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ABSTRACT

Multiparty computation approaches to private neural network inference require
significant communication between server and client, incur tremendous runtime
penalties, and cost massive storage overheads. The primary source of these ex-
penses is garbled circuits operations for nonlinear activation functions (typically
ReLU), which require on the order of kilobytes of data transfer for each indi-
vidual operation and tens of kilobytes of preprocessing storage per operation per
inference. We propose a replacement for garbled circuits: TABULA, an algorithm
to securely and efficiently perform single operand nonlinear functions for private
neural network inference. TABULA performs a one time client initialization pro-
cedure with the help of a trusted third party (or via using fully homomorphic
encryption), operates over smaller finite fields whose elements are representable
with less than 16 bits, and employs a lookup table which stores the encrypted re-
sults of nonlinear operations over secretly shared values. We show TABULA is
secure under a semi-honest threat model, allowing it to be used as a replacement
for garbled circuits operations. Our results show that for private neural network
inference, TABULA eliminates communication by a factor of more than 50×, en-
ables speedups over 10×, and reduces storage costs from O(n) to O(1).

1 INTRODUCTION

Private neural network inference seeks to allow a server to perform neural network inference on a
client’s inputs while minimizing the data leakage between the two parties. Concretely, the server
holds a neural network model M while the client holds an input x and the objective of a private
inference protocol is for the client to obtain M(x) without revealing any information about the
client’s input x to the server, nor revealing any information about the server’s model M to the
client. A protocol for private neural network inference brings tremendous value to both the server
and the clients: the clients’ sensitive input data is kept secret from the server and shields the user
from malicious data collection, and additionally, the server’s model is protected from the client and
prevents it from being reverse engineered or stolen by competitors.

Current state-of-the-art multiparty computation approaches to private neural network inference re-
quire significant communication between client and server, lead to massive runtime slowdowns,
and incur tremendous storage penalties (Mishra et al., 2020a; Ghodsi et al., 2021; Jha et al., 2021;
Rathee et al., 2020; Juvekar et al., 2018; Cho et al., 2021). The source of these expenses is comput-
ing nonlinear activation functions with garbled circuits, a generic multiparty computation method
for securely computing functions over secret inputs (Yao, 1986). Garbled circuits not only require
significant storage for preprocessed circuits, but also require multiple rounds of communication at
inference time to encrypt, decrypt, and execute the nonlinear function. Concretely, individual ReLUs
implemented as garbled circuit operations require over 2 KB of communication per scalar element
during inference (Mishra et al., 2020a) and cost over 17 KB of preprocessing storage per scalar el-
ement for each individual inference (Mishra et al., 2020a; Ghodsi et al., 2021). These costs make
state-of-the-art neural network models prohibitively expensive to deploy: on ResNet-32, state-of-
the-art multiparty computation approaches for a single private inference require greater than 60 MB
of data communication (Mishra et al., 2020a), take more than 10 seconds for an individual inference
(Mishra et al., 2020a), and cost over 5 GB of preprocessing storage per inference (Ghodsi et al.,
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Figure 1: TABULA replaces garbled circuits in standard private neural network inference pro-
tocols. Compared to garbled circuits, TABULA obtains lower communication costs, better
storage savings, and higher speedups while maintaining security. Source code is released at
https://github.com/tabulainference/tabula.

2021). These communication, runtime and storage costs pose a significant barrier to deployment, as
they degrade user experience, drain clients’ batteries, induce high network expenses, and eliminate
applications that require sustained real time inference.

We introduce TABULA, an algorithm to efficiently and securely perform nonlinear activation func-
tions for private neural network inference, eliminating garbled circuits from their computational mix
(see Figure 1). TABULA performs a one time client initialization procedure with the help of a trusted
third party (or by using fully homomorphic encryption) to precompute a large lookup table contain-
ing the encrypted result of nonlinear operations over secret shares. This initialization procedure is
done exactly once per client, who generates a private secret key that subsequently allows them to
securely perform numerous queries to this table. During online inference, computing a nonlinear
function is just a single lookup to the precomputed table, requiring only one round of communica-
tion. TABULA’s table lookup approach to securely computing nonlinear functions is uniquely suited
to computing neural network activation functions as neural networks may be quantized with little
loss in accuracy, and additionally activation functions are single operand; these properties enable
employing a table lookup approach to securely and efficiently compute neural network nonlinear
activation functions without requiring an infeasibly large table size. Our contributions are as fol-
lows:

• We develop TABULA, a secure and efficient algorithm for performing nonlinear functions
for private neural network inference. For ReLU, TABULA reduces inference-time commu-
nication from 16,000 bits to 150 bits per scalar element in exchange for a one time client
initialization procedure with involvement from a trusted third party and the use of an 4-32
GB lookup table located on the server. Experiments on LeNet for MNIST, ResNet-32 for
Cifar-10 and ResNet-34 for Cifar-100 show that TABULA reduces communication by over
100×, runtime by more than 10×, and storage by greater than 10×.

• We show that TABULA provides security for parties’ data to the extent that an 128-bit secret
key is guessable by an adversary. Specifically, we prove that TABULA inputs and outputs
are uniformly and randomly distributed in Fp and hence that under a semi-honest threat
model TABULA leaks no information to either party. This allows TABULA to be used as
a replacement for garbled circuits for single-operand nonlinear operations where the finite
field is small enough (i.e: when values of the finite field are representable by < 16 bits).

2 RELATED WORK

2.1 MULTIPARTY COMPUTATION APPROACHES TO PRIVATE NEURAL NETWORK INFERENCE

Multiparty computation approaches to private neural network inference have traditionally been lim-
ited by both computation and communication, and prior lines of work focus on reducing these sys-
tems costs while maintaining privacy during execution. Early secure machine learning systems
like SecureML (Mohassel & Zhang, 2017; Rouhani et al., 2017; Rathee et al., 2020; Keller, 2020)
address the issue of secure computation for simpler, linear machine learning models like logistic
regression and use traditional multiparty computation techniques (Keller, 2020) in their algorithms.
More recently, specialized systems have emerged that specifically target private neural network in-
ference, including works like Minionn, Gazelle and Delphi (Liu et al., 2017; Juvekar et al., 2018;
Mishra et al., 2020a; Lehmkuhl et al., 2021; Rathee et al., 2020). These works have successively
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optimized the linear portions of private neural network inference (via techniques like preprocessing
linear layers with homomorphic encryption) to the point where linear operations for private neural
network inference are effectively free in terms of runtime during inference (Mishra et al., 2020a).
Recent works to reduce the cost of neural network nonlinear activation functions include DeepRe-
duce, Delphi, Sphynx and Circa (Jha et al., 2021; Mishra et al., 2020a; Cho et al., 2021; Ghodsi
et al., 2021), which focus on learning neural network architectures that minimize the use of nonlin-
ear activation functions and designing more efficient circuits for ReLU. However, while effective,
these techniques invariably run into the fundamental costs imposed by garbled circuits.

Unlike prior approaches to mitigate the cost of nonlinear activation functions for private neural net-
work inference, our approach directly addresses the problems posed by garbled circuits by eliminat-
ing them altogether. Our method is centered around precomputing a large lookup table containing
the encrypted results of nonlinear activation functions on secret shares, and using quantization to
reduce the size of this table. Our approach can be applied with prior approaches that are focused on
designing neural architectures that minimize the use of nonlinear activation functions, like Delphi’s
planner and DeepReduce.

2.2 LOOKUP TABLES FOR SECURE COMPUTATION

Lookup tables have been used to speed up computation for applications in both secure multiparty
computation (Launchbury et al., 2012; Damgård et al., 2017; Keller et al., 2017; Rass et al., 2015;
Dessouky et al., 2017) and homomorphic encryption (Li et al., 2019; Crawford et al., 2018). These
works have demonstrated that lookup tables may be used as an efficient alternative to garbled cir-
cuits, provided that the input space is small. Prior works have primarily focused on using lookup
tables to speed up traditional applications like computing AES (Keller et al., 2017; Damgård et al.,
2017; Launchbury et al., 2012; Dessouky et al., 2017) and data aggregation (Rass et al., 2015) (with
the exception of Crawford et al. (2018) which focuses on linear regression).

To the best of our knowledge, little prior work has been done to use lookup tables with PRFs to
securely and efficiently compute nonlinear activation functions in the execution of relatively large
neural networks, and current state of the art private inference systems like Delphi (Mishra et al.,
2020b), SecureML (Mohassel & Zhang, 2017), Circa (Ghodsi et al., 2021), DeepReduce Jha et al.
(2021) all still use garbled circuits. Notably, a significant limiting factor to the lookup table approach
for secure computation is its exponential space requirements (which grows exponentially with the
number of operands and their precisions), which we suspect limits its use in other applications. The
lookup table approach is uniquely well suited to securely and efficiently compute neural network
nonlinear activation functions for two reasons: 1) neural network inference can operate over low
precision numbers and tolerates noise with little degradation to accuracy and 2) neural network ac-
tivation functions are single operand. These two factors allow us to limit the size of the lookup table
to be sufficiently small to be practical, and consequently we can achieve the significant performance
benefits of lookup tables at runtime (i.e order of magnitude less communication and storage).

3 TABULA: EFFICIENT NONLINEAR ACTIVATION FUNCTIONS FOR PRIVATE
NEURAL NETWORK INFERENCE

TABULA is a secure algorithm for efficiently computing single operand nonlinear activation func-
tions for private neural network inference and operates over secret shares of the input. TABULA is
designed to work as a replacement for garbled circuits within the canonical framework of multi-
party computation methods for private inference. In the background, we state the goals of private
inference, define the basic cryptographic primitives used for TABULA and outline how standard mul-
tiparty computation protocols operate. Then we detail the algorithmic workings of TABULA, explain
how it fits into standard multiparty computation protocols, prove the security of the protocol, and
analyze its communication and storage requirements.

3.1 BACKGROUND

Private Inference Objectives, Threat Model
Private neural network inference seeks to compute a sequence of linear and nonlinear operations
parameterized by the server’s model over a client’s input while revealing as little information to
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either party beyond the model’s final prediction. Formally, given the server’s weights Wi and the
client’s private input x, the goal of private neural network inference is to compute

ai = A(Wiai−1)

where a0 = x and A is a nonlinear activaiton function, typically ReLU.

State-of-the-art private neural network inference protocols like Delphi operate under a two-party
semi-honest setting (Mishra et al., 2020a; Lehmkuhl et al., 2021) (with notable exceptions such as
Muse (Lehmkuhl et al., 2021)), where only one of the parties is corrupted and the corrupted party
follows protocol. Importantly, these private inference protocols do not protect the architecture of
the neural network being executed (only its weights), and do not secure any information leaked by
the predictions themselves (Mishra et al., 2020a). As we follow Delphi’s protocol (described two
sections down) for the overall private execution of the neural network (TABULA only handles the
nonlinear portions of the protocol), these security assumptions are implicitly assumed.

Cryptographic Primitives, Notations, Definitions
TABULA utilizes standard tools in multiparty computation. Multiparty computation methods operate
over finite fields and we define Fp as a finite field over prime p with n bits. Additionally, we use
[x] to denote a two party secret sharing of the scalar x ∈ Fp: x = [x]0 + [x]1 where [x]i are
independently and randomly distributed in Fp. Additionally, like in prior works, we assume that
negative values are encoded by numbers above n−1

2 . Furthermore, TABULA utilizes basic constructs
such as hash/lookup tables to store encrypted function results. We define H as a hash lookup table
that supports basic insertions and queries. More specifically, H[i] = j sets the table’s key i to the
value j, and future queries to the key i would return j. Finally, TABULA leverages basic tools in
cryptography. Specifically, TABULA heavily utilizes PRFs (pseudo random function families). We
define Fk(x) as a PRF over key k and input x. The outputs of Fk(x) over a sequence of inputs
is indistinguishable from the outputs of a truly random function regardless of how the inputs were
chosen and given that k is random. More formally, {Fk : Fp → Fp}k∈{0,1}z,z>n such that Fk is
computable in polynomial poly(n) time and for any adversary A we have

Adv(A) = |Pr[AFk(·) = 1]− Pr[AR(·) = 1]| ≤ negl(n)

Delphi Private Inference Protocol
To understand how TABULA fits into standard private neural network inference protocols like Delphi
(Mishra et al., 2020b), we briefly outline how these protocols operate. Broadly, state-of-the-art
private inference protocols are divided into a per-input preprocessing phase and an online inference
phase. In our work, we build on top of the Delphi private inference framework (Mishra et al., 2020a),
which operates as following.

• Per-Input Preprocessing Phase
This phase preprocesses data to prepare for the secure execution of a single input, and
is performed to make the online inference phase faster. For each linear linear layer, this
process entails the client generating and encrypting a random vector rc ∈ Fp → Enck(rc)
with linearly homomorphic encryption (k is the public key), sending it to the server to
compute Enck(Wirc + rs) where rw ∈ Fp is also randomly generated for that particular
layer, which is sent back to the client who obtains Wirc + rs. This procedure enables
the use of standard linear operations at inference time instead of homomorphic encryption
operations. For nonlinear layers, the server garbles the labels of the ReLU circuits and
sends them to the client.

• Online Inference Phase
This phase performs the actual inference on a client’s input. For linear layers, the client
and server start with [x]0, [x]1 respectively. The client adds [x]0 with that layer’s rc to
obtain [x]0 + rc, sends it to the server so that it obtains x + rc, which then computes
Wi(x + rc) + rs = Wix + Wirc + rs (the rs for that particular layer). At this point,
client and server hold the secret sharing [Wix]. Hence, the input to the nonlinear activation
function is a secret share [a] = [Wix]. For nonlinear layers, particularly ReLU, the client
and server perform the garbled circuits operation, which outputs the secret share of the
inputs for the next layer.

Hence, to replace the nonlinear portions of this protocol, we need to construct a function that takes
in [x] and securely computes and outputs [ReLU(x)].
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3.2 TABULA FOR NEURAL NETWORK NONLINEAR ACTIVATION FUNCTIONS

We present our algorithm for secure and efficient computation of nonlinear activation functions
below. Our algorithm is divided into a one time client initialization procedure with involvement
from a trusted third party, and the online nonlinear execution phase.

Problem Statement
We aim to construct a function T : Fp → Fp which given [x] securely computes [A(x)] : T ([x]) =
[A(x)] where A : Fp → Fp is a nonlinear single operand function. Concretely, security implies that
all communication (across multiple function calls, regardless of the values of x) between client and
server in this procedure is indistinguishable from uniform random noise in Fp.

Client Initialization
TABULA performs a one time client initialization phase to precompute a lookup table containing the
encrypted results of the nonlinearity over every possible secret sharing of [x]. This process requires
involvement from a trusted third party (to both client and server) to compute. The steps of the
initialization phase is as follows:

Algorithm 1 TABULA Client Initialization

1: Client and server generate a 128 bit secret sc ∈ {0, 1}128, ss ∈ {0, 1}128 respectively
2: Client generates another 128 bit secret dc ∈ {0, 1}128
3: Trusted third party initializes H
4: for x ∈ Fp, y ∈ Fp do
5: Trusted third party obtains a = Fsc(x) from client, b = Fss(y) from server
6: Trusted third party sets H[a||b] = (A(x+ y) + Fdc(x)) mod p
7: end for
8: Trusted third party sends H to server

We note that while we state that this procedure requires involvement from a trusted third party, this
procedure can also be performed with fully homomorphic encryption (SEAL). The change for this
is simply to iterate over xi and yi pairs in a random permutation, encrypt and perform all operations
with fully homomorphic encryption, index by Fk(a||b) instead of just a||b, then decrypt the key
and value before inserting into the table. This process can be extremely compute intensive and we
highlight that this is a one time cost per client (rather than per-input as in preprocessing phases
for standard private inference protocols). Other potential approaches might rely on more advanced
techniques such as verifiable computation (Goldwasser et al., 2015; Thaler et al., 2012). We leave
developing more efficient initialization procedures for this component (with or without the help of a
trusted third party) to future research.

Online Execution
Given the preprocessing step has been performed, the online execution step for TABULA, T , is
straightforward and outlined in Algorithm 2.

Algorithm 2 TABULA Online Execution
Input: Client holds [x]0, Server hold [x]1
Output: Client holds [A(x)]0, Server holds [A(x)]1

1: Client computes Fsc([x]0) and sends to server
2: Server computes Fss([x]1)
3: Server looks up a = H[Fsc([x]0)||Fss([x]1)]
4: Server generates random r ∈ Fp

5: Server returns to client a+ r = (A(x) + Fdc([x]0) + r) mod p
6: Client obtains A(x) + r by subtracting Fdc([x]0)

At the end, client and server hold r and A(x) + r and hence hold a secret sharing of [A(x)]. Note
that, across multiple function calls, the same secrets sc, ss, dc and H are used.

Security
We show that our method is secure under the semi-honest setting, specifically, that all commu-
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nication between server and client during the online execution phase is uniformly and randomly
distributed in Fp across multiple function calls and hence no information is learned by the client
or server in this process. Concretely, to prove security, we need to ensure that 1) the client’s en-
crypted index Fsc([x]0) sent to the server is uniformly randomly distributed in Fp, 2) the result of
the lookup a = H[Fsc([x]0)||Fss([x]1)] that the server obtains is uniformly randomly distributed in
Fp and 3) the data the server returns to the client a+r is uniformly randomly distributed in Fp. Note
that, as stated in the background, we presume a semi-honest setting: this is important as it ensures
that across multiple private inferences [x]i is uniformly distributed across Fp; without this property,
the distribution of communication from client to server is no longer uniform and hence would leak
information.

First, we show that communication sent by server to client is secure.

Theorem 1. Across one or multiple invocations of T : Fp → Fp, all communication from server to
client is uniformly randomly distributed in Fp.

Proof. This follows from the fact that all values sent from server to client are additively blinded by
r which is randomly distributed in Fp upon every invocation of T . Hence, all data sent from server
to client in the online phase across multiple calls of T are indistinguishable from random noise and
leaks no information.

Next, we show that the key lookup procedure from client to server is secure.

Theorem 2. Across one or multiple invocations of T : Fp → Fp, Fsc([x]0) is uniformly and
randomly distributed in Fp.

Proof. This follows from the randomness property of Fsc([x]0) and that [x]0 is uniformly distributed
in Fp across multiple invocations of T .

Finally, we show that no information is leaked to the server by the result of the lookup A(x) +
Fdc

([x]0) mod p. To do this, we first show that A(x) + Fdc
([x]0) mod p is a PRF.

Theorem 3. Suppose {Fk : Fp → Fp}k∈{0,1}z,z>n is a secure PRF such that for any adversary A,
|Pr[AFk(·) = 1] − Pr[AR(·) = 1]| ≤ negl(n). Then F 1

k (x, r) = A(x) + Fk(x + r) mod p is a
secure PRF such that for every adversary A, |Pr[AF 1

k (·) = 1]− Pr[AR(·) = 1]| ≤ negl(n).

Proof. We prove this via contradiction by showing that if the statement were not true, then Fk is not
a secure PRF. Suppose that there exists an adversary AF 1 such that |Pr[AF 1

k (·)
F 1 = 1]− Pr[AR(·)

F 1 =
1]| > negl(n). Then define adversary AF to have the following routine

Algorithm 3 ADVERSARY AF

1: Start running adversary AF 1

2: Whenever AF 1 makes a query (x,r), forward it to the oracle y = F ′(x+ r) (who either always
returns Fk(x+ r) or R(:)). Give back to AF 1 , A(x) + y mod p

3: Output whatever AF 1 outputs

We see that Pr[AR(·)
F = 1] = Pr[AR(·)

F 1 = 1] as A(x) + R(:) mod p is randomly distributed

in Fp. Furthermore Pr[AFk(·)
F = 1] = Pr[AF 1

k (·)
F 1 = 1] as when F ′ = Fk we pass to AF 1 ,

F 1
k (x, r) = A(x) + Fk(x+ r) mod p. Hence Adv(AF ) = Adv(AF1

) > negl(n).

Hence, the output of H is a PRF and as the input to the lookup table is uniformly distributed (the
concatenation of two PRF outputs is also a PRF, with uniform inputs), then so too is the output. Thus,
we have shown that all inputs to T sent from client to server are uniformly randomly distributed, all
outputs of the lookup table of T are uniformly randomly distributed, and all data sent back to the
client by the server are uniformly randomly distributed, ensuring that no information is leaked to
either party during the execution of T , with the assumption that the secrets sc, ss, dc are unknown
to the opposite party.
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TABULA Communication and Storage Costs
TABULA incurs a one round communication cost between client and server to look up the result of
the nonlinearity and to obtain the secret share of the result. The communication cost incurred by the
key lookup is ≤ 128 bits per nonlinearity as the output of Pk is ≤ 128 bits per nonlinearity. The
communication cost incurred by returning the secret share is n bits (the number of bits of prime p).
Thus, the total communication cost of TABULA is ≤ 128 + n. Note that in our implementation, we
truncate the output of Pk to be 2n bits to minimize communication and also to eliminate collisions
(note that truncation of a PRF is still a PRF); with n = 16, the total communication cost is 48 bits
or 6 bytes per ReLU.

TABULA storage costs depend on the number of elements in H and the size of each element. As
H contains every possible 2-combination of [x] and each value is n bits, we see that H will be
of size 22n × (n + size(k)) bits where size(k) is the size in bits of the key. As indicated, H
becomes exponentially larger with increasingly large fields, hence the size of the finite field must be
small enough to ensure H is reasonably sized. Fortunately, various recent works in neural network
quantization have shown that neural networks can operate with < 16 bit precision for operations (Ni
et al., 2020; de Bruin et al., 2020; Zhao et al., 2020; McKinstry et al., 2019), enabling us to use finite
fields where n < 16 bits. Hence, with n < 16 the size of H is less than or equal to 18 GB (assuming
key size of 128 bits), which reasonably fits on workstation class machines.

4 RESULTS

We present the benefits of TABULA over state-of-the-art protocols that use garbled circuits for non-
linear activation functions, specifically ReLU. We evaluate our method on neural networks including
a large variant of LeNet for MNIST, ResNet-32 for Cifar10, and ResNet-34 / VGG-16 for Cifar-
100, which are relatively large image recognition neural networks that prior private inference works
benchmark (Ghodsi et al., 2021; Mishra et al., 2020a; Jha et al., 2021; van der Hagen & Lucia,
2021). Unless otherwise stated, we compare against our implementation of the Delphi protocol
(Mishra et al., 2020a) using garbled circuits for nonlinear activation functions, without neural archi-
tecture changes, during the online inference phase. The Delphi protocol with garbled circuits, to the
best our knowledge, is the current state of the art for private neural network inference. Experiments
are run on AWS c5.4x large machines (US-West1 (N. California) and US-West2 (Oregon)) which
have 8 physical Intel Xeon Platinum @ 3 GHz CPUs and 32 GiB RAM; network bandwidth between
these two machines achieves a maximum of 5-10 Gbit/sec, according to AWS. Note that we use the
same machine/region specs as detailed in Mishra et al. (2020a), but with 2x more cores/memory
(c5.4xlarge vs c5.2xlarge). We note that further results are included in the appendix.

4.1 COMMUNICATION REDUCTION

ReLU Communication Reduction
We benchmark the amount of communication required to perform a single ReLU with garbled cir-
cuits vs TABULA. Table 1 shows the amount of communication required by both protocols during
online inference. TABULA achieves more than a 100× reduction in communication over garbled cir-
cuits. Our implementation of garbled circuits obtains the same same communication cost as reported
by Mishra et al. (2020a).

Garbled Circuits TABULA
Communication

Reduction
2KB 6B > 340×

Table 1: TABULA vs garbled circuits communication cost for a single ReLU operation.

End-to-end Communication Reduction on LeNet, Resnet-32, ResNet-34
We benchmark the total amount of communication required during the online phase of a single
private inference for various network architectures (batch size 1). Table 1 shows the number of
ReLUs per network, as well as the communication costs of using garbled circuits vs TABULA.
TABULA obtains > 50× reduction in communication across various network architectures when
compared to this lower bound. Note that these numbers reflect total communication costs (not just
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ReLU communication costs); further note that we do not make any architectural changes to the
neural network (e.g: replace any ReLU operations with quadratic operations, etc).

Network # ReLUs Garbled Circuits TABULA
Communication

Reduction
LeNet 58K 60 MB 931 KB > 65×

VGG-16 276K 286 MB 4.2 MB > 68×
ResNet-32 303K 311 MB 4.7 MB > 66×
ResNet-34 1.47M 1.5 GB 21 MB > 73×

Table 2: TABULA vs garbled circuits total communication cost during private inference for different
network architectures.

4.2 STORAGE SAVINGS

ReLU Storage Savings
We compare the amount of extra storage required to prepare for a single ReLU with garbled circuits
vs TABULA. Table 3 shows the amount of preprocessing storage required by garbled circuits vs TAB-
ULA, with different circuit implementations for garbled circuits (Delphi’s (Mishra et al., 2020a) and
Circa’s (Ghodsi et al., 2021)). As shown, garbled circuits requires significant extra preprocessing
storage for each ReLU, that scales linearly with the number of inferences to be performed, whereas
TABULA requires none. Instead, TABULA requires the storage of a single lookup table containing
the results of the nonlinear activation function; we present these storage costs in the next section.

Garbled Circuits
(Delphi)

Garbled Circuits
(Circa) TABULA

17.5 KB 3.75 KB 0

Table 3: TABULA vs garbled circuits extra preprocessing storage cost per ReLU per inference.
Garbled circuit storage costs obtained from Mishra et al. (2020a) and Ghodsi et al. (2021).

TABULA Table Size vs Accuracy
We benchmark the accuracy achieved for various networks/tasks versus how large TABULA’s lookup
table is allowed to grow, via reducing the size of the finite field of the network’s weights via quanti-
zation. Recall TABULA’S lookup table size is a direct function of how many bits are used for scalars
of the finite field during execution (e.g: if operating over Fp where p is 16 bits, then the lookup
table size will be 232 × (2 + 16) bytes). Hence, we perform a random search to assign different
precisions of finite fields of each layer of each network, then measure the maximum of the number
of bits required to represent all weight/activation values seen during inference, comparing it with the
accuracy achieved on the corresponding task (please see the supplemental for more details). Figure
2 shows that across all tasks, using a 15 bit finite field prime is sufficient to obtain within 1-4% of
baseline accuracy, leading to a 18 GB lookup table. Garbled circuits which may use a 32 bit finite
field prime would achieve at most full precision accuracy, and hence the 1-4% accuracy loss is an
extra cost for TABULA. Note that, bigger networks may be more heavily quantized without loss of
accuracy Zhou et al. (2019).
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Figure 2: TABULA table size vs achieved accuracy on corresponding tasks. In this plot, we use Fb

to represent the number of bits b of p of the finite field. Using a 15-bit finite field prime achieves
within 4 % error of the baseline accuracy, leading to a table size of 18 GB.
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End-to-end Storage Savings on LeNet, ResNet-32, ResNet-34
We compare the total amount of storage required for different numbers of inferences on different
networks/tasks between TABULA and garbled circuits. Figure 3 shows that within 100 inferences,
the storage cost of TABULA’s 18 GB lookup table is greatly exceeded by the amount of storage re-
quired for garbled circuits. Note again that for every inference, new garbled circuits are generated to
ensure security. Hence, garbled circuits require O(n) storage with increasing number of inferences,
whereas TABULA requires O(1) storage. In Figure 3 we assume TABULA uses a 18 GB lookup table
(15 bit prime for finite field), and garbled circuits cost 17.5 KB per relu per inference as reported in
Delphi (Mishra et al., 2020a) and (Ghodsi et al., 2021).
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(c) ResNet-32

100 101

# of Inferences
0

200

400

600

800

Pr
ep

ro
ce

ss
in

g 
St

or
ag

e 
(G

B)

Garbled Circuits
Tabula

(d) ResNet-34

Figure 3: End-to-end storage costs for TABULA vs garbled circuits, across multiple inferences.

4.3 END-TO-END RUNTIME SPEEDUP

We compare the total runtime speedups TABULA obtains over garbled circuits across various net-
works. Table 4 shows that TABULA obtains over 10× speedup across different neural networks.
Note that our implementation of garbled circuits obtains similar throughput as reported in Delphi
(Mishra et al., 2020a): our implementation of garbled circuits takes 126 us per ReLU, whereas the
reported is 84 us (Mishra et al., 2020a). As shown, bigger networks are increasingly bottlenecked
by ReLU operations (as they have proportionally more of them), and hence TABULA’s runtime re-
duction scales with the size of the neural network. For smaller networks with fewer ReLUs like
LeNet, TABULA’s runtime is no longer bottlenecked by communication but rather overheads like
computing the PRF and table lookup; despite this, we still see significant speedups. Systems efforts
to optimize the PRF and table lookups can be improved with software optimizations (like paralleliz-
ing the operation, writing it in C/assembly, leveraging SIMD, etc) or improved hardware (e.g: faster
RAM, larger cache).

Network # ReLUs Garbled Circuits
Runtime (s)

TABULA
Runtime (s) Speedup

LeNet 58K 7.8 .23 > 33.9×
VGG-16 276K 35.7 1.0 > 35.7×

ResNet-32 303K 48.5 1.8 > 27.1×
ResNet-34 1.47M 181.8 4.3 > 42.3×

Table 4: TABULA end-to-end runtime speedup compared with garbled circuits.

5 CONCLUSION

We propose TABULA, a secure and efficient algorithm for computing nonlinear activation functions
for private neural network inference. Compared to garbled circuits, our results show that our method
obtains significant reductions in communication, storage and runtime. With TABULA, networked
communication costs are no longer the bottleneck for private neural network inference, and standard
compute optimization techniques can be used to further reduce arithmetic and memory costs to
obtain secure and efficient private neural network inference protocols. TABULA is a step towards
sustained, low latency, low energy, low bandwidth real time private inference applications.
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6 ETHICS STATEMENT

TABULA is a method for improving the efficiency of private neural network inference. Our algorithm
contributes to the increased adoption of privacy preserving machine learning techniques, which we
believe will have a positive impact on society by improving user data privacy.

7 REPRODUCIBILITY STATEMENT

All code and experiments for TABULA is or will be open sourced through Github. Additionally,
implementation details are described in the appendix.
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