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1 Image-based single-cell profiling1

High-throughput assays enable quantifying cellular responses at a large scale. Image-based assays2

are among the most accessible and inexpensive technologies for this, and offer single-cell resolution.3

In these assays, cell populations are perturbed with compounds or genetic perturbations, stained, and4

then imaged. By extracting large amounts of quantitative morphological data from these microscopy5

images, a profile can be created that describes that cell population’s phenotype. The profiles of6

different cell populations can be compared to predict previously unrecognized cell states induced by7

different experimental perturbations of interest. This method, called image-based cell profiling, is8

a powerful tool that can be used for drug discovery, functional genomics, and disease phenotyping9

[1]. Among other applications, image-based profiling has already been used to find drugs for SARS-10

CoV-2 [2], work towards label-free leukemia detection [3], and predict the impacts of particular gene11

mutations [4].12

2 Introduction13

Image-based cell profiling shows great potential, but many steps in its pipeline can still be improved14

[5]. One of the main challenges is to create a profile that summarizes the many features of a cell15

population while capturing their natural variations and subpopulations. Cell populations are known16

to be heterogeneous [6], [7] and recent studies have yielded many insights into its mechanisms and17

importance, particularly in cancer cells [8]–[11]. Capturing that heterogeneity could improve a18

profile’s information content, and thus utility in various applications.19

20

Nevertheless, so-called population-averaged profiling, where all single-cell features are averaged21

using either the mean or the median, has remained the most commonly-used approach in the field22

of image-based profiling, regardless of the type of features or the profile’s post-processing [12].23

Average profiling is a simple way of summarizing a cell population (henceforth referred to as a24

sample) into a vector (a sample’s profile) with only one value per measured feature. It decreases the25

data size (as there are typically thousands of cells per well, hundreds of wells per plate, and multiple26

plates per experiment) and makes downstream analysis simpler.27

28

However, by using average profiling, information on cell subpopulations is lost. This can result in29

identical average profiles despite cell populations having various subpopulation configurations. In30

that case, two profiles can be indistinguishable even though one is created from a sample that contains31

multiple subpopulations while the other sample does not contain any of those subpopulations. Addi-32

tionally, not taking subpopulations into account can lead to a quantitatively incorrect interpretation.33

For example, two cell populations can show correlations among certain features when averaged but34

show completely different relations when compared after grouping the cells, i.e., Simpson’s paradox35

[13]. Finally, by averaging a sample, the assumption that the joint distribution of the measured36

features is unimodal can lead to artifacts if violated.37
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3 Previous research38

Several methods have been proposed to capture the heterogeneity of cell populations into their39

corresponding profiles. The most straightforward solution is to incorporate the cell population’s40

dispersion for each feature and concatenate these values with the average profile. However, this41

approach comes with its own limitations and only leads to minor improvements over average profiling42

alone [14], [15]. A different approach involves first clustering cells either in an unsupervised or43

supervised way and then calculating the profiles based on their subpopulations [16], [17]. These44

methods capture more information about subpopulations rather than only incorporating their45

dispersions. However, they can lead to incomparable profiles across samples due to a varying number46

of subpopulations and many cell phenotypes are better described with a continuous rather than47

a discrete scale [12]. Moreover, these methods also did not significantly improve upon average48

profiling. In fact, a comparison study of profiling methods found that population means performed49

just as well as those that took advantage of cell heterogeneity [15].50

51

Recently, however, the performance of average profiling was beaten by fusing features’ averages,52

dispersion, and covariances [12]. This method provided 20% better performance in predicting a53

compound’s mechanism of action and a gene’s pathway, showing that capturing cell population54

heterogeneity can improve profile strength. However, this method has two major limitations. First, it55

only captures the first and second order moments of the data. Second, because it produces a similarity56

matrix rather than an embedding, it requires recomputing the pairwise similarities among all profiles57

each time a new profile is included in the dataset. Thus, a more accessible method for capturing58

single-cell heterogeneity is required to increase profile strength in practice. We propose a novel59

learning-based method that addresses both these limitations and automatically finds an effective way60

to aggregate single-cell data to improve the information content of sample profiles.61

4 Method62

We propose a weakly-supervised contrastive learning approach that uses information naturally63

available in profiling experiments. Specifically, perturbation ids are used as labels for learning a64

latent feature space. In this feature space, profiles of replicates of the same perturbation should be65

close to each other and different perturbations far away. This type of labeling frames the issue as a66

multiple-instance learning problem [18], which assumes that the replicate wells consist of cells with67

similar feature distributions and that different compounds produce populations with different feature68

distributions. Both of these are approximations of reality, but could potentially produce a feature69

embedding that captures biologically important variations in morphology.70

71

The data is considered to be a collection of sets of cells, where each sample corresponds to one set72

(using the mathematical definition of “set”). A function that aggregates cells from such a sample73

into a profile requires a few properties. First, the function should be able to handle arbitrarily sized74

samples as an input. Second, because cells within a sample by definition have no order, the function75

should be permutation invariant. There are a few methods that have been developed for analyzing76

this type of data [19], [20], but a general formulation for solving this type of problem is known77

as Deep Sets [21]. Zaheer et al. [21] show that a universal approximator on sets has a fixed form,78

which provides a backbone for building neural networks to process them. In this study, the Deep Sets79

formulation is used to learn the best way of aggregating single-cell feature data into a profile that80

allows for better prediction of a compound’s mechanism of action compared to averaged profiles.81

This is achieved by applying weakly-supervised contrastive learning in a multiple instance learning82

setting.83

5 Results84

We tested this method on the cpg0000 dataset [22], from the JUMP consortium [23],85

available from the Cell Painting Gallery on the Registry of Open Data on AWS86

(https://registry.opendata.aws/cellpainting-gallery/). This dataset consists of 90 different compound87

perturbations with 4 replicates per plate. On this dataset, our proposed model provides a more88

accessible and better performing method for aggregating single-cell feature data than previously89
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published strategies and the average profiling baseline. Based on an interpretability analysis, it is90

likely that the model achieves this by performing some form of quality control by filtering out noisy91

cells and prioritizing less noisy cells. Remarkably, the model could also mitigate batch effects, even92

though this was not part of the training objective. This shows that the learned latent representation of93

the model prioritizes biological signal over technical variance, both on the cell level and the plate94

level. The model cannot be directly transferred to unseen batch data; however, it can readily be used95

by training on new data and inferring the improved profiles directly after because the labels required96

for training are naturally available in cell profiling experiments.97

6 Future work98

Our current and future work focuses on validating these conclusions on a much larger dataset which99

consists of 1.258 different compound perturbations, namely the LINCS dataset [24]. If successful,100

the method could improve the effectiveness of future cell profiling studies with the investment of101

additional computation time.102
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