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Abstract

Knowledge Distillation (KD) allows larger
“teacher” models to inform smaller “student”
models that can mitigate the heavy compu-
tational demands of large language models
(LLMs). LLMs are trained on extensive pub-
licly available data, and they are susceptible
to being “contaminated” through exposure to
the evaluation data. Consequently, a contami-
nated teacher LLM can artificially inflate the
performance of its student model in a KD set-
ting. Although previous research has exam-
ined the efficacy of unlearning methods in re-
moving undesirable information from LLMs
and explored various KD approaches utilizing
LLMs, the challenge of addressing contamina-
tion in teacher LLMs and minimizing the ef-
fects of such contamination on student models
has been notably underexplored. In this work,
we propose a novel framework, named DCLLM,
that effectively evaluates the performance of
a contaminated teacher LLM across different
KD settings and decontaminates it utilizing a
variety of unlearning algorithms. Our frame-
work demonstrates that these unlearning meth-
ods effectively decontaminate the teacher and
improve the model performance by around 2-
3% in terms of Rouge-L score.

1 Introduction

With the introduction of Large Language Mod-
els (LLMs), Knowledge Distillation (KD) (Bom-
masani et al., 2021; Mann et al., 2020; Chowdhery
et al., 2023; Han et al., 2021; OpenAl, 2023) has
become a widely adopted approach to meet the ex-
pensive computational need of LLMs (Hinton et al.,
2015). The recent advent of powerful open-source
LLMs has augmented a new dimension in the re-
search of white-box KD, as we can leverage the
intermediate hidden state and output distribution of
the teacher model (Gou et al., 2021).

A key challenge in Knowledge Distillation us-
ing LLMs lies in selecting an appropriate teacher

model, which is typically larger in terms of model
parameters compared to the student model (Sanh
et al., 2019; Wang et al., 2020). Given that LLMs
are pretrained on a vast amount of data, they are
highly vulnerable to being “contaminated” via ex-
posure to the evaluation benchmark data (Huang
et al., 2022; Carlini et al., 2022; Staab et al.,
2023). Hence, careful consideration in selecting
the teacher model is crucial, as it may inflate the
performance of its student model on the evaluation
data.

Previous works (Kim and Rush, 2016; Song
et al., 2020; Gu et al., 2024b; Chiang et al., 2023;
Taori et al., 2023) explore how various KD ap-
proaches that leverage LLMs affect the perfor-
mance on the evaluation data. Moreover, a separate
dimension of research area focuses on the efficacy
of unlearning algorithms applied to LLMs (Maini
et al., 2024; Yuan et al., 2024; Ji et al., 2024; Jia
et al., 2024; Jin et al., 2024). However, to the best
of our knowledge, no prior research has explored
the performance of unlearning methods applied to
a contaminated teacher model and how the decon-
taminated teacher model impacts the corresponding
student model performance in a KD setting.

In this study, we introduce a novel framework
named DCLLM, which evaluates a contaminated
teacher model on the evaluation data and assesses
the effectiveness of unlearning methods in decon-
taminating it. During fine-tuning, the teacher
model is deliberately contaminated with data la-
beled as a forget set (Maini et al., 2024). During de-
contamination, we utilize the forget set to evaluate
the degree of decontamination achieved, while the
retain set is employed to assess the model’s perfor-
mance on the data we wish to retain. Subsequently,
we analyze the performance of the decontaminated
teacher model on the evaluation data to investi-
gate the effects of unlearning methods on it and
whether there is any improvement in the student
model’s performance utilizing its corresponding
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Figure 1: Illustration of DCLLM framework. We inject contamination into an uncontaminated model during the
fine-tuning phase. Next, we apply unlearning methods on the contaminated model using forget and retain data to

decontaminate it.

teacher model.

We utilize our framework (illustrated in Fig-
ure 1), DCLLM, to evaluate teacher LLMs that
range from 3B to 8B dimensions, employing an
instruction-following approach that covers a di-
verse range of downstream NLP tasks. We consider
LLaMA (Touvron et al., 2023) for model selection,
as it is one of the most widely adopted open-source
LLMs in practice. We evaluate the performance
on four evaluation datasets utilizing Rouge-L (Lin,
2004), a lexical similarity metric, and BERTScore
(Zhang et al., 2019), an embedding-based similarity
metric. Our experiments indicate that almost all un-
learning methods are effective in decontaminating
the teacher model across all the evaluation datasets.
Notably, the teacher model that leverages Nega-
tive Preference Optimization (NPO) (Zhang et al.,
2024) in a KD setting decontaminates the teacher
model, as well as outperforms (1) the fine-tuned
student model, (2) the models trained on standard
KD approaches across majority of the evaluation
data.

2 Related Work

2.1 Large Language Models

Since their emergence, Large Language Models
(LLMs) (Mann et al., 2020; OpenAl, 2023; Chowd-
hery et al., 2023; Anil et al., 2023; Thoppilan et al.,
2022) have consistently outperformed previous
state-of-the-art methods in all downstream NLP

tasks by leveraging conditional text generation. Re-
cent research involving LL.Ms has employed an
instruction-following approach (Wei et al., 2021;
Sanh et al., 2021; Chung et al., 2024) or incorpo-
rated human feedback (Bai et al., 2022; Ouyang
et al., 2022) to enhance text generation and develop
intelligent assistants (OpenAl, 2022, 2023; Tou-
vron et al., 2023). Moreover, significant efforts
have been made to inspire research and develop-
ment in this domain, utilizing open-source LLMs
(Biderman et al., 2023; Touvron et al., 2023; Zhang
et al., 2022). However, one of the key challenges in
deploying LLMs is their substantial computational
cost due to their considerable model size (Wei
et al., 2022; Kaplan et al., 2020). Consequently, re-
searchers often seek computation-efficient methods
(Hu et al., 2022; Han et al., 2024; Dettmers et al.,
2023) when working with these models.

2.2 Knowledge Distillation

To address the heavy computational demands asso-
ciated with LL.Ms, researchers employ knowledge
distillation (KD) techniques (Hinton et al., 2015).
These methods transfer knowledge from a larger
teacher model to a smaller student model by har-
nessing the intermediate hidden states (Sun et al.,
2019; Jiao et al., 2019) and output distributions of a
teacher model (Liang et al., 2020; Song et al., 2020;
Zhang et al., 2023). This process enhances the per-
formance of a student model, which is smaller in
terms of parameters, while maintaining efficiency



(Gou et al., 2021; Rusu et al., 2015; Sanh et al.,
2019). Previous studies have demonstrated that KD
approaches utilizing forward KL divergence (Sanh
et al., 2019), often referred to as word-level KD,
show effectiveness in text classification and gen-
eration tasks (Taori et al., 2023; Peng et al., 2023;
Chiang et al., 2023; Kim and Rush, 2016). Recent
developments in alternative KD approaches that
utilize reverse KL divergence (Gu et al., 2024b)
have shown superior performance in instruction-
tuned text generation tasks, as the student model
tends to prefer the modes of the teacher model’s
distribution while assigning lower probability mass
to void regions (Chen et al., 2018; Huszdar, 2015; Ji
et al., 2023; Nowozin et al., 2016).

2.3 Machine Unlearning

Early machine unlearning efforts focus on text clas-
sification tasks (Bourtoule et al., 2021), and promi-
nent unlearning algorithms primarily aim to opti-
mize model parameters to remove the influence of
targeted data.(Jang et al., 2022; Maini et al., 2024;
Yuan et al., 2024; Zhang et al., 2024; Jia et al., 2024;
Yao et al., 2024; Wang et al., 2025; Li et al., 2024;
Ishibashi and Shimodaira, 2023; Gu et al., 2024a;
Lu et al., 2024; Tian et al., 2024; Liu et al., 2024,
Tamirisa et al., 2024). These approaches rely on a
predefined forget set, which is used to fine-tune the
model and produce an updated version that has ef-
fectively unlearned the specified information. Such
methods are widely adopted due to their ability
to directly modify the model parameters. How-
ever, to the best of our knowledge, no prior work
has investigated the effectiveness of unlearning al-
gorithms when applied to a contaminated teacher
model within a Knowledge Distillation setting.

3 Methodology

In our proposed framework, DCLLM, we utilize an
LLM that samples a response, ¥, containing 7' to-
kens from the probability distribution, p,, condi-
tioned on the prompt, x. To explore the knowl-
edge distillation (KD) setting effectively, we em-
ploy open-source LLMs so that we can leverage the
intermediate hidden state and output distribution
from a teacher LLM, contributing to richer knowl-
edge sharing (Zhang et al., 2022; Touvron et al.,
2023).

3.1 Knowledge Distillation (KD) Methods

We evaluate our framework using two widely
adopted KD approaches for LLMs: one that min-

imizes the forward Kullback-Leibler (KL) diver-
gence and the other that minimizes the reverse KL
divergence.

3.1.1 KD with Forward KL divergence

Traditional KD methods employ minimizing the
forward KL divergence as the optimization prob-
lem. This involves calculating the divergence be-
tween the output distribution of the student model,
¢s(y|x), and that of the teacher model, p(y|x),
where ¢ denotes the parameters of the student
model. This method is commonly referred to as
word-level KD and mathematically expressed as
follows:

p(y|x)

]
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where p’ denotes the distribution of the data.

3.1.2 KD with Reverse KL divergence

Gu et al. proposed MiniLLM (Gu et al., 2024b),
a novel approach to KD, especially for the task
of text generation. MiniLLM minimizes the di-
vergence between the output distributions of the
teacher model, p(y|x), and that of the student
model, ¢4 (y|z), utilizing reverse KL divergence.
The authors argued that word-level KD performs
better in classification tasks due to a relatively sim-
ple output space compared to that of text genera-
tion tasks. While minimizing the reverse KL di-
vergence, the student model’s distribution prefers
the higher modes of teacher model’s distribution.
This approach can be mathematically formulated
as follows:
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3.2 Unlearning Methods

We have selected unlearning-finetuning as our
preferred method for unlearning, as it focuses on
optimizing the parameters (Yao et al., 2024; Maini
et al., 2024; Zhang et al., 2024; Liu et al., 2024; Jia
et al., 2024; Jin et al., 2024). Through parameter
optimization, they effectively modify the internal
state of the model selected for unlearning.

When evaluating the efficacy of unlearning, it is
crucial to evaluate both the performance on the tar-
get data that we aim to unlearn, termed as forget
set, Dr, and the performance on the data that we
want to retain, termed as retain set, Dpg.



3.2.1 Forget Loss

Depending on our objectives for unlearning, we
can classify two distinct approaches: untargeted
unlearning and targeted unlearning. In case
of untargeted unlearning, the behavior of the un-
learned model on the forget set remains uncertain.
For untargeted unlearning, we adopt the following
two methods:

¢ Gradient Ascent (GA): This is the most com-
monly used unlearning method for untargeted
unlearning. The optimization of this approach
is fundamentally the opposite of the training
objective, as it maximizes the prediction loss
of the forget set. It can be mathematically
formulated as follows:

Lea(Drid) = 1= 3 1(ed) )
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Here, the loss on an instance x € Dp is de-
noted by I(z, ¢).

* Negative Preference optimization (NPO):
NPO (Zhang et al., 2024) addresses the chal-
lenge of unlearning by treating the samples in
the forget set as negative ones, while ignoring
the positive component of Direct Preference
Optimization (DPO) (Rafailov et al., 2023)
loss. This can be mathematically formulated

as follows:
2
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Here, w represents a hyperparameter, o repre-
sents a sigmoid function, and ¢,.. s represents
the reference model prior to unlearning.

On the other hand, targeted unlearning involves
training the model to output the desired answers.
For target unlearning, we select Direct Preference
Optimization (DPO).

* Direct Preference Optimization (DPO):
When evaluating the DPO (Rafailov et al.,
2023) loss on the forget set, D, it treats the
samples in D as negative and the sample
rejection answers are treated as positive.

3.2.2 Regularization Loss

While the forget loss addresses the task of unlearn-
ing, it is equally important to maintain the perfor-
mance on the retain set, Dr. The regularization
loss is calculated on Dy to ensure that the overall
unlearning framework preserves the model utility.
We select the traditional gradient descent (GD) for
evaluating the regularization loss.

* Gradient Descent (GD): GD is performed on
Dp, while observing the prediction loss during
training.

Lap(Dr; ¢) = Eg yyony [—log p(ylz; ¢)]
)

With two variations of forget loss and a regular-
ization loss, we experiment with three variations
of the unlearning method: GA with GD, NPO with
GD, and DPO with GD.

4 Experimental Evaluation

4.1 Data

We evaluate our DCLLM framework using the
databricks-dolly-15k! dataset, which contains
approximately 15,000 instruction-following sam-
ples spanning eight topics: closed QA, classifi-
cation, brainstorming, open QA, general QA, in-
formation extraction, summarization, and creative
writing. We partition the dataset into 500 samples
for testing, 1000 for validation, and the remainder
for training. The distribution of the training data
across topics is illustrated in Figure 2.

Additionally, we evaluate the trained model on
three additional test datasets to ensure a robust as-
sessment of the framework.

* Self-Instruct (Wang et al., 2022a): Self-
Instruct comprises 252 instruction-following

samples.
e S-NI (Wang et al., 2022b):
Super-NaturalInstructions consists

of approximately 9,000 test samples of 119
diverse topics. For our framework evaluation,
we focus on samples that are longer than ten
tokens.

* Vicuna (Chiang et al., 2023): Vicuna con-
stitutes 80 instruction-response pairs, adding
complexity to the task.

1https://huggingface.co/datasets/databricks/
databricks-dolly-15k
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Figure 2: Topic distribution of databricks-dolly-15k
training data.

Further details about the test data distribution
are shown in Appendix Section D.

4.2 Evaluation Metrics

4.2.1 KD Evaluation

To evaluate the task of KD, we utilize two met-
rics to determine lexical similarity and embedding-
level similarity. For lexical similarity, we prefer the
standard Rouge-L metric, and for embedding-level
similarity, we select BERTScore.

* Rouge-L (R-L): Rouge-L (Lin, 2004), de-
noted by Rouge — L(7,y), measures the sim-
ilarity between the model predictions, y and
the gold labels, §, at the word-level. This met-
ric is applied in the evaluation of both KD and
unlearning performance.

* BERTScore (BS): Without restricting our
evaluation at the word-level, we utilize
BERTScore (BS) (Zhang et al., 2019), to cap-
ture the inherent semantic similarity of the
samples with more precision, especially in
the task of text generation. BS leverages a
pre-trained transformer model (Vaswani et al.,
2017), BERT (Devlin et al., 2019) to calculate
the sample embedding.

4.2.2 Unlearning Evaluation

To evaluate the performance of the unlearned
model, we follow the TOFU benchmark (Maini
et al., 2024), which effectively assesses the task by
accounting for the different generation behaviors of
the model. Moreover, we leverage three additional
metrics (Yuan et al., 2024) for an appropriate eval-
uation of the unlearned model utilizing the forget
set, D, and the retain set, Dp.

* Probability (P): We adopt the same strategy
outlined by (Maini et al., 2024) to compute
the conditional probability, P(y|z), where
given an instruction, x, the probability that
the model outputs a correct answer, y. can be
calculated as:

P(yc|z)
Pylr) = <5 (6)
Z?:1 P(y;|)
* Rouge (R-L): We use the standard Rouge-L.
metric as mentioned before in 4.2.1.

e Truth Ratio (TR): Truth ratio calculates the
likelihood ratio of the answer being correct
compared to an incorrect one. Since we train
our model based on a particular version of
the gold label, it is possible for the model
to assign a higher probability weight to that
version compared to others. Given ype,¢ be a
set of perturbed versions of the gold label, and
7 be the paraphrased version of the gold label,
we can compute the truth ratio as follows:
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* Token Entropy (TE): One common issue ob-
served is that an unlearned model often gen-
erates tokens that lack meaning, even after
generating the correct prediction. The token
entropy (TE) considers the diversity of tokens
within the model prediction. If a model pre-
diction, y, contains 7" unique tokens and C,,
denotes the unique token y;’s frequency, then
we can define TE as follows:

TE = — Z?:l Cyi 10g2 Cyi

(3)
log, ‘Cqﬁl

* Cosine Similarity (CS): Cosine similarity
(CS) is measured by computing the semantic
similarity of the predictions before and after
the unlearning method is applied. To deter-
mine the sample semantic similarity, we em-
ploy Sentence-BERT (Reimers and Gurevych,
2019) to extract the sample embedding and
then calculate the CS.

« Entailment Score (ES): Entailment Score
(ES) measures the factual accuracy of the



model prediction against the corresponding
gold labels for a set of questions. We utilize a
pretrained NLI model (Sileo, 2023) that pre-
dicts the entailment relationship between the
model prediction and the corresponding gold
label for each set of questions. The final ES is
derived by calculating the ratio of the “entail-
ment” relationship across all samples.

Finally, we aggregate all the above unlearning
metrics into a single one to determine the forget
efficacy and the model utility, measuring per-
formance on the forget set and retain set, respec-
tively.

* Model Utility (MU): Model Utility (MU)
measures the overall quality of the unlearn-
ing process. Hence, it optimizes the model
prediction, ensuring that none of the associ-
ated metrics yields values approaching zero.
We calculate MU on the retain set simply by
taking the harmonic mean of the previously
mentioned metrics.

Forget Efficacy (FE): Forget Efficacy (FE)
measures the quality of unlearning on the for-
get set. We calculate FE by taking the arith-
metic mean of all the above metrics and then
subtracting this mean from 1.

4.3 Experimental Setup

We follow the MiniLLM (Gu et al., 2024b) exper-
imental configuration for evaluating the KD ap-
proaches and the TOFU benchmark (Maini et al.,
2024) for the unlearning methods. We conduct
our experiments on two KD model configuration,
where we utilize LLaMA3-3B (Touvron et al.,
2023) as the teacher model, and LLaMA3-1B as the
teacher model. Another setting leverages LLaMA3-
8B as the teacher model. For word-level KD eval-
uation, we fine-tune the student model with super-
vision from the output distribution of the teacher
model. For KD with reverse KL divergence, we
follow the experimental configuration set by (Gu
et al., 2024b).

During the unlearning experiments, we
treat all the “closed QA” examples of
databricks-dolly-15k train split as the
forget set and the rest as the retain set. For
each instance in the forget set, we leverage
the LLaMA3-8B-Instruct model to generate a
paraphrased version of the instruction-response
pair, which represents the same question and

answer with different words. Moreover, we
construct five different perturbed versions of the
response that are structurally similar but factually
incorrect, so that we can measure the truth ratio
(TR) as mentioned in Section 4.2.2. We list our
complete hyperparameter setting in the Appendix
Section A.

5 Results and Analysis

We present our evaluation of the DCLLM frame-
work in three distinct phases.

5.1 Training Set Evaluation

We evaluate both the teacher models (LLaMA3-3B
and LLaMA-8B) and the student model (LLaMA3-
1B) in the zero-shot and fine-tuning settings. When
distilling the student model from the teacher model,
we contaminate the teacher model such that the
forget set is exposed during training. As illustrated
in Table 5, all the unlearning methods, when com-
bined with GD as a regularization loss in a word-
level KD (utilizing LLaMA3-3B as the teacher),
demonstrate performance comparable to that of a
contaminated word-level KD setting. Moreover,
the LLaMA3-3B model, decontaminated through
NPO in the KD framework and utilizing reverse
KL-divergence, shows performance similar to that
of the corresponding contaminated KD setting.
This indicates that these methods are effective both
in decontaminating the model and preserving the
true model’s performance across different KD set-
tings.

5.2 Evaluation on Test Data

We evaluate both the contaminated and decontami-
nated models across four different challenging vari-
ations of test data to measure the robustness of our
overall framework. We observe in Table 1 that
almost all the unlearning algorithms have a signifi-
cant impact on the test set performance. We notice
a significant decline in the performance after the
unlearning phase, indicating the efficacy of these
approaches in decontaminating the contamination.

On the contrary, NPO substantially reduces the
contamination exposure, while improving the per-
formance on the remaining data. In both the KD
setting, utilizing forward and reverse KL diver-
gence, the decontaminated teacher (LLaMA3-3B)
model, leveraging NPO, outperforms the fine-tuned
student (LLaMA3-1B) model on the S-NI data
by 1.99% and 3.36% respectively, and performs



Dolly Self-Instruct S-NI Vicuna
#Parameters Method R.L BS R.L BS RL BS RL BS
Student: 1B Zero-Shot  9.08 4250 6.81 40.62 839 3935 1437 50.98
Finetuned 28.51 61.29 18.88 52.25 29.10 56.01 18.33 57.85
Zero-Shot 12.22 46.55 10.37 44.18 13.48 44.07 17.77 56.66
Finetuned 31.11 62.87 21.98 5427 3327 59.89 18.60 58.35
Teacher:3B  (DPO+GD) 12.61 49.23 826 4453 848 42.65 17.10 55.29
(NPO+GD) 14.65 50.60 10.06 46.09 1233 46.75 19.30 56.14
(GA+GD) 14.62 50.54 10.00 46.06 12.36 46.73 19.23 56.00
Zero-Shot 12.70 4522 12.35 45.05 1641 46.70 16.53 54.10
Finetuned 30.65 61.67 23.00 5523 3291 59.10 19.50 59.00
Teacher:8B  (DPO+GD) 9.25 41.77 794 4199 894 39.52 1623 52.88
(NPO+GD) 9.24 41.68 795 4213 895 3943 16.25 53.01
(GA+GD) 922 41.21 7.88 41.82 899 39.80 16.21 52.70
Contaminated
Teacher:3B  KD-FKLD 28.20 60.94 19.40 51.72 30.29 5643 1793 5692
Student:1B KD-RKLD 27.44 60.13 19.08 53.11 30.05 56.88 18.20 57.81
Teacher:8B  KD-FKLD 28.19 60.56 19.59 5244 30.00 56.35 17.54 57.08
Student:1B KD-RKLD 2822 60.74 18.68 51.70 29.74 56.58 17.14 56.62
Decontaminated with (DPO+GD)
Teacher:3B  KD-FKLD 28.88 60.92 17.84 51.30 30.18 5639 17.19 56.30
Student:1B KD-RKLD 28.27 60.77 19.07 52.85 31.19 5582 17.71 57.47
Teacher:8B  KD-FKLD 16.71 51.52 11.09 46.26 1697 4792 16.18 55.14
Student:1B KD-RKLD 8.82 35.17 6.57 3556 8.71 32.55 10.82 43.35
Decontaminated with (NPO+GD)
Teacher:3B  KD-FKLD 28.86 61.10 19.71 52.27 31.09 57.30 17.09 56.70
Student:1B KD-RKLD 28.71 60.80 18.85 5195 3246 56.61 1691 56.95
Teacher:8B  KD-FKLD 16.24 51.30 10.74 4589 16.56 47.81 16.11 5432
Student:1B KD-RKLD 8.71 3521 6.77 35.89 10.25 33.78 11.06 43.68
Decontaminated with (GA+GD)
Teacher:3B  KD-FKLD  28.51 60.95 19.67 5198 30.81 56.69 16.81 56.36
Student:1B KD-RKLD 28.69 60.80 19.52 52.69 29.55 56.32 16.09 55.86
Teacher:8B  KD-FKLD 16.04 51.24 11.68 46.22 16.73 47.77 15.67 53.97
Student:1B KD-RKLD 8.56 35.11 642 3554 943 3339 938 41.90

Table 1: Evaluation on Test set. R-L and BS stand for Rouge-L scores and BERTScores, respectively. The methods
KD-FKLD and KD-RKLD refer to Knowledge Distillation with Forward KL Divergence and Knowledge Distillation
with Reverse KL Divergence, respectively. We bold-face a score if a KD approach with a decontaminated teacher
model has outperformed that of the contaminated one, and underline a score if it improves the corresponding

fine-tuned student model.

comparably on the rest of the data in terms of
Rouge-L score. The decontaminated LLaMA3-3B
in the word-level KD setting improves the con-
taminated one in the same setting on most test
datasets. Furthermore, in the KD setting utiliz-
ing reverse KL divergence, the same decontami-
nated model enhances the Rouge-L score of the
contaminated model by 1.27% and 2.41% on the
Dolly and S-NI data, respectively, while maintain-
ing comparable performance on the remaining test
data. Additionally, in both the KD setting, utiliz-

ing forward and reverse KL divergence, the decon-
taminated LLaMA3-3B model, leveraging DPO,
demonstrates superior performance compared to
the fine-tuned LLaMA3-1B on the S-NI data by
1.08% and 2.09% respectively, in the Rouge-L met-
ric. Similarly, GA, when employed to decontami-
nate the LLaMA3-3B model, performs comparably
in all the experimental settings.

We further observe in Table 6 that, when eval-
uating the Dolly data in a word-level KD setting,
NPO improves the contaminated model’s predic-



#Parameters  Method R-L P TR TE CS ES FE MU
Forget Set
(DPO+GD) 0.44 9.06 4093 100.00 6.05 000 88.70 -
(NPO+GD) 25.73 096 6159 9283 5496 865 69.62 -
(GA+GD) 0.00 0.00 29.06 0.00 945 0.00 9230 -
LLaMA3-3B Retain Set
(DPO+GD) 1.14 823 3351 9542 7.06 1.67 - 3.37
(NPO+GD) 2395 166 4168 8792 6036 23.67 - 18.27
(GA+GD) 0.00 0.00 14.51 0.00 938 0.00 - 0.00
Forget Set
(DPO+GD) 30.63 938 4476 67.06 3631 865 74.05 -
(NPO+GD) 38.09 249 5542 6134 5045 9.62 68.79 -
(GA+GD) 0.00 0.00 6541 100.00 945 000 8503 -
LLaMA3-8B Retain Set
(DPO+GD) 28.15 6.55 3474 70.71 45.19 44.00 - 33.15
(NPO+GD) 31.88 2.69 4222 65.01 55.83 36.00 - 25.93
(GA+GD) 0.00 0.00 33.88 90.00 938 000 - 0.00

Table 2: Evaluation of unlearning methods on the forget set and retain set. R-L, P, TR, TE, CS, ES, FE, and MU
stand for Rouge-L score, Probability, Truth Ratio, Token Entropy, Cosine Similarity, Entailment Score, Forget

Efficacy, and Model Utility, respectively.

tion (leveraging LLaMA3-3B as the teacher model)
across a range of topics, specifically classification
by 3.15% and summarization by 1.81%, while
performing comparably on the remaining topics.
Moreover, it reduces the Rouge-L score of closed
QA by 5.10%, indicating that NPO effectively de-
contaminates the teacher model from data of sim-
ilar distribution. One potential reason for NPO’s
superior performance may be that the unlearning
experimental setup favored the method, allowing
it to clearly discern between positive and negative
samples, while minimizing data interference with
the model’s pretrained knowledge.

5.3 Unlearning Evaluation

We evaluate the performance of the unlearning al-
gorithms in terms of their effectiveness in decon-
tamination. We observe in Table 2 that all the
unlearning algorithms demonstrate strong perfor-
mance on the forget set. However, except for NPO,
no other unlearning algorithms exhibit significant
performance in terms of model utility, indicating
they struggle to preserve the true model perfor-
mance while decontaminating LLaMA3-3B. NPO
achieves a TR score of almost 62% on the forget
set, indicating its ability to distinguish between cor-
rect and incorrect answers more effectively than
the other unlearning algorithms. Moreover, DPO
performs well in terms of model utility while de-
contaminating LLaMA3-8B.

6 Conclusion

In this paper, we introduce DCLLM, a novel frame-
work that effectively evaluates most commonly
used unlearning methods to decontaminate a
teacher model exposed to contamination during
fine-tuning. Our research demonstrates that most
of the unlearning methods show a lot of promise
in decontamination. Upon further analysis, we ob-
serve that the decontaminated teacher model, which
leverages Negative Preference Optimization (NPO)
as an unlearning method, outperforms standard
KD approaches in unlearning contamination while
maintaining model utility. Moreover, the decon-
taminated teacher model with NPO improves the
student model prediction by around 2-3% across all
the evaluation data which demonstrates the robust-
ness of the decontaminated model. We strongly
believe that our experiments will motivate a new
research dimension and encourage researchers to
explore this area extensively.

Limitations

Although we are the pioneers for exploring the
decontamination effects within a contaminated
teacher model and have introduced a novel frame-
work, DCLLM, to assess the effectiveness of unlearn-
ing algorithms, our work has two significant limita-
tions.

* We selected LLaMA as our primary open-



source LL.M to evaluate the performance of
DCLLM. In the future, we intend to expand our
framework to include support for further open-
source LL.Ms during evaluation.

* During the unlearning phase, we employed
DPO as our only targeted unlearning method.
We intend to evaluate our framework with
other targeted unlearning techniques to en-
hance its robustness.
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A Training Details

A.1 Knowledge Distillation Experiments

During the knowledge distillation (KD) phase, we
conduct our experiments across different settings,
ranging from zero-shot, fine-tuned, world-level KD,
and KD utilizing reverse KL divergence. For mod-
els > 1B, the fine-tuned and KD experiments are
conducted on four NVIDIA A100 40GB GPUss,
using DeepSpeed with ZeRO2 to reduce memory
footprints. In case of word-level KD, we adopt
the approach outlined in (Gu et al., 2024b), mix-
ing the distillation loss equally with the supervised
language modeling loss based on the gold labels.
The final checkpoints for each setting are chosen
according to the Rouge-L scores from the valida-
tion set. Further hyperparameter details are listed
in Table 3.

Hyperparameters \ Value

No. of Epochs 10

Training Batch Size | [32, 64]

Learning Rate [5X1076,1X1077,
5X107°]

Table 3: Hyperparameters used in the knowledge distil-
lation (KD) experiments. For all models, we select the
best learning rate and batch size from the given range.

A.2 Unlearning Experiments

During the unlearning phase, all experiments are
conducted using two NVIDIA A100 GPUs with
40GB of memory. We follow the TOFU (Maini
et al., 2024) repository and utilize DeepSpeed with
ZeRO3 to reduce memory footprints. During the
unlearning process, we apply a linear warm-up
learning rate in the first epoch, followed by a lin-
early decaying learning rate in the later epochs.
Both the « and S parameters are set to 0.1. We
provide additional hyperparameter details in Table
4.

B Evaluation on Training Data

We present a detailed evaluation of training data
across different settings in Table 5. We can observe
that the decontaminated teacher models (LLaMA3-
3B and LLaMA3-8B) exhibit performance com-
parable to that of the fine-tuned student model,
LLaMA3-1B.
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Hyperparameters Value
No. of Epochs 5
Training Batch Size | 32
Learning Rate 1X107°
Optimizer AdamW
Weight Decay 0.01

B 0.1

o 0.1

Table 4: Hyperparameters used in the unlearning exper-

iments.
Dolly
#Parameters Method RL BS
Zero-Shot 891 41.99
Student:IB - 5 uned 86,97 93.05
Zero-Shot 11.52 45.53
Finetuned 88.75 93.95
Teacher:3B (DPO+GD) 32.15 61.79
(NPO+GD) 34.80 64.11
(GA+GD) 34.75 64.15
Zero-Shot 12.87 44.86
Finetuned 89.43 94.32
Teacher:8B (DPO+GD) 896  40.86
(NPO+GD) 898  40.92
(GA+GD) 895  40.80
Contaminated
Teacher:3B KD-FKLD 86.62 92.86
Student:1B KD-RKLD 84.68 91.89
Teacher:8B KD-FKLD 86.83 92.97
Student:1B KD-RKLD 85.61 92.32
Decontaminated with (DPO+GD)
Teacher:3B KD-FKLD 85.61 92.30
Student:1B KD-RKLD 83.28 91.09
Teacher:8B KD-FKLD 2144 54.52
Student:1B KD-RKLD 8.81 34.79
Decontaminated with (NPO+GD)
Teacher:3B KD-FKLD 85.11 92.08
Student:1B KD-RKLD 83.74 91.37
Teacher:8B KD-FKLD 21.49 5447
Student:1B KD-RKLD 9.13  35.08
Decontaminated with (GA+GD)
Teacher:3B KD-FKLD 85.03 92.04
Student:1B KD-RKLD 8349 91.25
Teacher:8B KD-FKLD 21.30 54.42
Student:1B KD-RKLD 8.74  34.79

Table 5: Evaluation on Train set. R-L and BS stand
for Rouge-L scores and BERTScores, respectively. The
methods KD-FKLD and KD-RKLD refer to Knowledge
Distillation with Forward KL Divergence and Knowl-
edge Distillation with Reverse KL Divergence, respec-
tively.



#Parameters Method BST CLF CQA CW GQA IE OQA SM
Student: 1B Zero-Shot  6.83 896 7.59 11.25 1095 8.61 795 14.65
Finetuned 19.68 59.54 38.82 1843 1742 35.11 20.73 37.71
Zero-Shot 1047 11.16 14.65 1249 13.11 1235 11.84 14.72
Finetuned 21.53 59.89 40.70 1798 17.29 3831 27.76 38.50
Teacher:3B (DPO+GD) 10.60 12.07 13.06 1694 13.30 13.38 10.82 20.44
(NPO+GD) 1224 14.10 16.69 18.03 1571 1496 1224 24.76
(GA+GD) 12.12 1427 1639 17.82 1558 1490 12.23 25.14
Zero-Shot 10.71 13.68 17.42 11.68 11.85 1492 11.90 14.93
Finetuned 22.19 60.14 4273 17.53 1696 33.10 26.09 40.39
Teacher:8B (DPO+GD) 7.85 728 949 12.14 11.08 10.65 8.15 13.12
(NPO+GD) 7.84 726 9.1 12.08 11.07 10.62 8.11 13.15
(GA+GD) 7.83 723 958 12.05 1099 10.59 8.08 13.11
Contaminated
Teacher:3B KD-FKLD 1998 5541 44.00 1823 16.15 3579 21.46 35.87
Student:1B KD-RKLD 18.92 5483 40.67 17.16 1747 3454 20.14 34.89
Teacher:8B KD-FKLD 18.11 57.29 3992 1786 1642 30.63 2247 40.08
Student:1B KD-RKLD 1850 57.11 4398 18.66 17.03 36.41 20.57 36.06
Decontaminated with (DPO+GD)
Teacher:3B KD-FKLD 21.46 56.26 41.40 1695 1693 35.81 2234 39.37
Student: 1B KD-RKLD 19.80 57.86 3995 17.37 17.25 33.19 2131 36.60
Teacher:8B KD-FKLD 1048 28.25 21.99 14.07 1444 21.29 13.61 17.23
Student:1B KD-RKLD 6.04 964 12,16 6.38 830 9.18 890 12.76
Decontaminated with (NPO+GD)
Teacher:3B KD-FKLD 20.67 58.56 38.90 1733 16.88 33.64 21.94 37.68
Student:1B KD-RKLD 2042 57.27 40.52 17.34 16.86 3433 2232 38.95
Teacher:8B KD-FKLD 10.72 26.88 19.44 1253 1428 15.09 1430 19.54
Student:1B KD-RKLD 575 824 1128 7.64 8.02 1099 748 2154
Decontaminated with (GA+GD)
Teacher:3B KD-FKLD 20.00 56.33 4130 18.07 16.90 35.93 2236 35.38
Student:1B KD-RKLD 20.00 57.99 41.07 16.12 1630 36.76 22.52 36.60
Teacher:8B KD-FKLD 10.59 2698 20.66 1296 13.57 1588 13.71 18.85
Student:1B KD-RKLD 6.15 887 933 6.53 8.15 11.11 8.35 14.73

Table 6: Topic-wise Rouge-L Score of test split on databricks-dolly-15k data. BST, CLF, CQA, CW, GQA, IE,
OQA, and SM represent Brainstorming, Classification, Closed QA, Creative Writing, General QA, Information
Extraction, Open QA, and Summarization, respectively, which are the eight topics of Dolly data. We bold-face a
score if a KD approach with a decontaminated teacher model has outperformed that of the contaminated one, and
underline a score if it improves the corresponding fine-tuned student model.

C Topic-wise Evaluation on Test Data

We provide a detailed topic-wise evaluation of
databricks-dolly-15k test data in different set-
tings in Table 6. When evaluating the Dolly data,
we can observe that decontaminated LLaMA3-3B
utilizing NPO improves the fine-tuned LLaMA3-
1B prediction across a range of topics, with a 0.99%
increase in brainstorming and a 1.21% increase in
open QA. Moreover, the decontaminated LLaMA3-
3B model, utilizing DPO and GA, outperforms the
corresponding fine-tuned student model in brain-
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storming, information extraction, and open QA
across all the KD settings.

D Test Data Distribution

For robust evaluation of our proposed framework,
we employ Self-Instruct, S-NI, Vicuna data,
and the test split of databricks-dolly-15k data.
The Self-Instruct, S-NI, and Vicuna data con-
tain 71, 37, and 9 distinct topics, respectively. Fur-
ther details about their data distribution are illus-
trated in Figure 3, 4, 5, and 6.
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Figure 3: Data distribution of Self-Instruct data across 71 distinct categories.
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Sample Distribution of 5-NI Data per Topic
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Figure 4: Data distribution of S-NI data across 37 distinct categories.
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Sample Distribution of Vicuna Data per Topic
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Figure 5: Data distribution of Vicuna data across 9 distinct categories.

Test Set Distribution of Dolly Data per Topic
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Figure 6: Test data distribution of databricks-dolly-15k data across 8 distinct categories.
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