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Abstract

Effective long-term memory management is001
crucial for language models handling extended002
contexts. We introduce a novel framework003
that dynamically ranks memory entries based004
on relevance. Unlike previous works, our005
model introduces a novel relevance scoring006
and a pointwise re-ranking model for key-007
value embeddings, inspired by learning-to-008
rank techniques in information retrieval. En-009
hanced Ranked Memory Augmented Retrieval010
(ERMAR) achieves state-of-the-art results on011
standard benchmarks.012

1 Introduction013

Large Language Models (LLMs) face a fundamen-014

tal limitation in processing long-context scenarios015

due to the quadratic complexity of attention mecha-016

nisms and increasing memory demands during gen-017

eration (Vaswani, 2017; Tworkowski et al., 2024).018

Consider a scenario in an automated customer ser-019

vice system: A customer reports an issue with their020

printer, referencing a setup process from a previous021

conversation that occurred two hours ago. After022

50 messages of troubleshooting, the customer men-023

tions that the same error from the beginning has024

resurfaced. Traditional LLMs, constrained by their025

context window, would struggle to access the cru-026

cial earlier context about the initial setup process,027

leading to inconsistent or incomplete responses,028

Figure 1. It is well known that handling extended029

contexts remains a significant challenge, particu-030

larly in applications requiring document analysis031

and sustained dialogue interactions.032

The recent MemLong (Liu et al., 2024) architec-033

ture stores and accesses historical context through034

basic chunk-level memory operations. The mem-035

ory bank model is a large, non-trainable store036

of past context representations. Instead of re-037

computing representations for all past tokens every038

time, these representations are pre-computed and039

stored. Given the current context, MemLong re- 040

trieves relevant segments from the memory bank. 041

It uses a dot product similarity search to find the 042

memory entries most related to the current context. 043

This allows the model to focus only on the most 044

pertinent past information, rather than processing 045

the entire history. However, its treatment of all 046

key-value (K-V) pairs with equal weight, regard- 047

less of their contextual relevance, often leads to 048

information overload and reduced retrieval preci- 049

sion. This limitation becomes particularly evident 050

in scenarios requiring context management. 051

We have developed a novel model that addresses 052

the aforementioned limitations by building upon 053

Memlong (Liu et al., 2024), a publicly available 054

baseline on GitHub1. Our Enhanced Ranked 055

Memory Augmented Retrieval (ERMAR) model 056

has a novel relevance scoring mechanism that fun- 057

damentally improves context retrieval and utiliza- 058

tion for K-V embeddings. Unlike MemLong, ER- 059

MAR employs multiplication (Cao et al., 2007) 060

to compute relevance scores, enabling a more nu- 061

anced and context-aware assessment of semantic 062

alignment between queries and stored memory. ER- 063

MAR also incorporates a re-ranking mechanism 064

that dynamically reorders K-V embeddings based 065

on their relevance scores, ensuring that the most 066

pertinent information is prioritized during retrieval. 067

This re-ranking process, combined with an adaptive 068

retrieval system that integrates historical usage pat- 069

terns, allows ERMAR to capture subtle contextual 070

relationships better and refine memory prioritiza- 071

tion. As shown in Figure 1, ERMAR processes 072

incoming queries and long-context conversations 073

through a novel ranking architecture, employing 074

K-V pairs ranking (K0-V0, K1-V1,...,Ki-Vi) and cor- 075

responding embeddings to perform semantic search 076

and ranking of relevant historical information. 077

Our novel ERMAR model introduces three key 078

1https://github.com/Bui1dMySea/MemLong

1



Figure 1: Our novel proposed ERMAR system. Note
the difference from the MemLong architecture where
we have introduced a novel Reranking model.

improvements: (i) A semantic similarity metric079

to measure contextual alignment between query080

embeddings and key-value pairs; (ii) A weighted081

scoring function that considers content similarity082

and contextual relevance; and (iii) Integration of083

historical usage patterns to refine relevance assess-084

ment.085

2 Related Work086

Existing memory-augmented architectures such as087

RetroMAE (Xiao et al., 2022) have demonstrated088

promising results but often struggle with seman-089

tic coherence and retrieval efficiency. Similarly,090

sparse attention mechanisms reduce computational091

complexity but frequently sacrifice model capabil-092

ity (Beltagy et al., 2020). Memorizing Transform-093

ers (Wu et al., 2022) developed dedicated memory094

tokens. Recent advances have focused on mem-095

ory management through hierarchical cache struc-096

tures (Wu et al., 2022) and context-aware reten-097

tion strategies (Borgeaud et al., 2022). However,098

these systems often struggle with distribution shifts099

during training and effective information retrieval.100

While these methods offer partial solutions, they101

often face challenges in maintaining consistent per-102

formance across varying context lengths and ensur-103

ing reliable information retrieval.104

Architectural modifications have focused primar-105

ily on improving position representation and atten-106

tion mechanisms. Position encoding adaptations107

Figure 2: The architecture diagram for ERMAR.

such as RoPE (Su et al., 2024) and ALiBi (Press 108

et al., 2022) have enhanced models’ ability to han- 109

dle longer sequences by providing more robust 110

position information. YARN (Peng et al., 2023) 111

further advanced this approach through dynamic 112

position embeddings, demonstrating reliable gen- 113

eralization up to 128k tokens. Complementing 114

these developments, sparse attention mechanisms 115

such as Longformer (Beltagy et al., 2020) and Big- 116

Bird (Zaheer et al., 2020) have reduced computa- 117

tional complexity while maintaining model capa- 118

bilities through selective attention patterns. 119

3 Our Novel ERMAR Model 120

Figure 2 illustrates our ERMAR framework and 121

Figure 1 presents the contextual ranking mecha- 122

nism of key, value pairs components that enable 123

effective retrieval. ERMAR maintains consistency 124

through frozen lower layers and selective parame- 125

ter updating. ERMAR: (i) stores important infor- 126

mation from earlier parts of the text; (ii) assigns 127

relevance scores to stored information based on its 128

importance to the current context, and (iii) retrieves 129

only the most relevant historical information when 130

needed. Our relevance scoring is analogous to at- 131

tention, allowing the model to focus on important 132

parts of the memory. There is also a “loose” point- 133

wise connection because the primary objective is 134

sequence likelihood. 135

Let V be a finite vocabulary, and 136

x = (x1, . . . , xn) ∈ Vn a token sequence with 137

preceding context x<i. The embedding func- 138

tion E : V∗ → Rdret maps sequences to retrieval 139

space. We introduce a memory function M 140

augmented with a relevance scoring mechanism 141
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M : Rdmodel︸ ︷︷ ︸
keys

×Rdmodel︸ ︷︷ ︸
values

× Rdret︸︷︷︸
embeddings

→ S.142

Relevance Score: Given a query embedding143

q ∈ Rdret and a matrix of key embeddings144

K = [k1, . . . , km] ∈ Rm×dret (where each row ki ∈145

Rdret corresponds to a key embedding), the rele-146

vance score is:147

α(q,K) = softmax
(
qK⊤
√
dret

)
(1)148

Here,
√
dret normalizes the similarity scores to pre-149

vent excessively large values. The relevance score150

α(q,K) can be interpreted as a probability distribu-151

tion over the keys, where each entry αi represents152

the relative importance (or attention weight) of the153

i-th key to the query q. This score is used to rank154

memory entries based on their importance to the155

current query.156

Ranked Key-Value Pairs: Each embed-157

ding e maintains a ranked set of key-value158

pairs: Rranked(e) = {(Kj , Vj , sj)}mj=1,, where sj =159

α(e,Kj) is the relevance score between the em-160

bedding e and the key Kj .161

ERMAR objection function is formulated as:162

Given a sequence x, maximize:163

L(θ) =
∑n

i=1 pθ(xi | RRSAR(ti, s),x<i), subject to:164

si = M(K1:i−1, V1:i−1; E(t1:i−1)), ti = text(c⌈i/τ⌉),165

αi = α(E(ti),K1:i−1),166

where αi guides key-value pair selection, and pθ167

represents the model’s probability distribution.168

For new content (Kn, Vn), update the memory169

state as: si+1 =

{
M(Kn, Vn; E(tn)) if |si| < capacity,
Mu(si,Kn, Vn, αn) otherwise,

170

where Mu prunes the least relevant entries based on171

historical scores, specifically by ranking the scores172

and pruning those with the lowest values relative173

to the current context.174

We now develop the Relevance Scoring with175

Adaptive Retrieval (RSAR). This approach dy-176

namically ranks memory entries based on their177

importance to the current query, significantly im-178

proving the retrieval process. The relevance score,179

α(q,K), as defined in equation 1, is used to rank180

memory entries.181

RSAR enhances the memory module by182

introducing ranked key-value entries, represented183

as (Kj , Vj , sj), where sj denotes the relevance184

score for each entry. These scores enable the185

system to prioritize the most relevant information186

during retrieval while maintaining computational187

efficiency. To ensure optimal memory utilization,188

a pruning strategy is applied to remove less189

relevant entries. Specifically, entries with scores190

below a predefined threshold are discarded, 191

preserving only the most critical context. The 192

enhanced retrieval mechanism is expressed as: 193

RRSAR(tq, s) = TopK {sim(E(tq), e) ·maxj sj | e ∈ s}, 194

where E(tq) represents the encoded query, and 195

the operation identifies the top-K relevant entries 196

based on their scores. This mechanism efficiently 197

retrieves the most relevant information, even for 198

extended contexts. 199

3.1 Experimental Setup 200

We fine-tuned ERMAR on the SlimPajama 201

dataset (Fu et al., 2024), a high-quality, dedupli- 202

cated corpus designed for long-context tasks. It 203

contains 84.7K training rows, making it a com- 204

pact yet effective resource for pre-training and fine- 205

tuning. Performance was measured across context 206

lengths from 1024 to 32768 tokens, using perplex- 207

ity on the last 2048 tokens (Yen et al., 2024). 208

We fine-tuned OpenLLaMA-3B, a pre-trained 209

LLM with rotational position encoding (Su et al., 210

2024), using LoRA (Hu et al., 2021) for efficiency. 211

The model has L = 26 layers, H = 32 attention 212

heads, and d = 100 dimensions. The 13th layer 213

serves as the memory layer, while layers [14, 18, 214

22, 26] are used for retrieval augmentation. 215

ERMAR was evaluated against state-of-the-art 216

7B and 3B parameter models. The 7B models in- 217

clude LLaMA-2-7B (Touvron et al., 2023b) as a 218

transformer baseline, LongLoRA-7B-32k (Chen 219

et al., 2023) with sparse attention for 32k-token 220

contexts, and YARN-128k-7B (Peng et al., 2023) 221

with dynamic position embeddings for 128k tokens. 222

The 3B models include OpenLLaMA-3B (Touvron 223

et al., 2023a), LongLLaMA-3B (Tworkowski et al., 224

2024) (evaluated in two retrieval configurations), 225

and Phi3-128k (Abdin et al., 2024), which performs 226

well across varying context lengths. This diverse 227

benchmark suite ensures a robust evaluation of ER- 228

MAR’s long-context capabilities. 229

3.2 Results and Discussion 230

3.2.1 Long-Context Language Modeling 231

Following the experimental strategy adopted in 232

(Liu et al., 2024), Table 1 presents the mean per- 233

plexity scores of our model across different se- 234

quence lengths and datasets, demonstrating its 235

effectiveness in long-context modeling. Evalua- 236

tion was performed on test splits of three datasets: 237

WikiText-103 (Merity et al., 2016) (4,358 rows), 238

PG-19 (Rae et al., 2019) (100 rows), and Proof- 239

Pile (Azerbayev et al., 2023) (46.3k rows). 240

3



PG19 Proof-pile Wikitext-103
Model 1k 2k 4k 16k 1k 2k 4k 16k 1k 2k 4k 16k

7B Model
YARN-128k-7b 7.22 7.47 7.17 - 3.03 3.29 2.98 - 5.71 6.11 5.71 -
LongLoRA-7B-32k 9.76 9.71 10.37 7.62 3.68 3.35 3.23 2.60 7.99 7.83 8.39 5.47
LLaMA-2-7B 10.82 10.06 8.92 - 3.24 3.40 2.72 - 10.82 6.49 5.66 -

3B Model
Phi3-128k 11.31 9.90 9.66 -/9.65 4.25 3.11 2.77 -/3.08 7.54 7.22 7.01 -/7.20
OpenLLaMA-3B 11.60 9.77 > 103 - 2.96 2.70 > 103 - 10.57 8.08 > 103 -
LongLLaMA-3B* 10.59 10.02 > 103 - 3.55 3.15 > 103 - 8.88 8.07 > 103 -
LongLLaMA-3B† 10.59 10.25 9.87 - 3.55 3.22 2.94 - 10.69 8.33 7.84 -
MemLong-3B* 10.66 10.09 > 103 - 3.58 3.18 > 103 - 8.72 7.93 > 103 -
w/ 4K MemLong 10.54 9.95 9.89 9.64 3.53 3.16 3.15 2.99 8.53 7.92 7.87 7.99
w/ 4K ERMAR 10.32 9.75 9.78 9.81 3.24 2.98 3.03 3.18 7.92 7.41 7.34 7.08

Table 1: Perplexity comparison of 7B and 3B models across PG19, Proof-pile, and WikiText-103, using a sliding
window evaluation. "-" denotes Out of Memory (OOM) errors, and "x/y" indicates results from single/dual GPU
setups. Memory-augmented models are tested with varying capacities. All runs use a single 3090 24GB GPU.

Among 7B models, YARN-128k-7B excels in241

shorter contexts, while LongLoRA-7B-32k scales242

effectively to 16k-token sequences, though with243

some performance degradation. This highlights244

the trade-off between performance and scalability,245

guiding model selection based on use-case needs.246

The 3B models demonstrate ERMAR’s signif-247

icant advantages in long-context tasks. While248

OpenLLaMA-3B struggles beyond 4k tokens, and249

Phi3-128k shows more consistent performance,250

ERMAR sets new performance benchmarks. ER-251

MAR outperforms MemLong and larger 7B models252

in several configurations, including achieving a re-253

markable 2.98 perplexity on Proof-pile, surpassing254

MemLong’s 3.16. Despite slight underperformance255

in specific Proof-pile configurations, ERMAR’s en-256

hanced memory retrieval mechanism proves more257

effective overall. Additionally, ERMAR maintains258

stable performance up to 16k tokens, with only259

a 3.2% degradation in perplexity from 4k to 16k260

tokens, demonstrating its superior scalability in261

long-context modelling.262

3.2.2 In-Context Learning Performance263

The results in Table 2 show ERMAR’s strong per-264

formance across five natural language understand-265

ing tasks in both 4-shot and 20-shot settings.266

In the 4-shot setting, ERMAR achieves state-of-267

the-art results across all tasks, outperforming Open-268

LLaMA and other memory-augmented models. It269

excels even in challenging tasks like SST-5 and270

MPQA, maintaining high performance with limited271

examples. Its stability across different memory con-272

figurations highlights its robustness in low-resource273

scenarios.274

ERMAR continues to excel in the 20-shot sce-275

nario, achieving top results in tasks like MPQA276

and Subj, and setting a new benchmark for SST-5.277

While it lags behind MemLong in a few tasks, ER-278

MAR outperforms it overall, showcasing its scala- 279

bility with increased examples. 280

ERMAR consistently performs well across vary- 281

ing context lengths, effectively leveraging mem- 282

ory augmentation. Its ability to scale with more 283

examples and handle both short and long-range de- 284

pendencies makes it a strong candidate for general- 285

purpose language modelling, advancing the state- 286

of-the-art in language understanding tasks. 287

Model In-C
,In-M

SST-2
ACC↑

MR
ACC↑

Subj
ACC↑

SST-5
ACC↑

MPQA
ACC↑ Avg.

OpenLLaMA 4,N/A 90.7 84.0 58.2 41.0 70.5 68.9
w./ Rag 4,4 90.9 90.5 61.6 39.2 63.2 69.1
LongLLaMA 4,4 90.4 83.9 64.3 40.0 64.2 68.6
MemLong 4,4 91.5 84.5 61.5 41.4 70.2 69.8
ERMAR 4,4 93.6 90.8 65.3 45.8 85.2 76.14
LongLLaMA 4,18 91.4 87.1 59.1 41.0 64.5 68.7
MemLong 4,18 91.0 89.6 61.7 43.5 69.4 71.0
ERMAR 4,18 93.6 90.8 65.3 45.9 85.2 76.16
OpenLLaMA 20,N/A 93.6 91.2 55.4 38.2 66.4 69.0
w./ Rag 20,18 92.2 91.3 75.8 39.8 57.6 71.3
LongLLaMA 20,18 94.1 90.8 64.2 41.4 72.1 72.7
MemLong 20,18 93.5 93.8 65.8 43.3 70.6 73.4
ERMAR 20,18 94.7 91.7 82.8 47 86.5 80.54

Table 2: 4-shot and 20-shot ICL accuracy [%] on 5 NLU
tasks (SST-2, MR, Subj, SST-5, MPQA). We compare
OpenLLaMA, LongLLaMA, MemLong, and ERMAR.
Note: In-C = In-Context, In-M = In-Memory.

4 Conclusion 288

We presented a novel ERMAR framework that en- 289

hances long-context modelling through relevance 290

scoring and adaptive memory retrieval. ERMAR 291

outperforms baseline models, including OpenL- 292

LaMA, LongLLaMA, and MemLong, achieving 293

superior perplexity and in-context learning perfor- 294

mance on WikiText-103, PG19, and Proof-pile. Fu- 295

ture work will focus on optimizing ERMAR for 296

specialized datasets and expanding its applicability 297

to complex reasoning tasks. 298
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5 Limitations299

While ERMAR improves retrieval efficiency and300

context retention, it has limitations. Its reliance on301

ranked memory structures increases computational302

overhead compared to standard LLMs, particularly303

for large-scale retrieval. Additionally, performance304

variations across different task domains indicate305

a need for further tuning. The framework’s ef-306

fectiveness in real-world, noisy environments also307

requires further validation.308
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Miłoś. 2024. Focused transformer: Contrastive train- 384
ing for context scaling. Advances in Neural Informa- 385
tion Processing Systems, 36. 386

A Vaswani. 2017. Attention is all you need. Advances 387
in Neural Information Processing Systems. 388

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and 389
Christian Szegedy. 2022. Memorizing transformers. 390
arXiv preprint arXiv:2203.08913. 391

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 392
2022. Retromae: Pre-training retrieval-oriented 393
language models via masked auto-encoder. arXiv 394
preprint arXiv:2205.12035. 395

Howard Yen, Tianyu Gao, and Danqi Chen. 2024. Long- 396
context language modeling with parallel context en- 397
coding. arXiv preprint arXiv:2402.16617. 398

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 399
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 400
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 401
Li Yang, et al. 2020. Big bird: Transformers for 402
longer sequences. Advances in neural information 403
processing systems, 33:17283–17297. 404

5

https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409

	Introduction
	Related Work
	Our Novel ERMAR Model
	Experimental Setup
	Results and Discussion
	Long-Context Language Modeling
	In-Context Learning Performance


	Conclusion
	Limitations

