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Abstract

Contrastive language image pretraining (CLIP) is a standard method for training1

vision-language models. While CLIP is scalable, promptable, and robust to distri-2

bution shifts on image classification tasks, it lacks object localization capabilities.3

This paper studies the following question: Can we augment CLIP training with4

task-specific vision models from model zoos to improve its visual representations?5

Towards this end, we leverage open-source task-specific vision models to gener-6

ate pseudo-labels for an uncurated web-scale image-text dataset. Subsequently,7

we train CLIP models on these pseudo-labels in addition to the contrastive train-8

ing on image and text pairs. This simple setup shows substantial improvements9

of up to 16.3% across different vision tasks, including segmentation, detection,10

depth estimation, and surface normal estimation. Importantly, these enhancements11

are achieved without compromising CLIP’s existing capabilities, including its12

proficiency in promptable zero-shot classification.13

1 Introduction14

Foundation Models (FMs) are revolutionizing different domains of artificial intelligence and machine15

learning, including computer vision [31, 14, 17] and natural language processing [7, 2, 41]. FMs16

can be trained on web crawled data without relying on crowd or expert annotations, and yet they17

demonstrate strong generalization capabilities [15, 36].18

CLIP, one of the most prominent methods for FM training in vision, uses contrastive learning to align19

image and text representations [31, 15]. In addition to robustness to data distribution shifts, CLIP20

offers impressive zero-shot and cross-modal retrieval capabilities on unseen datasets. Nevertheless,21

computer vision encompasses a broad range of tasks that require the ability to comprehend spatial22

relationships, semantic content, object localization, and 3D structures. In spite of CLIP’s impressive23

zero-shot open-vocabulary classification accuracy, it exhibits poor localization capabilities and often24

struggles in associating text with objects in an image [40, 12, 32]. Consequently, in practice, many25

vision tasks (e.g., detection and segmentation), rely on CLIP through fine-tuning the entire model to26

compensate for these localization deficiencies.27

In this work, we seek to answer the following question: Can we augment pretrained CLIP models with28

task-specific vision models from model zoos to improve its visual representations? That is, we seek to29

(1) use open-source task-specific vision models to generate hard pseudo-labels on a web-scale noisy30

image-text dataset and, (2) train CLIP on image-text pairs along with pseudo-labels with multiple31

objectives. An overview of our approach, which we call CLIP Training with eXperts (CLIPTeX ), is32

shown in Fig. 1. We show that CLIPTeX enhances the visual representations of CLIP and yields up33

to 16.3% enhancement in probing accuracy across a diverse set of vision tasks and datasets while34

preserving the existing capabilities of CLIP models, including prompting for zero-shot classification.35
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Figure 1: Training CLIP with pseudo-labels improves its visual representations. (a) shows the
standard CLIP training. (b) shows CLIPTeX that trains CLIP with pseudo-labels from experts. Note
that the main purpose of task heads is to improve CLIP’s image encoder with expert knowledge, and
the heads can be discarded after training. (c) shows the relative improvement that CLIPTeX obtains
over CLIP-FT. Here, SSeg, OD, ISeg, SNE, and DE refer to semantic segmentation, object detection,
instance segmentation, surface normal estimation, and depth estimation respectively.

2 CLIPTeX36

Model CLIPTeX extends CLIP with pseudo-supervision from publicly available task experts spe-37

cializing in localization, depth, and surface normal estimation. Our approach enhances CLIP’s38

representations without any labeled data collection (Fig. 1). Similar to CLIP, CLIPTeX uses two39

encoders: (1) an image encoder that takes an RGB image and produces an image embedding and (2)40

a text encoder that takes the text caption and produces a text embedding.41

In addition to contrastive training, we would like to train CLIPTeX using pseudo-labels. Towards42

that end, we incorporate task-specific heads that take the output of image encoder as input and43

generate predictions for the respective task (see Fig. 1b). Previous work have shown that multi-scale44

representations provides significant benefit in tasks requiring localization and fine-grained visual45

understanding [49, 22]. However, some image encoders (e.g., ViT) do not inherently possess these46

capabilities. To ensure CLIPTeX can learn better visual representations independent of the image47

backbone, we include a single shared multi-scale module [49] between image encoder and task-48

specific heads. We feed the output of the image encoder through a multi-scale module [49], which in49

turn feeds into the lightweight task-specific classification or regression heads. In our implementation,50

we use independent point-wise convolution as the head for each task. As the task’s head output51

dimensions should match input dimensions in dense prediction tasks, we perform nearest neighbour52

interpolation on head’s output if necessary.53

Training objective To train CLIPTeX with pseudo-supervision on n tasks, we generate hard pseudo-54

labels offline using publicly available task-specific experts on an uncurated web-scale dataset. We55

then train CLIPTeX with a weighted sum of contrastive loss and task-specific losses: L = λclip ·56

Lclip +
∑n

t=1 λ
t
task · Lt

task where Lt
task is the loss of the t-th task and Lclip is the contrastive loss. Here,57

λt
task and λclip are the loss coefficients of t-th task and the standard CLIP loss, respectively.58

3 Experimental Setup59

Probing, a standard method to study the representations learnt by neural networks [14, 31], is used to60

investigate whether pseudo-supervision in CLIPTeX can improve CLIP’s image backbone.61

Task-specific experts We train CLIPTeX with hard pseudo-labels generated from following experts:62

(1) Semantic segmentation. We use Mask-RCNN [13] with ViT backbone [8], trained on the COCO63

[21] with RangeAugment [27], to produce pseudo-labels for segmentation. (2) Monocular depth64

estimation: We use DPT [33], trained on MIX-6 dataset [33], to generate monocular depth map65

pseudo-labels. (3) Surface normal estimation: We use NLL-AngMF [1] as our surface normal expert,66

which is trained on ScanNet dataset [6].67

Baselines We compare with following baselines: (1) CLIP. We use CLIP model [26] pretrained68

on 1.2 billion images with a variable resolution and batch sampler whose base input image’s spatial69
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Table 1: Probing results for different vision tasks. Pseudo-labeling in CLIPTeX significantly
improves the visual representations in the image encoder of CLIP.

Model Segmentation(↑) Detection(↑) Depth(↓) Surface normal (↑) Classification(↑)
Linear PSPNet Mask-RCNN SSD Linear PSPNet Linear PSPNet Linear

ViT-B/16
CLIP 18.66 45.53 15.20 5.33 0.235 0.168 28.49 47.29 80.24
CLIP-FT 62.47 78.22 27.21 16.46 0.215 0.139 29.06 47.91 79.94
CLIPTeX (Ours) 73.43 80.71 28.89 17.50 0.159 0.128 39.96 50.80 79.64

ViT-H/16
CLIP 56.18 75.37 26.65 11.07 0.212 0.132 29.09 49.78 84.85
CLIP-FT 62.95 82.94 33.93 20.24 0.213 0.125 29.21 50.48 84.1
CLIPTeX (Ours) 79.30 84.31 34.50 21.55 0.138 0.117 43.22 53.89 83.2

ResNet-50
CLIP 46.96 70.92 29.49 20.32 0.212 0.147 33.67 47.28 78.35
CLIP-FT 34.78 74.17 38.13 30.28 0.239 0.155 28.72 48.66 78.92
CLIPTeX (Ours) 40.31 75.58 38.23 28.62 0.220 0.150 31.56 49.44 78.95

resolution is 224 × 224. (2) CLIP-FT. Many dense prediction tasks (e.g., segmentation) benefit70

from using high-resolution input images. To have a fairer baseline trained on the same resolution71

as CLIPTeX , we finetune CLIP with contrastive loss on CC3M. The training is done with variable72

resolution using a batch sampler whose base input image resolution is 512× 512. Any improvements73

over this baseline signify a pure transfer of knowledge from pseudo-supervision.74

To show the generality of CLIPTeX , we experiment with three image encoder backbones: ViT-B/16,75

ViT-H/16, and ResNet-50. Also note that we finetune CLIPTeX on CC3M’s image and text pairs76

along with pseudo-labels using the same settings as CLIP-FT. We use cross-entropy loss to train on77

segmentation pseudo-labels, and L1 loss to train on depth and surface normal pseudo-labels.78

Evaluation downstream tasks and datasets We evaluate the models using classifier and regressor79

probes on the following tasks: (1) Semantic segmentation. We use PASCAL VOC [9] with 2080

classes. We report mean intersection over union (mIoU) on the validation set. (2) Object detection81

and instance segmentation. The models are evaluated on COCO dataset for detection and instance82

segmentation. Importantly, during training with pseudo-labels, we do not use the bounding boxes.83

Instead, the instance masks are converted to semantic segmentation pseudo-labels. This allows us84

to evaluate baselines on both instance segmentation and object detection, which are considered to85

be more challenging tasks than semantic segmentation. Following standard convention, we evaluate86

the accuracy on COCO’s validation set in terms of mean average precision (mAP). (3) Monocular87

depth estimation. We use NYU-V2 [29] dataset as our depth estimation benchmark. Note that DPT,88

the expert used for depth pseudo-supervision, is trained on a different dataset, i.e., ScanNet. We use89

absolute relative error as a metric for evaluation on the validation set. (4) Surface normal estimation.90

We use NYU-V2 for surface normal estimation. We train on the training set used by Bae et al. [1]91

and Qi et al. [30], and evaluate on the official test set of NYU-V2. Following [1], we use a<30 as92

the metric for evaluation. (5) Image classification. We evaluate on ImageNet 1K [35] classification93

dataset and top-1 accuracy on the validation set is reported as the evaluation metric.94

Classifier and regressor probes for evaluation To study the visual representations of different95

frozen pre-trained models, our experiments involve both classification and regression tasks across96

different datasets. For dense prediction tasks, such as semantic segmentation, depth, and surface97

normal estimation we probe frozen image encoders with two types of probes: (1) Linear which is98

a point-wise convolutional layer. (2) PSPNet [49], a standard non-linear head for dense prediction99

tasks. For image classification a fully-connected layer is used as the linear probe. For object detection100

and instance segmentation, Mask R-CNN [13] and SSD heads are used. Additional probing results101

with different heads (e.g. DeepLabV3) and tasks (e.g. ADE20k) are included in Appendix C.102

4 Results103

Pseudo-supervision improves visual representations Probing results for all tasks are given in104

Table 1. In semantic segmentation, CLIPTeX shows consistent improvements over the baselines.105

Particularly noteworthy is the linear probing accuracy of CLIPTeX with ViT-B/16 and ViT-H/16106

backbones on the PASCAL VOC dataset, which is about 10% and 16.3% better than CLIP-FT.107
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Table 2: CLIP’s zero-shot knowledge is preserved after training with experts. (a) report zero-shot
top-1 accuracy for ImageNet-1k dataset and (b) reports recall@1/5/10 for Flickr-30k dataset.

(a) 0-shot classification on ImageNet.

Model 0-shot Top-1

CLIP-FT 68.76
CLIPTeX (Ours) 68.25

(b) 0-shot retrieval on Flickr-30k.

Model Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CLIP-FT 85.90 96.70 98.60 71.66 91.00 94.94
CLIPTeX (Ours) 86.00 96.90 98.70 71.40 90.86 95.16

Table 3: Role of pseudo-labels from each experts in CLIPTeX training.
Row Expert Segmentation (↑) Detection (↑) Depth (↓) Surface Normal (↑)
# Segmentation Depth Surface Normal Linear PSPNet Mask R-CNN SSD Linear PSPNet Linear PSPNet

R1 ✗ ✗ ✗ 62.47 78.22 27.21 16.46 0.215 0.139 29.06 47.91

R2 ✓ ✗ ✗ 72.21 81.39 28.54 17.58 0.203 0.136 34.86 48.62
R3 ✗ ✓ ✗ 64.50 81.16 27.75 16.70 0.170 0.131 35.21 49.51
R4 ✗ ✗ ✓ 63.28 81.48 27.69 16.81 0.193 0.134 37.42 50.71

R5 ✓ ✓ ✗ 73.96 81.49 28.83 17.57 0.162 0.130 37.05 49.69
R6 ✓ ✗ ✓ 72.67 81.30 28.83 17.75 0.188 0.132 38.65 50.48
R7 ✗ ✓ ✓ 64.20 81.17 27.90 17.00 0.165 0.129 39.59 51.01

R8 ✓ ✓ ✓ 73.43 80.71 28.89 17.50 0.159 0.128 39.96 50.49

For object detection with ViT-B/16 as the frozen backbone and Mask-RCNN as the probing head,108

CLIPTeX delivers 13.69% and 1.68% better bounding box mAP over CLIP and CLIP-FT respectively.109

We observe similar gains when CLIPTeX is probed with SSD.110

For depth estimation, CLIPTeX obtains lower error rate, while for surface normal estimation, CLIPTeX111

obtains higher value of a<30 compared to CLIP and CLIP-FT baselines. These results indicate112

a positive transfer of distance and surface orientation knowledge to CLIPTeX ’s image backbone,113

contributing to the better performance.114

Unlike other dense prediction tasks, CLIP achieves similar or slightly better accuracy compared to115

CLIP-FT and CLIPTeX . This outcome can be attributed to the characteristics of image classification116

tasks as it primarily focuses on recognizing objects without requiring detailed information about117

spatial relationships or 3D structure of the scene.118

Zero-shot capabilities are preserved in CLIPTeX One of the important and powerful characteris-119

tics of CLIP is prompting, which enables zero-shot transfer to new datasets. Pseudo-supervision with120

experts can potentially lead to catastrophic forgetting of previously learned knowledge, which may in121

turn affect model’s zero-shot generalization capabilities. Table 2 compares the zero-shot capabilities122

of CLIP-FT and CLIPTeX in classification on ImageNet-1k [35] and retrieval on Flickr-30k [45]123

tasks respectively. CLIPTeX ’s zero-shot performance is on par with that of CLIP-FT, indicating that124

enhanced representations do not result in catastrophic forgetting.125

Ablation on the importance of pseudo-labels in CLIPTeX . Incorporating pseudo-supervision126

from task-specific experts, even from a single expert during training, results in substantial im-127

provements in performance. These improvements are observed when evaluating models on various128

downstream tasks with different probes (see R1 vs. rest; Table 3). Overall, our findings indicate129

that incorporating knowledge from all experts contributes to learning better visual representations.130

Therefore, we use all experts for pseudo-supervision while training CLIPTeX .131

5 Conclusion132

As the field of machine learning research embraces openness, a growing number of specialized133

expert models become publicly available. Our study showcased the potential of leveraging these134

publicly available expert models to enhance CLIP’s visual representations, all without the necessity135

of collecting task-specific data. Our experiments revealed that CLIPTeX yields improvements across136

a wide range of tasks, highlighting its versatility and effectiveness.137
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A Related Work263

Vision FMs. Vision FMs extended the concept of pre-training to vast datasets containing hundreds264

of millions or even billions of images. This was in part driven by the introduction of ViTs [8] which265

demonstrated the scalability of training Transformers [42] to such large-scale datasets in the field of266

computer vision. Since then, numerous large-scale pre-training methods have emerged in the domain267

of computer vision [e.g., 31, 46, 3, 14]. Arguably, one of the most prominent classes of vision FMs is268

CLIP that specializes in aligning noisy image-text pairs from the web [31, 36, 10]. This distinction is269

not only attributed to its scalability, but also to its prompting capabilities and robustness in handling270

dataset distribution shifts. Nevertheless, these models often face challenges in associating text with271

individual objects and localizing them [40, 12, 32]. This work focuses on enhancing this capability272

through pseudo-supervision.273

Pseudo-supervision with experts. The primary objective of pseudo-supervision [19] is to facilitate274

model training by generating pseudo-labels for unlabeled data, typically leveraging experts trained275

on a subset of the data containing ground truth labels. This methodology has also been applied to the276

training of foundation models (FMs). To the best of our knowledge, current approaches involve the277

acquisition of crowd labels for a portion of the data on a single task, with the subsequent training of278

experts on this labeled subset [e.g., 11, 47, 16, 24]. These trained experts are then utilized to create279

pseudo-labels for the remaining unlabeled data. Essentially, these methods employ experts that have280

been trained on the same or similar data distribution as the unlabeled data, aiming to achieve positive281

transfer. For example, in GLIP [20], a subset of web data is crowd-sourced to obtain localization282

labels, which is then used for expert training. Following expert training, these experts are employed to283

generate pseudo-labels for the remaining unlabeled web data. This combination of crowd labels and284

pseudo-labels is subsequently used to train the GLIP V2 [47] model. SAM [16] also follows similar285

paradigm for creating large-scale segmentation dataset. Unlike previous approaches, our proposed286

method uses publicly accessible experts trained on diverse tasks with different data distributions and287

objectives.288

Multi-task learning for FMs. Multi-tasking [4, 34], a standard method for training on multiple289

tasks simultaneously, is widely used in machine learning [23, 28, 39], including FMs [e.g., 43, 5,290

44, 37, 48]. Existing multi-task FMs creates a unified multi-task datasets by either collecting a new291

labeled dataset [e.g., 38] or mixing existing labeled datasets [e.g., 25], to facilitate positive transfer of292

knowledge to down-stream tasks. In contrast, CLIPTeX does not need any data collection and uses293

pseudo-supervision for training.294

A.1 Positive Transfer of Representations from CLIPTeX to Downstream Tasks295

The CC3M dataset is uncurated and noisy, and may have a skewed distribution towards specific296

object classes or scenes. Consequently, knowledge transfer from experts to CLIPTeX may also be297

skewed towards more frequent objects in the data. To explore this phenomenon, we quantified the298

frequency of objects (bounding boxes or instances) in the pseudo-labels generated by the Mask299

R-CNN expert (Fig. 2a) on the CC3M dataset. Additionally, we examined class-wise improvements300

in IoU of CLIPTeX with respect to CLIP-FT on the PASCAL VOC dataset (Fig. 2b). CLIPTeX301

improves the IoU for all classes in the PASCAL VOC dataset and is not biased towards the most302

frequently occurring object classes. These findings, combined with insights in Section 4 suggests303

positive transfer of representations from CLIPTeX to down-stream tasks.304

B Task-head complexity305

As discussed in Section 2, we use light-weight heads to improve visual representations in CLIP’s306

image encoder. We replace these heads with heavier counterparts (comprising of three standard307

convolutional layers) when training CLIPTeX with CC3M pseudo-labels. Table 4 shows that light-308

weight heads deliver similar performance to heavy-weight heads in most cases. Therefore, we use309

light-weight heads for pseudo-supervision in our experiments to make the training more efficient.310
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Figure 2: Positive transfer with CLIPTeX . (a) Bounding box frequency for PASCAL VOC classes in
CC3M’s pseudo-labels obtained with Mask R-CNN. (b) Class-wise IoU gap (in %) between CLIP-FT
and CLIPTeX when linear probed on the PASCAL VOC.

Table 4: Role of head complexity (light and heavy) when training with pseudo-labels on CC3m.
#layers denote the number of convolutional layers used in the task head. Results with different probes
for different dense prediction tasks are reported (see Section 3 for details). For segmentation, we
report the results on the PASCAL VOC dataset. We observe similar trends in ADE20k dataset.

# layers Segmentation (↑) Detection (↑) Depth (↓) Surface Normal (↑)
Linear PSPNet Mask R-CNN SSD Linear PSPNet Linear PSPNet

1 73.43 80.71 28.89 17.50 0.159 0.128 39.96 50.80
3 66.70 80.24 28.64 17.43 0.155 0.127 40.55 51.72

C Results311

Tables 5 to 7 compares the results of CLIPTeX with other baselines on different tasks and datasets with312

different heads. We observe that pseudo-supervision via experts in CLIPTeX improves performance313

by large across different tasks and datasets.314

Table 5: Probing results for semantic segmentation. A higher value of mIoU is better.

Model ADE20k PascalVOC

Linear DeepLabV3 PSPNet Linear DeepLabV3 PSPNet

ViT-B/16
CLIP 6.78 16.15 17.32 18.66 43.75 45.53
CLIP-FT 26.60 37.11 38.80 62.47 77.67 78.22
CLIPTeX (Ours) 29.26 39.20 39.70 73.43 80.57 80.71

ViT-H/16
CLIP 24.18 33.39 34.86 56.18 73.12 75.37
CLIP-FT 32.20 43.05 44.24 62.95 81.73 82.94
CLIPTeX (Ours) 36.17 45.43 45.63 79.30 84.06 84.31

ResNet-50
CLIP 11.98 29.51 28.22 46.96 70.34 70.92
CLIP-FT 11.30 34.86 33.97 34.78 73.70 74.17
CLIPTeX (Ours) 12.93 35.45 34.80 40.31 75.82 75.58

D Hyperparameters315

Hyper-parameters used during training and probing CLIPTeX and other models are given in Table 8316

and Table 9 respectively.317

9



Table 6: Probing results for object detection, instance segmentation, and image classification. In
(a), for Mask R-CNN, we report mAP (higher is better) for bounding box and instance segmentation
while for SSD, we report mAP only for bounding box on the COCO dataset. In (b) top-1 accuracy
(higher is better) is reported.

(a) Detection and instance segmentation on COCO.

Model Mask R-CNN SSD

BBox Instance BBox

ViT-B/16
CLIP 15.20 12.16 5.33
CLIP-FT 27.21 23.18 16.46
CLIPTeX (Ours) 28.89 24.92 17.50

ViT-H/16
CLIP 26.65 21.29 11.07
CLIP-FT 33.93 28.92 20.24
CLIPTeX (Ours) 34.50 29.60 21.55

ResNet-50
CLIP 29.49 25.61 20.32
CLIP-FT 38.13 34.02 30.28
CLIPTeX (Ours) 38.23 34.04 28.62

(b) Image classification.

Model ImageNet Places365

ViT-B/16
CLIP 80.24 55.52
CLIP-FT 79.94 55.21
CLIPTeX (Ours) 79.64 55.36

ViT-H/16
CLIP 84.85 56.96
CLIP-FT 84.1 55.81
CLIPTeX (Ours) 83.2 55.96

ResNet-50
CLIP 78.35 56.55
CLIP-FT 78.92 56.98
CLIPTeX (Ours) 78.95 57.22

Table 7: Probing results for depth and surface normal estimation on NYU-V2 dataset. Following
Lasinger et al. [18], we report absolute relative error (lower is better) for depth estimation. For surface
normal estimation, we report a<30 following Bae et al. [1] (higher is better).

(a) Depth estimation.

Model Linear DeepLabV3 PSPNet

ViT-B/16
CLIP 0.235 0.189 0.168
CLIP-FT 0.215 0.145 0.139
CLIPTeX (Ours) 0.159 0.129 0.128

ViT-H/16
CLIP 0.212 0.151 0.132
CLIP-FT 0.213 0.131 0.125
CLIPTeX (Ours) 0.138 0.118 0.117

ResNet-50
CLIP 0.212 0.156 0.147
CLIP-FT 0.239 0.160 0.155
CLIPTeX (Ours) 0.220 0.153 0.150

(b) Surface normal estimation.

Model Linear DeepLabV3 PSPNet

ViT-B/16
CLIP 28.49 45.17 47.29
CLIP-FT 29.06 47.74 47.91
CLIPTeX (Ours) 39.96 50.95 50.80

ViT-H/16
CLIP 29.09 47.31 49.78
CLIP-FT 29.21 49.73 50.48
CLIPTeX (Ours) 43.22 53.23 53.89

ResNet-50
CLIP 33.67 46.05 47.28
CLIP-FT 28.72 46.99 48.66
CLIPTeX (Ours) 31.56 47.92 49.44

Table 8: Hyper-parameters for training CLIPTeX on CC3M dataset..
Hyper-parameter Value

Epochs 30
LR scheduler cosine
Warmup Steps 1000
Warmup Init LR 1e-06
Maximum LR 3e-05
Minimum LR 1e-06
Batch size 32
λdepth 1.0
λclip 1.0
λseg 0.1
λsurface normal 1.0
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Table 9: Hyper-parameters used for probing on different downstream tasks.
Hyper-paramater Segmentation Detection Depth Surface Normal Classification

Linear DeepLabv3 PSPNet Mask R-CNN SSD Linear DeepLabv3 PSPNet Linear DeepLabv3 PSPNet Linear

Epochs 50 50 50 25 200 50 50 50 50 50 50 40
LR scheduler cosine cosine cosine multi-step cosine cosine cosine cosine cosine cosine cosine cosine
Warmup Steps 500 500 500 250 500 1000 1000 1000 1000 1000 1000 1000
Warmup Init LR 1e-06 1e-06 1e-06 1e-05 9e-05 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06
Maximum LR 3e-05 3e-05 3e-05 3e-04 9e-04 1e-04 1e-04 1e-04 1e-05 1e-05 1e-05 3e-05
Minimum LR 3e-06 3e-06 3e-06 NA 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06
LR Milestones NA NA NA [22, 24] NA NA NA NA NA NA NA NA
LR Gamma NA NA NA 0.1 NA NA NA NA NA NA NA NA
Batch size 32 32 32 4 32 16 16 16 16 16 16 128
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