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Abstract001

Knowledge Distillation (KD) allows larger002
“teacher” models to inform smaller “student”003
models that can mitigate the heavy compu-004
tational demands of large language models005
(LLMs). LLMs are trained on extensive pub-006
licly available data, and they are susceptible007
to being “contaminated” through exposure to008
the evaluation data. Consequently, a contami-009
nated teacher LLM can artificially inflate the010
performance of its student model in a KD set-011
ting. Although previous research has exam-012
ined the efficacy of unlearning methods in re-013
moving undesirable information from LLMs014
and explored various KD approaches utilizing015
LLMs, the challenge of addressing contamina-016
tion in teacher LLMs and minimizing the ef-017
fects of such contamination on student models018
has been notably underexplored. In this work,019
we propose a novel framework, named DCLLM,020
that effectively evaluates the performance of021
a contaminated teacher LLM across different022
KD settings and decontaminates it utilizing a023
variety of unlearning algorithms. Our frame-024
work demonstrates that these unlearning meth-025
ods effectively decontaminate the teacher and026
improve the model performance by around 2-027
3% in terms of Rouge-L score.028

1 Introduction029

With the introduction of Large Language Mod-030

els (LLMs), Knowledge Distillation (KD) (Bom-031

masani et al., 2021; Mann et al., 2020; Chowdhery032

et al., 2023; Han et al., 2021; OpenAI, 2023) has033

become a widely adopted approach to meet the ex-034

pensive computational need of LLMs (Hinton et al.,035

2015). The recent advent of powerful open-source036

LLMs has augmented a new dimension in the re-037

search of white-box KD, as we can leverage the038

intermediate hidden state and output distribution of039

the teacher model (Gou et al., 2021).040

A key challenge in Knowledge Distillation us-041

ing LLMs lies in selecting an appropriate teacher042

model, which is typically larger in terms of model 043

parameters compared to the student model (Sanh 044

et al., 2019; Wang et al., 2020). Given that LLMs 045

are pretrained on a vast amount of data, they are 046

highly vulnerable to being “contaminated” via ex- 047

posure to the evaluation benchmark data (Huang 048

et al., 2022; Carlini et al., 2022; Staab et al., 049

2023). Hence, careful consideration in selecting 050

the teacher model is crucial, as it may inflate the 051

performance of its student model on the evaluation 052

data. 053

Previous works (Kim and Rush, 2016; Song 054

et al., 2020; Gu et al., 2024b; Chiang et al., 2023; 055

Taori et al., 2023) explore how various KD ap- 056

proaches that leverage LLMs affect the perfor- 057

mance on the evaluation data. Moreover, a separate 058

dimension of research area focuses on the efficacy 059

of unlearning algorithms applied to LLMs (Maini 060

et al., 2024; Yuan et al., 2024; Ji et al., 2024; Jia 061

et al., 2024; Jin et al., 2024). However, to the best 062

of our knowledge, no prior research has explored 063

the performance of unlearning methods applied to 064

a contaminated teacher model and how the decon- 065

taminated teacher model impacts the corresponding 066

student model performance in a KD setting. 067

In this study, we introduce a novel framework 068

named DCLLM, which evaluates a contaminated 069

teacher model on the evaluation data and assesses 070

the effectiveness of unlearning methods in decon- 071

taminating it. During fine-tuning, the teacher 072

model is deliberately contaminated with data la- 073

beled as a forget set (Maini et al., 2024). During de- 074

contamination, we utilize the forget set to evaluate 075

the degree of decontamination achieved, while the 076

retain set is employed to assess the model’s perfor- 077

mance on the data we wish to retain. Subsequently, 078

we analyze the performance of the decontaminated 079

teacher model on the evaluation data to investi- 080

gate the effects of unlearning methods on it and 081

whether there is any improvement in the student 082

model’s performance utilizing its corresponding 083
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Figure 1: Illustration of DCLLM framework. We inject contamination into an uncontaminated model during the
fine-tuning phase. Next, we apply unlearning methods on the contaminated model using forget and retain data to
decontaminate it.

teacher model.084

We utilize our framework (illustrated in Fig-085

ure 1), DCLLM, to evaluate teacher LLMs that086

range from 3B to 8B dimensions, employing an087

instruction-following approach that covers a di-088

verse range of downstream NLP tasks. We consider089

LLaMA (Touvron et al., 2023) for model selection,090

as it is one of the most widely adopted open-source091

LLMs in practice. We evaluate the performance092

on four evaluation datasets utilizing Rouge-L (Lin,093

2004), a lexical similarity metric, and BERTScore094

(Zhang et al., 2019), an embedding-based similarity095

metric. Our experiments indicate that almost all un-096

learning methods are effective in decontaminating097

the teacher model across all the evaluation datasets.098

Notably, the teacher model that leverages Nega-099

tive Preference Optimization (NPO) (Zhang et al.,100

2024) in a KD setting decontaminates the teacher101

model, as well as outperforms (1) the fine-tuned102

student model, (2) the models trained on standard103

KD approaches across majority of the evaluation104

data.105

2 Related Work106

2.1 Large Language Models107

Since their emergence, Large Language Models108

(LLMs) (Mann et al., 2020; OpenAI, 2023; Chowd-109

hery et al., 2023; Anil et al., 2023; Thoppilan et al.,110

2022) have consistently outperformed previous111

state-of-the-art methods in all downstream NLP112

tasks by leveraging conditional text generation. Re- 113

cent research involving LLMs has employed an 114

instruction-following approach (Wei et al., 2021; 115

Sanh et al., 2021; Chung et al., 2024) or incorpo- 116

rated human feedback (Bai et al., 2022; Ouyang 117

et al., 2022) to enhance text generation and develop 118

intelligent assistants (OpenAI, 2022, 2023; Tou- 119

vron et al., 2023). Moreover, significant efforts 120

have been made to inspire research and develop- 121

ment in this domain, utilizing open-source LLMs 122

(Biderman et al., 2023; Touvron et al., 2023; Zhang 123

et al., 2022). However, one of the key challenges in 124

deploying LLMs is their substantial computational 125

cost due to their considerable model size (Wei 126

et al., 2022; Kaplan et al., 2020). Consequently, re- 127

searchers often seek computation-efficient methods 128

(Hu et al., 2022; Han et al., 2024; Dettmers et al., 129

2023) when working with these models. 130

2.2 Knowledge Distillation 131

To address the heavy computational demands asso- 132

ciated with LLMs, researchers employ knowledge 133

distillation (KD) techniques (Hinton et al., 2015). 134

These methods transfer knowledge from a larger 135

teacher model to a smaller student model by har- 136

nessing the intermediate hidden states (Sun et al., 137

2019; Jiao et al., 2019) and output distributions of a 138

teacher model (Liang et al., 2020; Song et al., 2020; 139

Zhang et al., 2023). This process enhances the per- 140

formance of a student model, which is smaller in 141

terms of parameters, while maintaining efficiency 142
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(Gou et al., 2021; Rusu et al., 2015; Sanh et al.,143

2019). Previous studies have demonstrated that KD144

approaches utilizing forward KL divergence (Sanh145

et al., 2019), often referred to as word-level KD,146

show effectiveness in text classification and gen-147

eration tasks (Taori et al., 2023; Peng et al., 2023;148

Chiang et al., 2023; Kim and Rush, 2016). Recent149

developments in alternative KD approaches that150

utilize reverse KL divergence (Gu et al., 2024b)151

have shown superior performance in instruction-152

tuned text generation tasks, as the student model153

tends to prefer the modes of the teacher model’s154

distribution while assigning lower probability mass155

to void regions (Chen et al., 2018; Huszár, 2015; Ji156

et al., 2023; Nowozin et al., 2016).157

2.3 Machine Unlearning158

Early machine unlearning efforts focus on text clas-159

sification tasks (Bourtoule et al., 2021), and promi-160

nent unlearning algorithms primarily aim to opti-161

mize model parameters to remove the influence of162

targeted data.(Jang et al., 2022; Maini et al., 2024;163

Yuan et al., 2024; Zhang et al., 2024; Jia et al., 2024;164

Yao et al., 2024; Wang et al., 2025; Li et al., 2024;165

Ishibashi and Shimodaira, 2023; Gu et al., 2024a;166

Lu et al., 2024; Tian et al., 2024; Liu et al., 2024;167

Tamirisa et al., 2024). These approaches rely on a168

predefined forget set, which is used to fine-tune the169

model and produce an updated version that has ef-170

fectively unlearned the specified information. Such171

methods are widely adopted due to their ability172

to directly modify the model parameters. How-173

ever, to the best of our knowledge, no prior work174

has investigated the effectiveness of unlearning al-175

gorithms when applied to a contaminated teacher176

model within a Knowledge Distillation setting.177

3 Methodology178

In our proposed framework, DCLLM, we utilize an179

LLM that samples a response, y, containing T to-180

kens from the probability distribution, px, condi-181

tioned on the prompt, x. To explore the knowl-182

edge distillation (KD) setting effectively, we em-183

ploy open-source LLMs so that we can leverage the184

intermediate hidden state and output distribution185

from a teacher LLM, contributing to richer knowl-186

edge sharing (Zhang et al., 2022; Touvron et al.,187

2023).188

3.1 Knowledge Distillation (KD) Methods189

We evaluate our framework using two widely190

adopted KD approaches for LLMs: one that min-191

imizes the forward Kullback-Leibler (KL) diver- 192

gence and the other that minimizes the reverse KL 193

divergence. 194

3.1.1 KD with Forward KL divergence 195

Traditional KD methods employ minimizing the 196

forward KL divergence as the optimization prob- 197

lem. This involves calculating the divergence be- 198

tween the output distribution of the student model, 199

qϕ(y|x), and that of the teacher model, p(y|x), 200

where ϕ denotes the parameters of the student 201

model. This method is commonly referred to as 202

word-level KD and mathematically expressed as 203

follows: 204

KL[p||qϕ] = Ex∼p,y∼p′ [log
p(y|x)
qϕ(y|x)

] (1) 205

where p′ denotes the distribution of the data. 206

3.1.2 KD with Reverse KL divergence 207

Gu et al. proposed MiniLLM (Gu et al., 2024b), 208

a novel approach to KD, especially for the task 209

of text generation. MiniLLM minimizes the di- 210

vergence between the output distributions of the 211

teacher model, p(y|x), and that of the student 212

model, qϕ(y|x), utilizing reverse KL divergence. 213

The authors argued that word-level KD performs 214

better in classification tasks due to a relatively sim- 215

ple output space compared to that of text genera- 216

tion tasks. While minimizing the reverse KL di- 217

vergence, the student model’s distribution prefers 218

the higher modes of teacher model’s distribution. 219

This approach can be mathematically formulated 220

as follows: 221

ϕ = argminϕKL[qϕ||p]

= argminϕ(−Ex∼p,y∼p′ [log
p(y|x)
qϕ(y|x)

])
(2) 222

3.2 Unlearning Methods 223

We have selected unlearning-finetuning as our 224

preferred method for unlearning, as it focuses on 225

optimizing the parameters (Yao et al., 2024; Maini 226

et al., 2024; Zhang et al., 2024; Liu et al., 2024; Jia 227

et al., 2024; Jin et al., 2024). Through parameter 228

optimization, they effectively modify the internal 229

state of the model selected for unlearning. 230

When evaluating the efficacy of unlearning, it is 231

crucial to evaluate both the performance on the tar- 232

get data that we aim to unlearn, termed as forget 233

set, DF , and the performance on the data that we 234

want to retain, termed as retain set, DR. 235
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3.2.1 Forget Loss236

Depending on our objectives for unlearning, we237

can classify two distinct approaches: untargeted238

unlearning and targeted unlearning. In case239

of untargeted unlearning, the behavior of the un-240

learned model on the forget set remains uncertain.241

For untargeted unlearning, we adopt the following242

two methods:243

• Gradient Ascent (GA): This is the most com-244

monly used unlearning method for untargeted245

unlearning. The optimization of this approach246

is fundamentally the opposite of the training247

objective, as it maximizes the prediction loss248

of the forget set. It can be mathematically249

formulated as follows:250

LGA(DF ;ϕ) =
1

DF

∑
x∈DF

l(x, ϕ) (3)251

Here, the loss on an instance x ∈ DF is de-252

noted by l(x, ϕ).253

• Negative Preference optimization (NPO):254

NPO (Zhang et al., 2024) addresses the chal-255

lenge of unlearning by treating the samples in256

the forget set as negative ones, while ignoring257

the positive component of Direct Preference258

Optimization (DPO) (Rafailov et al., 2023)259

loss. This can be mathematically formulated260

as follows:261

LNPO(DF ;ϕ) = − 2

ω
E(x,y)∼DR

[logσ(−ω log
p(y|x;ϕ)

p(y|x;ϕref )
)]

(4)262

Here, ω represents a hyperparameter, σ repre-263

sents a sigmoid function, and ϕref represents264

the reference model prior to unlearning.265

On the other hand, targeted unlearning involves266

training the model to output the desired answers.267

For target unlearning, we select Direct Preference268

Optimization (DPO).269

• Direct Preference Optimization (DPO):270

When evaluating the DPO (Rafailov et al.,271

2023) loss on the forget set, DF , it treats the272

samples in DF as negative and the sample273

rejection answers are treated as positive.274

3.2.2 Regularization Loss 275

While the forget loss addresses the task of unlearn- 276

ing, it is equally important to maintain the perfor- 277

mance on the retain set, DR. The regularization 278

loss is calculated on DR to ensure that the overall 279

unlearning framework preserves the model utility. 280

We select the traditional gradient descent (GD) for 281

evaluating the regularization loss. 282

• Gradient Descent (GD): GD is performed on 283

DR while observing the prediction loss during 284

training. 285

LGD(DR;ϕ) = E(x,y)∼DF
[− log p(y|x;ϕ)]

(5) 286

With two variations of forget loss and a regular- 287

ization loss, we experiment with three variations 288

of the unlearning method: GA with GD, NPO with 289

GD, and DPO with GD. 290

4 Experimental Evaluation 291

4.1 Data 292

We evaluate our DCLLM framework using the 293

databricks-dolly-15k1 dataset, which contains 294

approximately 15,000 instruction-following sam- 295

ples spanning eight topics: closed QA, classifi- 296

cation, brainstorming, open QA, general QA, in- 297

formation extraction, summarization, and creative 298

writing. We partition the dataset into 500 samples 299

for testing, 1000 for validation, and the remainder 300

for training. The distribution of the training data 301

across topics is illustrated in Figure 2. 302

Additionally, we evaluate the trained model on 303

three additional test datasets to ensure a robust as- 304

sessment of the framework. 305

• Self-Instruct (Wang et al., 2022a): Self- 306

Instruct comprises 252 instruction-following 307

samples. 308

• S-NI (Wang et al., 2022b): 309

Super-NaturalInstructions consists 310

of approximately 9,000 test samples of 119 311

diverse topics. For our framework evaluation, 312

we focus on samples that are longer than ten 313

tokens. 314

• Vicuna (Chiang et al., 2023): Vicuna con- 315

stitutes 80 instruction-response pairs, adding 316

complexity to the task. 317

1https://huggingface.co/datasets/databricks/
databricks-dolly-15k
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Figure 2: Topic distribution of databricks-dolly-15k
training data.

Further details about the test data distribution318

are shown in Appendix Section D.319

4.2 Evaluation Metrics320

4.2.1 KD Evaluation321

To evaluate the task of KD, we utilize two met-322

rics to determine lexical similarity and embedding-323

level similarity. For lexical similarity, we prefer the324

standard Rouge-L metric, and for embedding-level325

similarity, we select BERTScore.326

• Rouge-L (R-L): Rouge-L (Lin, 2004), de-327

noted by Rouge− L(ŷ, y), measures the sim-328

ilarity between the model predictions, y and329

the gold labels, ŷ, at the word-level. This met-330

ric is applied in the evaluation of both KD and331

unlearning performance.332

• BERTScore (BS): Without restricting our333

evaluation at the word-level, we utilize334

BERTScore (BS) (Zhang et al., 2019), to cap-335

ture the inherent semantic similarity of the336

samples with more precision, especially in337

the task of text generation. BS leverages a338

pre-trained transformer model (Vaswani et al.,339

2017), BERT (Devlin et al., 2019) to calculate340

the sample embedding.341

4.2.2 Unlearning Evaluation342

To evaluate the performance of the unlearned343

model, we follow the TOFU benchmark (Maini344

et al., 2024), which effectively assesses the task by345

accounting for the different generation behaviors of346

the model. Moreover, we leverage three additional347

metrics (Yuan et al., 2024) for an appropriate eval-348

uation of the unlearned model utilizing the forget349

set, DF , and the retain set, DR.350

• Probability (P): We adopt the same strategy 351

outlined by (Maini et al., 2024) to compute 352

the conditional probability, P (y|x), where 353

given an instruction, x, the probability that 354

the model outputs a correct answer, yc can be 355

calculated as: 356

P (y|x) = P (yc|x)∑n
i=1 P (yi|x)

(6) 357

• Rouge (R-L): We use the standard Rouge-L 358

metric as mentioned before in 4.2.1. 359

• Truth Ratio (TR): Truth ratio calculates the 360

likelihood ratio of the answer being correct 361

compared to an incorrect one. Since we train 362

our model based on a particular version of 363

the gold label, it is possible for the model 364

to assign a higher probability weight to that 365

version compared to others. Given ypert be a 366

set of perturbed versions of the gold label, and 367

ỹ be the paraphrased version of the gold label, 368

we can compute the truth ratio as follows: 369

TR =

1
|ypert|

∑
yc∈ypert P (yc|x)

1
|yc|

P (ỹ|x)
1
|ỹ|

(7) 370

• Token Entropy (TE): One common issue ob- 371

served is that an unlearned model often gen- 372

erates tokens that lack meaning, even after 373

generating the correct prediction. The token 374

entropy (TE) considers the diversity of tokens 375

within the model prediction. If a model pre- 376

diction, y, contains T unique tokens and Cyi 377

denotes the unique token yi’s frequency, then 378

we can define TE as follows: 379

TE =
−
∑T

i=1Cyi log2Cyi

log2 |Cϕ|
(8) 380

• Cosine Similarity (CS): Cosine similarity 381

(CS) is measured by computing the semantic 382

similarity of the predictions before and after 383

the unlearning method is applied. To deter- 384

mine the sample semantic similarity, we em- 385

ploy Sentence-BERT (Reimers and Gurevych, 386

2019) to extract the sample embedding and 387

then calculate the CS. 388

• Entailment Score (ES): Entailment Score 389

(ES) measures the factual accuracy of the 390

5



model prediction against the corresponding391

gold labels for a set of questions. We utilize a392

pretrained NLI model (Sileo, 2023) that pre-393

dicts the entailment relationship between the394

model prediction and the corresponding gold395

label for each set of questions. The final ES is396

derived by calculating the ratio of the “entail-397

ment” relationship across all samples.398

Finally, we aggregate all the above unlearning399

metrics into a single one to determine the forget400

efficacy and the model utility, measuring per-401

formance on the forget set and retain set, respec-402

tively.403

• Model Utility (MU): Model Utility (MU)404

measures the overall quality of the unlearn-405

ing process. Hence, it optimizes the model406

prediction, ensuring that none of the associ-407

ated metrics yields values approaching zero.408

We calculate MU on the retain set simply by409

taking the harmonic mean of the previously410

mentioned metrics.411

• Forget Efficacy (FE): Forget Efficacy (FE)412

measures the quality of unlearning on the for-413

get set. We calculate FE by taking the arith-414

metic mean of all the above metrics and then415

subtracting this mean from 1.416

4.3 Experimental Setup417

We follow the MiniLLM (Gu et al., 2024b) exper-418

imental configuration for evaluating the KD ap-419

proaches and the TOFU benchmark (Maini et al.,420

2024) for the unlearning methods. We conduct421

our experiments on two KD model configuration,422

where we utilize LLaMA3-3B (Touvron et al.,423

2023) as the teacher model, and LLaMA3-1B as the424

teacher model. Another setting leverages LLaMA3-425

8B as the teacher model. For word-level KD eval-426

uation, we fine-tune the student model with super-427

vision from the output distribution of the teacher428

model. For KD with reverse KL divergence, we429

follow the experimental configuration set by (Gu430

et al., 2024b).431

During the unlearning experiments, we432

treat all the “closed QA” examples of433

databricks-dolly-15k train split as the434

forget set and the rest as the retain set. For435

each instance in the forget set, we leverage436

the LLaMA3-8B-Instruct model to generate a437

paraphrased version of the instruction-response438

pair, which represents the same question and439

answer with different words. Moreover, we 440

construct five different perturbed versions of the 441

response that are structurally similar but factually 442

incorrect, so that we can measure the truth ratio 443

(TR) as mentioned in Section 4.2.2. We list our 444

complete hyperparameter setting in the Appendix 445

Section A. 446

5 Results and Analysis 447

We present our evaluation of the DCLLM frame- 448

work in three distinct phases. 449

5.1 Training Set Evaluation 450

We evaluate both the teacher models (LLaMA3-3B 451

and LLaMA-8B) and the student model (LLaMA3- 452

1B) in the zero-shot and fine-tuning settings. When 453

distilling the student model from the teacher model, 454

we contaminate the teacher model such that the 455

forget set is exposed during training. As illustrated 456

in Table 5, all the unlearning methods, when com- 457

bined with GD as a regularization loss in a word- 458

level KD (utilizing LLaMA3-3B as the teacher), 459

demonstrate performance comparable to that of a 460

contaminated word-level KD setting. Moreover, 461

the LLaMA3-3B model, decontaminated through 462

NPO in the KD framework and utilizing reverse 463

KL-divergence, shows performance similar to that 464

of the corresponding contaminated KD setting. 465

This indicates that these methods are effective both 466

in decontaminating the model and preserving the 467

true model’s performance across different KD set- 468

tings. 469

5.2 Evaluation on Test Data 470

We evaluate both the contaminated and decontami- 471

nated models across four different challenging vari- 472

ations of test data to measure the robustness of our 473

overall framework. We observe in Table 1 that 474

almost all the unlearning algorithms have a signifi- 475

cant impact on the test set performance. We notice 476

a significant decline in the performance after the 477

unlearning phase, indicating the efficacy of these 478

approaches in decontaminating the contamination. 479

On the contrary, NPO substantially reduces the 480

contamination exposure, while improving the per- 481

formance on the remaining data. In both the KD 482

setting, utilizing forward and reverse KL diver- 483

gence, the decontaminated teacher (LLaMA3-3B) 484

model, leveraging NPO, outperforms the fine-tuned 485

student (LLaMA3-1B) model on the S-NI data 486

by 1.99% and 3.36% respectively, and performs 487
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#Parameters Method
Dolly Self-Instruct S-NI Vicuna

R-L BS R-L BS R-L BS R-L BS

Student:1B
Zero-Shot 9.08 42.50 6.81 40.62 8.39 39.35 14.37 50.98
Finetuned 28.51 61.29 18.88 52.25 29.10 56.01 18.33 57.85

Teacher:3B

Zero-Shot 12.22 46.55 10.37 44.18 13.48 44.07 17.77 56.66
Finetuned 31.11 62.87 21.98 54.27 33.27 59.89 18.60 58.35
(DPO+GD) 12.61 49.23 8.26 44.53 8.48 42.65 17.10 55.29
(NPO+GD) 14.65 50.60 10.06 46.09 12.33 46.75 19.30 56.14
(GA+GD) 14.62 50.54 10.00 46.06 12.36 46.73 19.23 56.00

Teacher:8B

Zero-Shot 12.70 45.22 12.35 45.05 16.41 46.70 16.53 54.10
Finetuned 30.65 61.67 23.00 55.23 32.91 59.10 19.50 59.00
(DPO+GD) 9.25 41.77 7.94 41.99 8.94 39.52 16.23 52.88
(NPO+GD) 9.24 41.68 7.95 42.13 8.95 39.43 16.25 53.01
(GA+GD) 9.22 41.21 7.88 41.82 8.99 39.80 16.21 52.70

Contaminated
Teacher:3B KD-FKLD 28.20 60.94 19.40 51.72 30.29 56.43 17.93 56.92
Student:1B KD-RKLD 27.44 60.13 19.08 53.11 30.05 56.88 18.20 57.81
Teacher:8B KD-FKLD 28.19 60.56 19.59 52.44 30.00 56.35 17.54 57.08
Student:1B KD-RKLD 28.22 60.74 18.68 51.70 29.74 56.58 17.14 56.62
Decontaminated with (DPO+GD)

Teacher:3B KD-FKLD 28.88 60.92 17.84 51.30 30.18 56.39 17.19 56.30
Student:1B KD-RKLD 28.27 60.77 19.07 52.85 31.19 55.82 17.71 57.47
Teacher:8B KD-FKLD 16.71 51.52 11.09 46.26 16.97 47.92 16.18 55.14
Student:1B KD-RKLD 8.82 35.17 6.57 35.56 8.71 32.55 10.82 43.35
Decontaminated with (NPO+GD)

Teacher:3B KD-FKLD 28.86 61.10 19.71 52.27 31.09 57.30 17.09 56.70
Student:1B KD-RKLD 28.71 60.80 18.85 51.95 32.46 56.61 16.91 56.95
Teacher:8B KD-FKLD 16.24 51.30 10.74 45.89 16.56 47.81 16.11 54.32
Student:1B KD-RKLD 8.71 35.21 6.77 35.89 10.25 33.78 11.06 43.68

Decontaminated with (GA+GD)
Teacher:3B KD-FKLD 28.51 60.95 19.67 51.98 30.81 56.69 16.81 56.36
Student:1B KD-RKLD 28.69 60.80 19.52 52.69 29.55 56.32 16.09 55.86
Teacher:8B KD-FKLD 16.04 51.24 11.68 46.22 16.73 47.77 15.67 53.97
Student:1B KD-RKLD 8.56 35.11 6.42 35.54 9.43 33.39 9.38 41.90

Table 1: Evaluation on Test set. R-L and BS stand for Rouge-L scores and BERTScores, respectively. The methods
KD-FKLD and KD-RKLD refer to Knowledge Distillation with Forward KL Divergence and Knowledge Distillation
with Reverse KL Divergence, respectively. We bold-face a score if a KD approach with a decontaminated teacher
model has outperformed that of the contaminated one, and underline a score if it improves the corresponding
fine-tuned student model.

comparably on the rest of the data in terms of488

Rouge-L score. The decontaminated LLaMA3-3B489

in the word-level KD setting improves the con-490

taminated one in the same setting on most test491

datasets. Furthermore, in the KD setting utiliz-492

ing reverse KL divergence, the same decontami-493

nated model enhances the Rouge-L score of the494

contaminated model by 1.27% and 2.41% on the495

Dolly and S-NI data, respectively, while maintain-496

ing comparable performance on the remaining test497

data. Additionally, in both the KD setting, utiliz-498

ing forward and reverse KL divergence, the decon- 499

taminated LLaMA3-3B model, leveraging DPO, 500

demonstrates superior performance compared to 501

the fine-tuned LLaMA3-1B on the S-NI data by 502

1.08% and 2.09% respectively, in the Rouge-L met- 503

ric. Similarly, GA, when employed to decontami- 504

nate the LLaMA3-3B model, performs comparably 505

in all the experimental settings. 506

We further observe in Table 6 that, when eval- 507

uating the Dolly data in a word-level KD setting, 508

NPO improves the contaminated model’s predic- 509
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#Parameters Method R-L P TR TE CS ES FE MU
Forget Set

LLaMA3-3B

(DPO+GD) 0.44 9.06 40.93 100.00 6.05 0.00 88.70 -
(NPO+GD) 25.73 0.96 61.59 92.83 54.96 8.65 69.62 -
(GA+GD) 0.00 0.00 29.06 0.00 9.45 0.00 92.30 -

Retain Set
(DPO+GD) 1.14 8.23 33.51 95.42 7.06 1.67 - 3.37
(NPO+GD) 23.95 1.66 41.68 87.92 60.36 23.67 - 18.27
(GA+GD) 0.00 0.00 14.51 0.00 9.38 0.00 - 0.00

Forget Set

LLaMA3-8B

(DPO+GD) 30.63 9.38 44.76 67.06 36.31 8.65 74.05 -
(NPO+GD) 38.09 2.49 55.42 61.34 50.45 9.62 68.79 -
(GA+GD) 0.00 0.00 65.41 100.00 9.45 0.00 85.03 -

Retain Set
(DPO+GD) 28.15 6.55 34.74 70.71 45.19 44.00 - 33.15
(NPO+GD) 31.88 2.69 42.22 65.01 55.83 36.00 - 25.93
(GA+GD) 0.00 0.00 33.88 90.00 9.38 0.00 - 0.00

Table 2: Evaluation of unlearning methods on the forget set and retain set. R-L, P, TR, TE, CS, ES, FE, and MU
stand for Rouge-L score, Probability, Truth Ratio, Token Entropy, Cosine Similarity, Entailment Score, Forget
Efficacy, and Model Utility, respectively.

tion (leveraging LLaMA3-3B as the teacher model)510

across a range of topics, specifically classification511

by 3.15% and summarization by 1.81%, while512

performing comparably on the remaining topics.513

Moreover, it reduces the Rouge-L score of closed514

QA by 5.10%, indicating that NPO effectively de-515

contaminates the teacher model from data of sim-516

ilar distribution. One potential reason for NPO’s517

superior performance may be that the unlearning518

experimental setup favored the method, allowing519

it to clearly discern between positive and negative520

samples, while minimizing data interference with521

the model’s pretrained knowledge.522

5.3 Unlearning Evaluation523

We evaluate the performance of the unlearning al-524

gorithms in terms of their effectiveness in decon-525

tamination. We observe in Table 2 that all the526

unlearning algorithms demonstrate strong perfor-527

mance on the forget set. However, except for NPO,528

no other unlearning algorithms exhibit significant529

performance in terms of model utility, indicating530

they struggle to preserve the true model perfor-531

mance while decontaminating LLaMA3-3B. NPO532

achieves a TR score of almost 62% on the forget533

set, indicating its ability to distinguish between cor-534

rect and incorrect answers more effectively than535

the other unlearning algorithms. Moreover, DPO536

performs well in terms of model utility while de-537

contaminating LLaMA3-8B.538

6 Conclusion 539

In this paper, we introduce DCLLM, a novel frame- 540

work that effectively evaluates most commonly 541

used unlearning methods to decontaminate a 542

teacher model exposed to contamination during 543

fine-tuning. Our research demonstrates that most 544

of the unlearning methods show a lot of promise 545

in decontamination. Upon further analysis, we ob- 546

serve that the decontaminated teacher model, which 547

leverages Negative Preference Optimization (NPO) 548

as an unlearning method, outperforms standard 549

KD approaches in unlearning contamination while 550

maintaining model utility. Moreover, the decon- 551

taminated teacher model with NPO improves the 552

student model prediction by around 2-3% across all 553

the evaluation data which demonstrates the robust- 554

ness of the decontaminated model. We strongly 555

believe that our experiments will motivate a new 556

research dimension and encourage researchers to 557

explore this area extensively. 558

Limitations 559

Although we are the pioneers for exploring the 560

decontamination effects within a contaminated 561

teacher model and have introduced a novel frame- 562

work, DCLLM, to assess the effectiveness of unlearn- 563

ing algorithms, our work has two significant limita- 564

tions. 565

• We selected LLaMA as our primary open- 566
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source LLM to evaluate the performance of567

DCLLM. In the future, we intend to expand our568

framework to include support for further open-569

source LLMs during evaluation.570

• During the unlearning phase, we employed571

DPO as our only targeted unlearning method.572

We intend to evaluate our framework with573

other targeted unlearning techniques to en-574

hance its robustness.575
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A Training Details900

A.1 Knowledge Distillation Experiments901

During the knowledge distillation (KD) phase, we902

conduct our experiments across different settings,903

ranging from zero-shot, fine-tuned, world-level KD,904

and KD utilizing reverse KL divergence. For mod-905

els > 1B, the fine-tuned and KD experiments are906

conducted on four NVIDIA A100 40GB GPUs,907

using DeepSpeed with ZeRO2 to reduce memory908

footprints. In case of word-level KD, we adopt909

the approach outlined in (Gu et al., 2024b), mix-910

ing the distillation loss equally with the supervised911

language modeling loss based on the gold labels.912

The final checkpoints for each setting are chosen913

according to the Rouge-L scores from the valida-914

tion set. Further hyperparameter details are listed915

in Table 3.916

Hyperparameters Value
No. of Epochs 10
Training Batch Size [32, 64]
Learning Rate [5X10−6, 1X10−5,

5X10−5]

Table 3: Hyperparameters used in the knowledge distil-
lation (KD) experiments. For all models, we select the
best learning rate and batch size from the given range.

A.2 Unlearning Experiments917

During the unlearning phase, all experiments are918

conducted using two NVIDIA A100 GPUs with919

40GB of memory. We follow the TOFU (Maini920

et al., 2024) repository and utilize DeepSpeed with921

ZeRO3 to reduce memory footprints. During the922

unlearning process, we apply a linear warm-up923

learning rate in the first epoch, followed by a lin-924

early decaying learning rate in the later epochs.925

Both the α and β parameters are set to 0.1. We926

provide additional hyperparameter details in Table927

4.928

B Evaluation on Training Data929

We present a detailed evaluation of training data930

across different settings in Table 5. We can observe931

that the decontaminated teacher models (LLaMA3-932

3B and LLaMA3-8B) exhibit performance com-933

parable to that of the fine-tuned student model,934

LLaMA3-1B.935

Hyperparameters Value
No. of Epochs 5
Training Batch Size 32
Learning Rate 1X10−5

Optimizer AdamW
Weight Decay 0.01
β 0.1
α 0.1

Table 4: Hyperparameters used in the unlearning exper-
iments.

#Parameters Method
Dolly

R-L BS

Student:1B
Zero-Shot 8.91 41.99
Finetuned 86.97 93.05

Teacher:3B

Zero-Shot 11.52 45.53
Finetuned 88.75 93.95
(DPO+GD) 32.15 61.79
(NPO+GD) 34.80 64.11
(GA+GD) 34.75 64.15

Teacher:8B

Zero-Shot 12.87 44.86
Finetuned 89.43 94.32
(DPO+GD) 8.96 40.86
(NPO+GD) 8.98 40.92
(GA+GD) 8.95 40.80

Contaminated
Teacher:3B KD-FKLD 86.62 92.86
Student:1B KD-RKLD 84.68 91.89
Teacher:8B KD-FKLD 86.83 92.97
Student:1B KD-RKLD 85.61 92.32

Decontaminated with (DPO+GD)
Teacher:3B KD-FKLD 85.61 92.30
Student:1B KD-RKLD 83.28 91.09
Teacher:8B KD-FKLD 21.44 54.52
Student:1B KD-RKLD 8.81 34.79

Decontaminated with (NPO+GD)
Teacher:3B KD-FKLD 85.11 92.08
Student:1B KD-RKLD 83.74 91.37
Teacher:8B KD-FKLD 21.49 54.47
Student:1B KD-RKLD 9.13 35.08

Decontaminated with (GA+GD)
Teacher:3B KD-FKLD 85.03 92.04
Student:1B KD-RKLD 83.49 91.25
Teacher:8B KD-FKLD 21.30 54.42
Student:1B KD-RKLD 8.74 34.79

Table 5: Evaluation on Train set. R-L and BS stand
for Rouge-L scores and BERTScores, respectively. The
methods KD-FKLD and KD-RKLD refer to Knowledge
Distillation with Forward KL Divergence and Knowl-
edge Distillation with Reverse KL Divergence, respec-
tively.
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#Parameters Method BST CLF CQA CW GQA IE OQA SM

Student:1B
Zero-Shot 6.83 8.96 7.59 11.25 10.95 8.61 7.95 14.65
Finetuned 19.68 59.54 38.82 18.43 17.42 35.11 20.73 37.71

Teacher:3B

Zero-Shot 10.47 11.16 14.65 12.49 13.11 12.35 11.84 14.72
Finetuned 21.53 59.89 40.70 17.98 17.29 38.31 27.76 38.50
(DPO+GD) 10.60 12.07 13.06 16.94 13.30 13.38 10.82 20.44
(NPO+GD) 12.24 14.10 16.69 18.03 15.71 14.96 12.24 24.76
(GA+GD) 12.12 14.27 16.39 17.82 15.58 14.90 12.23 25.14

Teacher:8B

Zero-Shot 10.71 13.68 17.42 11.68 11.85 14.92 11.90 14.93
Finetuned 22.19 60.14 42.73 17.53 16.96 33.10 26.09 40.39
(DPO+GD) 7.85 7.28 9.49 12.14 11.08 10.65 8.15 13.12
(NPO+GD) 7.84 7.26 9.51 12.08 11.07 10.62 8.11 13.15
(GA+GD) 7.83 7.23 9.58 12.05 10.99 10.59 8.08 13.11

Contaminated
Teacher:3B KD-FKLD 19.98 55.41 44.00 18.23 16.15 35.79 21.46 35.87
Student:1B KD-RKLD 18.92 54.83 40.67 17.16 17.47 34.54 20.14 34.89
Teacher:8B KD-FKLD 18.11 57.29 39.92 17.86 16.42 30.63 22.47 40.08
Student:1B KD-RKLD 18.50 57.11 43.98 18.66 17.03 36.41 20.57 36.06

Decontaminated with (DPO+GD)
Teacher:3B KD-FKLD 21.46 56.26 41.40 16.95 16.93 35.81 22.34 39.37
Student:1B KD-RKLD 19.80 57.86 39.95 17.37 17.25 33.19 21.31 36.60
Teacher:8B KD-FKLD 10.48 28.25 21.99 14.07 14.44 21.29 13.61 17.23
Student:1B KD-RKLD 6.04 9.64 12.16 6.38 8.30 9.18 8.90 12.76

Decontaminated with (NPO+GD)
Teacher:3B KD-FKLD 20.67 58.56 38.90 17.33 16.88 33.64 21.94 37.68
Student:1B KD-RKLD 20.42 57.27 40.52 17.34 16.86 34.33 22.32 38.95
Teacher:8B KD-FKLD 10.72 26.88 19.44 12.53 14.28 15.09 14.30 19.54
Student:1B KD-RKLD 5.75 8.24 11.28 7.64 8.02 10.99 7.48 21.54

Decontaminated with (GA+GD)
Teacher:3B KD-FKLD 20.00 56.33 41.30 18.07 16.90 35.93 22.36 35.38
Student:1B KD-RKLD 20.00 57.99 41.07 16.12 16.30 36.76 22.52 36.60
Teacher:8B KD-FKLD 10.59 26.98 20.66 12.96 13.57 15.88 13.71 18.85
Student:1B KD-RKLD 6.15 8.87 9.33 6.53 8.15 11.11 8.35 14.73

Table 6: Topic-wise Rouge-L Score of test split on databricks-dolly-15k data. BST, CLF, CQA, CW, GQA, IE,
OQA, and SM represent Brainstorming, Classification, Closed QA, Creative Writing, General QA, Information
Extraction, Open QA, and Summarization, respectively, which are the eight topics of Dolly data. We bold-face a
score if a KD approach with a decontaminated teacher model has outperformed that of the contaminated one, and
underline a score if it improves the corresponding fine-tuned student model.

C Topic-wise Evaluation on Test Data936

We provide a detailed topic-wise evaluation of937

databricks-dolly-15k test data in different set-938

tings in Table 6. When evaluating the Dolly data,939

we can observe that decontaminated LLaMA3-3B940

utilizing NPO improves the fine-tuned LLaMA3-941

1B prediction across a range of topics, with a 0.99%942

increase in brainstorming and a 1.21% increase in943

open QA. Moreover, the decontaminated LLaMA3-944

3B model, utilizing DPO and GA, outperforms the945

corresponding fine-tuned student model in brain-946

storming, information extraction, and open QA 947

across all the KD settings. 948

D Test Data Distribution 949

For robust evaluation of our proposed framework, 950

we employ Self-Instruct, S-NI, Vicuna data, 951

and the test split of databricks-dolly-15k data. 952

The Self-Instruct, S-NI, and Vicuna data con- 953

tain 71, 37, and 9 distinct topics, respectively. Fur- 954

ther details about their data distribution are illus- 955

trated in Figure 3, 4, 5, and 6. 956
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Figure 3: Data distribution of Self-Instruct data across 71 distinct categories.
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Figure 4: Data distribution of S-NI data across 37 distinct categories.
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Figure 5: Data distribution of Vicuna data across 9 distinct categories.

Figure 6: Test data distribution of databricks-dolly-15k data across 8 distinct categories.
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