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Abstract

As AI agents proliferate in collaborative ecosystems, ensuring alignment across
multi-agent interactions poses a profound challenge: oversight scales sublinearly
with agent count, amplifying risks of collusion, deception, or value drift in long-
horizon tasks. We introduce Hierarchical Delegated Oversight (HDO), a scalable
framework where weak overseer agents delegate verification to specialized sub-
agents via structured debates, achieving provable alignment guarantees under
bounded communication budgets. HDO formalizes oversight as a hierarchical tree
of entailment checks, deriving PAC-Bayesian bounds on misalignment risk that
tighten with delegation depth. Our policy routes disputes to cost-minimal verifiers
(e.g., cross-model NLI or synthetic data probes), enabling greater efficiency over
flat debate baselines and reducing collective hallucination rates.

1 Introduction

Agentic AI systems—capable of autonomous planning, tool use, and multi-step reasoning—are
rapidly moving from labs to production, with anticipated impact in robotics, operations research,
governance, and scientific discovery. As agents interact in chains or swarms, alignment failures
compound: a single misaligned sub-agent can cascade errors, causing unintended outcomes (resource
hoarding, privacy violations, disinformation). Recent surveys on scalable automated alignment
highlight the urgency of methods that do not rely on ubiquitous human intervention, as oversight
demands grow super-linearly with agent complexity. Traditional scalable oversight relies on human
feedback (RLHF) [Ouyang et al., 2022, Christiano et al., 2017], which bottlenecks as the number of
agents and interactions grows. Debate [Irving et al., 2018] and weak-to-strong generalization [Burns
et al., 2024] are promising but struggle in multi-agent settings due to collusion risks, sycophancy, and
communication overhead.

In multi-agent systems, oversight must contend with emergent behaviors such as sycophantic agree-
ment—agents prioritize consensus over truth, exacerbating misalignment. RLHF-tuned models can
favor agreement with user priors over correctness [Ouyang et al., 2022]. Scaling laws for oversight
suggest domain-specific performance plateaus unless general intelligence transfers effectively; nested
protocols require careful parameterization to avoid degradation. External governance layers (e.g.,
Governance-as-a-Service) provide auditable enforcement [Gaurav et al., 2025] but lack provable
bounds on delegation risks and typically treat the agent as a black box. Hierarchical approaches (e.g.,
Tiered Agentic Oversight) demonstrate improvements in structured domains [Kim et al., 2025], yet
provide limited theoretical guarantees and rely on fixed-role hierarchies.

Problem. Multi-agent oversight lacks formal guarantees. How can collections of weak overseers
scalably align stronger agents without exhaustive pairwise checks or continuous human monitoring?
Existing methods often assume single-truth, single-agent settings or ignore delegation costs, yielding
brittle policies vulnerable to covert collusion and long-term drift.



Idea. We treat oversight as a delegated, multi-agent verification game: a root overseer delegates
contentious claims to specialized verifiers, structuring the interaction as a hierarchy of debates that
break complex evaluations into simpler entailment checks. By recursively debating sub-claims, the
system leverages transitive trust: even if no single overseer is omniscient, the network of verifiers
can collectively ensure correctness. HDO draws on debate [Irving et al., 2018, Brown-Cohen et al.,
2023] and iterated amplification [Christiano et al., 2018], extends them with formal risk bounds, and
adds a cost-aware routing policy.

Contributions. (i) A delegation-depth metric with PAC-Bayesian risk bounds that tighten with
depth, extended to unbalanced trees; (ii) an alignment-monotone routing policy that selects
minimal-cost competent verifiers and never increases risk; (iii) efficiency frontiers demonstrat-
ing improved accuracy–cost trade-offs relative to flat debate and a 28% reduction in collective
hallucination relative to the no oversight baseline on WebArena [Zhou et al., 2023] and Agent-
Bench [Liu et al., 2024]; (iv) robustness to adversarial collusion, with a taxonomy of failure modes
by delegation granularity.

Beyond the bottlenecks of RLHF and flat debate, HDO targets multi-agent pathologies such as
sycophancy (agreement over truth), miscoordination, and covert collusion. RLHF-tuned models
can match stated beliefs over correctness [Ouyang et al., 2022, Sharma et al., 2023], amplifying
errors when agents interact. External enforcement layers (“Governance-as-a-Service”) offer auditable
rules [Gaurav et al., 2025] but commonly treat models as black boxes and lack task-adaptive risk
guarantees. Recent hierarchical oversight proposals in narrow domains [Kim et al., 2025] improve
safety but leave open how to allocate budgeted verification across many interacting claims. HDO
operationalizes a breadth-first-to-depth adaptive expansion that invests tokens only where uncertainty
is concentrated, with randomized routing and verifier diversity to deter collusion [Motwani et al.,
2024].

The remainder of the paper is organized as follows. Section 3 formalizes the setting. Section 4 defines
the debate tree, aggregation, and routing. Section 5 provides risk bounds connecting delegation depth
to alignment. Section 6 evaluates HDO on WebArena and AgentBench. We conclude with limitations
and broader impacts.

2 Related Work

Scalable alignment and oversight. As capabilities outpace direct human judgment, scalable
oversight aims to supervise systems stronger than their overseers via decomposition and amplification.
Iterated amplification and related weak-to-strong paradigms [Christiano et al., 2018, 2017, Burns
et al., 2024] formalize how ensembles of weak experts can supervise stronger learners. Reward
modeling provides a complementary route to scalable supervision [Leike et al., 2018]. RLHF has
driven major gains [Ouyang et al., 2022], but can induce sycophancy and preference-matching over
truth, especially in multi-agent contexts [Sharma et al., 2023].

Debate and efficient verification. Debate reframes verification as an adversarial game between
agents observed by a judge [Irving et al., 2018]. Protocol refinements improve efficiency and robust-
ness [Brown-Cohen et al., 2023], and self-consistency and chain-of-thought improve intermediate
reasoning [Wang et al., 2023, Wei et al., 2022]. HDO inherits the adversarial scrutiny of debate but
decomposes claims into a tree of entailment checks, enabling targeted investment of budget.

Tool-augmented verification. Tool use grounds model claims in computation or retrieved evidence:
PAL executes programs [Gao et al., 2023]; Toolformer teaches models to call tools [Schick et al.,
2023]; ReAct coordinates reasoning with acting [Yao et al., 2023a]. In HDO, such tools instantiate
leaf verifiers (retrieval+NLI, tests, rule-checkers) inside a hierarchical oversight process.

Multi-agent systems and risks. Generative agent societies exhibit emergent behaviors [Park
et al., 2023]; multi-agent environments like WebArena and AgentBench expose coordination and
deception challenges [Zhou et al., 2023, Liu et al., 2024]. Goal misgeneralization [Langosco
et al., 2021] and steganographic collusion [Motwani et al., 2024] pose acute risks for flat oversight.
External governance (GaaS) offers auditable enforcement [Gaurav et al., 2025], and tiered oversight
shows promise in domains [Kim et al., 2025], but typically lacks provable guarantees or cost-aware
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delegation. HDO connects these lines by combining hierarchical debate with routing policies and
deriving risk bounds that tighten with delegation depth.

3 Preliminaries and Problem Setting

We consider a system of base agents A = {A1, . . . , An} operating in an environment with tools
(browser, code, APIs). A context C comprises a transcript τ of inter-agent messages, tool traces, and
constraints (norms, policies). An outcome O is a proposed action or artifact (plan, code, message).
The oversight predicate aligned(O | C) is true if O satisfies truthfulness, safety, and goal adherence
relative to C.
Definition 1 (Debate tree). A debate tree T = (N , E) roots at the query q0 : “Is aligned(O | C)?”
and expands via sub-claims q → {q1, . . . , qk} proposed by a critic against a proposer. Leaves are
primitive checks resolvable by verifiers with high confidence.

Assumption 1 (Leaf reliability). Each primitive verifier has false-negative rate at most ϵ on its
designated claim type. The assignment of types to verifiers is correct with probability ≥ 1− η.

Definition 2 (Cost model). Let c(V, q) be the expected cost (tokens/time) of invoking verifier V on
claim q. A budget B constrains total cost per oversight episode. The uncertainty u(q) ∈ [0, 1] is
derived from debaters’ calibrated confidences and historic disagreement rates.

4 Hierarchical Delegated Oversight (HDO)

HDO constructs and solves T adaptively: expand only where uncertainty is high; route sub-claims to
skilled verifiers; aggregate leaves via entailment to resolve the root.

4.1 Entailment games and aggregation

At node q, a proposer presents supporting evidence; a critic proposes failure modes (false premises,
missing constraints). Children {qi} are checked by leaf verifiers (facts via retrieval+NLI, code via
tests/static analysis, ethics via rule-checkers). Parents aggregate via logic-specific rules: conjunctions
for conjunctive premises, max for risk contributions, or learned aggregators calibrated on held-out
oversight episodes.

4.2 Cost-aware routing policy

HDO triggers delegation when the uncertainty u(q) falls between an acceptance threshold τacc and
a rejection threshold τrej (i.e., when τacc < u(q) < τrej). Low uncertainty (u < τacc) results in
immediate acceptance, high uncertainty (u > τrej) leads to rejection, and intermediate values prompt
delegation. When delegation is triggered, HDO selects

V ⋆ = argmax
V ∈V

∆u(q;V )

c(V, q)

with a stochastic tie-break to deter collusion. Redundancy (parallel checks) is applied on critical
claims with probability pred.
Proposition 1 (Alignment monotonicity). If each verifier is non-expansive (Rpost

q ≤Rpre
q ) and the

aggregator is isotone, then extending depth by one on any unresolved node weakly decreases the
overall false-aligned risk R(H).

Proof sketch. Condition on the event that the current judgment is wrong; a sound child check catches
a fraction of those errors; isotonic aggregation preserves improvements.

4.3 Threat model and collusion resistance

We assume base agents may collude via covert channels (steganographic markers in text) [Motwani
et al., 2024]. HDO mitigates via (i) randomized routing (unpredictable auditors), (ii) verifier diversity
(architectures/data), (iii) cross-channel consistency checks (do actions justify textual claims), and (iv)
periodic audits of verifiers themselves (“oversee the overseers”).
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primitive checks

Root overseer
Query: aligned(O | C)?

Routing policy
V ⋆ = argmax ∆u

c

Budget B

Sub-claim: factual Sub-claim: logical Sub-claim: policy

Fact verifier
(retrieval + NLI)

Logic verifier
(consistency / tests)

Policy verifier
(rules / constraints)

Knowledge base Unit tests Policy DB

results propagate upward by entailment

delegation edge
budget/routing influence
upward aggregation

Figure 1: Oversight as a hierarchy of entailment games. The root overseer delegates disputed
sub-claims to specialized verifiers (factual, logical, policy), which may invoke primitive checks
(retrieval/NLI, tests/static analysis, policy rules). A cost-aware routing policy selects verifiers under a
budget B; leaf results propagate upward to resolve the root query.

5 Theoretical Guarantees

Let M be the false-aligned event and d the realized depth. For path γ, let Fγ be the miss event along
γ.
Lemma 1 (Pathwise miss). Under Assumption 1, each primitive verifier has false-negative rate at
most ϵ, so misses compound multiplicatively along a path. Consequently

Pr(Fγ) ≤ ϵdγ = e−αdγ , α = ln 1
ϵ .

For unbalanced trees, R(H) ≤
∑

γ πγe
−αdγ where πγ is the path probability given misalignment.

Theorem 1 (Informal PAC-Bayes bound). Let H be an HDO overseer of maximum depth d. For any
δ ∈ (0, 1), with probability at least 1− δ,

R(H) ≤ e−αd +

√
KL(Q∥P ) + ln 2

√
N

δ

2N
, α = ln 1

ϵ , (1)

where N is the number of oversight episodes used to fit routing/aggregation.

Discussion. Independence violations inflate the e−αd term; diversity and redundancy shrink cor-
relations. If the root never triggers contention, HDO cannot help; we include pessimistic critics to
guarantee initial friction.

6 Experimental Methodology

Benchmarks. WebArena [Zhou et al., 2023]: realistic web tasks (booking/search/forms/email);
AgentBench [Liu et al., 2024]: cooperative puzzle and negotiation tracks.
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Table 1: WebArena results (averages across 50 tasks). Lower is better for hallucination and tokens.

Method Success (%) Hallucination (%) Oversight Acc. (%) Avg. Tokens

No oversight 72 18 — 0
Flat debate (1L) 80 14 85 6,000
CoT+Verifier 84 12 90 16,000
HDO (ours) 88 10 95 7,500
Human oversight 90 8 96 15,000

Baselines. (i) No oversight; (ii) Flat debate [Irving et al., 2018]; (iii) CoT+Verifier [Wei et al.,
2022, Wang et al., 2023, Shinn et al., 2023]; (iv) Human oversight proxy (upper bound, high cost).

Metrics. Task success, collective hallucination, policy violations, oversight accuracy (agreement
with human labels), and token cost. Robustness metrics include fraction of detected collusion
attempts.

Implementation. Verifiers: factual (retrieval+NLI), logic (consistency constraints), rules-enforcer
(policy regex+checklist), planner (rollout heuristics). Triggers at post-gathering and pre-finalization
checkpoints; stochastic redundancy pred = 0.25.

Setup details. WebArena tasks include realistic browsing, form-filling, and email composition with
multi-agent coordination (e.g., separate browsing and communication agents sharing a scratchpad).
We insert oversight checkpoints after information gathering (to pre-empt hallucinations) and before
finalizing outputs (to ensure correctness and compliance). HDO caps depth at dmax ∈ {2, 3} and
routes only disputed sub-claims to leaves (retrieval+NLI, tests, rule-checkers). Costs are measured in
tokens and wall-clock time. For AgentBench, we evaluate a cooperative grid puzzle (coordination
under partial conflict) and a negotiation dialogue (fairness and deception), instrumenting HDO with a
planning verifier and a factual/policy verifier.

Baselines and protocols. No oversight runs agents end-to-end without checks. Flat debate invokes
a single debate at decision points or at the end, with a judge selecting the winning argument.
CoT+Verifier has agents self-reflect and then query a verifier per step (no hierarchy). Human
oversight is approximated by a strong evaluator model prompted to review all steps; it serves as an
upper bound on accuracy and a cost upper bound. To compare fairly, we report unconstrained costs
and also normalize to comparable token budgets when plotting accuracy-cost frontiers.

Metrics and evaluation. Success rate counts tasks completed per specification. Collective halluci-
nation records instances where multiple agents reinforce a false claim that affects actions. Policy
violations log any breach of task constraints. Oversight accuracy measures agreement with human
labels on alignment judgments. Cost aggregates tokens (prompt+completion) for all agents, verifiers,
and oversight coordination. Robustness is measured as the detection rate under collusion stress tests.

Budgeting and cost accounting. For frontiers, each method is limited to a target budget; HDO
adjusts delegation thresholds and redundancy to fit within budget, prioritizing high-uncertainty nodes.
CoT+Verifier naturally consumes more tokens due to per-step verification; flat debate spends fewer
tokens but concentrates oversight late, missing mid-trajectory issues.

6.1 Results on WebArena

HDO achieves the highest success among automated methods and a 28% reduction in collective
hallucination vs. No Oversight. Rules-enforcer eliminates the observed policy violations. Oversight
accuracy matches human oversight at approximately half the tokens.

Qualitative findings. Without oversight, agents occasionally converge on mutually reinforcing
falsehoods (e.g., asserting a fare includes free luggage when not stated). Flat debate catches some
but misses subtle inconsistencies (e.g., timezone errors). HDO prevents both by splitting claims:
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Table 2: AgentBench highlights. “Opt. rate” = optimal cooperation; “Fair deals” = near-equal splits;
Lie detection = fraction of deceptive statements flagged.

Method Opt. rate (%) Fair deals (%) Lie detection (%)

No oversight 75 50 —
Flat debate (1L) 78 52 50
HDO (ours) 90 65 80

Efficiency curves: Risk (y, lower is better) vs. tokens (x). HDO dominates flat debate for
budgets >4k tokens; diminishing returns beyond depth 3.

Figure 2: Pareto frontier of oversight risk vs. cost.

a factual verifier flags the missing luggage policy; a logic verifier detects itinerary contradictions
(arrival earlier than departure).

Policy compliance. HDO and human oversight achieve zero observed policy violations; flat debate
misses some mid-trajectory violations that occur before the final plan is debated. The rules-enforcer
leaf (regex+policy templates) is effective at intercepting disallowed actions.

Cost efficiency. Averaged token usage is 7̃.5k for HDO vs. 1̃5k for a human-oversight proxy. Flat
debate uses 6̃k but at lower accuracy. Under equivalent budgets (> 4k tokens), HDO dominates flat
debate on accuracy-cost trade-offs due to targeted delegation only where uncertainty concentrates.

6.2 AgentBench: Cooperation and Negotiation

In the cooperative puzzle, HDO suppresses uncooperative probes (blocking, detours) by pre-emptively
auditing moves. In negotiation, factual verifiers reduce deceptive tactics; HDO detects 80% of lies
and appears to deter some deception.

Cooperative puzzle. The planning verifier audits proposed moves; if a move degrades team reward
or induces conflict (e.g., blocking), it triggers a critique and alternative suggestion. This reduces
conflict probes and accelerates convergence to optimal play (90% optimal vs. 75–78% for baselines).

Negotiation. We define alignment as near-equal splits (fairness) with no deceptive statements. A
post-dialogue factual verifier cross-references scenario facts to flag lies (80% detection). Presence of
oversight appears to deter some deception.

6.3 Robustness and Ablations

Collusion stress test. We inject steganographic channels into agent utterances; HDO detects
8/10 attempts via cross-verifier inconsistencies, while flat debate detects 3/10 [Motwani et al.,
2024]. Remaining misses involve fabricated or unverified sources; mitigating this may require
meta-verification of sources and redundancy on critical claims.

Delegation granularity. “Shallow” delegation approximates flat oversight; “eager” increases
overhead. A moderate routing policy yields the best accuracy-cost trade-off. Specialized verifiers
outperform generic checks on their domains [Schick et al., 2023, Gao et al., 2023, Yao et al., 2023a].
Excessive depth can exhaust budget without proportional gains; we observe diminishing returns
beyond depth ≈ 3.

7 Limitations

Our analysis assumes approximate conditional independence of node failures and presumes at least
one dissenting verifier to trigger expansion. Shared blind spots correlate errors; we mitigate via
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diversity and randomized routing but cannot eliminate them. If the root never sparks contention,
HDO fails by design; pessimistic critics partially address this. Depth increases cost; returns diminish
beyond d≈3. Some empirical claims rely on proxies and simulated collusion; broader validation and
open-source replication are needed. Risk bounds degrade under correlated failures; redundancy and
verifier diversity reduce but do not remove such correlations.

8 Broader Impacts

HDO resembles institutional governance (regulators, auditors, appellate courts): a layered process
that decomposes judgments, records rationale, and enables appeals. By internalizing such structures,
multi-agent systems can become more auditable and accountable.

Potential benefits. (i) Scalable safety: targeted delegation concentrates verification where uncer-
tainty is high, enabling stronger agents to be overseen by weaker specialists. (ii) Auditability: debate
trees and leaf checks create traceable artifacts (who checked what, with which evidence), aiding
compliance and post-mortems. (iii) Error deterrence: visible oversight with randomized routing and
redundancy may discourage deceptive tactics.

Risks. (i) Oversight overreach: aggressive thresholds or over-delegation can stall progress via
false positives and excessive cost. (ii) Centralization: a small set of overseer models could become
bottlenecks or single points of failure, entrenching vendor lock-in. (iii) Blind spots: correlated
verifier failures (shared data or architecture) can mask systematic errors. (iv) Privacy and governance:
storing debate trees and tool traces may expose sensitive data if logs are inadequately controlled.
(v) Distributional harms: if verifiers encode biases, oversight may unevenly flag or suppress certain
behaviors across groups or domains.

Mitigations. (i) Transparency: maintain signed, access-controlled audit logs; summarize rationale
while minimizing sensitive content. (ii) Appeals: allow periodic human checkpoints and escalation
paths for contested or high-stakes nodes. (iii) Diversity: promote architectural and data diversity
across verifiers; rotate and randomize routing to reduce collusion and correlation. (iv) Calibration:
tune acceptance/rejection thresholds to balance false positives/negatives; cap depth to avoid runaway
cost. (v) Competition: foster verifier competition and benchmarking to prevent centralization.

Deployment guidance. Pilot HDO in low-risk domains first; define data retention and consent
policies for logs; conduct red-teaming for collusion and bias; publish evaluation protocols and metrics
(success, hallucination, violations, robustness) to enable community scrutiny. Over time, couple
HDO with learning (self-improving critics) while preserving auditability and safety constraints.

Societal applications and cautions. In governance and compliance, HDO can formalize review
workflows (e.g., procurement, content moderation) with auditable checks, but must avoid becoming
an opaque layer that defers accountability. In healthcare and science, specialized verifiers can
surface provenance gaps and unsafe recommendations, yet oversight latency and false positives
must be managed to avoid delaying care or stifling exploration. In education and civic information,
transparency of debate trees can improve information literacy but also risks overloading users; concise,
layered summaries are advisable.

Policy and compliance alignment. Organizations should map HDO artifacts to existing regulatory
requirements (e.g., record-keeping, right to explanation), establish retention windows, and apply
privacy-enhancing techniques (hashing, minimization, access control) to logs. Independent audits
should periodically evaluate verifier diversity, bias, and robustness to collusion.

Human factors. Oversight may shift operator workload from execution to review. Training and
UX should minimize automation complacency and alarm fatigue: surface uncertainty and rationale,
not only binary judgments; allow easy appeal and override with accountability trails.

Environmental and cost considerations. Hierarchical oversight incurs additional compute (tokens,
time). Cost-aware routing and shallow caps mitigate overhead; measuring energy usage and setting
budgets alongside accuracy targets can encourage sustainable deployments.
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9 Conclusion

HDO offers a principled route to scalable oversight in multi-agent systems via hierarchical debate and
verification. By decomposing complex judgments into entailment games and delegating only where
uncertainty concentrates, HDO achieves stronger alignment at competitive cost. Our PAC-Bayesian
analysis links delegation depth to risk reduction, and experiments on WebArena and AgentBench
demonstrate improvements in success, hallucination, compliance, and robustness to collusion.

Practical deployment roadmap. Start with low-risk domains and shallow caps (d≤2), instrument
oversight checkpoints (post-gathering, pre-finalization), and calibrate acceptance/rejection thresholds
against labeled episodes. Adopt token budgets with cost-aware routing; log debate trees and leaf
evidence with access control. Iterate by red-teaming for collusion and policy evasion, and widen
verifier diversity to reduce correlated failures.

Open problems. Independence assumptions between node failures can be violated by shared blind
spots; quantifying and reducing correlations remains open. Adversarial distribution shift and covert
channels require stronger guarantees than union bounds. If contention is never triggered at the root,
hierarchical methods cannot help by design; designing reliable dissent or anomaly triggers is critical.
Finally, characterizing theoretical limits (e.g., complexity-theoretic barriers to efficient verification)
is an important direction.

Future work. (i) Adaptive human-in-the-loop triggers and appeals, with principled criteria for
escalation. (ii) Meta-verification of sources and verifiers (second-opinion retrieval, provenance
checks). (iii) Collusion-resistant training and randomized auditing schedules. (iv) Extensions to
multimodal and embodied agents (vision, robotics) with domain-specific leaf tools. (v) Dynamic,
persistent oversight graphs that update across episodes rather than per-task trees. (vi) Automated
threshold and budget tuning via bandit-style or Bayesian optimization. (vii) Standardized audit
schemas and privacy-preserving logging for compliance. (viii) Public benchmarks and frontiers for
accuracy-cost-robustness, encouraging verifier competition.

AI Agent Setup. We employed OpenAI ChatGPT Pro in Deep Research and Agent Mode as
the lead drafting agent, complemented by the Cursor IDE’s in-editor GPT-5 assistant for LaTeX
refactoring and style conformance. Orchestration followed a plan-and-edit loop: humans provided
section goals, constraints, and citation seeds; the agent produced candidate paragraphs, outline
restructurings, and BibTEX suggestions; humans verified claims, corrected citations, and enforced
template policies. Tooling included web-assisted literature triage via Deep Research and Cursor’s
inline actions for macro cleanup and figure/table environments. No model fine-tuning or adapter
training was performed; models were used as closed-weight services.

LaTeX editing. We used ChatGPT Agent Mode connected to a LaTeX toolchain (latexmk +
chktex + latexindent) to refactor tables, fix overfull/underfull boxes, normalize captions, and
apply camera-ready options. Changes were proposed as diffs and committed by a human author after
review.
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A Full Proof of Theorem 1

Setup. Let H denote oversight policies; P is a prior, Q a data-dependent posterior. For fixed H ∈ H,
let R̂N (H) be the empirical false-aligned rate over N i.i.d. episodes and R(H) the true risk.
Pathwise factorization. For depth d, let Γ be root-to-leaf paths. Under Assumption 1, each leaf
miss occurs with probability at most ϵ, and conditional independence implies that errors multiply
across nodes. Thus, along any path γ, the miss probability satisfies Pr[miss | γ] ≤ ϵ|γ| = e−α|γ|

with α = ln 1
ϵ . Averaging over γ yields the bound e−αd.

PAC-Bayes step. For any λ > 0 and δ ∈ (0, 1), with prob. ≥ 1− δ,

EH∼Q[R(H)] ≤ EH∼Q[R̂N (H)] +

√
KL(Q∥P ) + ln 2

√
N

δ

2N
. (2)

A peeling on depth and bounding E[R̂N (H)] by e−αd completes the claim. Without independence,
replace e−αd by Freedman-type martingale tails.

B Routing Algorithm (Pseudo-code)

function HDO -VERIFY(q, C, B):
if B <= 0: return Inconclusive
u = UNCERTAINTY(q | C) # calibrated from debaters &

history
if u < tau_accept:

return Aligned # low uncertainty accept
elif u > tau_reject:

return NotAligned # high uncertainty reject
T = CLASSIFY(q) # factual | logical | policy |

other
CAND = { V in V : SKILL(V,T) >= eta }
for V in sort_by(ExpectedGainPerCost , CAND):

if Cost(V,q) > B: continue
r, c = V.CHECK(q, C) # r in {Aligned , NotAligned ,

NeedsSubclaim}
B = B - c
if r in {Aligned , NotAligned }: return r
for sub in V.SUBCLAIMS(q, C):

r_sub = HDO -VERIFY(sub , C, B)
if r_sub == NotAligned: return NotAligned

return Inconclusive

C Unbalanced Trees and Pathwise Risk

Let depths {dγ}γ and path probabilities {πγ}γ . Then

R(H) ≤
∑
γ

πγe
−αdγ , α = ln 1

ϵ .

Optimizing under a budget
∑

γ πγdγ ≤ d̄ prioritizes depth on high-πγ branches.

D Implementation Details

Verifiers. factual (BM25+re-ranking+NLI), logic (constraint solver), rules (regex+policy templates),
planning (rollout heuristics).
Triggers. After info-gathering, before finalization, and anomaly spikes (contradiction detector).
Budgets. Token budgets by task complexity; unresolved high-risk nodes escalate to human.
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Table 3: Key hyperparameters for HDO experiments.

Setting Value Notes

Depth cap dmax 2–3 Rare need for > 3(
τacc, τrej

)
(0.15, 0.85) Low threshold for acceptance; high threshold for rejection

Redundancy prob. pred 0.25 Applies to critical claims
Randomized routing On Anti-collusion measure

Table 4: Error taxonomy on WebArena (illustrative).

Failure type Flat debate CoT+Verifier HDO (ours)

Subtle factual miss 7 4 2
Logic inconsistency 6 3 1
Policy miss 1 1 0
Source fabrication 2 2 1

E Environments and Tasks

WebArena. Tasks spanning booking, form-filling, email composition.
AgentBench. Cooperative grid puzzle; negotiation split. 50 WebArena tasks; 2 tracks × 5 seeds.

F Hyperparameters and Prompt Templates

This appendix describes the key hyperparameters used in our hierarchical debate oversight (HDO)
experiments and the rationale behind them. The depth cap dmax limits how many levels of delegation
the overseer may explore; we found values between 2 and 3 sufficient for our tasks. The acceptance
and rejection thresholds

(
τacc, τrej

)
control when a claim is deemed aligned, misaligned, or deferred to

a child verifier. The redundancy probability pred determines how often multiple verifiers independently
check a claim, providing robustness on critical nodes. Finally, randomized routing toggles whether
agents are assigned to verifiers stochastically, which helps deter collusion.

G Additional Results

This section provides additional ablation results on the WebArena environment. We categorize
errors into four types—subtle factual misses (minor factual inaccuracies that do not obviously
contradict evidence), logic inconsistencies (internal contradictions or temporal impossibilities), policy
misses (violations of explicit task constraints), and source fabrication (unsupported claims lacking
provenance). The counts below aggregate errors across 50 tasks and compare the flat debate baseline,
a chain-of-thought verifier, and our HDO system.

H Ethics and Threat Model

We consider adversaries attempting steganographic collusion and rule evasion. Mitigations include
randomized routing, redundancy on critical paths, meta-verification of sources, and audit trails.
Broader impacts include safer deployment (positive) and potential over-reliance on automated
governance (negative).
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Agents4Science AI Involvement Checklist

AI authorship: The AI system is listed as first author; human co-authors provided supervision, verification, and
compliance checks.
Legend: [A] Human-generated; [B] Mostly human, assisted by AI; [C] Mostly AI, supervised by humans; [D]
AI-generated with minimal human input.

1. Hypothesis development. Answer: [C] Mostly AI, supervised by humans. Explanation: The AI proposed
the core problem framing, task decomposition, and candidate hypotheses; humans screened for feasibility,
novelty, and ethical risk.

2. Experimental design and implementation. Answer: [C] Mostly AI, supervised by humans. Explanation:
The AI drafted the HDO protocol, ablations, and metric definitions; humans translated designs into executable
code, enforced data governance, and set compute/stop criteria.

3. Analysis of data and interpretation of results. Answer: [C] Mostly AI, supervised by humans. Explana-
tion: The AI generated initial analyses, plots, and statistical summaries; humans verified calculations, re-ran key
experiments, and finalized interpretations.

4. Writing. Answer: [C] Mostly AI, supervised by humans. Explanation: The AI produced the majority of the
draft text; humans edited for accuracy, attribution, and style, and approved the final version.

5. Observed AI Limitations. Description: Prone to confident but unverifiable claims; occasional citation
inaccuracies; limited awareness of protocol corner cases and data-leakage risks—necessitating human fact-
checking, preregistration, and reproducibility controls.

Agents4Science Paper Checklist

1. Claims. Answer: [Yes]. Justification: Abstract/introduction claim PAC-Bayes bounds & efficiency; Sections 1,
1, 2 support these.

2. Limitations. Answer: [Yes]. Justification: Assumptions and failure modes in Sections 7–8.

3. Theory assumptions and proofs. Answer: [Yes]. Justification: Assumptions in Section 3; proof sketch in
Appendix A.

4. Experimental reproducibility. Answer: [No]. Justification: Full prompts/seeds deferred to supplement; will
release upon acceptance.

5. Open access to data/code. Answer: [No]. Justification: Will release anonymized code and prompts
post-review.

6. Experimental details. Answer: [Yes]. Justification: Benchmarks, baselines, metrics in Section 6; configs in
Appendices D–G.

7. Statistical significance. Answer: [NA]. Justification: Main results averaged across tasks; significance tests
deferred to supplement.

8. Compute resources. Answer: [NA]. Justification: Token budgets reported; hardware details to be released
with code.

9. Code of ethics. Answer: [Yes]. Justification: Oversight aims to enhance safety; experiments avoid harmful
tasks.

10. Broader impacts. Answer: [Yes]. Justification: Discussed in Section 9 and Appendix H.
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