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ABSTRACT

The targeted transferability of adversarial samples enables attackers to ex-
ploit black-box models in the real world. Optimization attacks are the
most popular means of producing such transferable samples. This is be-
cause these samples have high levels of transferability in some domains.
However, recent research has shown that samples from these attacks do not
transfer when applied to Automatic Speech Recognition systems (ASRs).
In this paper, we study this phenomenon, perform exhaustive experiments,
and identify the factors that are preventing transferability in ASRs. To do
so, we perform an ablation study on each stage of the ASR pipeline. We dis-
cover and quantify six factors (i.e., input type, MFCC, RNN, output type,
and vocabulary and sequence sizes) that impact the targeted transferabil-
ity of optimization attacks against ASRs. Our findings can be leveraged to
design ASRs that are more robust to other transferable attack types (e.g.,
signal processing attacks), or to modify architectures in other domains to
reduce their vulnerability to targeted transferability.

1 INTRODUCTION

It is hard to understate the pervasiveness of ASRs in security-critical systems. These in-
clude banking (Amazonl 2021)), surveillance (Froomkin) |2015)), online retail (Vigderman),
2021)), and home security (Bharadwaj, [2019). However, ASRs are vulnerable to specially
crafted adversarial samples, that force them to produce malicious outputs. In the research
community, the most popular class of algorithms for this purpose are the optimization (or
gradient-based) attacks (Abdullah et al., [2021b)). This is largely because these attacks ex-
hibit targeted transferability in some domains. Specifically, samples crafted for a local model
(surrogate) can force a different black-box model (target) to produce the attacker chosen
output. This is the case even if the surrogate and target use different architectures, training
data, hyper-parameters, etc. Therefore, the transferability property has enabled attackers
to exploit security-critical applications which include facial recognition systems (Shan et al.,
2020), image APIs (Brown et al.l 2017} |Liu et al.l 2016]), authentication systems (Chen et al.)
2019), and malware detectors (Hu & Tan| |2017; Kreuk et al.,|2018b; |Grosse et al., 2017)). In
short, target transferability makes optimization attacks effective against several real-world
systems.

However, recent work has uncovered that these attacks do not exhibit target transferability
between ASRs, even when the ASRs are trained on identical setups (i.e., same hyper-
parameters, architecture, random seed, training data) (Abdullah et al., 2021b)). Therefore,
these attacks can not be used against black-box ASRs, casting doubt on the usefulness of
the entire class of optimization attacks in the audio domain. However, the reasons for this
failure is not understood.

In this work, we study this phenomenon to uncover the factors that prevent the transfer-
ability of optimization attacks between ASRs. To ensure we can uncover each one of these
factors, we perform an exhaustive ablation study on the entire ASR pipeline and observe
the impact of the different components on the transferability rate. We test thousands of
adversarial samples across multiple models and characterize six factors that impact the
transferability rate. In doing so, we make the following contributions:



1. We identify six previously unknown factors that impact target transferability. These
include the input type, Mel Frequency Cepstral Coefficient (MFCC), the Recurrent
Neural Network (RNN), output type, and the vocabulary and sequence sizes. These
factors explain the near 0% transferability rate seen in prior works.

2. We highlight the relationship between accuracy and adversarial robustness in ASRs.
The five factors that improve ASR robustness also improve accuracy.

3. Our findings explain why one of the most popular classes of attacks, across the ad-
versarial machine learning space, fails in the audio domain. These can be leveraged
to strengthen models from other domains (e.g., images), that have traditionally
been vulnerable to optimization attacks.

We begin our study by listing all the factors from the existing literature that are known to
hinder transferability (Section . Even when controlling for these factors, transferability
rates in ASRs still do not achieve the near 100% observed in the image models (Section.
This suggests the existence of additional factors limiting transferability. We list the addi-
tional potential factors (Section , describe our design choices (Section , and through
a series of ablation experiments, we systematically quantify the impact of each factor on
transferability (Section. Based on our findings, we discuss several takeaways (Section,
present related work (Section @, and summarize our findings (Section @

2 FACTORS

2.1 KNOWN FACTORS FROM EXISTING LITERATURE

Before delving into ASRs, it is first important to review the existing literature on trans-
ferability. While doing so, we identified 11 factors that are already known to limit transfer-
ability of optimization attacks:

Smoothness of gradients (Demontis et al., |2019; |Zhou et al., 2018; Wu et al., |2018)
Attack type (Kurakin et al. |2016a; Dong et al., 2018; Liu et al., 2016)

Number of attack iterations (Dong et al., 2018)

Number of output labels

Spectral makeup of the perturbations (Sharma et al., |2019; |Guo et al., [2018))
Model architecture

Model accuracy

Model complexity (Demontis et al., 2019; Wu et al.| [2018; [Wu & Zhul, [2020])
Model agreement (Tramer et al., 2017)

Confidence of the adversarial sample (Abdullah et al. [2021D)

11. Asymmetry (Wu et al., 2018 [Wu & Zhul 2020)
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Unfortunately, outside of a single example (Abdullah et all [2021b]), the primary focus of
most of these works has been image classification models. As a consequence, even when
controlling for these factors, we observed that transferability between ASRs remains low
(Section [4.1)). This suggests the existence of unknown factors limiting transferability.

2.2 ASR PIPELINE

To identify these unknown factors, we first provide a brief overview of the different com-
ponents that make up the ASR pipeline (Figure [1)). To that end, we consider the most
commonly attacked ASR pipeline in the research community (Abdullah et al. [2021D).

The first stage of an ASR splits the input audio into overlapping frames (Figure[1](i)). Next,
a signal processing algorithm, (e.g., the MFCC (Lin & Abdulla) [2015)) extracts a feature
vector from each of the overlapping frames (Figure[1fii)). Next, the neural network (Figure
(iii)) assigns a single character label to each feature vector, resulting in a character list (e.g.,
“hheellllo bbbboooob”) (Figure iv)). These are then aggregated into a single word (e.g.,
“hello”), which is then combined with other words into a final sequence (e.g. “hello bob”)

(Figure [1v)).
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Figure 1: The typical ASR pipeline used in the adversarial research community. We can see
the potential factors (a-f) and their locations at different stages (i-v) of the pipeline. We
will study each of the impact of each potential factor on transferability.

2.3 ADDITIONAL POTENTIAL FACTORS
Having described the ASR pipeline, we can now list the components that might potentially
impact transferability. We will later experimentally investigate their impact during ablation

study. These potential factors include:

2.3.1 INnpuT TYPE:

Given previous findings (Naseer et al.| [2019)), we hypothesize that the model’s input type
can impact transferability. For example, audio inputs are time-varying and one-dimensional.
They do not contain topographical structures. In contrast, images are two-dimensional,
topographical inputs with neighborhoods of pixels representing a single object (e.g., pixels
representing a dog’s snout). As a result, the input type will determine the model’s decision
boundaries, which can impact transferability.

2.3.2 MFCC:

We hypothesize that the MFCC algorithm could be a factor limiting transferability. This
algorithm uses hand-crafted filters to regularize the feature vector and consequently, remove

the high spectral noise (Mannell, [1994). Since regularization of the decision boundary or
gradients has been shown to impact transferability (Demontis et al.| [2019; [Zhou et al.| [2018;

Wu et al.l 2018; Wu & Zhu, [2020)), we hypothesize that regularization of the feature vector
using the MFCC plays a role as well.

2.3.3 RNN:

The network architecture can impact transferability as well. For example, the dropout layer,
which is often included in model architectures for performance purposes, also inadvertently
improves the transferability of adversarial samples (Demontis et al., 2019).

We hypothesize that the RNNis a factor limiting transferability in ASRs. This is because
there are several RNN-based applications where authors have failed to demonstrate targeted
transferability (Abdullah et al., [2021b]).While these papers show transferability is hard in
their respective domains, they do not contain definitive experiments studying why this is
the case.

2.3.4 OvutpruT TYPE:

Since we know that output type can impact the transferability rate (Wei et al) [2018), we
hypothesize that a sequential output type (instead of a single output label) can influence
it as well. This type of output is commonly found in ASRs. For an adversarial sample to
transfer, the victim ASR needs to assign the attacker chosen character to each frame of
the adversarial audio. This might increase the chances of a mistake, which for even a few
frames, could lead to a semantically wrong transcript (e.g., “cccaaatttt” vs “hhhaaatttt”).



2.3.5 VOCABULARY AND SEQUENCE SIZES:

The last factor we consider is the output complexity or the total number of output labels.

Transferability becomes harder as the number of output labels increases (Demontis et al.
2019; ' Wu et al., 2018 'Wu & Zhu, 2020; [Kurakin et al., |2016b). However, the output labels
are not fixed in ASRs, as they are in the case of images (e.g., 10 output labels for the MNIST
dataset). This is because ASRs are designed to output variable size sequences to account
for the variation in the input audio length. As a result, instead of considering total output
labels, we use two metrics to capture output complexity: vocabulary and sequence sizes
(Figure e) and (f)). The vocabulary size is the number of unique words in the training
data that the ASR has learned to recognize. Similarly, the sequence size is the average
number of words in each audio sample in the dataset. Both of these variables work in
tandem to account for the ASR’s output complexity.

3 STuDY DESIGN

Having outlined the six potential factors, we can now design an ablation study to measure
their impact on transferability. Designing this study is non-trivial since we need to account
for the 11 known factors from existing literature (Section that limit transferability. If
ignored, these factors alone can eliminate the transferability rate, hiding the effects of the
aforementioned potential factors. We control for each of these 11 in our design.

Initially, we ran our ablation study on DeepSpeech, a real-world ASR which is commonly
used in the adversarial research community. However, our experiments consistently yielded
0% transferability no matter what we did: removing or changing any of the ASR components
did not change the transferability rate (Appendix A.2.). Upon further investigation, we
realized this was primarily due to the large complexity of the model (a few million weights)
and training data, which forced the transferability rate to remain unchanged 0%.

Overcoming this complexity was one of the major challenges of our work. We had to
carefully design our experiments to remove the impact of complexity that comes with real-
world ASRs, while simultaneously exposing the hidden factors limiting transferability. As
a consequence, we had to run our study on simple yet realistic ASR designs to uncover the
factors impacting transferability.

Dataset: Since transferability becomes harder with the total number of output labels (De-
montis et al.l 2019; Wu et al., 2018; |Wu & Zhu, 2020; [Kurakin et al. [2016b), we use the
small Google Speech Commands dataset (Wardenl |2018). This consists of clean, short audio
files, each containing one of 30 unique labels. Each audio file is one second long (or a vector
of size ~16,000), either containing a number or a word. For the control experiment, we only
choose a subset of the labels, specifically the numbers ONE to NINE (a total of nine labels).

Model Architecture: With this data, we can now train a simple number recognition ASR.
We use the same architecture (Figure [1)) typically found in existing adversarial research
papers (Abdullah et al.,|2021b)The model outputs one of nine labels for a single audio.

Additionally, we account for the known factors that hinder transferability. To do so, we
train a small model of approximately 250,000 trainable parameters and do not include
regularization (e.g., dropout) to limit the effects of complexity and regularization. To reduce
model complexity further, instead of using complex RNN cell types (e.g., LSTMs (Gers et al.l
1999) and GRUs (Chung et al., |2014)), we use the vanilla RNN cell (sim) [2021) (referred to
as RNN in the remainder of the paper). We train five instances of the ASR on the exact same
setup and hyper-parameters (architecture, random seed, epochs, batch size, training data
slice, etc). Each of these is trained to the standard real-world ASR accuracy.

Attack Formulation: For our experiment, we can choose from several existing audio do-
main optimization attacks. Since some of these attacks are architecture specific (Abdullah
et al.l [2020)), they have the potential to bias our results. As a consequence, we formulate
a generic optimization attack that captures the intuition of existing works. This helps
extend our results to all existing audio domain optimization attacks.



To do so, we first outline the steps used by optimization attacks, which generally follow the
same approach. First, a perturbation § is produced by minimizing:

16113 + Uz + 0, t) (1)

where [ is the loss function, x is the original audio sample, and t is the target label. Next,
¢ is clipped by magnitude factor @ € R to control the quality of the adversarial audio:

0 = clip(4, o, —av) (2)
Lastly, the ¢ is added to the original audio z and clipped to create a valid sample x.qy:
Tady = clip(x+ 46,1, —1) (3)

The clip step in Equation [2| is used to control the quality of the adversarial audio and
is often specific to the target model architecture. For example, attacks that clip spectral
gradients (Qin et all [2019) can not work against end-to-end ASRs that do not have a
spectrum generation step (Abdullah et al., 2020). Therefore, in our generic attack, we
remove Equation 2] making it model agnostic.

Adversarial Audio Generation: We use this generic optimization attack to create adver-
sarial samples for each of the five ASRs. Following prior work (Abdullah et al.l |2021b; |Liu
et al, 2016), we only perturb audio samples that all of the ASRs transcribed correctly. We
attack every label in the dataset since some sample labels could be easier to perturb and
some are easier to transfer (Carlini et al., [2019). For example, we perturb an audio sample
containing the label ONE to produce each of the remaining labels TWO to NINE. Running
the experiments in this exhaustive manner allows us to generalize our findings.

We run the attack for 500 iterations. We save the adversarial sample every 50 iterations
since the number of attack iterations can impact transferability (Dong et al.l2018]). We also
ensure that every saved adversarial sample has confidence greater than 0.99 because lower
confidence adversarial samples are less likely to transfer (Abdullah et al., |2021b)). In total,
we create 4050 adversarial audio samples.

Transferability: Having created the adversarial samples for each of the five ASRs, we
transfer them to the remaining four models. Targeted transferability is successful if both the
surrogate and the target ASRs output the same target label. However, adversarial samples
exhibit asymmetry (Wu et al., 2018; |Wu & Zhu, 2020]), which is when an adversarial sample
generated for model A transfers to model B, but not the other way around. To account
for this, we average the number of successfully transferred samples between all five models.
This final average is the transferability rate.

4 EXPERIMENTAL ANALYSIS

Having described our design choices, we can now run the ablation study to observe the
impact of each potential factor. This will involve changing or removing (as needed) each of
the potential factors and recording the change in the transferability rate. It is important to
note that this does not impact ASR accuracy because of two reasons. First, we retrain the
model every single time. Second, the modified architecture resembles one used in current
literature. We will point to these papers in each section.

4.1 CONTROL EXPERIMENT

Setup: For the ablation study, we run a control experiment to get baseline transferability
rates. We use the same design choices (dataset, model architecture, attack formulation,
adversarial audio generation, and transferability) from the previous section. This pipeline
resembles the generic ASR pipeline attacked in current adversarial literature (Hannun et al.|
2014). We train and attack five instances of the control model and calculate the correspond-
ing transferability rate. The ASRs achieve an average accuracy of 95% and an agreement
of 92%.

Results: Figure a) shows the transferability rate for our control experiment which is
at 42%. Prior work has shown that transferability of optimization attacks is close to im-
possible in real-world ASRs (approximately 0%) (Abdullah et all |2021b). We show that
transferability is still possible for very simple ASRs — too simple for the real-world.
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Figure 2: The target transferability rate of optimization attacks for every potential factor.
We compare each factor’s impact on the transferability rate against the (a) control experi-
ment. There are three key insights. First, image domain samples (b) are harder to transfer
than audio ones. Second, removing (¢) MFCC, (d) RNN, and (e) sequence output type
improves transferability. Third, increasing the (f) vocabulary and (g) sequence sizes reduces
transferability.

Having measured the baseline results, we can now study the impact of each of the potential
factors (Section . We will only modify one potential factor at a time while keeping the
rest of the control setup unaltered. This will ensure that the change in the potential factor
alone affects the transferability rate.

4.2 INpuT TYPE CHANGED

Setup: Here, we will switch from the audio dataset to an image one. We use the same
setup as the one used for the control experiment, except for the training data. Instead of
training the ASR on audio samples containing numbers, we train it on images of handwritten
numbers from the NIST Special Database (Grother, [1995). This dataset is similar to the
MNIST (LeCun, [1998), except that the size of the images is 128x128. To match the one-
dimensional shape of audio (vectors of size 16,000), we rasterize the images into single vectors
of length 16,384. We did not use the MNIST dataset because its smaller-sized images (28x28)
rasterize to a length of only 784, which is substantially shorter than the audio samples. We
train five instances of the ASR to a mean accuracy of 93% and agreement of 92%.

Results: The results show that the input type does impact the transferability rate, with
images being harder to transfer than audio samples. Specifically, the rate falls from 43%
for audio (Figure 2(a)), to 19% for images (Figure b)). This fall can be attributed to
the contrast in the composition of audio and image samples. Specifically, image samples
are composed of feature correlations that become periodic when we convert the images into
one-dimensional vectors. Pixels that were next to each other in the original image are far
apart in the vector. This can impact the MFCC extracted features and the corresponding
robustness of the decision boundary.

4.3 MFCC REMOVED

Setup: In this experiment, we will observe the MFCC'’s effect on transferability by removing
it from the pipeline. We use the same setup as the one used for the control experiment,
except for the model architecture. We replace the MFCC with trainable layers, effectively
converting the ASR into an end-to-end model seen in prior work (Amodei et al., 2016)). It is
important to note that this end-to-end model has greater complexity due to the inclusion of
additional trainable layers. However, the MFCC too acts as a pre-trained, frozen layer since
it contains handcrafted mel-filters (Mannell, 1994). In contrast, the new trainable layer



allows learning filters during training. We train five instances of the is ASR to an average
accuracy of 95%, and an agreement of 94%.

Results: The presence of the MFCC does hinder transferability (Figure . We can see
this as the rate increases from 42% (Figure[2|a)) to 60% (Figure[2fc)). Further experiments
in the Appendix demonstrated that this is because the MFCC is regularizing the feature
vector, enables greater robustness to transferability.

4.4 RNN REMOVED

Setup: We remove the RNN from the pipeline and observe the change in the transferability
rate. We use the same setup as in the control experiment, except we modify the model
architecture: we replace the RNN with a convolutional layer to maintain the approximate
number of trainable parameters. This converts the pipeline from a sequence-to-sequence
mapping type, to a repeated one-to-one mapping type and resembles valid a speech pipeline
proposed in other works (Collobert et all 2016). We train five instances of the ASR, to an
average accuracy of 94%, and an agreement of 91%.

Results: Removing the RNN from the ASR improves the transferability rate from 42%
(Figure 2f(a)) to 88% (Figure Jd)). This demonstrates that the RNN does limit transfer-
ability. It is also important to note that we use a vanilla RNN cell in the control, which we
replace with a CNN for this experiment. Furthermore, real-world ASRs use more complex
RNN cells (e.g., GRUs and LSTMs) that include additional weights. Since model com-
plexity hinders transferability (Wu et al.l 2018 [Demontis et al., [2019)), we expect that the
additional parameters of the GRU and LSTM cells will decrease transferability even further,
enabling even greater robustness in real-world models.

4.5 OvutpuT TYPE CHANGED

Setup: To study the impact of the sequence output type, we replace it with a single-label
one. Instead of outputting a sequence of characters per frame, the pipeline will output a
single classification label (ONE to NINE) for the entire audio. We use the same setup as
the one used for the control experiment, except we modify the final layer of the model
architecture. The resulting ASR will produce a single output for an entire input, effectively
converting the pipeline from a sequence-to-sequence mapping to a one-to-one type. While
this setup may seem unusual, speech pipelines have used this approach in past works (Chen
et al., 2014} Higgins & Wohlford) [1985; [Rose & Paul, |1990).

Results: The transferability increased from around 42% (Figure[2|(a)) to almost 99% (Fig-
ure e)). This rate is almost identical to the 100% we observed in the image domain
(Supplementary Materials Section A.3) and suggests that task type plays a very significant
role in the transferability rate. A model that uses a sequence labeling task, instead of a
single label one, will be more robust to transferability. Additionally, sequence labeling is
necessary for ASRs due to the variability of speech. Therefore, training an ASR as in the
current experiment is not possible for anything but trivial systems.

4.6 VOCABULARY SIZE INCREASED

Setup: The output complexity can be measured using two variables, one of which is vo-
cabulary size (Section . In this experiment, we observe the impact of vocabulary size
by increasing its value. We use the same control setup, except that we increase the total
number of output labels from 9 to 30. We do so by using the full Google Speech Commands
dataset. We train five instances of the ASR, to an average accuracy of 92%, and agreement
of 87%. This reduction in agreement from 92% (control experiment) to 87% is normal.
By increasing the number of output labels, we increase the likelihood of even the benign
samples being labeled incorrectly.

Results: We compare the control (trained on 9 output labels) with this modified setup
(trained on 30 output labels). We can observe that the transferability rate fell by 24 points,
from 42% (Figure 2(a)) to 19% (Figure[2[f)). Certainly, part of this drop can be attributed



to the fall in agreement, from the control (92%) to the current setup (87%). However,
a five percent drop in the agreement can not alone result in a large 24 percent drop in
transferability. Therefore, a we believe that a substantial degree of the drop is due to the
increased vocabulary size. Furthermore, real-world data sets contain hundreds of thousands
of unique words (Panayotov et al.,[2015)), far more than the 30 we tested in this experiment.
Therefore, we can expect a further decrease in transferability in more realistic training data
sets.

4.7 SEQUENCE SIZE INCREASED

Setup: In addition to vocabulary size, the sequence size also contributes towards output
complexity. Similar to the previous experiment, we will study the impact on sequence size by
increasing its value. We use the same setup as we had in the control experiment, except that
we modify the original numbers-only training dataset. We generate a new dataset containing
sequences of four numbers by concatenating audio samples (and their corresponding labels).
For example, we concatenate four audio files that contain the words ONE, NINE, ONE and
NINE, resulting in a single audio file containing the sequence ONE NINE ONE NINE. We train
five instances of the ASR to an average accuracy of 95%, and agreement of 86%.

Results: Increasing the size of the sequence by just a single word can reduce the transfer-
ability rates from 42% (Figure 2fa)) to a mere 4% (Figure 2fg)). Real-world ASRs process
much longer sequences than just size four. The average length of a sequence in the English
language is around 15 words (Cutts, [2020). Therefore, due to the increased sequence size,
we can expect an even further decrease in the transferability rate in real-world ASRs.

5 DISCUSSION AND TAKEAWAYS

In the previous section, we explore how the six factors impact the transferability of opti-
mization attacks in ASRs. In this section, we will discuss the takeaways from our findings.

An ablation study to explore factors impacting transferability must be per-
formed on a simple, but realistic ASR pipeline. Real-world ASRs are large and
complex, which itself limits the transferability of optimization attacks to an abysmal 0%.
Performing an ablation study on such models will yield no results since removing or chang-
ing any component will not change the 0% transferability rate. This will hide the impact of
other unknown factors that might be playing a role. As a result, we run an ablation study on
a simple ASR pipeline and uncover six previously unknown factors that limit transferability.

Existing optimization attacks are unlikely to provide targeted transferability
against real-world ASRs. In this paper, we uncover a number of factors that limit the
transferability of optimization attacks in ASRs. Interestingly, these same factors are known
to improve accuracy, and therefore, will likely be found in most real-world ASRs (Hannun
et al.,2014). As a result, real-world ASRs will likely remain robust to optimization attacks,
motivating the need to our attention to other attack types.

The factors preventing transferability are also required for the correct function-
ing of the ASR. Output type, large vocabulary, and sequence sizes are crucial for training
accurate general-purpose ASRs. This is because ASRs need to account for varying audio
length (output type) and a variety of words (vocabulary size) and phrases (sequence sizes).
It might not be possible to train any real-world ASR without these three components. For-
tunately, these same components also prevent transferability. Therefore, real-world ASRs
will be robust to the targeted transferability of existing optimization attacks.

Seeking better attacks: Since optimization attacks do not provide targeted transferabil-
ity in ASRs, the community should focus on the attack types that can. Signal processing
attacks (Abdullah et all |2021a} |2019)) is a family of attacks unique to the audio domain.
These attacks exploit the feature extraction layer of the ASR pipeline (Figure [[{b)) and
therefore, provide key advantages. These attacks not only provide targeted transferability,
but also require fewer queries, are model agnostic, require only black-box knowledge, and
take mere seconds to execute (Abdullah et all 2021b)). However, clean, targeted signal
processing attacks (i.e., adversarial audio that sounds clean to humans and are transcribed



as the targeted text) do not yet exist. Therefore, developing such attacks (to replace opti-
mization ones) is a potential direction for future research.

Building speaker recognition models that are robust to targeted transferability
of optimization attacks: Speaker recognition is one application in the audio domain that
has a very similar pipeline to that of ASRs. However, unlike ASRs, speaker recognition
models (specifically text-independent ones) are not robust to targeted transferability of op-
timization attacks (Chen et al., [2019). Text-independent models check for speaker identity,
without verifying the text in the audio sample. As a result, these models do not employ
sequence labeling, vocabulary, and sequence sizes, the absence of which enables transferabil-
ity. As a result, it is possible to build robust speaker recognition models by simply including
text verification as part of the pipeline. This will involve using an ASR for text verifica-
tion, which can then be followed by speaker identification. Since target transferability will
fail at the ASR level, the speaker identification will not be triggered. This will ensure the
robustness of the overall speaker recognition pipeline.

6 RELATED WORK

ASRs are vulnerable to adversarial samples that can force them to output malicious labels.
In the audio domain, there are three types of attacks to generate such adversarial samples:
signal processing attacks (Abdullah et al. 2021a; [2019), gradient-free attacks (Taori et al.,
2018; |Alzantot et al.} |2017; |Chen et al.| [2020]), and optimization attacks (Carlini & Wagner,
2018}, |Cisse et al. 2017 Kreuk et al.l [2018aj; [Qin et al., [2019; [Schonherr et al., [2019; [Abdoli
et al., [2019; [Yuan et al., [2018; [Yakura & Sakumal, |2018} |Alzantot et al., [2017)).

Signal Processing Attacks: do exhibit targeted transferability because these exploit
the feature extraction stage of the ASR pipeline. They produce adversarial samples whose
feature vectors are similar to the ones produced for the benign sample. As a consequence,
the model is unable to ascertain whether the feature vector came from benign or adversarial
audio. However, there do not yet exist signal processing attacks that can produce clean
audio that is also transcribed as the adversary chosen text. So far, existing signal processing
attacks can only generate targeted noisy audio (i.e., the attack audio sounds like noise to
the human ear, but is transcribed as the targeted text by the model) or untargeted clean
audio (i.e., the attack audio sounds clean to the human ear, but is transcribed as garbage
text by the model).

Gradient-Free Attacks: craft adversarial samples by repeatedly querying the target
model. Theoretically, this can enable attackers to exploit models in black-box settings.
However, these attacks have not had any success against real-world ASRs. Additionally,
these attacks have not demonstrated any transferability, even against the simple ASRs.

Optimization Attacks: use the model gradients to craft adversarial samples. These at-
tacks have been incredibly successful in the image domain (Szegedy et al.| [2013; |Goodfellow
et all 2014; 2016} |[Papernot et all 2017; |2016]). One of the reasons for this is the ability
of their samples to exhibit transferability even for real-world black-box systems (Liu et al.
2016). Most of the work in the space of transferable optimization attack samples has there-
fore been focused on image recognition models. There are several factors that have been
shown to affect transferability, which we list in Section[2.1] In contrast, our work specifically
focuses on the audio domain. We are the first to study the factors that make the targeted
transferability of optimization attacks difficult against ASRs.

7 CONCLUSIONS

In this work, we investigated why ASRs robust to target transferability of optimization
attacks. We conducted an exhaustive ablation study and uncovered previously unknown
factors that limit transferability. The ability of these factors to limit transferability exposes
a serious limitation in optimization attacks against ASRs. As a result, attack types that have
demonstrated transferability in real-world settings, like signal processing attacks, deserve
more attention.
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A  SUPPLEMENTARY MATERIALS

A.1 RNN As A POTENTIAL FACTOR

A typical ASR neural network is made up of the following four stacked compo-
nents:CNN->RNN->FC->LOGITS, as seen in Figure iii). It is not necessary to exhaustively
study the impact on the transferability of each of these components. This is because transfer-
ability in image models is far easier (Supplementary Materials A.1) than in ASRs|Abdullah
et al.|(2021Db)). This suggests that there are component(s) unique to ASRs (i.e., components
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non-existent in image models) that might be hindering transferability. As a consequence,
we focus our study on the symmetric difference of the two model architectures (i.e., present
in ASRs but not in image models). The only component that fits this criterion is the RNN,
as shown in Figure [[|c).

A.2 REAL WORLD ASR FOR ABLATION STUDY

In the ideal case, we would want to run the ablation study on real-world ASRs, since we are
trying to make conclusions about such ASRs. However, such a study will provide inconclu-
sive results about the potential facotors. A real-world ASR has high model complexity, with
tens of millions of training parameters. Similarly, it is trained on complex data sets (i.e.,
containing a large vocabulary size of hundreds of unique words and long sequence sizes). We
already know that large model and output complexity limit transferability to 0% |[Abdullah
et al.| (2021b). As a consequence, if we were to run an ablation study on such an ASR,
the model and output complexity alone will force the transferability to remain at 0%. For
example, while removing the RNN increases transferability (Figure , this step will have
no impact on transferability in the case of a real-world ASR.

To validate this hypothesis, we conducted a simple experiment. We trained multiple real-
world ASRs (on identical setups) that did not contain an RNN using the wav2letter ar-
chitecture |Collobert et al.| (2016). We used the LibriSpeech data set for training, which
contains 1000 hours of audio, has a vocabulary size of 900,000 unique, and up to a sequence
size of 20. We followed the same methodological steps outlined in Section [3] to produce the
adversarial samples. Of these, none of them transferred from the surrogate to the target
models we had trained.

As a consequence, we had no choice but to run the study this phenomenon on a simpler
ASR using a less complex training data set. This limits the impact of the known factors
and helps isolate the impact of the unknown ones.

A.3 TARGETED TRANSFERABILITY FOR IMAGE MODELS

We know that targeted transferability rates for audio models are abysmally low [Abdullah
et al. (2021b), even when the models are trained on identical setups. We conduct the
following experiment to study whether this is true for image recognition models:

A.3.1 SETUP

We use the same general setup we had used in the control experiment (Sec-
tion 4.1), except change the architecture, the training data, and the at-
tack. ~ We train on the MNIST datasetLeCun| (1998) on the following architec-
ture: CNN->MAXPOOL->CNN->MAXPOOL->CNN->FC->LOGITS. The model contains 250,000
trainable parameters, similar to the control. We train the models for 12 epochs, with
1024 batch size an accuracy of 94% and an agreement of 89%. We use the basic iterative
attack |Goodfellow et al.| (2014) clipping perturbations at values of 0.1 and 0.05.

A.3.2 RESULT

We observe a transferability of exactly 100% for both clip values, for all iterations. In stark
contrast, audio transferability is close to 43% (Section 4.1). This is despite the fact that
the attack we use against the image models uses clipping. In contrast, we perform no such
clipping in the audio attack (Section 3.4). To add to that, the accuracy and agreement of
the image model (94% and 89%) is lower than the control (95% and 92%). This implies
that there are additional previously unknown factors that are preventing transferability in
the audio domain.

A.4 MFCC AND TRANSFERABILITY FOR ASRS

transferability rate remains constant for the control, when the MFCC is present (Fig-
ure[f[a)). However, when the MFCC is removed, the transferability rate drops from 65% (at
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out size = 29
FC
kernel width = 32
number of filters = 100
RNN
number of filters = 50
CONV
kernel width = 7
stride length = 1
number of filters = &0
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kernel width = 7
stride length = 1
number of filters = &0
CONV
kernel width = 7
atride length = 1
number of filters = 50
CONV
kernel width = 4B
atride length = 2
number of filters = 50

Figure 3: The details of the pipeline we used in the control experiment. The pipelines for
the potential factors we study in the paper are all based on the one shown above.

50 iterations) to 57% (at 500 iterations), shown in Figure [f{b). This is because increasing
iterations produce “over-fitted” adversarial samples. This suggests that the MFCC is regu-
larizing the feature vector, whereby helping the model learn smoother decision boundaries
robust to target transferability.
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Results for Potential Factors

100 {(e)
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Transferability Rate (%)
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Iterations

=~ (a) Control Experiment
—— (b) Domain Type Changed

== (c) MFCC Removed

= (d) RNN Removed

- (&) Sequence Labeling Task Removed
- (f) Vocabulary Size Increased
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Figure 4: We can observe the change in the transferability rate with respect to the number
of iterations. Generally, we see that the number of iterations does not have a significant
impact on the transferability rate, except when the MFCC is removed.

16



Results for Potential Factors

100 - — (a) Control Experiment
(b) MFCC Removed
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Figure 5: The plot shows the relationship between transferability and iterations for two se-
tups: the control experiment and when the MFCC is removed. For the control experiment
the transferability rate is consistent across all iterations (a). However, when the MFCC is
removed, the rate falls as the iterations increase (b). This suggests that the MFCC is regu-
larizing the feature vector helping the model learn smooth and robust decision boundaries.

17



	Introduction
	Factors
	Known Factors From Existing Literature
	ASR Pipeline
	Additional Potential Factors
	Input Type:
	MFCC:
	RNN:
	Output Type:
	Vocabulary and Sequence Sizes:


	Study Design
	Experimental Analysis
	Control Experiment
	Input Type Changed
	MFCC Removed
	RNN Removed
	Output Type Changed
	Vocabulary Size Increased
	Sequence Size Increased

	Discussion and Takeaways
	Related Work
	Conclusions
	Acknowledgments
	Code of Ethics
	Reproducibility Statement
	Supplementary Materials
	RNN as a Potential Factor
	Real World ASR for Ablation Study
	Targeted Transferability for Image models
	Setup
	Result

	MFCC and Transferability for ASRs


