
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GEOSPLATTING: TOWARDS GEOMETRY GUIDED
GAUSSIAN SPLATTING FOR PHYSICALLY-BASED IN-
VERSE RENDERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of physically-based inverse rendering using 3D Gaussian
Splatting (3DGS) representations (Kerbl et al., 2023b). While recent 3DGS meth-
ods have achieved remarkable results in novel view synthesis (NVS), accurately
capturing high-fidelity geometry, physically interpretable materials, and lighting
remains challenging, as it requires precise geometry modeling to provide accu-
rate surface normals, along with physically-based rendering (PBR) techniques to
ensure correct material and lighting disentanglement. Previous 3DGS methods
resort to approximating surface normals but often struggle with noisy local geom-
etry, leading to inaccurate normal estimation and suboptimal material-lighting de-
composition. In this paper, we introduce GeoSplatting, a novel hybrid representa-
tion that augments 3DGS with explicit geometric guidance and differentiable PBR
equations. Specifically, we bridge isosurface and 3DGS together, where we first
extract isosurface mesh from a scalar field, then convert it into 3DGS points and
formulate PBR equations for them in a fully differentiable manner. In GeoSplat-
ting, 3DGS is grounded on mesh geometry, enabling precise surface normal mod-
eling, which facilitates the use of PBR frameworks for material decomposition,
achieving excellent decomposition performance, especially for reflective cases.
This approach further maintains the efficiency and quality of NVS from 3DGS
while ensuring accurate geometry from the isosurface. Comprehensive evalua-
tions across diverse datasets demonstrate the superior efficiency and competitive
inverse rendering performance of GeoSplatting compared to state-of-the-art in-
verse rendering baselines.

1 INTRODUCTION

The inverse rendering task, i.e., recovering 3D attributes such as geometry, spatially-varying materi-
als, and lighting from multi-view images or videos, has been a long-standing goal in computer vision
and graphics. It plays a critical role in numerous industrial applications, including film production,
gaming, and VR/AR, for photo-realistic novel-view synthesis and immersive user interactions. This
task is typically approached using carefully designed 3D representations (Mildenhall et al., 2020;
Müller et al., 2022; Wang et al., 2021; Shen et al., 2021; 2023) coupled with the corresponding dif-
ferentiable rendering techniques (Boss et al., 2021a; Verbin et al., 2022a; Chen et al., 2019; Laine
et al., 2020). While great progress has been made recently (Munkberg et al., 2022; Jiang et al., 2023;
Gao et al., 2023), efficiently and accurately capturing various 3D attributes remains challenging due
to the complexities of light transport in real-world environments, including intricate local geometry,
non-Lambertian surface, complex lighting conditions, occlusions, etc.

The key to tackling the inverse rendering task lies in effectively modeling the underlying 3D geome-
try, where Physically-Based Rendering (PBR) techniques can be applied to disentangle materials and
lighting. Numerous prior works have developed various 3D representations and their correspond-
ing differentiable rendering equations to address this challenge, each offering unique advantages
and limitations. Implicit representations like NeRF (Mildenhall et al., 2020; Verbin et al., 2022b)
are well-suited for novel view synthesis but are computationally expensive and incompatible with
existing graphics pipelines. In contrast, explicit representations like mesh (Munkberg et al., 2022)
provide explicit geometry, allowing for well-defined rendering techniques, and facilitating tasks
like relighting and material editing. However, optimizing explicit representations is challenging,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

NVS Normal Albedo Roughness Metallic Lighting

O
ur

s
29

.7
dB

N
V

di
ff

re
c

26
.8

dB
R

3D
G

26
.5

dB

Figure 1: We propose GeoSplatting, a novel inverse rendering approach that augments Gaussian
Splatting with explicit geometric guidance. GeoSplatting enables more accurate geometry recovery,
achieving excellent material and lighting decomposition performance and superior efficiency. Please
zoom in for details.

especially when dealing with complex geometries like thin structures. More recently, 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023b) has emerged as an efficient 3D representation for high-quality
novel-view synthesis. However, vanilla 3DGS is not designed to provide accurate geometry or dis-
entangled materials, limiting its applicability to inverse rendering tasks. To tackle this challenge,
various methods have studied assigning a normal direction to each 3DGS point to model local geo-
metric surfaces, along with a PBR formula using the approximated normals (Jiang et al., 2023; Shi
et al., 2023; Gao et al., 2023). However, these approaches offer only approximations of true normals,
and as a result, may struggle with local minima in regions of complex geometry.

In this paper, we propose GeoSplatting, a more principled solution that leverages the strengths of
both explicit representations and 3DGS for the inverse rendering task. At the core of GeoSplatting is
a differentiable adaptor that integrates differentiable isosurface techniques (Shen et al., 2021; 2023)
with 3D Gaussian Splatting. Specifically, we first utilize the differentiable isosurface techniques to
extract a mesh from a scalar field that we want to optimize. We then introduce MGadapter, i.e.,
Mesh-to-Gaussian-adaptor, that samples 3D Gaussian points on the mesh surface in a differentiable
manner, naturally grounding the location of each Gaussian point on the surface geometry, from
which we could estimate precise normal for each point. To render the sampled 3D Gaussian points,
we design an efficient and differentiable PBR framework, leveraging the split-sum model (Karis,
2013) and applying it to the 3D Gaussian points. During training, since all the operations are differ-
entiable, we can train our model end-to-end.

Our GeoSplatting offers several advantages over both 3DGS and explicit mesh-based representa-
tions. Compared to the vanilla 3DGS (Kerbl et al., 2023b) and its variants, our approach provides
explicit geometric guidance from the isosurface, enabling more accurate normal estimation, which
is crucial for inverse rendering optimization. On the other hand, compared to the mesh represen-
tations (Munkberg et al., 2022), GeoSplatting leverages the high efficiency and superior rendering
quality inherited from 3DGS. Moreover, while the concept of constraining 3DGS with geometry
is not new (Yu et al., 2024; Xiang et al., 2024), existing methods typically rely on a discrete opti-
mization strategy where the implicit SDF field (Wang et al., 2021) and Gaussian points are learned
separately. In contrast, GeoSplatting explicitly guides Gaussian points with the isosurface and can be
optimized in an end-to-end fashion, reducing training time and improving inverse rendering quality.

In summary, our key contributions are as follows:

1. We introduce a novel inverse rendering framework, GeoSplatting, which bridges 3DGS
with isosurface techniques, achieving competitive decomposition performance with state-
of-the-art methods.

2. Leveraging geometry guidance, GeoSplatting delivers significantly superior rendering
quality and achieves the highest normal accuracy on reflective surfaces compared to all
inverse rendering baselines.

3. GeoSplatting significantly outperforms all inverse rendering baselines in training time,
showcasing its excellent efficiency in capturing material-lighting interactions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

FlexiCubes

 Scalar Field Mesh Gaussian points Colored Gaussians Render result

GT image

Image space loss

Forward

Albedo

ResidualMetalic

Roughness
EnvLight

Shading Attribute

Backward

Direct Light
Normal

View Direction

MGAdapter PBR (split-sum) Splatting

Figure 2: Pipeline. GeoSplatting first extracts an intermediate mesh from the scalar field, upon
which Gaussian points are sampled and rendered using PBR equations. Finally, they are composited
into images through the Gaussian rasterization pipeline. The entire process is fully differentiable.

2 RELATED WORK

NeRF-based Inverse Rendering Since Neural Radiance Field (NeRF) (Mildenhall et al., 2020)
represented scenes using implicit neural networks and leveraged differentiable volume render-
ing (Drebin et al., 1988) to achieve highly detailed novel view synthesis, a large amount of subse-
quent work has extended it to inverse rendering tasks, by enhancing both the representations and the
rendering equations to introduce more physical constraints, allowing the separation of physically-
based rendering attributes such as normals, materials, and lighting (Boss et al., 2021a;b; Yariv et al.,
2021; Wang et al., 2021; Zhang et al., 2021a; 2022; Verbin et al., 2022a; Liang et al., 2023; Jin et al.,
2023; Ge et al., 2023). While NeRF-based methods encode BRDF in a single radiance field, the
use of implicit representations and volume rendering makes them difficult to integrate into existing
graphics pipelines, as well as requires dense sampling that leads to slow rendering speed.

Mesh-based Inverse Rendering To address the rendering efficiency issue, explicit representations
(e.g., mesh (Shen et al., 2021; 2023)) combined with differentiable rendering techniques (Chen
et al., 2019; 2021; Laine et al., 2020) have demonstrated their ability to extract explicit geometry,
material, and lighting from multi-view images (Munkberg et al., 2022; Hasselgren et al., 2022).
However, mesh optimization is typically more challenging than implicit fields, which often struggle
with complex geometry (e.g., thin structures), especially under high-frequency lighting-material
interactions (e.g., specular objects).

3DGS-based Inverse Rendering Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023a)
has emerged as a powerful representation for novel view synthesis with significantly superior ren-
dering efficiency to NeRF and its variants. While it can be promising to utilize 3DGS to build more
powerful inverse rendering framework, its geometry is often misaligned with the ground truth sur-
face and prone to floaters, leading to inability in capturing accurate lighting-material interactions.
To improve this, a branch of research extends the vanilla 3DGS with various geometry enhancement
techniques by either introducing additional regularizations to ensure Gaussian points closely adhere
to the surface and keep them squeezed like disks (Guédon & Lepetit, 2024; Huang et al., 2024; Dai
et al., 2024), or jointly training 3DGS with implicit SDF fields (Lyu et al., 2024; Yu et al., 2024;
Xiang et al., 2024). Inspired by these geometry enhancement techniques, there are many meth-
ods extend the vanilla 3DGS for inverse rendering tasks. For instance, R3DG (Gao et al., 2023)
learns additional normal attributes and regularizes normal directions using rendered depth maps.
GS-Shader (Jiang et al., 2023) utilizes the shortest axis direction, while GIR (Shi et al., 2023) em-
ploys eigen decomposition to determine surface orientations. While most of these methods produce
reasonable normals by conducting alpha-blending on the per-Gaussian normal attributes, such a
blending process encounter much difficulty in obtaining precise normal, which prevent the methods
from capturing high-frequency lighting-material interactions, leading to failure cases when model-
ing reflective surfaces. In contrast, we combine explicit mesh representation and 3DGS in a unified
framework and train the framework in an end-to-end, similar to concurrent work Lin & Li (2024),
but employ a novel mesh-to-Gaussian adaptor to achieve geometric alignment, enabling effective
material and lighting decomposition, resulting in significantly better quality of both normal estima-
tion and reflective surface modeling, therefore bringing excellent inverse rendering performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

We now present a detailed description of our method. In Sec. 3.1, we introduce geometry-guided
Gaussian Splatting, where the Gaussian points are generated on the isosurface. Next, in Sec. 3.2,
we extend the standard Gaussian rendering equations by incorporating physically-based rendering
(PBR) to account for higher-order lighting effects. Finally, in Sec. 3.3, we discuss the training
strategies, loss functions, and other key implementation details.

3.1 GEOMETRY GUIDED GAUSSIAN POINTS GENERATION

Background In the vanilla 3DGS (Kerbl et al., 2023b) paper, a Gaussian ellipsoid is represented
by a full 3D covariance matrix Σ and its center position µ: G(x) = e−

1
2 (x−µ)TΣ−1(x−µ), where

x is the location of a 3D point. To ensure a valid positive semi-definite covariance matrix, Σ is
decomposed into the scaling matrix S and the rotation matrix R that characterizes the geometry
of a 3D Gaussian. Beyond µ, S and R, each Gaussian maintains additional learnable parameters
including opacity o ∈ (0, 1) and Spherical Harmonic (SH) coefficients in Rk representing view-
dependent colors (k is related to SH order). During optimization, 3DGS adaptively controls the
Gaussian distribution by splitting and cloning Gaussians in regions with large view-space positional
gradients, as well as the culling of Gaussians that are nearly transparent. However, each Gaussian
point is independent of others and lacks global geometry constraints, which often leads inaccurate
surfaces and floaters.

(a) (b) (c)

Figure 3: MGadapter Overview. Given surface
triangles (a), we initially place one Gaussian point
at each vertex (b), then densely draw six Gaussian
points on each face (c).

Method Our goal is to introduce explicit ge-
ometric guidance to 3D Gaussian Splatting.
To this end, we propose GeoSplatting, which
leverages isosurface techniques (Shen et al.,
2021; 2023) to constrain Gaussian points to the
mesh surface. Specifically, we hope to optimize
a scalar function ζ : R3 → R, which may be
discretized directly as values at grid vertices or
evaluated from an underlying neural network,
etc. We employ FlexiCubes (Shen et al., 2023)
as the underlying geometric representation, al-
lowing for the extraction of an intermediate triangle mesh M from ζ in a differentiable manner.

With the intermediate mesh M as the explicit guidance, we then propose MGadapter T that sam-
ples Gaussian points from surface triangles in a differentiable manner to provide a bridge between
mesh and Gaussian points. Specifically, the MGadapter T constrains the opacity and shape of the
Gaussian points to ensure their alignment with the mesh M.

We first determine the location of 3D Gaussian points from the isosurface mesh M. As illustrated
in Fig. 3, we explored various strategies and finally chose an adaptive way. At the start of the opti-
mization, since the scalar function ζ is randomly initialized and the initial mesh contains numerous
small faces, we only assign one Gaussian point to each vertex to reduce memory usage and accel-
erate training. As the shape quickly begins to converge, we switch to a face-based strategy, where
we empirically place six Gaussian points on each triangle face in order to capture high-frequency
geometric and texture details.

GT Image GT Normal

3DGS Normal Our Normal
Figure 4: Geometry-guided
Normal Estimation.

The opacity for each Gaussian point is set to one, and the position
µ, scale S, and rotation R, along with the normal n, are determined
by the local geometry (vertices or faces):

(µ,S,R,n) = T (M). (1)

Specifically, the position µ is a barycentric interpolation of mesh
vertices, the normal n equals the normal of corresponding mesh
faces, the scale S and the R are heuristic functions relative to µ,
which ensure that the shortest axis of the Gaussian point aligns with
n and maintain a size that adequately covers the triangle.

Additionally, since the boundaries of Gaussian ellipsoids extend be-
yond their center points µ, we allow µ to move slightly along the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

normal direction n to better align with the surface. This surface adjustment v, which is crucial for
novel view synthesis, can be automatically learned via hash grids (Müller et al., 2022). Further
details of MGadapter can be found in Appendix B.

Discussion The geometry-guided MGadapter offers significant advantages over both 3DGS (Kerbl
et al., 2023a) and mesh-based representations (Munkberg et al., 2022) . First, compared to 3DGS,
the geometry guidance from the isosurface provides more accurate geometry and precise surface
normals without any depth or normal regularization terms, as shown in Fig. 4. This, in turn, sig-
nificantly enhances the performance of inverse rendering tasks compared to prior works that rely
on approximated normals. Moreover, transitioning from a mesh representation to Gaussian Splat-
ting, i.e., apply Gaussain-based rendering rather than mesh-based rendering, allows us to leverage
the efficiency and representational capacity of Gaussian Splatting, enabling GeoSplatting to achieve
much faster optimization time and superior novel view synthesis performance compared to NVd-
iffrec (Munkberg et al., 2022) as shown in our experiments.

3.2 PHYSICALLY-BASED GAUSSIAN RENDERING

The vanilla 3DGS assigns each Gaussian point a k-order spherical harmonic parameter to represent
basic color and view-dependent rendering effects. In our GeoSplatting, we hope to represent high-
order lighting effects with PBR materials.

Background We utilize the physically-based rendering equation (Kajiya, 1986) and GGX micro-
facet model (Walter et al., 2007) as follows:

Lo(ωo) =

∫
H2

fr(ωi,ωo)Li(ωi)|n · ωi|,dωi (2)

fr(ωi,ωo) =
a

π
+

D(ωi,ωo)F (ωi,ωo)G(ωi,ωo)

4|n · ωi||n · ωo|
(3)

In Eq. 2, the outgoing radiance Lo(ωo) in the direction ωo is computed as the integral of the BRDF
function fr(ωi,ωo), the incoming light Li(ωi), and the cosine term |n · ωi|, which accounts for the
angle between the surface normal n and the incoming light direction ωi, over the hemisphere H2.
In Eq. 3, the GGX model defines the BRDF function fr(ωi,ωo) as two components: the diffuse
term a

π and the specular term D(ωi,ωo)F (ωi,ωo)G(ωi,ωo)
4|n·ωi||n·ωo| . The specular term models view-dependent

specular surface reflection using the normal distribution function (NDF) D, the Fresnel term F , and
the geometric attenuation G. To evaluate Eq. 2 efficiently, approximation methods such as split-
sum (Karis, 2013) or spherical Gaussian (Chen et al., 2021) are often used to bypass the need for
the extensive Monte Carlo sampling process. Following prior works (Munkberg et al., 2022; Shi
et al., 2023), we use a split-sum model:

Lo(ωo) ≈
∫
H2

fr(ωi,ωo)|n · ωi|dωi

∫
H2

Li(ωi)D(ωi,ωo)|n · ωi|dωi (4)

Eq. 4 enables fast pre-computation. The left BRDF term can be stored in a 2D lookup table and
queried using |n ·ωi| and r, while the right term is represented by pre-integrated environment maps
and can also be queried by r. This allows directly computing outgoing radiance Lo by the material
parameters without any ray sampling, significantly improving rendering speed. For more details of
PBR materials, please refer to (Karis, 2013; Munkberg et al., 2022).

Method Our goal is to add PBR materials to Gaussian points to produce high-order rendering
effects, while still leveraging the efficient Gaussian rasterization pipeline. To achieve this, we com-
pute the color of each Gaussian point using PBR equations, followed by Gaussian rasterization that
renders the final image through alpha compositing.

Specifically, we assign each Gaussian point three PBR material parameters: a diffuse color kd =
a
π ∈ R3, a roughness scalar r, and a metallic factor m. The roughness r determines the GGX normal
distribution function (NDF) D, while the metallic factor m controls the specular highlight color ks
by interpolating between plastic and metallic appearances: ks = (1−m)× 0.04+m× kd. Finally,
the color ci of the i-th Gaussian point is computed as:

ci = cdi + csi + cri (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Reference PBR Rendering Diffuse cd Specular cs Residual cr (×2.5)
Figure 5: PBR Rendering Decomposition. Our PBR framework successfully disentangles the
materials and lighting, capturing meaningful diffuse, specular and residual terms (Eq. 5). Note the
residual image even learns the inter-reflection effects (the most shiny ball reflects a small green ball).

where cdi and csi represent the diffuse and specular components computed using the split-sum model.
In addition, we learn a residual color cri (Jiang et al., 2023) to account for high-order indirect light-
ing effects. Once the color computation is complete, we apply the efficient Gaussian rasterization
pipeline to render the points into an RGB image I and an alpha map M :

I =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), M =

N∑
i=1

αi

i−1∏
j=1

(1− αj) (6)

where α is the projected opacity of each Gaussian. During rendering, we cull Gaussian points on
back faces by checking the angle between surface normals and view directions.

Discussion Our PBR pipeline enables both high-order PBR effects and efficient rendering speed.
First, the PBR model allows us to capture specular, view-dependent lighting effects. Additionally,
the residual component helps model inter-reflection effects beyond the capabilities of the split-sum
model. Moreover, since the color is computed at each Gaussian point, the fast Gaussian rasteriza-
tion pipeline can be directly employed to generate the final images. Fig. 5 shows examples of the
decomposition of each lighting component of our methods.

3.3 IMPLEMENTATION DETAILS

Modeling PBR Attributes GeoSplatting constrains the shape and opacity of each Gaussian point
based on the corresponding surface triangle, and learns the PBR material attributes by querying
MLP (Müller et al., 2022). Specifically, for the geometry, we optimize a 963 grid using Flexi-
Cubes (Shen et al., 2023). For each Gaussian point, we query its corresponding surface movement
v, diffuse color kd, roughness r, specular ks and residual color cr from a spatial MLP (Müller et al.,
2022) F : (v, kd, r,m, cr) = F (µ). Additionally, we learn a 6× 512× 512× 3 environment map to
model the lighting. Details of the network architecture are provided in Appendix B.5.

Loss Functions GeoSplatting is a fully differentiable pipeline that can be trained end-to-end. Thanks
to the geometry guidance, we do not require any surface or normal regularization terms, such as dist
loss (Barron et al., 2022) or pseudo depth normal loss (Jiang et al., 2023; Gao et al., 2023), and
the network can be supervised by photometric loss. However, similar to NVdiffrec, GeoSplatting
also relies on an object mask loss, as optimizing the surface is more challenging. Specifically, the
photometric loss is computed as: Lphoto = L1 + λssimLSSIM + λmaskLmask, where Lmask =
L2(Mpred,Mgt). Here we set λssim = 0.2 and λmask = 5.0. Furthermore, we add an entropy
loss to constrain the shape, following DMTet and FlexiCubes (Shen et al., 2021; 2023). To achieve
better decomposition, we apply light regularization and smoothness regularization on kd and ks,
following NVdiffrec and R3DG (Munkberg et al., 2022; Gao et al., 2023). The final loss L is a
combination of the photometric loss and the regularization losses: L = Lphoto+λentropyLentropy+
λsmoothLsmooth + λlightLlight. Details are provided in Appendix. C.

Second Stage Optimization GeoSplatting optimizes the underlying SDF while producing Gaussian
points for image rendering. However, due to grid resolution limitations, we find that mesh-produced
Gaussian points still struggle to capture detailed textures and thin geometric structures. To address
this, we introduce a second-stage optimization where the Gaussian points are freely optimized with-
out being constrained by the mesh. In the first stage, the mesh-generated Gaussian points already
provide a refined shape and materials. Building on this, the second-stage optimization further en-
hances geometry and texture details, achieving better decomposition performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

NVS Normal Albedo Roughness Lighting

O
ur

s
30

.5
dB

G
S-

Sh
ad

er
28

.5
dB

R
3D

G
26

.7
dB

Te
ns

oI
R

25
.8

dB

Figure 6: Qualitative comparison on the Shiny Blender dataset. Our method achieves the best
decomposition performance for reflective objects.

4 EXPERIMENTS

We perform extensive experiments to verify the effectiveness of our inverse rendering method. We
first evaluate decomposition ability in Sec. 4.1, demonstrating our superior inverse rendering per-
formance on reflective cases. Next, we present material decomposition and relighting results of
Synthetic4Relight in Sec. 4.2, showcasing our effectiveness in general inverse rendering tasks. Ad-
ditionally, we report geometric reconstruction accuracy in Sec. 4.3, and ablation studies in Sec. 4.5.
Further experiments are provided in Appendix. Our method is highly efficient, completing training
within 20 minutes for the first stage and 3-5 minutes for the second stage—on a NVIDIA GTX 4090.

4.1 PERFORMANCE ON REFLECTIVE CASES

Datasets & Metrics. We evaluate NVS performance, normal quality and training efficiency on
the Shiny Blender dataset, which includes 6 challenging scenes featuring complex lighting-material
interactions. Qualitative results are provided in Fig. 6, highlighting the excellent efficiency and
superior rendering quality among inverse rendering baselines, as shown in Table 1.
Performance & Discussion. We compare our method with a wide range of inverse rendering ap-
proaches. Our results achieve new state-of-the-art performance on reflective cases over all inverse
rendering techniques as shown in Table 1. While achieving the best normal quality, GeoSplatting
also outperform the second best GaussianShader almost 4dB in PSNR, demonstrating the effective-
ness of our geometry guidance in accurately capturing high-frequency lighting-material interactions.
Moreover, our method achieves significant superior optimization efficiency, where each scene takes
only 20 minutes in average. Fig. 6 shows the qualitative NVS results, further demonstrating our
effectiveness. More results on the Shiny Blender dataset are provided to Appendix H.3.

Method NVS Normal Training Time
(PSNR ↑) (MAE ↓) (minutes ↓)

R3DG 28.83 7.04 ∼140
TensoIR 27.98 4.42 ∼270

NVdiffrec 28.14 9.38 72
GS-Shader 30.64 7.03 63

Ours 34.41 2.70 20

Table 1: Quantitative results on the Shiny Blender dataset. In the left table, GeoSplatting sig-
nificantly outperforms all baselines in NVS quality, normal accuracy, and training efficiency. In the
right figure, we provide an intuitive overview, with the top-left corner representing superior effi-
ciency. Notably, our method achieves excellent efficiency in terms of both training time and FPS.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Rendering Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 7: Qualitative comparison of material decomposition & relighting on Synthetic4Relight
Dataset. Our method successfully recovers accurate albedo and lighting, though the roughness is
slightly affected by indirect inter-reflections. Nevertheless, it still achieves the best relighting effects.

4.2 DECOMPOSITION & RELIGHTING PERFORMANCE ON GENERAL CASES

Datasets & Metrics. We evaluate Material decomposition and relighting performance on the Syn-
thetic4Relight dataset (Zhang et al., 2022), which includes 4 challenging scenes with complex non-
Lambertian materials and indirect lighting effects. Following (Gao et al., 2023), we assess NVS,
Relighting, Albedo quality using PSNR, SSIM, and LPIPS metrics, along with Roughness MSE, as
shown in Table 2. Qualitative results are provided in Fig. 7.

Performance & Discussion. We compare our method with mesh-based (NVdiffrec) and Gaussian-
based relightable approaches (R3DG, GS-Shader, GS-IR). As shown in Table 2 and Fig. 7, while
our method significantly outperforms the baseline methods in novel view synthesis, we also achieve
state-of-the-art performance in relighting and albedo assessment, demonstrating superior material
and lighting disentanglement. In terms of roughness estimation, our method performs on par with
R3DG. In scenarios involving self-occlusion, our approach tends to integrate shadow effects into
albedo or roughness. This behavior arises primarily from the limitations of the split-sum approxi-
mation used in our method. A detailed explanation is provided in Appendix D. To further clarify
these observations, we include additional qualitative examples in Appendix H.2. Experimental re-
sults from the Shiny Blender dataset (Verbin et al., 2022b) and the TensoIR Synthetic dataset (Jin
et al., 2023) are also presented in Appendices H.3 and H.4, respectively, to reinforce our findings
and offer broader context.

Method Novel View Synthesis Relighting Albedo Roughness
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓

NVdiffrec 34.99 0.979 0.034 28.89 0.953 0.061 28.66 0.941 0.066 0.026
GS-IR 33.85 0.964 0.050 23.81 0.902 0.086 26.66 0.936 0.085 0.825

GS-Shader 30.26 0.974 0.029 22.32 0.924 0.084 N/A N/A N/A 0.050
R3DG* 36.80 0.982 0.028 31.00 0.964 0.050 28.31 0.951 0.058 0.013

Ours 39.20 0.988 0.013 31.65 0.971 0.032 29.21 0.952 0.062 0.017

Table 2: Quantitative Results on the Synthetic4Relight Dataset (* means copied from original
papers). Our method achieves the best performance in NVS, relighting, and albedo, and on-par
performance in roughness compared to R3DG. Note that GS-Shader does not provide disentangled
albedo but rather a diffuse color merged with lighting, so we leave it as N/A. Also, note that we
apply the albedo scaling introduced in (Zhang et al., 2021b) to perform a fair comparison.

4.3 PERFORMANCE ON GEOMETRY RECOVERY

Datasets & Metrics. We evaluate geometry recovery performance on four deliberately selected
scenes: Spot, Damicornis, Lego, and Chair, each chosen for its distinct characteristics. Spot is
highly reflective, Damicornis and Lego feature complex geometries, and Chair contains detailed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Scene Reference Ours NVdiffrec NeuS2 2DGS

Sp
ot

D
am

ic
or

ni
s

Figure 8: Qualitative Geometry Comparison. Our method achieves accurate geometry in scenes
with challenging lighting and material conditions (shiny Spot) and complex topology (Damicornis).

textures. Following (Munkberg et al., 2022), we assess performance using the Chamfer distance and
F-score, as shown in Table 3. Since our method includes meshes in stage 1 and Gaussian points in
both stages 1 and 2, we provide metrics for each. Qualitative results are shown in Fig. 8.

Performance & Discussion. We compare our method with SDF-based (NeuS2), mesh-based (NVd-
iffrec), and Gaussian-based (2DGS) approaches. As demonstrated in Table 3 and Figure 8, our
method shows robust performance across diverse scenarios. In highly reflective cases (Spot), NeuS2
and 2DGS struggle to accurately capture geometry due to their limited inverse rendering capabili-
ties. For other scenes with more intricate geometry, our approach still achieves comparable geometry
recovery performance to state-of-the-art surface reconstruction techniques, underscoring the effec-
tiveness of our intermediate mesh guidance strategy. In Appendix H.3, we present a normal quality
comparison on the Shiny Blender dataset (Verbin et al., 2022b) with challenging reflective scenarios,
further highlighting how our geometry guidance enhances performance in inverse rendering tasks.

Method Spot Damicornis Lego Chair
Chamfer ↓ F-score ↑ Chamfer ↓ F-score ↑ Chamfer ↓ F-score ↑ Chamfer ↓ F-score ↑

NeuS2 12.43 0.9773 0.12 0.9986 7.03 0.9187 7.94 0.9046
2DGS 39.13 0.6588 0.40 0.9993 13.23 0.9169 3.56 0.9594

NVdiffrec 1.04 0.9921 0.27 0.9974 11.38 0.8506 5.76 0.9359
Ours (Stage1 Points) 0.53 0.9995 16.56 0.9969 11.34 0.9027 4.20 0.9442
Ours (Stage2 Points) 0.49 0.9995 12.40 0.9980 8.71 0.9130 3.11 0.9570

Ours (Mesh) 0.16 0.9997 0.55 0.9985 9.03 0.8886 5.37 0.9254

Table 3: Quantitative results on Geometry Recovery. With each scene normalized to the range
[−1, 1]3, we report the Chamfer distance (scaled by 10−4) and the F-score (under a threshold of
10−3). While performing on par with other state-of-the-art methods in Lego, Chair and Damicornis,
GeoSplatting achieves the best geometry in challenging reflective cases (Spot), thanks to its strong
inverse rendering capabilities.

4.4 PERFORMANCE ON REAL-WORLD DATASET

Datasets, Performance & Discussion. Lastly, we show qualitative results on real-world DTU
dataset (Aanæs et al., 2016). While GeoSplatting successfully decomposes reasonable geometry
and material, as shown in Fig. 9, the real-world data is still much more challenging than synthetic
data due to the inaccurate camera, complex lighting, and self occlusions. For instance, an overes-
timated roughness can be observed in Scan 65, mainly due to overexposure of input views. More
failure cases on DTU dataset are provided in Appendix G.

4.5 ABLATION STUDIES

Second Stage Optimization. The second stage optimization plays a crucial role in improving the
performance of novel view synthesis. On the NeRF Synthetic Dataset, it helps improve the PSNR
from 29.52 to 32.32 (see Table 8 in Appendix H.1). The key issue lies in the isosurface’s reliance
on grid sampling (963 for FlexiCubes), which struggles to represent detailed geometry and textures.
Therefore, in the second stage, we optimize the Gaussian representation without the constraints of
the mesh, allowing it to fully express its representational power. Moreover, the good initialization in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Reference PBR Geometry Alebdo Roughness Metallic

Sc
an

11
8

Sc
an

65
Sc

an
11

4

Figure 9: Qualitative Results on DTU dataset. Our method successfully recovers meaningful
geometry and material on the challenging real-world dataset.

the first stage still guides the optimization toward meaningful decomposition. As shown in Fig. 10,
the second stage significantly enhances the performance on normal leading to improved NVS results.

Stage 1 Stage 2
30.8dB 34.5dB (+3.7dB)

Figure 10: Second Stage Opti-
mization on Lego.

Residual Terms. We find it also helps improve the performance
of novel view synthesis, e.g., in the Chair scene, the PSNR drops
by 2dB without residual terms. GeoSplatting applies a split-sum
model to represent PBR lighting effects. While it achieves del-
icate decomposition results, it assumes a single-bounce render-
ing process, i.e., light hits an object and reflects back to the light
source, without considering any inter-reflection effects. The in-
clusion of residual terms significantly improves inverse render-
ing performance by attributing noise and higher-order lighting
effects to the residual terms. As shown in Fig. 5, it successfully
models the small inter-reflected green ball.

5 CONCLUSION

Limitation: While GeoSplatting demonstrates state-of-the-art performance in NVS and relighting
tasks, it still faces several challenges that motivate further research. First, its geometry guidance
is derived from the iso-surface. Although this significantly improves the geometry performance of
3DGS, it also requires masks during training and is constrained by grid resolution, which limits its
application to object-level inverse rendering tasks. A promising direction for future work would be
to explore how to eliminate the need for masks and to apply adaptive resolution to accommodate
detailed geometry, enabling its extension to scene-level tasks. Furthermore, GeoSplatting currently
models only single-bounce specular lighting, leaving the higher-order effects (e.g., inter-reflections)
to residual terms. Shadows will be baked into albedo as well, resulting in an inaccurate appearance
under relighting conditions. However, since we have access to intermediate meshes, incorporating
ray tracing techniques could enable a more comprehensive decomposition of shadows and inter-
reflections. These areas hold great potential, and we aim to explore them in future work.

Conclusion: We propose GeoSplatting, a novel hybrid representation that enhances 3DGS with
explicit geometric guidance and differentiable PBR equations. GeoSplatting achieves superior effi-
ciency and state-of-the-art inverse rendering performance in reflective scenes, which demonstrates
its impressive ability in modeling high-frequency lighting-material interaction. Additionally, for
general cases, GeoSplatting delivers decomposition results that are comparable to those of state-of-
the-art inverse rendering baselines. We will release all the code to facilitate related research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 120:
153–168, 2016.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A. Lensch.
Nerd: Neural reflectance decomposition from image collections. In IEEE International Confer-
ence on Computer Vision (ICCV), 2021a.

Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan T. Barron, and Hendrik P.A. Lensch.
Neural-pil: Neural pre-integrated lighting for reflectance decomposition. In Advances in Neural
Information Processing Systems (NeurIPS), 2021b.

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaako Lehtinen, Alec Jacobson, and Sanja
Fidler. Learning to predict 3d objects with an interpolation-based differentiable renderer. In
NeurIPS, 2019.

Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Fuji Tsang, Sameh Khalis, Or Litany,
and Sanja Fidler. DIB-R++: Learning to predict lighting and material with a hybrid differentiable
renderer. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin Wang, and Weiwei Xu. High-quality
surface reconstruction using gaussian surfels. In ACM SIGGRAPH 2024 Conference Papers, pp.
1–11, 2024.

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’88, pp.
65–74, New York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912756.
doi: 10.1145/54852.378484. URL https://doi.org/10.1145/54852.378484.

Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable
3d gaussian: Real-time point cloud relighting with brdf decomposition and ray tracing.
arXiv:2311.16043, 2023.

Wenhang Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong Chen. Ref-neus: Ambiguity-reduced
neural implicit surface learning for multi-view reconstruction with reflection. arXiv preprint
arXiv:2303.10840, 2023.

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. CVPR, 2024.

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. Shape, Light, and Material Decomposition
from Images using Monte Carlo Rendering and Denoising. arXiv:2206.03380, 2022.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In SIGGRAPH 2024 Conference Papers. Association
for Computing Machinery, 2024. doi: 10.1145/3641519.3657428.

Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin
Ma. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. arXiv
preprint arXiv:2311.17977, 2023.

Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei Zhou, Zex-
iang Xu, and Hao Su. Tensoir: Tensorial inverse rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2023.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, August
1986. ISSN 0097-8930. doi: 10.1145/15886.15902. URL https://doi.org/10.1145/
15886.15902.

11

https://doi.org/10.1145/54852.378484
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Brian Karis. Real shading in unreal engine 4. Technical report, Epic Games, 2013. URL
http://blog.selfshadow.com/publications/s2013-shading-course/
karis/s2013_pbs_epic_notes_v2.pdf.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14,
2023a.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023b.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics, 39(6),
2020.

Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Selvakumar Panneer, and Nandita Vijayku-
mar. Envidr: Implicit differentiable renderer with neural environment lighting. arXiv preprint
arXiv:2303.13022, 2023.

Ancheng Lin and Jun Li. Direct learning of mesh and appearance via 3d gaussian splatting. arXiv
preprint arXiv:2405.06945, 2024.

Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu, Ziyi Yang, Yilun Chen, Jiangmiao
Pang, and Xiaojuan Qi. 3dgsr: Implicit surface reconstruction with 3d gaussian splatting. ACM
Transactions on Graphics (TOG), 43(6):1–12, 2024.

B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In European conference on computer vision,
2020.

Thomas Müller. tiny-cuda-nn, 4 2021. URL https://github.com/NVlabs/
tiny-cuda-nn.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Müller, and Sanja Fidler. Extracting Triangular 3D Models, Materials, and Lighting From Im-
ages. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8280–8290, June 2022.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-
based mesh optimization. ACM Trans. Graph., 42(4), jul 2023. ISSN 0730-0301. doi: 10.1145/
3592430. URL https://doi.org/10.1145/3592430.

Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jingtuo Liu,
Liangjun Zhang, Jian Zhang, Bin Zhou, Errui Ding, and Jingdong Wang. Gir: 3d gaussian inverse
rendering for relightable scene factorization. Arxiv, 2023.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srini-
vasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490.
IEEE, 2022a.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and Pratul P. Srini-
vasan. Ref-NeRF: Structured view-dependent appearance for neural radiance fields. CVPR,
2022b.

12

http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/3592430

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet models
for refraction through rough surfaces. In Proceedings of the 18th Eurographics Conference on
Rendering Techniques, EGSR’07, pp. 195–206, Goslar, DEU, 2007. Eurographics Association.
ISBN 9783905673524.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS,
2021.

Haodong Xiang, Xinghui Li, Xiansong Lai, Wanting Zhang, Zhichao Liao, Kai Cheng, and Xueping
Liu. Gaussianroom: Improving 3d gaussian splatting with sdf guidance and monocular cues for
indoor scene reconstruction, 2024. URL https://arxiv.org/abs/2405.19671.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xiangli, and Bo Dai. Gsdf: 3dgs meets sdf
for improved rendering and reconstruction, 2024. URL https://arxiv.org/abs/2403.
16964.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. PhySG: Inverse rendering
with spherical gaussians for physics-based material editing and relighting. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021a.

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and
Jonathan T Barron. Nerfactor: Neural factorization of shape and reflectance under an unknown
illumination. ACM Transactions on Graphics (ToG), 40(6):1–18, 2021b.

Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou. Modeling
indirect illumination for inverse rendering. In CVPR, 2022.

Matthias Zwicker, Jussi Rasanen, Mario Botsch, Carsten Dachsbacher, and Mark Pauly. Perspective
accurate splatting. In Proceedings-Graphics Interface, pp. 247–254, 2004.

13

https://arxiv.org/abs/2405.19671
https://arxiv.org/abs/2403.16964
https://arxiv.org/abs/2403.16964

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

In the appendix, we provide a comprehensive explanation about the details of our work, including
detailed implementations and limitations of our method, as well as supplementary results from both
quantitative and qualitative experiments.

The appendix begins with a detailed explanation of the MGadapter in Appendix B, followed by an
overview of the implementation details for our loss functions in Appendix C. In Appendix D, we
analyze two approaches for PBR computation (split-sum and spherical Gaussian) before examining
the impact of different FlexiCubes resolutions in Appendix E. To explore the limitations of our
method, we include an ablation study on the input mask required during training in Appendix F, as
well as an analysis of failure cases in Appendix G. Finally, we present additional results from novel
view synthesis (NVS) and relighting experiments in Appendix H.

B EXPLANATION OF MGADAPTER

B.1 OVERVIEW

We first describe the details of our MGadapter. As discussed in Sec. 3.1, the MGadapter takes a
triangle mesh as input and generates a set of Gaussian points corresponding to the mesh’s shape.
The core idea of MGadapter is to ensure that the shape of the triangle mesh aligns with that of
the Gaussian points, serving as a differentiable adapter between the two. However, since Gaussian
points lack the discrete geometric boundaries present in meshes, we define geometric alignment as
follows: given a triangle face, we can sample several viewpoints and render the triangle from them.
The geometric alignment is then measured by the difference between the rendered mesh and the
rendered Gaussian points (e.g. L1 loss on depth maps).

The intuitive implementation of our MGadapter involves sampling several Gaussian points on the
mesh surface. These points are then optimized in terms of scale and rotation to minimize the depth
map difference between the Gaussian points and the target mesh. However, this approach introduces
an additional optimization step that must be re-executed each time the mesh is modified, resulting
in reduced optimization efficiency and an unstable training process.

Instead of performing geometric alignment in real-time, we propose utilizing a predefined heuristic
function T to achieve an approximate alignment. As described in Eq. 1, the MGadapter T takes
arbitrary triangle meshes as input and outputs Gaussian point attributes, including position µ, scale
S, rotation R, and normal n. This process acts as a generalized adapter between the input meshes
and the corresponding Gaussian points. In Appendix B.2, we provide a detailed explanation of Eq. 1.
Then, we discuss the implementation of the surface adjustment in Appendix B.4, which is critical
for Gaussian point rendering. Finally, we explain how to query Gaussian point attributes from a
spatial MLP in Appendix B.5 and explain the warm-up stage in Appendix B.3.

B.2 EXPLANATION OF EQ. 1

Specifically, given the triangle mesh, each triangle face Fi comprises three vertices Pi =
(pi1, pi2, pi3) with their vertex normals Ni = (ni1, ni2, ni3). We symmetrically sample 6 points
on Fi with barycentric coordinates:

b1 = (u, u, 1− 2u) b2 = (u, 1− 2u, u) b3 = (1− 2u, u, u)

b4 = (v, v, 1− 2v) b5 = (v, 1− 2v, v) b6 = (1− 2v, v, v)
(7)

And we can obtain 6 midpoints mjk:

m12 =
b1 + b2

2
=

(
u,

1− u

2
,
1− u

2

)
m45 =

b4 + b5
2

=

(
v,

1− v

2
,
1− v

2

)
m23 =

b2 + b3
2

=

(
1− u

2
,
1− u

2
, u

)
m56 =

b5 + b6
2

=

(
1− v

2
,
1− v

2
, v

)
m31 =

b3 + b1
2

=

(
1− u

2
, u,

1− u

2

)
m64 =

b6 + b4
2

=

(
1− v

2
, v,

1− v

2

) (8)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Given an attribute Ai = (ai1, ai2, ai3) defined at the triangle vertices, we represent the barycentric
interpolation as:

(b1, b2, b3)⊙Ai = b1ai1 + b2ai2 + b3ai3 (9)

Then, for each midpoint mjk (jk = 12, 23, 31, 45, 56, 64), we sample a Gaussian point as:

µ = mjk ⊙ Pi n = mjk ⊙Ni

Sx = αjk∥bk ⊙ Pi −mjk ⊙ Pi∥2 Rx =
bk ⊙ Pi −mjk ⊙ Pi

∥bk ⊙ Pi −mjk ⊙ Pi∥2

Sy =
Area(Fi)

βjk∥bk ⊙ Pi −mjk ⊙ Pi∥2
Ry = n×Rx

Sz = δjk Rz = n

(10)

Here, Eq. 10 provide the formulation of our heuristic function T , with u, v, αjk, βjk, δjk as hyper-
parameters. To achieve the generalized geometric alignment, we practically set these parameters as
follows:

u = 0.07

v = 0.22

α12 = α23 = α31 = 0.80

α45 = α56 = α64 = 2.08

β12 = β23 = β31 = 15.0

β45 = β56 = β64 = 13.0

δ12 = δ23 = δ31 = δ45 = δ56 = δ64 = 4.5× 10−5

(11)

B.3 EXPLANATION OF WARM-UP STAGE

Next, we explain the warm-up stage during training. As outlined in Appendix B.2, we typically
sample six Gaussian points from each triangle surface. However, during the initial training stage
when the underlying mesh has not yet converged, there can be an excessive number of triangle
slices, as illustrated in Fig. 11. Sampling six Gaussian points per face in this scenario can result in
significant memory costs and reduced training efficiency.

Figure 11: Initial mesh
slices of FlexiCubes.

To address this issue, we implement a warm-up stage for MGadapter
at the beginning of training (covering the first 2%). During this phase,
MGadapter outputs a significantly reduced number of Gaussian points by
performing vertex sampling. Specifically, MGadapter samples a single
Gaussian point from each mesh vertex and assigns its normal to match
the corresponding vertex normal. For the scales and rotations of the sam-
pled Gaussian points, we utilize two small spatial MLPs to learn these
attributes. Once the warm-up stage concludes, the two spatial MLPs are
discarded, and the scales and rotations are afterwards computed as de-
scribed in Appendix B.2.

B.4 EXPLANATION OF SURFACE ADJUSTMENT

By applying Eq. 10, we obtain a set of Gaussian points that lie exactly on the surface. However, as
mentioned in Sec. 3.1, strictly positioning the Gaussian points on the surface can negatively impact
rendering quality, particularly near the boundaries between distinct texture colors.

Figure 12: Inconsistent Sorting. The vanilla 3D splatting algorithm produces multi-
view-inconsistent depths, leading to varying blending sequences across different views.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) w/o SA (b) w/ SA (c) Heatmap

Figure 13: Surface Adjustment (SA)
Explanation. (a) PSNR: 31.9dB; (b)
PSNR: 33.5dB; (c) Magnitude of SA.

This issue primarily arises from the approximations
made during the projection transformation of 3DGS,
as noted in (Zwicker et al., 2004). These approxima-
tions lead to multi-view-inconsistent sorting in the over-
lapping regions between two surface-aligned Gaussian
points, as illustrated in Fig. 12. Consequently, Gaus-
sian points near color boundaries struggle to learn a
consistent appearance. Fig. 13(a) presents rendering re-
sults when Gaussian points are strictly positioned on the
surface, further demonstrating this problem. However,
upon noticing that vanilla 3DGS can achieve high ren-
dering quality despite the projection approximations,
we perform further analysis and found it automatically
learns to position those boundary Gaussians deeper, placing them beneath the actual surface. This
adjustment results in a consistent depth sorting. Therefore, in our MGadapter, we also allow Gaus-
sian points to learn a small offset along the normal direction. As demonstrated in Fig. 13(b), such
surface adjustment can significantly enhance rendering quality, which is important for modeling
reflective surface accurately in inverse rendering tasks. The magnitude of this surface adjustment
(measured by ∥v∥) is visualized in Fig. 13(c), highlighting larger adjustments near the color bound-
aries.

The depth error from the projection approximation in 3DGS has also been discussed in recent work,
specifically 2DGS (Huang et al., 2024). Rather than applying 3D splatting to flat Gaussian points,
2DGS employs a ray-splat intersection algorithm to ensure depth-precise rendering, resulting in a
view-consistent appearance. However, when integrating the 2D splatting algorithm into our pipeline
without surface adjustment, we observe strong floater artifacts, which are illustrated in Fig. 14, prob-
ably due to the incompatibility between 2DGS and FlexiCubes. Specifically, as noted in the original
paper, 2D Gaussian points can degenerate into a line when observed from a slanted viewpoint. In
this context, 2DGS renders these Gaussian points differently, and we empirically find it causes Flex-
iCubes to struggle with reducing mesh slices shown in Fig. 11, leading to unwanted floaters. We
conducted a quantitative analysis comparing the two splatting algorithms, with results presented in
Table 4, demonstrating the incompatibility between 2DGS and FlexiCubes. Consequently, we have
chosen to employ 3D splatting instead.

(a) 3D Splatting (28.43dB) (b) 2D Splatting (26.52dB)

Figure 14: Qualitative Comparison between 2D Splatting and 3D Splatting. Pro-
ducing incorrect rendering results for tiny surfels, 2DGS encounters challenges in reduc-
ing the triangle slices initially generated by FlexiCubes, leading to noticeable floaters.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
Ours (3D splatting) 31.98 24.53 28.96 33.85 30.83 28.43 31.32 26.23 29.52
Ours (2D splatting) 29.44 23.71 26.34 31.18 29.86 26.52 28.21 25.22 27.56

Table 4: Splatting algorithm comparison on NeRF dataset (PSNR↑).

B.5 EXPLANATION OF SPATIAL MLP

Lastly, we discuss how to model PBR attributes and surface adjustments on Gaussian points. Since
Gaussian points are generated in real time from the underlying mesh, directly modeling these at-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

tributes as learnable parameters is impractical due to the varying number of Gaussian points during
training. Instead, we employ a spatial MLP F to construct an attribute field, as mentioned in Sec. 3.3.

Specifically, the spatial MLP incorporates the multi-resolution hash encoding introduced in (Müller
et al., 2022), followed by a compact MLP. For any spatial coordinate p ∈ [−1, 1]3, the spatial MLP
outputs F (p) ∈ RC . Implemented using tiny-cuda-nn (Müller, 2021), we utilize two spatial MLPs,
FPBR and FSA, to model PBR attributes and surface adjustments, respectively. Detailed parameters
can be found in Table 5.

Module Parameter Value
Number of levels 16
Max.entries per level (hash table size) 219

FPBR/FSA HashEnc Number of feature dimensions per entry 2
Coarsest resolution 32
Finest resolution 4096
MLP layers 32× 32× 32× 6

FPBR MLP Initialization Kaiming-uniform
Final activation Sigmoid
MLP layers 32× 32× 1

FSA MLP Initialization Kaiming-uniform
Final activation None

Table 5: Parameters of Spatial MLP

C DETAILS OF LOSS FUNCTIONS

C.1 PHOTOMETRIC TERM

During the training stage, for each view i, GeoSplatting differentiably renders a RGB image I(i)pred ∈
RH×W×3 and takes the alpha channel as the mask M

(i)
pred ∈ RH×W×1. Given the ground truth I

(i)
gt

and M
(i)
gt for view i, the photometric loss is computed as:

Lphoto = L1 + λssimLSSIM + λmaskLmask

= ∥I(i)gt − I
(i)
pred∥1 + λssimSSIM(I

(i)
gt , I

(i)
pred) + λmask∥M (i)

gt −M
(i)
pred∥2

(12)

Here, λssim = 0.2 and λmask = 5.0 for all the cases.

C.2 ENTROPY REGULARIZATION TERM

Following DMTet and FlexiCubes (Shen et al., 2021; 2023), we add an entropy loss to constrain
the shape. Specifically, we employ FlexiCubes as the underlying geometric representation, which
defines a scalar function ζ : R3 → R on the underlying cube grids G(V, E) and then extracts
isosurfaces via the differential Dual Marching Cubes introduced by (Shen et al., 2023). Given an
edge (vi, vj) from edge set E , the SDF values defined on the endpoints vi, vj are respectively ζ(vi)
and ζ(vj).

Then, we can compute the regularization term as:

Lsdf =
∑

(vi,vj)∈E,sgn(ζ(vi)) ̸=sgn(ζ(vj))

H(ζ(vi), sgn(ζ(vj))) +H(ζ(vj), sgn(ζ(vi))) (13)

Here, H denotes the binary cross entropy. By encouraging the same sign of ζ, such a regularization
term penalize internal geometry and floaters.

C.3 SMOOTHNESS REGULARIZATION TERM

Following NVdiffrec and R3DG (Munkberg et al., 2022; Gao et al., 2023), we apply smoothness
regularization on albedo, roughness, and metallic to prevent dramatic high-frequency variations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Given the positions µ of Gaussian points, the albedo, roughness and metallic attributes are generated
by the spatial MLP:

(v, kd, r,m, cr) = F (µ) (14)

While applying a small perturbation on µ can yield a different set of attributes:

(
v′, k′d, r

′,m′, cr ′
)
= F (µ+∆µ) (15)

The smoothness are computed as:

Lsmooth = λalbedo∥kd − k′d∥1 + ∥r − r′∥1 + ∥m−m′∥1 (16)

Here, λalbedo = 6.0.

C.4 LIGHT REGULARIZATION TERM

Following NVdiffrec and R3DG (Munkberg et al., 2022; Gao et al., 2023), we add white balance
regularization to prevent the albedo from being baked into the environment map.

Given a learnable environment map L ∈ R6×512×512×3 which can be split into RGB channels
LR, LG, LB ∈ R6×512×512, the white balance regularization is computed as:

Llight =
1

3
(∥LR − LW ∥1 + ∥LG − LW ∥1 + ∥LB − LW ∥1) (17)

where LW = 1
3 (LR + LG + LB).

C.5 FINAL LOSS

The final loss L is computed as:

L = Lphoto + λsdfLsdf + λsmoothLsmooth + λlightLlight (18)

Here, λsdf is initially set to 0.2 at the start of the training stage and is linearly decreased to 0.01 by the
midpoint of the training. As for λsmooth and λlight, typical settings are λsmooth = 0.005, λlight =
0.0005. For highly specular objects, λlight should be set to a smaller value, such as 0.00001.

D SPLIT-SUM APPROXIMATION VS. SPHERICAL GAUSSIAN

The physically-based rendering (PBR) equation, incorporating the GGX microfacet model, is ex-
pressed in Eq. 2 and Eq. 3. However, solving this equation requires extensive Monte Carlo sam-
pling, which is computationally intensive and impractical for both real-time forward rendering and
inverse rendering. To address this challenge, several efficient methods for approximating the PBR
equation have been proposed. The two most widely adopted approaches are the split-sum approx-
imation (Karis, 2013) and Spherical Gaussian (SG) representations (Chen et al., 2021). While the
Spherical Gaussian approximations are commonly used by inverse rendering methods such as In-
vRender, TensoIR, and R3DG, methods like NVdiffrec, GaussianShader, and our GeoSplatting favor
the split-sum approximation due to its efficiency and ability in modeling complicated lighting.

Lo(x,ωo) =

∫
H2

fr(x,ωi,ωo)Li(x,ωi)|n · ωi|dωi (19)

=

∫
H2

fr(x,ωi,ωo)(Lind(x,ωi) + V (x,ωi)Lenv(ωi))|n · ωi|dωi (20)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

To improve computational tractability, Eq. 19 can be reformulated as Eq. 20, where the incoming
illumination Li(x,ωi) is split into two components: the indirect lighting term Lind(x,ωi) and the
environment lighting term Lenv(ωi). This separation allows the PBR equation to be computed in two
parts, the environment lighting term Lenv(ωi) and the light transfer terms Lind(x,ωi) & V (x,ωi),
each interacting with the bidirectional reflectance distribution function (BRDF).

The split-sum approximation and Spherical Gaussian methods address different challenges in ren-
dering complex lighting and light transfer scenarios. While both approaches have strengths, they
also exhibit notable limitations.

1. The split-sum approximation excels in efficiently modeling complex environmental light-
ing. Its computational simplicity makes it a practical choice for scenarios where speed is
critical. However, it struggles to accurately handle visibility terms. In highly occluded
scenes, the errors introduced by the approximation in Eq. 4 become significant.

2. In contrast, the Spherical Gaussian approach effectively captures intricate light transfer
phenomena such as inter-reflection and ambient occlusion. However, its capacity to model
direct lighting is limited to low-frequency components. This restriction results in inaccura-
cies when dealing with highly specular surfaces, where precise decomposition is essential.

Despite the challenges posed by shadow and self-occlusion effects, as shown in Fig. 7, we choose to
utilize the split-sum approximation for several compelling reasons:

1. Efficiency in Training and Inference: The
SG-based methods integrated with ray tracing,
both neural-field-based TensoIR and 3DGS-based
R3DG, results in longer training times and lower
inference frame rates, as highlighted in Fig. 15.

2. Handling Reflective Cases: SG-based methods
struggle to accurately model complex lighting-
material interactions in reflective scenarios, lead-
ing to subpar decomposition results, as discussed
in Appendix D.1.

3. Addressing Occlusion Challenges: While highly
occluded cases present difficulties, the inclusion of
a learnable occlusion term can mitigate these is-
sues, as detailed in Appendix D.2.

Figure 15: Comparison of Efficiency
between Split-Sum and SG.

D.1 REFLECTIVE CASES

NVS Normal Albedo Roughness Metallic Lighting

O
ur

s
29

.7
dB

N
V

di
ff

re
c

26
.8

dB
G

S-
Sh

ad
er

28
.8

dB
R

3D
G

26
.5

dB
Te

ns
oI

R
26

.7
dB

Figure 16: Incorrect Decomposition for SG-based Methods

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The SG-based methods, such as TensoIR and R3DG, face significant challenges under complex
lighting conditions, particularly when dealing with intricate material properties. As shown in Fig. 16,
while split-sum-based methods achieve reasonable decomposition, TensoIR and R3DG fail to accu-
rately reconstruct geometry, materials, and lighting. In Fig. 31, we provide qualitative decomposi-
tion results on the Shiny Blender dataset (Verbin et al., 2022b), to further demonstrate the strengths
of our method on reflective cases.

D.2 LEARNABLE OCCLUSION

Although all split-sum-based methods, including NVdiffrec and GS-Shader, struggle with self-
occluded cases, it is still possible to mitigate the occlusion issue by modeling the visibility term
V (x,ωi) as described in Eq. 20. By introducing a learnable attribute oi for each Gaussian point i,
we reformulate Eq. 5 as follows:

ci = (1− oi)(c
d
i + csi) + cri (21)

Here, cdi , csi and cri represent diffuse, specular, and residual terms, respectively. This learnable
occlusion term improves our method’s ability to handle shadow effects. As shown in 17, for the
Hotdog scene from the Synthetic4Relight dataset and the TensoIR Synthetic dataset, with weaker
shadow effects, our occlusion term effectively aids in albedo-shadow decoupling.

Note that despite the roughness quality on the Hotdog scene remaining influenced by shadow effects,
the albedo quality of our method achieves the best among the baselines, as evidenced by Table 12
in Sec. H.4. However, for the Hotdog scene from the NeRF Synthetic dataset, which features strong
shadow effects, our method, along with other baselines, struggles with strong shadow effects, as
illustrated in Fig. 18. This common failure underscores shadow modeling as a persistent challenge
in inverse rendering.

Reference Render Normal Albedo Roughness Visibility

N
eR

F
Sy

nt
he

tic
Te

ns
oI

R
Sy

nt
he

tic
Sy

nt
he

tic
Fo

rR
el

ig
ht

Figure 17: Qualitative comparison of decomposition performance under varying shadow effects.

Hotdog Ground Truth Ours TensoIR NVdiffrec R3DG

A
lb

ed
o

Figure 18: Qualitative results of albedo reconstruction performance under strong shadow effects.

E ANALYSIS OF FLEXICUBES RESOLUTION

In this section, we examine the impact of FlexiCubes’ grid resolution on our decomposition per-
formance, focusing on rendering quality, albedo accuracy, normal quality, and training efficiency.
Quantitative results are provided in Table 6, while qualitative results are shown in Fig. 19. Although
FlexiCubes with higher resolution offer more precise normal guidance, the increased computational
cost and inefficient training time may not justify the benefits.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

GeoSplatting Novel View Synthesis Albedo Normal Training Time
Resolution PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓ minute(s)↓

64 36.31 0.9785 0.014 21.49 0.8799 0.128 8.451 14
96 37.15 0.9811 0.011 21.78 0.8824 0.118 7.880 24

128 37.57 0.9827 0.009 21.92 0.8825 0.117 7.313 96

Table 6: Impact of Grid Resolution on Decomposition Performance.

Reference Render Normal

R
es

.6
4

R
es

.9
6

R
es

.1
28

Figure 19: Qualitative Comparison of Different Grid Resolution.

F ANALYSIS OF MASK

As discussed in Appendix C.1, our method requires input masks during the training stage. Specif-
ically, the mask term of the loss function in Eq. 12 is defined by the difference between the input
masks and our predicted masks. This dependency introduces a limitation, as real-world data must
first be segmented into foreground and background. To provide a comprehensive understanding, we
present an ablation study to illustrate how the dependency on input masks varies across different
scenes.

F.1 OBJECT-LEVEL

Table 7 presents the performance differences in novel view synthesis (measured in terms of PSNR)
on the NeRF Synthetic Dataset, while qualitative comparison are shown in Fig. 20. The results
indicate that without the mask, our method has difficulty reconstructing smooth, convex surfaces
with specular highlights, as seen in Materials and Mic. Additionally, for objects with thin structures,
such as Ficus, performance significantly declines in the absence of the mask loss term. In contrast,
for the other five objects in the NeRF Synthetic Dataset, the ground truth mask is not essential for
achieving satisfactory results.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
Ours w/ mask (stage 1) 31.98 24.53 28.96 33.85 30.83 28.43 31.32 26.23 29.52

Ours w/o mask (stage 1) 31.92 23.53 26.11 33.95 31.02 24.81 30.99 26.08 28.55
Difference -0.06 -1.00 -2.85 +0.10 +0.19 -3.62 -0.33 -0.15 -0.97

Ours w/ mask (stage 2) 34.71 26.05 33.48 36.40 34.47 29.66 34.62 29.17 32.32
Ours w/o mask (stage 2) 34.81 25.72 31.56 36.36 34.73 28.22 34.31 28.54 31.78

Difference +0.10 -0.33 -1.92 -0.04 +0.26 -1.44 -0.31 -0.63 -0.54

Table 7: Quantitative results of mask ablation study (PSNR↑).

M
ic

Fi
cu

s
M

at
er

ia
ls

Reference PBR w/ Mask Normal w/ Mask PBR w/o Mask Normal w/o Mask

Figure 20: Qualitative results of mask ablation study.

F.2 SCENE-LEVEL

Without input masks, our method will completely fail on scene-level cases, as illustrated in Fig. 21.
To extend our method from object-level decomposition to scene-level decomposition, a promising
direction is to explore how to eliminate the need for masks and to apply adaptive resolution to
accommodate detailed geometry.

Pl
ay

ro
om

Reference Rendering Normal

Figure 21: Failure on scene-level decomposition tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G FAILURE CASES

We present a series of failure cases to illustrate the limitations of our method. The qualitative exam-
ples from both the synthetic dataset and the DTU Dataset highlight scenarios that lead to incorrect
decomposition or poor geometry.

G.1 THIN STRUCTURES

Sh
ip

A
ir

B
al

lo
on

s
Fi

cu
s

Ours (Stage 1) Ours (Stage 2) Reference

Figure 22: Failure cases of thin structures.

As discussed in Sec. 4.5, our method strug-
gles with thin structures in the first stage due
to grid resolution limitations. While the second
stage relaxes positional constraints on Gaussian
points to aid in recovering fine geometry, it still
cannot perfectly reconstruct thin structures due
to the absence of geometric guidance in Stage
2. Fig. 22 showcases failure cases involving the
Ficus, Ship, and Air Balloons.

G.2 INCONSISTENT LIGHTING

Variations in illumination conditions (e.g. ex-
posure and shadows) across multiple views
can lead to inconsistent lighting, especially for
datasets captured in real-world environments.
An illustrative example from DTU Dataset is
provided in Fig. 23, which demonstrates signifi-
cant illumination changes between View 38 and
View 40. Consequently, our method can produce incorrect decompositions in these scenes, result-
ing in overestimated metallic, noisy lighting, and distorted geometry near the inconsistent regions,
shown in Fig. 24.

V
ie

w
38

V
ie

w
40

Reference Rendering

Figure 23: Inconsistent lighting on Scan 24.

Normal Metallic

EnvLight

Figure 24: Incorrect decomposition.

G.3 UNDEREXPOSURE

Reference Rendering Normal

Figure 25: Underexposed views from DTU Scan 110.

Fig. 25 also illustrates a failure
case in which the reference im-
age is heavily underexposed. The
ambiguous material-lighting com-
position in this scenario results
in incorrect geometry recovery, as
our method optimizes both aspects
jointly.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H MORE RESULTS

H.1 MORE RESULTS ON NERF SYNTHETIC DATASET

We provide the full table that contains 8 scenes of NeRF Synthetic Dataset in Table 8, as well as
more qualitative results in Fig. 26.

24.45dB 24.40dB 24.71dB 25.46dB 26.05dB

D
ru

m
s

31.16dB 28.51dB 31.34dB 33.04dB 33.48dB

Fi
cu

s

31.71dB 31.45dB 31.85dB 33.43dB 34.71dB

C
ha

ir

26.76dB 26.74dB 26.46dB 28.83dB 29.66dB

M
at

er
ia

ls

32.82dB 33.55dB 33.07dB 35.26dB 36.40dB

H
ot

do
g

NVdiffrec TensoIR R3DG GS-Shader Ours Reference

Figure 26: More qualitative comparison of NVS on NeRF dataset. Our method effectively
recovers complex geometries, detailed textures, and non-Lambertian appearances, as shown in the
sub-windows.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Method Relightable Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
NeRF* No 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00

MipNeRF* No 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
3DGS No 35.55 26.04 34.66 37.58 34.63 29.63 36.71 30.58 33.17

TensoIR Yes 31.45 24.40 28.51 33.55 32.20 26.74 31.59 27.78 29.53
NVdiffrec Yes 31.66 24.31 30.01 32.67 29.01 26.84 30.22 25.64 28.79

GS-IR Yes 29.34 23.84 28.27 32.80 33.66 25.92 30.45 27.27 28.94
R3DG Yes 31.85 24.71 31.34 33.07 32.69 26.46 32.74 28.32 30.15

GaussianShader Yes 33.43 25.46 33.04 35.26 33.03 28.83 34.06 28.49 31.45
Ours (stage 1) Yes 31.98 24.53 28.96 33.85 30.83 28.43 31.32 26.23 29.52
Ours (stage 2) Yes 34.71 26.05 33.48 36.40 34.47 29.66 34.62 29.17 32.32

Table 8: Detailed quantitative NVS Comparison on NeRF dataset (PSNR↑).

H.2 MORE RESULTS ON SYNTHESIC4RELIGHT DATASET

We provide all the other examples of Synthesic4Relight dataset in Fig. 27, Fig. 28 and Fig. 29.
Detailed quantitative results are shown in Table 9.

Scene Novel View Synthesis Relighting Albedo Roughness
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓

Air Balloons 36.08 0.9806 0.023 30.89 0.9617 0.041 26.14 0.9215 0.068 0.018
Chair 40.92 0.9892 0.007 32.68 0.9795 0.018 29.59 0.9549 0.056 0.007

Hotdog 38.49 0.9876 0.015 27.54 0.9573 0.053 28.23 0.9572 0.087 0.037
Jugs 39.48 0.9940 0.007 35.49 0.9859 0.014 32.38 0.9732 0.040 0.005
Avg. 39.20 0.9881 0.013 31.65 0.9713 0.032 29.21 0.9517 0.063 0.017

Table 9: Detailed quantitative results of GeoSplatting on Synthetic4Relight dataset.

Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 27: Qualitative comparison on Air Balloons from Synthetic4Relight dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 28: Qualitative comparison on Chair from Synthetic4Relight dataset.

Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 29: Qualitative comparison on Hotdog from Synthetic4Relight dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

H.3 COMPARISON ON SHINY BLENDER DATASET

To demonstrate the inverse rendering capability for highly reflective cases, we conduct a compar-
ison on the Shiny Blender dataset. The quantitative results are provided in Table 10 (for novel
view synthesis) and Figure 11 (for normal quality). While several inverse rendering baselines, such
as NVdiffrec, R3DG, and TenosIR, struggle with estimating the complex lighting-material interac-
tions, resulting in degraded performance, our approach achieves the best results in both novel view
synthesis and normal quality, showcasing its effectiveness in decomposing reflective objects. This
is further supported by the qualitative comparison in Figures 30 and 31.

Method PBR Car Ball Helmet Teapot Toaster Coffee Avg.
3DGS* 27.24 27.69 28.32 45.68 20.99 32.32 30.37
R3DG SG 27.04 23.81 26.70 42.61 20.78 32.05 28.83

TensoIR SG 26.52 22.89 25.76 41.91 19.65 31.13 27.98
NVdiffmc* MC 25.93 30.85 26.27 38.44 22.18 29.60 28.88

NeRO* Split-Sum+MC 25.53 30.26 29.20 38.70 26.46 28.89 29.84
NVdiffrec Split-Sum 24.89 21.76 27.34 40.94 23.28 30.62 28.14

GS-Shader Split-Sum 28.41 29.64 28.46 42.51 23.22 31.62 30.64
Ours Split-Sum 30.58 42.45 30.51 44.34 26.51 32.03 34.41

Table 10: Quantitative NVS Comparison on Shiny Blender dataset (PSNR↑). Our GeoSplatting
achieves the best performance on the reflective Car, Ball, Helmet, and Toaster, whlie also signifi-
cantly outperforming all baselines in terms of average PSNR. (* denotes results borrowed from the
original GS-Shader paper.)

Method PBR Car Ball Helmet Teapot Toaster Coffee Avg.
R3DG SG 4.47 16.50 5.21 0.64 9.96 5.48 7.04

TensoIR SG 2.82 3.67 7.74 1.03 8.16 3.13 4.42
NVdiffrec Split-Sum 9.35 19.91 9.29 0.88 10.76 6.08 9.38

GS-Shader Split-Sum 3.68 5.43 14.59 2.40 8.69 7.42 7.03
Ours Split-Sum 1.95 0.39 3.61 0.50 6.21 3.56 2.70

Table 11: Quantitative Normal Quality Comparison on Shiny Blender dataset (MAE↓). Our
GeoSplatting achieves the best normal quality, significantly outperforming all baselines in terms of
average MAE.

Reference Ours GS-Shader NVdiffrec R3DG TensoIR

C
ar

H
el

m
et

Figure 30: Qualitative Comparison on Car and Helmet from Shiny Blender dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

NVS Normal Albedo Roughness Lighting

O
ur

s
30

.6
dB

G
S-

Sh
ad

er
28

.4
dB

R
3D

G
27

.0
dB

Te
ns

oI
R

26
.5

dB
O

ur
s

30
.5

dB
G

S-
Sh

ad
er

28
.5

dB
R

3D
G

26
.7

dB
Te

ns
oI

R
25

.8
dB

O
ur

s
26

.5
dB

G
S-

Sh
ad

er
23

.2
dB

R
3D

G
20

.8
dB

Te
ns

oI
R

19
.7

dB
O

ur
s

42
.5

dB
G

S-
Sh

ad
er

29
.6

dB
R

3D
G

23
.8

dB
Te

ns
oI

R
22

.9
dB

Figure 31: Qualitative Comparison of Decomposition on the Shiny Blender dataset

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H.4 COMPARISON ON TENSOIR DATASET

Additionally, We perform comparison on TensoIR dataset. Qualitative results are provided in
Fig. 32. Quantitative comparison are shown in Table 12. While our method outperforms exist-
ing relightable baselines in both novel view synthesis and relighting, it also achieves comparable
performance in albedo reconstruction. However, we observe a decrease in albedo reconstruction
quality when transitioning from Synthetic4Relight Dataset to TensoIR Dataset. This decline is pri-
marily due to our method partially incorporating shadows into the albedo, leading to less accurate
albedo for scenes with complicated occlusion (e.g. Armadillo & Lego from TensoIR Dataset), which
presents an area for improvement in future work.

Scene Method Normal Novel View Synthesis Relighting Albedo
MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NVdiffrec 1.998 34.31 0.986 0.025 26.59 0.925 0.050 30.51 0.953 0.068
TensoIR 1.953 37.92 0.975 0.042 34.31 0.975 0.025 33.11 0.957 0.057

Armadillo GS-IR 2.650 35.44 0.962 0.040 28.93 0.922 0.083 35.57 0.951 0.089
R3DG 2.479 39.54 0.981 0.032 32.44 0.951 0.068 32.89 0.954 0.076
Ours 1.668 43.68 0.993 0.005 34.63 0.970 0.024 31.58 0.958 0.042

NVdiffrec 3.215 27.77 0.966 0.051 23.00 0.938 0.070 25.38 0.950 0.057
TensoIR 4.264 29.78 0.949 0.037 24.28 0.946 0.061 27.74 0.968 0.030

Ficus GS-IR 5.220 20.71 0.853 0.100 25.01 0.871 0.078 29.52 0.888 0.090
R3DG 6.493 31.99 0.975 0.027 30.58 0.958 0.035 30.09 0.959 0.030
Ours 2.576 35.45 0.992 0.006 30.30 0.978 0.016 28.12 0.965 0.026

NVdiffrec 5.086 34.85 0.973 0.044 23.19 0.910 0.113 26.65 0.928 0.117
TensoIR 1.953 36.69 0.976 0.022 27.72 0.931 0.090 26.68 0.955 0.077

Hotdog GS-IR 5.145 31.65 0.961 0.042 20.40 0.889 0.112 21.34 0.907 0.127
R3DG 4.865 33.38 0.972 0.031 26.64 0.921 0.091 26.18 0.951 0.081
Ours 1.668 38.10 0.985 0.014 26.07 0.937 0.066 28.21 0.956 0.075

NVdiffrec 9.590 31.92 0.959 0.030 25.79 0.891 0.078 20.84 0.856 0.142
TensoIR 5.887 34.95 0.964 0.020 27.71 0.926 0.059 25.86 0.931 0.072

Lego GS-IR 8.608 31.72 0.940 0.036 23.05 0.853 0.089 20.76 0.823 0.159
R3DG 8.064 30.47 0.947 0.036 24.54 0.878 0.095 25.79 0.916 0.102
Ours 7.887 37.07 0.981 0.011 27.15 0.920 0.053 22.06 0.887 0.113

NVdiffrec 4.972 32.21 0.971 0.037 24.64 0.916 0.078 25.84 0.922 0.096
TensoIR 4.100 34.84 0.966 0.030 28.51 0.945 0.059 28.35 0.953 0.059

Avg. GS-IR 5.406 29.88 0.929 0.055 24.35 0.884 0.091 26.80 0.892 0.116
R3DG 5.476 33.84 0.968 0.031 28.55 0.927 0.072 28.74 0.945 0.072
Ours 3.874 38.57 0.988 0.009 29.54 0.951 0.040 27.49 0.941 0.064

Table 12: Quantitative Results on the TensoIR Dataset.

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

N
V

di
ff

re
c

R
3D

G
Te

ns
oI

R
O

ur
s

R
ef

er
en

ce

Figure 32: Qualitative comparison on Armadillo from TensoIR dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H.5 MORE RELIGHTING ON SYNTHETIC DATA

We provide more relighting results on synthetic data in Fig. 33, including Spot, Materials and Lego.

Albedo Relight1 Relight2 Relight3 Relight4 Relight5
Sp

ot

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

M
at

er
ia

ls

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

L
eg

o

Figure 33: Relighting on synthetic data.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

H.6 RELIGHTING ON DTU DATASET

In Fig. 34, we also provide real-world relighting results from DTU Dataset.

Albedo Relight1 Relight2 Relight3 Relight4 Relight5
Sc

an
65

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

Sc
an

11
4

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

Sc
an

11
8

Figure 34: Relighting on DTU dataset.

31

	Introduction
	Related Work
	Methodology
	Geometry Guided Gaussian Points Generation
	Physically-based Gaussian Rendering
	Implementation Details

	Experiments
	Performance on Reflective Cases
	Decomposition & Relighting Performance on General Cases
	Performance on Geometry Recovery
	Performance on Real-world Dataset
	Ablation Studies

	Conclusion
	Appendix
	Explanation of MGadapter
	Overview
	Explanation of Eq. 1
	Explanation of Warm-up Stage
	Explanation of Surface Adjustment
	Explanation of Spatial MLP

	Details of Loss Functions
	Photometric Term
	Entropy Regularization Term
	Smoothness Regularization Term
	Light Regularization Term
	Final Loss

	Split-Sum Approximation vs. Spherical Gaussian
	Reflective Cases
	Learnable Occlusion

	Analysis of FlexiCubes Resolution
	Analysis of Mask
	Object-Level
	Scene-Level

	Failure Cases
	Thin Structures
	Inconsistent Lighting
	Underexposure

	More Results
	More Results on NeRF Synthetic Dataset
	More Results on Synthesic4Relight Dataset
	Comparison on Shiny Blender Dataset
	Comparison on TensoIR Dataset
	More Relighting on Synthetic Data
	Relighting on DTU Dataset

