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Abstract

Contrastive learning has demonstrated significant potential across various domains,
including recent applications to tabular data. However, adapting this approach
to tabular structures presents distinct challenges, particularly in developing ef-
fective augmentation techniques. While existing methods have shown promise,
there remains room for improvement in preserving critical feature relationships
during the augmentation process. In this paper, we explore an alternative approach
that utilizes attention scores to guide augmentation, aiming to introduce mean-
ingful variations while maintaining important feature interactions. This method
builds upon existing work in the field, offering a complementary perspective on
tabular data augmentation for contrastive learning. Our approach explores two
main aspects: 1) Attention-guided Feature Selection, which focuses augmentations
on features with lower attention scores, and 2) Dynamic Augmentation Strategy,
which alternates between different augmentation techniques during training. This
combination aims to maintain key data characteristics while introducing diverse
variations. Experimental results suggest that our method performs competitively
with existing augmentation techniques in preserving tabular data structure and
enhancing downstream task performance.

1 Introduction

In recent years, contrastive learning has emerged as a powerful self-supervised learning framework,
showing success across various domains [1, 2]. Despite its potential, the application of contrastive
learning to tabular data remains relatively underexplored and presents distinct challenges [3, 4]. A
crucial component of contrastive learning is the creation of positive samples through data augmen-
tation, which aims to introduce variation while preserving the essential properties of the original
data [5]. However, popular augmentation methods like random masking, feature shuffling, and Cut-
Mix [6, 7, 8, 9], though effective for other types of data, can pose unique difficulties when applied to
tabular datasets due to their lack of inherent spatial or positional structure.

In image data, for example, the spatial relationships between pixels ensure that random masking,
shuffling, or partial removal often preserves much of the image’s meaning due to the surrounding
context [10]. Similarly, in textual data, the positional relationships between words or tokens allow for
the retention of overall meaning even when some elements are modified or rearranged [11]. Tabular
data, however, is fundamentally different. It lacks the spatial or positional structure found in images
and text. Each column in a table represents a distinct attribute with little or no inherent connection
to neighboring columns. This absence of context means that applying random augmentations to
tabular data can distort important inter-feature relationships, leading to samples that are no longer
representative of the original data [4, 3]. The challenge emphasizes the importance of preserving
core information during augmentation, as noted in various studies [12, 13]. Despite this, random
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augmentation methods are still commonly applied to tabular data, although their effectiveness remains
uncertain [14]. Research on augmentation techniques tailored specifically to tabular data has been
limited, underscoring the need for more carefully crafted strategies that account for its unique structure
and characteristics.

Our work addresses the gap in data augmentation techniques for tabular data by proposing a novel
method that leverages self-attention scores from a transformer model. We call our approach AGATa
(Attention-Guided Augmentation for Tabular data in contrastive learning). We base our method on
the hypothesis that features with high self-attention scores are crucial for capturing underlying data
patterns. Specifically, we use a transformer as the backbone model to extract self-attention scores
from each feature [15, 3]. We then calculate the average inter-attention scores to quantify feature
importance, retaining a certain percentage of top-scoring features and performing augmentations
on the remaining ones. The specific augmentation—whether masking, shuffling, or CutMix—is
randomly chosen each epoch, adding variability while ensuring the essential structure of the data
remains intact.

A key advantage of our method is its ability to perform sample-specific augmentation. By using
attention scores unique to each data sample, we can tailor the augmentation to reflect the significance
of individual features, ensuring that augmentations are applied to less impactful features while
preserving important ones.

In the context of contrastive learning, our approach generates positive samples that are distinct
enough to be informative but still similar to the original data, preserving meaningful relationships.
This balance helps the model learn more robust and generalizable representations [1]. Our main
contributions can be summarized as follows:

• Development of a selective, sample-wise augmentation method for tabular data based on
transformer self-attention scores.

• Introduction of a dynamic augmentation strategy that varies techniques across epochs while
preserving high-impact features.

• Empirical demonstration of our method’s effectiveness across various datasets and tasks,
showcasing its adaptability and performance improvements over existing approaches.

The detailed implementation of our method, including the code, is provided in the Appendix for
reproducibility. Our approach offers a new direction for data augmentation in tabular domains,
potentially benefiting a wide range of machine-learning applications.

2 Related Work

Self-supervised learning (SSL) has been applied to tabular data primarily through two prominent
techniques: auto-encoding and contrastive learning. Auto-encoding approaches [6, 16, 17, 8] focus
on reconstructing samples from corrupted versions, aiming to learn robust features adaptable to
the heterogeneity of tabular data. These methods employ objectives such as corruption detection
or prediction of binning information as pre-text tasks. On the other hand, contrastive learning
[14, 9, 6, 15, 18, 3] maximizes the similarity between augmented views of the same sample while
minimizing similarity to others, using strategies like masking or feature cropping to define positive
and negative pairs. VIME [6] utilizes this augmentation to develop pre-training tasks, such as
reconstructing the original features and predicting the mask vector from the masked features. In
contrast, SCARF [14] employs contrastive learning by comparing the original data with the corrupted
version. SubTab [9] and Transtab [15] propose a different data augmentation approach, which involves
partitioning the input tabular data into several subsets. Contrary to approaches that augment views
in input space, our approach augments in latent space to address the heterogeneity and lack of clear
structure in tabular datasets. Contrastive Mix-up [18] takes a different approach, employing manifold
mix-up to generate two distinct data views for contrastive learning purposes. Similarly, SAINT [3]
utilizes cut mix and manifold mix-up to create diverse data views, which are then used for contrastive
learning. In this study, we define positive pairs using top singular vectors of the representation space.
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3 Backgrounds

3.1 Augmentation techniques

Data augmentation plays a critical role in improving task performance across a variety of applications,
as it can provide benefits as regularization in supervised learning, consistency regularization in semi-
supervised learning, and generating positive views in contrastive learning. In contrast to domains such
as image, text, or time-series data, tabular data lacks clear inductive biases like spatial or temporal
correlations, local dependencies, or contextual relationships. Additionally, tabular datasets often
exhibit high irregularity and heterogeneous structures, making it challenging to design augmentation
methods that both preserve semantic information and introduce meaningful perturbations. As a
result, most augmentation methods in tabular data rely on feature-level or cell-level modifications, as
outlined below: There are five augmentation techniques for tabular data, each designed to introduce
perturbations while preserving the underlying structure of the data. Below are the methods and their
corresponding mathematical formulations:

Let xi ∈ Rd represent a sample from a dataset D, where i indexes the sample, and d denotes
the number of features. For each sample xi, xi,k refers to the value of feature k for sample i. A
binary mask mi,k ∈ {0, 1} is generated, with each element independently sampled from a Bernoulli
distribution, controlling whether or not the feature is modified. The batch size is N , and j represents
the index of another randomly selected sample from the batch. µk refers to the mean of feature k across
the training dataset, ϵk ∼ N (0, σ2) denotes Gaussian noise added to a feature, and M ∈ {0, 1}d is a
binary mask for CutMix, where ⊙ indicates element-wise multiplication.

Below, we outline four augmentation techniques used for tabular data:

• Masking [6]: Randomly mask selected feature values by replacing them with a constant,
typically the mean of the feature across the dataset:

x̃i,k = mi,k · xi,k + (1−mi,k) · µk

• Subset [9]: Divide the input features into multiple subsets and select only one subset for the
augmentation process:

x̃i = xi[s]

• Shuffling [8]: Shuffle selected feature values by replacing them with the corresponding
values from another randomly selected sample in the batch:

x̃i,k = mi,k · xi,k + (1−mi,k) · xj,k, j ∈ {1, 2, . . . , N} \ {i}
• CutMix [7]: Mix regions from two input samples based on a binary mask M , generating a

new sample:
x̂ = M ⊙ xA + (1−M)⊙ xB

Masking and subset can be categorized as similar techniques, as both involve selectively modifying
portions of the input features. Therefore, we focused our experiments on three augmentation methods:
Masking, Shuffling, and CutMix. In our augmentation process, one of these three techniques was ran-
domly selected for each iteration, ensuring a diverse application of augmentations while maintaining
consistency with the structure of the data.

3.2 Transformer for tabular domain

In this work, we leverage a transformer architecture specifically designed for tabular data incorporating
both categorical and numerical features. The core component of the transformer is its self-attention
mechanism, which allows the model to weigh the importance of different features by computing
attention scores. For each feature, the self-attention mechanism calculates a weighted sum of all other
features, where the weights are learned dynamically based on the input data. The input processing
begins with feature-type-specific embeddings. For categorical features, learnable embedding tables
are used.

ec = Embed(xc) (1)
where xc is the categorical input and Embed is the embedding function. For numerical features, a
simple linear transformation is applied.

en = Wnxn + bn (2)
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(a) Self-supervised pre-training process integrated with AGATa (b) Augmentation module

Figure 1: This figure illustrates the integration of AGATa into the self-supervised pre-training process,
including (a) an overview of the process and (b) a detailed depiction of the AGATa augmentation
module.

where xn is the numerical input, and Wn and bn are learnable parameters.

These embeddings are then concatenated to form the input to the self-attention module:

E = [ec; en] (3)

The self-attention mechanism operates on this combined embedding:

Z = softmax(
QKT

√
dk

)V (4)

where Q = EWQ, K = EWK , and V = EWV are query, key, and value matrices derived from
the input embeddings, dk is the dimension of the keys, and Z represents the output of the attention
mechanism.

This self-attention mechanism enables the model to learn complex relationships between features,
making it effective for various types of data, including tabular data. By combining categorical and
numerical embeddings and applying the attention formula, the model captures feature interactions.
The attention mechanism helps in understanding the relative importance of different features, while
the feed-forward layers further process these attended features. In our application, attention scores
derived from this mechanism guide the augmentation process, selectively manipulating features with
lower attention scores. This contrasts with conventional augmentation methods, which are applied
uniformly without regard to feature importance. The use of self-attention allows for a more nuanced,
data-driven approach to both modeling and augmentation, focusing on the most relevant features.

4 Methodology

4.1 Overview

This work introduces an attention-guided augmentation strategy for tabular data in the context
of contrastive learning. Conventional techniques, such as masking, shuffling, and CutMix, may
disrupt the feature dependencies in tabular data. To mitigate this, our method applies augmentations
selectively to features with low attention scores, preserving the critical structure of the data while
enhancing contrastive learning performance.
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4.2 AGATa: Attention-Guided Augmentation for Tabular Data

Attention-Guided Feature Selection To guide augmentation, we leverage attention scores from
the transformer’s final layer, quantifying feature interaction importance. This approach, inspired by
NLP practices, captures refined feature relationships [19, 20, 21]. Let A ∈ RB×H×F×F represent
the attention scores, where B is the batch size, H is the number of heads, and F is the number of
features. The attention scores are averaged across all heads to compute a feature importance matrix
(Equation (5)):

Amean =
1

H

H∑
h=1

Ah (5)

The feature selection ratio for augmentation, denoted as k, defines the proportion of features selected
for augmentation based on their attention scores. Specifically, k represents the percentage of features
with lower attention scores that will be augmented, ensuring that less critical features are targeted
while preserving the core structure of the data.

From the attention scores, the average score for each feature is computed by averaging across all
feature interactions (Equation (6)):

Afeature =
1

F

F∑
i=1

Amean[:, i, :] (6)

This produces a vector Afeature, which represents the overall importance of each feature. Features
with the lowest attention scores are considered the least informative, and a subset of these features is
selected for augmentation based on the feature selection ratio k.

We used a pre-defined selection ratio k = 0.4, meaning 40% of the features are chosen for augmenta-
tion. This selection ratio of 0.4 was adopted because many augmentation methods commonly use 0.4
as the default value.

After conducting experiments, we found that the model’s performance remained consistent using this
ratio. Therefore, for simplicity, all subsequent experiments were conducted using the pre-defined
ratio of k = 0.4.

Dynamic Augmentation Strategy The selected low-attention features are augmented using one of
three techniques: masking, shuffling, or CutMix. Each augmentation method is tailored to modify the
less informative features identified by the attention mechanism while preserving critical structures in
the high-attention features. Let A = {Masking,Shuffling,CutMix} represent the set of augmentation
functions. The augmentation function Aug(x) can be defined as:

Aug(x) = a(x) where a ∼ Uniform(A) (7)
Each augmentation process operates as follows:

• Masking: For the selected low-attention features, their values are replaced with a mask
token, effectively nullifying their contribution to the model during that iteration, while
preserving the high-attention features that carry significant information.

• Shuffling: The values of the low-attention features are shuffled across the batch, breaking
their correlations while maintaining the consistency of high-attention features within each
sample.

• CutMix: The low-attention features from different samples in the batch are mixed, creating
new combinations while leaving the high-attention features unchanged. This encourages the
model to generalize over low-impact features without disrupting the core feature relation-
ships.

We conduct the random selection of the augmentation technique for each batch. Instead of applying
a fixed augmentation method across all batches, we randomly choose between masking, shuffling,
and CutMix for each iteration. This randomization enhances the model’s robustness by exposing it to
various augmented data while preserving the tabular data’s critical structure. By focusing on the least
informative features and employing a random selection of augmentation techniques, our approach
strikes a balance between introducing variability and maintaining the underlying statistical properties
of the data. This process ensures that the augmentations are both meaningful and structure-preserving,
avoiding disruption to critical feature relationships that are essential in tabular data.
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4.3 Overall Training Procedure

The overall training process of AGATa involves several stages, starting with the generation of
augmented data and continuing through transformer-based encoding, projection layers, and contrastive
learning. The main steps are outlined as follows.

Generation of Augmented Samples Based on the attention-guided feature selection, the augmen-
tation module alters the low-attention features using one of three augmentation techniques: masking,
shuffling, or CutMix. These augmented samples, along with their original versions, form positive
pairs for the contrastive learning task, allowing the model to learn meaningful feature interactions
while preserving the essential structure of the data.

Transformer and Projection Heads Once the augmented samples are created, they are input into a
transformer model, which processes the data and generates contextual embeddings. The final hidden
state of the [CLS] token is passed through a projection head, a multi-layer perceptron (MLP) with
one hidden layer, which maps the embeddings to a lower-dimensional space suitable for contrastive
learning. The MLP also introduces additional non-linearity to help the model better distinguish
between positive and negative samples.

Loss Function Following augmentation, the data is used in a contrastive learning framework, where
it is trained using the InfoNCE loss. Given an anchor sample x, its corresponding positive pair x+,
and all negative samples x−, the InfoNCE loss is calculated as:

LInfoNCE = − log
exp(sim(x, x+)/τ)∑
x− exp(sim(x, x−)/τ)

(3)

where sim(·, ·) represents a similarity function (such as cosine similarity) and τ is the temperature
parameter (set to 0.7). The InfoNCE loss encourages the model to bring positive pairs (augmented
and original samples) closer together in the embedding space while pushing negative samples apart,
resulting in a representation space where similar data points are more tightly clustered.

Fine-tuning After pre-training, the model undergoes fine-tuning on downstream tasks, such as
classification or regression. During this phase, the transformer-based model is further trained using
labeled data, adapting the learned embeddings to the specific task. For classification, cross-entropy
loss is used, while for regression, mean squared error is applied. The [CLS] token embedding is
passed through a simple MLP with ReLU activation to produce the final predictions. This fine-tuning
step optimizes the model for task-specific performance in real-world applications.

5 Experiments

5.1 Experimental Setup

Datasets We utilize twelve open-source tabular datasets in our experiments: German Credit (CS),
Phoneme (PO), FIFA (FI), Gesture Phase Prediction (GE, [22]), Churn Modeling (CH, Kaggle
dataset), Eye Movements (EY, [23]), California Housing (CA, [24]), Adult (AD, [25]), Jannis (JA,
[26]), Otto Group Product Classification (OT, Kaggle dataset), Higgs Small (HI, [27]), and Year (YE,
[28]). For all datasets, preprocessing steps and train-validation-test splits are standardized following
the protocols outlined by [3, 29].

Implementation Details Our method is implemented using PyTorch in Python 3.7, with all experi-
ments conducted on an NVIDIA RTX 3090 GPU. We employ the AdamW optimizer with default
settings. All results are averaged over five independent runs. Performance results for other benchmarks
were taken from their recent state-of-the-art papers [3, 29].

Comparison Methods We compare AGATa against a variety of baselines, including the non-deep
method XGBoost [30] and several deep neural networks (DNNs), such as NODE [31], TabNet [32],
DCNv2 [33], FT-Transformer [4], SCARF [14], SAINT [3], and T2G-FORMER [29]. In addition,
we also evaluate other commonly used DNNs like MLP and SNN (a multi-layer perceptron with
SELU activation [34].
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Table 1: Performance comparison of augmentation techniques. The evaluation metrics for classifica-
tion and regression are accuracy (↑) and mean squared error (↓), respectively. Bold values indicate
the best-performances and underlined values represent the second-best performances.

Augmentation
method

Binary Multiclass Regression

CH ↑ AD ↑ HI ↑ CS ↑ PO ↑ GE ↑ EY ↑ OT ↑ JA ↑ CA ↓ YE ↓ FI ↓
Masking 0.870 0.860 0.728 0.743 0.879 0.570 0.659 0.804 0.727 0.342 9.587 15125.823
Shuffling 0.873 0.860 0.729 0.743 0.868 0.586 0.663 0.803 0.726 0.353 9.164 15266.500
CutMix 0.871 0.860 0.729 0.754 0.875 0.596 0.663 0.801 0.725 0.352 8.741 14976.226

AGATa 0.879 0.864 0.734 0.780 0.909 0.694 0.739 0.820 0.779 0.256 8.705 10108.383

Table 2: Comparison with XGBoost and DNNs. The evaluation metrics for classification and regres-
sion are accuracy (↑) and mean squared error (↓), respectively. The best results are highlighted in
bold and underlined values represent the second-best performances.

Augmentation
method

Binary Multiclass Regression

CH ↑ AD ↑ HI ↑ CS ↑ PO ↑ GE ↑ EY ↑ OT ↑ JA ↑ CA ↓ YE ↓ FI ↓
GBDT model

XGBoost 0.859 0.873 0.724 0.730 0.876 0.684 0.725 0.808 0.719 0.436 8.850 11131.716

DNN models

MLP 0.858 0.849 0.720 0.680 0.906 0.586 0.611 0.804 0.720 0.499 8.849 10754.350
SNN 0.857 0.854 0.722 - - 0.647 0.616 0.811 0.719 0.498 8.901 -
FT-Transformer 0.867 0.859 0.731 0.730 0.909 0.613 0.708 0.803 0.732 0.460 8.852 9567.579
NODE 0.859 0.858 0.725 - - 0.539 0.655 0.803 0.728 0.463 8.778 -
TabNet 0.850 0.850 0.720 - - 0.600 0.621 0.791 0.723 0.513 8.916 -
DCNv2 0.857 0.853 0.722 - - 0.557 0.614 0.802 0.716 0.489 8.882 -
T2G-FORMER 0.863 0.862 0.734 0.730 0.887 0.656 0.782 0.819 0.737 0.455 8.851 10121.356
SAINT 0.875 0.863 0.728 0.737 0.866 0.565 0.647 0.800 0.719 0.355 8.820 19366.582
SCARF 0.858 0.842 0.653 0.720 0.830 0.485 0.672 0.604 0.725 0.458 8.920 11208.313

AGATa 0.879 0.864 0.734 0.780 0.909 0.694 0.739 0.820 0.779 0.256 8.705 10108.383

5.2 Experimental Results

Comparison with Other Augmentation Techniques We conducted a comprehensive evaluation
of AGATa, comparing its performance against previously established augmentation techniques across
a diverse range of tasks. The primary objective of this assessment was to determine whether AGATa’s
attention-guided approach could provide more consistent and significant improvements in model
performance compared to randomly applied augmentation methods across various tasks. The results
of our experiments demonstrate that AGATa consistently outperforms previous augmentation methods
across various tasks. These findings highlight AGATa’s effectiveness in enhancing model performance
across different types of predictive tasks. The superior performance of AGATa can be attributed to
its novel attention-guided approach to data augmentation. By selectively augmenting less important
features while preserving the core structure and crucial feature relationships, AGATa creates more
meaningful and effective data transformations. This targeted strategy ensures that the augmented data
maintains its essential characteristics while introducing beneficial variations.

Comparison with SoTA Models: GBDTs and DNNs To further evaluate AGATa’s performance,
we conducted a comprehensive comparison against SoTA GBDT and DNN models across various
tasks. Table 2 presents the results for binary classification, multiclass classification, and regression
tasks. The empirical results demonstrate that AGATa not only competes with but often outperforms
these established models across a wide range of tasks. Out of the 12 diverse datasets spanning binary
classification, multiclass classification, and regression tasks, AGATa exhibited superior performance
in 10 cases. This consistent outperformance was observed across various data complexities and task
types. Notably, AGATa demonstrated strong performance against XGBoost, which is traditionally
considered an effective baseline for tabular data. This is particularly interesting as it suggests that
AGATa’s attention-guided augmentation strategy can capture complex feature interactions that are
typically well-handled by tree-based models. These findings provide strong evidence for the efficacy
of AGATa as a viable alternative to existing augmentation techniques and state-of-the-art models. The
consistent performance advantages observed across multiple benchmarks suggest that AGATa’s novel
approach to data augmentation offers tangible benefits in model performance and generalization
capabilities.
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6 Ablation Study and Analysis

Table 3: Comparison of AGATa and AGATa-
Reverse across different datasets. AGATa-Reverse
augments features with high attention scores.

Method GE (↑) CH (↑) AD (↑) HI (↑) CS (↑)

AGATa 0.694 0.879 0.864 0.734 0.780
AGATa-Reverse 0.559 0.850 0.824 0.727 0.759

Ablation Study: Reverse Attention-Gated
Augmentation We conducted an ablation
study by inverting AGATa’s core mechanism
and applying augmentations to features with
high attention scores. This resulted in decreased
performance, confirming the importance of
preserving high-attention features. The perfor-
mance decline was moderated, likely due to In-
foNCE’s contrastive nature. This study highlights the critical role of attention-guided feature selection
in AGATa’s effectiveness.

Table 4: Comparison of AGATa variants across
different datasets.

Method GE (↑) CH (↑) AD (↑) HI (↑) CS (↑)

AGATa 0.694 0.879 0.864 0.734 0.780
AGATa-Masking 0.673 0.876 0.863 0.734 0.780
AGATa-Shuffling 0.657 0.875 0.862 0.731 0.764
AGATa-CutMix 0.655 0.875 0.862 0.732 0.764

Ablation Study: Augmentation Technique Di-
versity This study compares the performance
of individual augmentation techniques (masking,
shuffling, and CutMix) against AGATa-Random,
which randomly selects one method per epoch.
Results show that AGATa-Random, benefiting
from increased augmentation diversity, outper-
forms fixed strategies on most datasets. This
demonstrates the advantage of varied augmentation techniques in enhancing model performance.

Figure 2: Relative performance
across different augmentation ratio.

Sensitivity Analysis: AGATa’s Performance Across Aug-
mentation Ratios (k) We evaluated AGATa’s performance
sensitivity to the augmentation ratio k (0.2≤ k ≤ 0.8) across
various datasets. Results revealed minimal fluctuations, with
peak performance frequently observed at k = 0.4. This sta-
bility across k values demonstrates AGATa’s robustness and
adaptability to diverse datasets, while suggesting that augment-
ing approximately 40% of features generally yields favorable
performance.

Figure 3: t-SNE visualizations

Embedding Analysis AGATa aims to preserve crucial data struc-
tures while enhancing diversity through random selection of augmen-
tation functions. This approach seeks to achieve distinct separation
between classes and diverse representations within classes. To val-
idate these claims, we analyzed the embeddings produced by the
trained encoder using t-SNE visualization technique. We visualized
the encoder embeddings of input augmentation (Shuffling, Mask-
ing, CutMix), and AGATa using t-SNE on HI data. The results in
Figure 3 show that AGATa learns embeddings that most distinctly
differentiate between classes compared to other methods.

7 Conclusion

In this paper, we introduced AGATa, a novel approach to data augmentation for tabular data in
contrastive learning. Our method addresses the unique challenges inherent to tabular data, such as its
non-sequential nature, and lack of intrinsic inter-column relationships. AGATa leverages transformer-
based self-attention scores to guide the augmentation process, focusing on less important features
while preserving critical relationships. AGATa combines attention-guided feature selection with a
dynamic augmentation strategy. By utilizing attention scores, it identifies and preserves important
features during augmentation, while randomly selecting from a set of augmentation techniques for
each epoch to introduce diverse variations. This design specifically caters to the unique characteristics
of tabular datasets, enhancing its adaptability to various tabular data structures. Our experimental
results across various datasets demonstrate improvements in downstream task performance compared
to existing techniques. This work contributes to the ongoing efforts to adapt contrastive learning
techniques to tabular data, which is prevalent in many real-world applications.
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