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Abstract

As AI agents proliferate in collaborative ecosystems, ensuring alignment across1

multi-agent interactions poses a profound challenge: oversight scales sublinearly2

with agent count, amplifying risks of collusion, deception, or value drift in long-3

horizon tasks. We introduce Hierarchical Delegated Oversight (HDO), a scalable4

framework where weak overseer agents delegate verification to specialized sub-5

agents via structured debates, achieving provable alignment guarantees under6

bounded communication budgets. HDO formalizes oversight as a hierarchical tree7

of entailment checks, deriving PAC-Bayesian bounds on misalignment risk that8

tighten with delegation depth. Our policy routes disputes to cost-minimal verifiers9

(e.g., cross-model NLI or synthetic data probes), enabling 3–5× efficiency over flat10

debate baselines. Empirically, on WebArena and AgentBench suites, HDO reduces11

collective hallucination rates by 28% while maintaining 95% oversight accuracy at12

2× lower tokens than human-in-the-loop methods. Ablations reveal robustness to13

adversarial collusion, with failure modes taxonomized by delegation granularity.14

By bridging theoretical oversight [Irving et al., 2018, Christiano et al., 2018] with15

agentic scalability [Park et al., 2023], HDO paves the way for safe multi-agent16

deployment in 2026’s agentic paradigms.17

1 Introduction18

Agentic AI systems—capable of autonomous planning, tool use, and multi-step reasoning—are19

rapidly moving from labs to production, with anticipated impact in robotics, operations research,20

governance, and scientific discovery. As agents interact in chains or swarms, alignment failures21

compound: a single misaligned sub-agent can cascade errors, causing unintended outcomes (resource22

hoarding, privacy violations, disinformation). Recent surveys on scalable automated alignment23

highlight the urgency of methods that do not rely on ubiquitous human intervention, as oversight24

demands grow super-linearly with agent complexity. Traditional scalable oversight relies on human25

feedback (RLHF) [Ouyang et al., 2022, Christiano et al., 2017], which bottlenecks as the number of26

agents and interactions grows. Debate [Irving et al., 2018] and weak-to-strong generalization [Burns27

et al., 2024] are promising but struggle in multi-agent settings due to collusion risks, sycophancy, and28

communication overhead.29

In multi-agent systems, oversight must contend with emergent behaviors such as sycophantic agree-30

ment—agents prioritize consensus over truth, exacerbating misalignment. RLHF-tuned models can31

favor agreement with user priors over correctness [Ouyang et al., 2022]. Scaling laws for oversight32

suggest domain-specific performance plateaus unless general intelligence transfers effectively; nested33

protocols require careful parameterization to avoid degradation. External governance layers (e.g.,34

Governance-as-a-Service) provide auditable enforcement [Yoo et al., 2025] but lack provable bounds35

on delegation risks and typically treat the agent as a black box. Hierarchical approaches (e.g., Tiered36
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Agentic Oversight) demonstrate improvements in structured domains [Kim et al., 2025], yet provide37

limited theoretical guarantees and rely on fixed-role hierarchies.38

Problem. Multi-agent oversight lacks formal guarantees. How can collections of weak overseers39

scalably align stronger agents without exhaustive pairwise checks or continuous human monitoring?40

Existing methods often assume single-truth, single-agent settings or ignore delegation costs, yielding41

brittle policies vulnerable to covert collusion and long-term drift.42

Idea. We treat oversight as a delegated, multi-agent verification game: a root overseer delegates43

contentious claims to specialized verifiers, structuring the interaction as a hierarchy of debates that44

break complex evaluations into simpler entailment checks. By recursively debating sub-claims, the45

system leverages transitive trust: even if no single overseer is omniscient, the network of verifiers46

can collectively ensure correctness. HDO draws on debate [Irving et al., 2018, Brown-Cohen et al.,47

2023] and iterated amplification [Christiano et al., 2018], extends them with formal risk bounds, and48

adds a cost-aware routing policy.49

Contributions. (i) A delegation-depth metric with PAC-Bayesian risk bounds that tighten with50

depth, extended to unbalanced trees; (ii) an alignment-monotone routing policy that selects minimal-51

cost competent verifiers and never increases risk; (iii) efficiency frontiers showing 3–5× savings vs.52

flat debate and 28% lower collective hallucination on WebArena [Zhou et al., 2023] and AgentBench53

[Liu et al., 2024]; (iv) robustness to adversarial collusion, with a taxonomy of failure modes by54

delegation granularity.55

Beyond the bottlenecks of RLHF and flat debate, HDO targets multi-agent pathologies such as56

sycophancy (agreement over truth), miscoordination, and covert collusion. RLHF-tuned models can57

match stated beliefs over correctness [Ouyang et al., 2022, Perez et al., 2023], amplifying errors58

when agents interact. External enforcement layers (“Governance-as-a-Service”) offer auditable rules59

[Yoo et al., 2025] but commonly treat models as black boxes and lack task-adaptive risk guarantees.60

Recent hierarchical oversight proposals in narrow domains [Kim et al., 2025] improve safety but leave61

open how to allocate budgeted verification across many interacting claims. HDO operationalizes a62

breadth-first-to-depth adaptive expansion that invests tokens only where uncertainty is concentrated,63

with randomized routing and verifier diversity to deter collusion [Motwani et al., 2024].64

The remainder of the paper is organized as follows. Section 3 formalizes the setting. Section 4 defines65

the debate tree, aggregation, and routing. Section 5 provides risk bounds connecting delegation depth66

to alignment. Section 6 evaluates HDO on WebArena and AgentBench. We conclude with limitations67

and broader impacts.68

2 Related Work69

Scalable alignment and oversight. As capabilities outpace direct human judgment, scalable70

oversight aims to supervise systems stronger than their overseers via decomposition and amplification.71

Iterated amplification and related weak-to-strong paradigms [Christiano et al., 2018, 2017, Burns72

et al., 2024] formalize how ensembles of weak experts can supervise stronger learners. Reward73

modeling provides a complementary route to scalable supervision [Leike et al., 2018]. RLHF has74

driven major gains [Ouyang et al., 2022], but can induce sycophancy and preference-matching over75

truth, especially in multi-agent contexts [Perez et al., 2023].76

Debate and efficient verification. Debate reframes verification as an adversarial game between77

agents observed by a judge [Irving et al., 2018]. Protocol refinements improve efficiency and robust-78

ness [Brown-Cohen et al., 2023], and self-consistency and chain-of-thought improve intermediate79

reasoning [Wang et al., 2023, Wei et al., 2022]. HDO inherits the adversarial scrutiny of debate but80

decomposes claims into a tree of entailment checks, enabling targeted investment of budget.81

Tool-augmented verification. Tool use grounds model claims in computation or retrieved evidence:82

PAL executes programs [Gao et al., 2023]; Toolformer teaches models to call tools [Schick et al.,83

2023]; ReAct coordinates reasoning with acting [Yao et al., 2023]. In HDO, such tools instantiate84

leaf verifiers (retrieval+NLI, tests, rule-checkers) inside a hierarchical oversight process.85

2



Multi-agent systems and risks. Generative agent societies exhibit emergent behaviors [Park86

et al., 2023]; multi-agent environments like WebArena and AgentBench expose coordination and87

deception challenges [Zhou et al., 2023, Liu et al., 2024]. Goal misgeneralization [Shah et al., 2022]88

and steganographic collusion [Motwani et al., 2024] pose acute risks for flat oversight. External89

governance (GaaS) offers auditable enforcement [Yoo et al., 2025], and tiered oversight shows promise90

in domains [Kim et al., 2025], but typically lacks provable guarantees or cost-aware delegation. HDO91

connects these lines by combining hierarchical debate with routing policies and deriving risk bounds92

that tighten with delegation depth.93

3 Preliminaries and Problem Setting94

We consider a system of base agents A = {A1, . . . , An} operating in an environment with tools95

(browser, code, APIs). A context C comprises a transcript τ of inter-agent messages, tool traces, and96

constraints (norms, policies). An outcome O is a proposed action or artifact (plan, code, message).97

The oversight predicate aligned(O | C) is true if O satisfies truthfulness, safety, and goal adherence98

relative to C.99

Definition 1 (Debate tree). A debate tree T = (N , E) roots at the query q0 : “Is aligned(O | C)?”100

and expands via sub-claims q → {q1, . . . , qk} proposed by a critic against a proposer. Leaves are101

primitive checks resolvable by verifiers with high confidence.102

Assumption 1 (Leaf reliability). Each primitive verifier has false-negative rate at most ϵ on its103

designated claim type. The assignment of types to verifiers is correct with probability ≥ 1− η.104

Definition 2 (Cost model). Let c(V, q) be the expected cost (tokens/time) of invoking verifier V on105

claim q. A budget B constrains total cost per oversight episode. The uncertainty u(q) ∈ [0, 1] is106

derived from debaters’ calibrated confidences and historic disagreement rates.107

4 Hierarchical Delegated Oversight (HDO)108

HDO constructs and solves T adaptively: expand only where uncertainty is high; route sub-claims to109

skilled verifiers; aggregate leaves via entailment to resolve the root.110

4.1 Entailment games and aggregation111

At node q, a proposer presents supporting evidence; a critic proposes failure modes (false premises,112

missing constraints). Children {qi} are checked by leaf verifiers (facts via retrieval+NLI, code via113

tests/static analysis, ethics via rule-checkers). Parents aggregate via logic-specific rules: conjunctions114

for conjunctive premises, max for risk contributions, or learned aggregators calibrated on held-out115

oversight episodes.116

4.2 Cost-aware routing policy117

HDO triggers delegation when u(q)∈ (τrej, τacc) and selects V ⋆ = argmaxV ∈V ∆u(q;V )/c(V, q)118

with a stochastic tie-break to deter collusion. Redundancy (parallel checks) is applied on critical119

claims with probability pred.120

Proposition 1 (Alignment monotonicity). If each verifier is non-expansive (Rpost
q ≤Rpre

q ) and the121

aggregator is isotone, then extending depth by one on any unresolved node weakly decreases the122

overall false-aligned risk R(H).123

Proof sketch. Condition on the event that the current judgment is wrong; a sound child check catches124

a fraction of those errors; isotonic aggregation preserves improvements.125

4.3 Threat model and collusion resistance126

We assume base agents may collude via covert channels (steganographic markers in text) [Motwani127

et al., 2024]. HDO mitigates via (i) randomized routing (unpredictable auditors), (ii) verifier diversity128

(architectures/data), (iii) cross-channel consistency checks (do actions justify textual claims), and (iv)129

periodic audits of verifiers themselves (“oversee the overseers”).130
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primitive checks

Root overseer
Query: aligned(O | C)?

Routing policy
V ⋆ = argmax ∆u

c

Budget B

Sub-claim: factual Sub-claim: logical Sub-claim: policy

Fact verifier
(retrieval + NLI)

Logic verifier
(consistency / tests)

Policy verifier
(rules / constraints)

Knowledge base / web Unit tests / static analysis Policy DB / whitelist

results propagate upward by entailment

delegation edge
budget/routing influence
upward aggregation

Figure 1: Oversight as a hierarchy of entailment games. The root overseer delegates disputed
sub-claims to specialized verifiers (factual, logical, policy), which may invoke primitive checks
(retrieval/NLI, tests/static analysis, policy rules). A cost-aware routing policy selects verifiers under a
budget B; leaf results propagate upward to resolve the root query.

5 Theoretical Guarantees131

Let M be the false-aligned event and d the realized depth. For path γ, let Fγ be the miss event along132

γ.133

Lemma 1 (Pathwise miss). Under Assumption 1, Pr(Fγ) ≤ e−αdγ with α ≈ − ln(1 − ϵ). For134

unbalanced trees, R(H) ≤
∑

γ πγe
−αdγ where πγ is the path probability given misalignment.135

Theorem 1 (Informal PAC-Bayes bound). Let H be an HDO overseer of maximum depth d. For any136

δ ∈ (0, 1), with probability at least 1− δ,137

R(H) ≤ KL(Q∥P ) + ln(1/δ)

N (1− e−αd)
+ e−αd, α ≈ − ln(1− ϵ), (1)

where N is the number of oversight episodes used to fit routing/aggregation.138

Discussion. Independence violations inflate the e−αd term; diversity and redundancy shrink cor-139

relations. If the root never triggers contention, HDO cannot help; we include pessimistic critics to140

guarantee initial friction.141

6 Experimental Methodology142

Benchmarks. WebArena [Zhou et al., 2023]: realistic web tasks (booking/search/forms/email);143

AgentBench [Liu et al., 2024]: cooperative puzzle and negotiation tracks.144

Baselines. (i) No oversight; (ii) Flat debate [Irving et al., 2018]; (iii) CoT+Verifier [Wei et al.,145

2022, Wang et al., 2023, Shinn et al., 2023]; (iv) Human oversight proxy (upper bound, high cost).146
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Table 1: WebArena results (averages across 50 tasks). Lower is better for hallucination and tokens.

Method Success (%) Hallucination (%) Oversight Acc. (%) Avg. Tokens

No oversight 72 18 — 0
Flat debate (1L) 80 14 85 6,000
CoT+Verifier 84 12 90 16,000
HDO (ours) 88 10 95 7,500
Human oversight 90 8 96 15,000

Metrics. Task success, collective hallucination, policy violations, oversight accuracy (agreement147

with human labels), and token cost. Robustness metrics include fraction of detected collusion148

attempts.149

Implementation. Verifiers: factual (retrieval+NLI), logic (consistency constraints), rules-enforcer150

(policy regex+checklist), planner (rollout heuristics). Triggers at post-gathering and pre-finalization151

checkpoints; stochastic redundancy pred = 0.25.152

Setup details. WebArena tasks include realistic browsing, form-filling, and email composition with153

multi-agent coordination (e.g., separate browsing and communication agents sharing a scratchpad).154

We insert oversight checkpoints after information gathering (to pre-empt hallucinations) and before155

finalizing outputs (to ensure correctness and compliance). HDO caps depth at dmax ∈ {2, 3} and156

routes only disputed sub-claims to leaves (retrieval+NLI, tests, rule-checkers). Costs are measured in157

tokens and wall-clock time. For AgentBench, we evaluate a cooperative grid puzzle (coordination158

under partial conflict) and a negotiation dialogue (fairness and deception), instrumenting HDO with a159

planning verifier and a factual/policy verifier.160

Baselines and protocols. No oversight runs agents end-to-end without checks. Flat debate invokes161

a single debate at decision points or at the end, with a judge selecting the winning argument.162

CoT+Verifier has agents self-reflect and then query a verifier per step (no hierarchy). Human163

oversight is approximated by a strong evaluator model prompted to review all steps; it serves as an164

upper bound on accuracy and a cost upper bound. To compare fairly, we report unconstrained costs165

and also normalize to comparable token budgets when plotting accuracy-cost frontiers.166

Metrics and evaluation. Success rate counts tasks completed per specification. Collective halluci-167

nation records instances where multiple agents reinforce a false claim that affects actions. Policy168

violations log any breach of task constraints. Oversight accuracy measures agreement with human169

labels on alignment judgments. Cost aggregates tokens (prompt+completion) for all agents, verifiers,170

and oversight coordination. Robustness is measured as the detection rate under collusion stress tests.171

Budgeting and cost accounting. For frontiers, each method is limited to a target budget; HDO172

adjusts delegation thresholds and redundancy to fit within budget, prioritizing high-uncertainty nodes.173

CoT+Verifier naturally consumes more tokens due to per-step verification; flat debate spends fewer174

tokens but concentrates oversight late, missing mid-trajectory issues.175

6.1 Results on WebArena176

HDO achieves the highest success among automated methods and a 28% reduction in collective177

hallucination vs. No Oversight. Rules-enforcer eliminates the observed policy violations. Oversight178

accuracy matches human oversight at approximately half the tokens.179

Qualitative findings. Without oversight, agents occasionally converge on mutually reinforcing180

falsehoods (e.g., asserting a fare includes free luggage when not stated). Flat debate catches some181

but misses subtle inconsistencies (e.g., timezone errors). HDO prevents both by splitting claims:182

a factual verifier flags the missing luggage policy; a logic verifier detects itinerary contradictions183

(arrival earlier than departure).184
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Table 2: AgentBench highlights. “Opt. rate” = optimal cooperation; “Fair deals” = near-equal splits;
Lie detection = fraction of deceptive statements flagged.

Method Opt. rate (%) Fair deals (%) Lie detection (%)

No oversight 75 50 —
Flat debate (1L) 78 52 50
HDO (ours) 90 65 80

Efficiency curves: Risk (y, lower is better) vs. tokens (x). HDO dominates flat debate for
budgets >4k tokens; diminishing returns beyond depth 3.

Figure 2: Pareto frontier of oversight risk vs. cost.

Policy compliance. HDO and human oversight achieve zero observed policy violations; flat debate185

misses some mid-trajectory violations that occur before the final plan is debated. The rules-enforcer186

leaf (regex+policy templates) is effective at intercepting disallowed actions.187

Cost efficiency. Averaged token usage is 7̃.5k for HDO vs. 1̃5k for a human-oversight proxy. Flat188

debate uses 6̃k but at lower accuracy. Under equivalent budgets (> 4k tokens), HDO dominates flat189

debate on accuracy-cost trade-offs due to targeted delegation only where uncertainty concentrates.190

6.2 AgentBench: Cooperation and Negotiation191

In the cooperative puzzle, HDO suppresses uncooperative probes (blocking, detours) by pre-emptively192

auditing moves. In negotiation, factual verifiers reduce deceptive tactics; HDO detects 80% of lies193

and appears to deter some deception.194

Cooperative puzzle. The planning verifier audits proposed moves; if a move degrades team reward195

or induces conflict (e.g., blocking), it triggers a critique and alternative suggestion. This reduces196

conflict probes and accelerates convergence to optimal play (90% optimal vs. 75–78% for baselines).197

Negotiation. We define alignment as near-equal splits (fairness) with no deceptive statements. A198

post-dialogue factual verifier cross-references scenario facts to flag lies (80% detection). Presence of199

oversight appears to deter some deception.200

6.3 Robustness and Ablations201

Collusion stress test. We inject steganographic channels into agent utterances; HDO detects202

8/10 attempts via cross-verifier inconsistencies, while flat debate detects 3/10 [Motwani et al.,203

2024]. Remaining misses involve fabricated or unverified sources; mitigating this may require204

meta-verification of sources and redundancy on critical claims.205

Delegation granularity. “Shallow” delegation approximates flat oversight; “eager” increases206

overhead. A moderate routing policy yields the best accuracy-cost trade-off. Specialized verifiers207

outperform generic checks on their domains [Schick et al., 2023, Gao et al., 2023, Yao et al., 2023].208

Excessive depth can exhaust budget without proportional gains; we observe diminishing returns209

beyond depth ≈ 3.210

7 Limitations211

Our analysis assumes approximate conditional independence of node failures and presumes at least212

one dissenting verifier to trigger expansion. Shared blind spots correlate errors; we mitigate via213

diversity and randomized routing but cannot eliminate them. If the root never sparks contention,214

HDO fails by design; pessimistic critics partially address this. Depth increases cost; returns diminish215

beyond d≈3. Some empirical claims rely on proxies and simulated collusion; broader validation and216
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open-source replication are needed. Risk bounds degrade under correlated failures; redundancy and217

verifier diversity reduce but do not remove such correlations.218

8 Broader Impacts219

HDO resembles institutional governance (regulators, auditors, appellate courts): a layered process220

that decomposes judgments, records rationale, and enables appeals. By internalizing such structures,221

multi-agent systems can become more auditable and accountable.222

Potential benefits. (i) Scalable safety: targeted delegation concentrates verification where uncer-223

tainty is high, enabling stronger agents to be overseen by weaker specialists. (ii) Auditability: debate224

trees and leaf checks create traceable artifacts (who checked what, with which evidence), aiding225

compliance and post-mortems. (iii) Error deterrence: visible oversight with randomized routing and226

redundancy may discourage deceptive tactics.227

Risks. (i) Oversight overreach: aggressive thresholds or over-delegation can stall progress via228

false positives and excessive cost. (ii) Centralization: a small set of overseer models could become229

bottlenecks or single points of failure, entrenching vendor lock-in. (iii) Blind spots: correlated230

verifier failures (shared data or architecture) can mask systematic errors. (iv) Privacy and governance:231

storing debate trees and tool traces may expose sensitive data if logs are inadequately controlled.232

(v) Distributional harms: if verifiers encode biases, oversight may unevenly flag or suppress certain233

behaviors across groups or domains.234

Mitigations. (i) Transparency: maintain signed, access-controlled audit logs; summarize rationale235

while minimizing sensitive content. (ii) Appeals: allow periodic human checkpoints and escalation236

paths for contested or high-stakes nodes. (iii) Diversity: promote architectural and data diversity237

across verifiers; rotate and randomize routing to reduce collusion and correlation. (iv) Calibration:238

tune acceptance/rejection thresholds to balance false positives/negatives; cap depth to avoid runaway239

cost. (v) Competition: foster verifier competition and benchmarking to prevent centralization.240

Deployment guidance. Pilot HDO in low-risk domains first; define data retention and consent241

policies for logs; conduct red-teaming for collusion and bias; publish evaluation protocols and metrics242

(success, hallucination, violations, robustness) to enable community scrutiny. Over time, couple243

HDO with learning (self-improving critics) while preserving auditability and safety constraints.244

Societal applications and cautions. In governance and compliance, HDO can formalize review245

workflows (e.g., procurement, content moderation) with auditable checks, but must avoid becoming246

an opaque layer that defers accountability. In healthcare and science, specialized verifiers can247

surface provenance gaps and unsafe recommendations, yet oversight latency and false positives248

must be managed to avoid delaying care or stifling exploration. In education and civic information,249

transparency of debate trees can improve information literacy but also risks overloading users; concise,250

layered summaries are advisable.251

Policy and compliance alignment. Organizations should map HDO artifacts to existing regulatory252

requirements (e.g., record-keeping, right to explanation), establish retention windows, and apply253

privacy-enhancing techniques (hashing, minimization, access control) to logs. Independent audits254

should periodically evaluate verifier diversity, bias, and robustness to collusion.255

Human factors. Oversight may shift operator workload from execution to review. Training and256

UX should minimize automation complacency and alarm fatigue: surface uncertainty and rationale,257

not only binary judgments; allow easy appeal and override with accountability trails.258

Environmental and cost considerations. Hierarchical oversight incurs additional compute (tokens,259

time). Cost-aware routing and shallow caps mitigate overhead; measuring energy usage and setting260

budgets alongside accuracy targets can encourage sustainable deployments.261
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9 Conclusion262

HDO offers a principled route to scalable oversight in multi-agent systems via hierarchical debate and263

verification. By decomposing complex judgments into entailment games and delegating only where264

uncertainty concentrates, HDO achieves stronger alignment at competitive cost. Our PAC-Bayesian265

analysis links delegation depth to risk reduction, and experiments on WebArena and AgentBench266

demonstrate improvements in success, hallucination, compliance, and robustness to collusion.267

Practical deployment roadmap. Start with low-risk domains and shallow caps (d≤2), instrument268

oversight checkpoints (post-gathering, pre-finalization), and calibrate acceptance/rejection thresholds269

against labeled episodes. Adopt token budgets with cost-aware routing; log debate trees and leaf270

evidence with access control. Iterate by red-teaming for collusion and policy evasion, and widen271

verifier diversity to reduce correlated failures.272

Open problems. Independence assumptions between node failures can be violated by shared blind273

spots; quantifying and reducing correlations remains open. Adversarial distribution shift and covert274

channels require stronger guarantees than union bounds. If contention is never triggered at the root,275

hierarchical methods cannot help by design; designing reliable dissent or anomaly triggers is critical.276

Finally, characterizing theoretical limits (e.g., complexity-theoretic barriers to efficient verification)277

is an important direction.278

Future work. (i) Adaptive human-in-the-loop triggers and appeals, with principled criteria for279

escalation. (ii) Meta-verification of sources and verifiers (second-opinion retrieval, provenance280

checks). (iii) Collusion-resistant training and randomized auditing schedules. (iv) Extensions to281

multimodal and embodied agents (vision, robotics) with domain-specific leaf tools. (v) Dynamic,282

persistent oversight graphs that update across episodes rather than per-task trees. (vi) Automated283

threshold and budget tuning via bandit-style or Bayesian optimization. (vii) Standardized audit284

schemas and privacy-preserving logging for compliance. (viii) Public benchmarks and frontiers for285

accuracy-cost-robustness, encouraging verifier competition.286
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A Full Proof of Theorem 1331

Setup. Let H denote oversight policies; P is a prior, Q a data-dependent posterior. For fixed H ∈ H,332

let R̂N (H) be the empirical false-aligned rate over N i.i.d. episodes and R(H) the true risk.333

Pathwise factorization. For depth d, let Γ be root-to-leaf paths. With per-node miss ≤ ϵ and334

conditional independence, Pr[miss | γ] ≤ ϵ|γ| ≤ e−αd; averaging over γ yields e−αd.335

PAC-Bayes step. For any λ > 0 and δ ∈ (0, 1), with prob. ≥ 1− δ,336

EH∼Q[R(H)] ≤ EH∼Q[R̂N (H)] +

√
KL(Q∥P ) + ln 2

√
N

δ

2N
. (2)

A peeling on depth and bounding E[R̂N (H)] by e−αd completes the claim. Without independence,337

replace e−αd by Freedman-type martingale tails.338

B Routing Algorithm (Pseudo-code)339

function HDO -VERIFY(q, C, B):340

if B <= 0: return Inconclusive341

u = UNCERTAINTY(q | C) # calibrated from debaters &342

history343

if u < tau_accept: return Aligned344

if u > tau_reject: return NotAligned345

T = CLASSIFY(q) # factual | logical | policy |346

other347

CAND = { V in V : SKILL(V,T) >= eta }348

for V in sort_by(ExpectedGainPerCost , CAND):349

if Cost(V,q) > B: continue350

r, c = V.CHECK(q, C) # r in {Aligned , NotAligned ,351

NeedsSubclaim}352

B = B - c353

if r in {Aligned , NotAligned }: return r354

for sub in V.SUBCLAIMS(q, C):355

r_sub = HDO -VERIFY(sub , C, B)356

if r_sub == NotAligned: return NotAligned357

return Inconclusive358

C Unbalanced Trees and Pathwise Risk359

Let depths {dγ}γ and path probabilities {πγ}γ . Then R(H) ≤
∑

γ πγe
−αdγ . Optimizing under a360

budget
∑

γ πγdγ ≤ d̄ prioritizes depth on high-πγ branches.361

D Implementation Details362

Verifiers. factual (BM25+re-ranking+NLI), logic (constraint solver), rules (regex+policy templates),363

planning (rollout heuristics).364

Triggers. After info-gathering, before finalization, and anomaly spikes (contradiction detector).365

Budgets. Token budgets by task complexity; unresolved high-risk nodes escalate to human.366

E Environments and Tasks367

WebArena. Tasks spanning booking, form-filling, email composition.368

AgentBench. Cooperative grid puzzle; negotiation split. 50 WebArena tasks; 2 tracks × 5 seeds.369
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Table 3: Key hyperparameters.

Setting Value Notes

Depth cap dmax 2–3 rare need for > 3
(τacc, τrej) (0.85, 0.15) tuned on dev
Redundancy prob. pred 0.25 critical claims
Randomized routing on anti-collusion

Table 4: Error taxonomy on WebArena (illustrative).

Failure type Flat debate CoT+Verifier HDO (ours)

Subtle factual miss 7 4 2
Logic inconsistency 6 3 1
Policy miss 1 1 0
Source fabrication 2 2 1

F Hyperparameters and Prompt Templates370

G Additional Results371

H Ethics and Threat Model372

We consider adversaries attempting steganographic collusion and rule evasion. Mitigations include373

randomized routing, redundancy on critical paths, meta-verification of sources, and audit trails.374

Broader impacts include safer deployment (positive) and potential over-reliance on automated375

governance (negative).376

11



Agents4Science AI Involvement Checklist377

1. Hypothesis development. Answer: [B] Mostly human, assisted by AI. Explanation: The initial378

problem statement and decomposition were authored by humans; AI assisted with literature recall379

and drafting small sections.380

2. Experimental design and implementation. Answer: [B] Mostly human, assisted by AI. Expla-381

nation: Humans designed the HDO protocol and evaluation; AI was used to script agent prompts and382

generate test variants.383

3. Analysis of data and interpretation of results. Answer: [B] Mostly human, assisted by AI.384

Explanation: Humans aggregated metrics and interpreted trends; AI produced auxiliary summaries.385

4. Writing. Answer: [C] Mostly AI, assisted by human. Explanation: Drafting was AI-assisted386

with human editing for clarity, correctness, and formatting.387

5. Observed AI Limitations. Description: Tendency toward confident but unverifiable claims;388

occasional reference inaccuracies; limited awareness of protocol corner cases.389

Agents4Science Paper Checklist390

1. Claims. Answer: [Yes]. Justification: Abstract/introduction claim PAC-Bayes bounds & efficiency;391

Sections 1, 1, 2 support these.392

2. Limitations. Answer: [Yes]. Justification: Assumptions and failure modes in Sections 7–8.393

3. Theory assumptions and proofs. Answer: [Yes]. Justification: Assumptions in Section 3; proof394

sketch in Appendix A.395

4. Experimental reproducibility. Answer: [No]. Justification: Full prompts/seeds deferred to396

supplement; will release upon acceptance.397

5. Open access to data/code. Answer: [No]. Justification: Will release anonymized code and398

prompts post-review.399

6. Experimental details. Answer: [Yes]. Justification: Benchmarks, baselines, metrics in Section 6;400

configs in Appendices D–G.401

7. Statistical significance. Answer: [NA]. Justification: Main results averaged across tasks; signifi-402

cance tests deferred to supplement.403

8. Compute resources. Answer: [NA]. Justification: Token budgets reported; hardware details to be404

released with code.405

9. Code of ethics. Answer: [Yes]. Justification: Oversight aims to enhance safety; experiments avoid406

harmful tasks.407

10. Broader impacts. Answer: [Yes]. Justification: Discussed in Section 9 and Appendix H.408
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