiv:1710.09767, 2017.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949,
2017.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot trans-
fer in reinforcement learning. In International Conference on Machine Learning, pp. 1480–1490.
PMLR, 2017.

10

http://joss.theoj.org/papers/10.21105/joss.01075
http://joss.theoj.org/papers/10.21105/joss.01075

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances in neural
information processing systems, 34:26963–26975, 2021.

Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration.
arXiv preprint arXiv:2303.13002, 2023.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

Bowen Jiang, Yilin Wu, Wenxuan Zhou, Chris Paxton, and David Held. Hacman++: Spatially-
grounded motion primitives for manipulation. arXiv preprint arXiv:2407.08585, 2024.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International conference on machine learning, pp. 5639–
5650. PMLR, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020b.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Siyuan Li, Zicheng Liu, Zelin Zang, Di Wu, Zhiyuan Chen, and Stan Z Li. Genurl: A general
framework for unsupervised representation learning. arXiv preprint arXiv:2110.14553, 2021.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489.

Yao Lu, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog, Ted
Xiao, Alex Irpan, Mohi Khansari, Dmitry Kalashnikov, et al. Aw-opt: Learning robotic skills
with imitation and reinforcement at scale. arXiv preprint arXiv:2111.05424, 2021.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models. Advances in Neural Information Processing Systems,
34:24379–24391, 2021.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in neural information processing systems, 32, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
arXiv preprint arXiv:2402.15567, 2024.

Silviu Pitis, Harris Chan, and Stephen Zhao. mrl: modular rl. https://github.com/
spitis/mrl, 2020.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

11

https://github.com/spitis/mrl
https://github.com/spitis/mrl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstart-
ing deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Albert Zhan, Ruihan Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin. Learning visual robotic
control efficiently with contrastive pre-training and data augmentation. In 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 4040–4047. IEEE, 2022.

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

12

	Introduction
	Related Works
	Goal-Conditioned Reinforcement Learning
	Contrastive Representation Learning in Robotics
	Hierarchical Reinforcement Learning
	Transfer Learning in Reinforcement Learning

	Method
	Goal-Conditioned Reinforcement Learning Agent
	Temporal Contrastive Learning and Clustering
	Task Execution

	Experiments
	Setup
	Transfer Learning Results
	Semantically Meaningful Sub-goals
	Zero-shot Transfer by Adapting Task Graph

	Conclusion

