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Abstract

Effective long-term memory management is
crucial for language models handling extended
contexts. We introduce a novel framework
that dynamically ranks memory entries based
on relevance. Unlike previous works, our
model introduces a novel relevance scoring
and a pointwise re-ranking model for key-
value embeddings, inspired by learning-to-
rank techniques in information retrieval. En-
hanced Ranked Memory Augmented Retrieval
(ERMAR) achieves state-of-the-art results on
standard benchmarks.

1 Introduction

Large Language Models (LLMs) face a fundamen-
tal limitation in processing long-context scenarios
due to the quadratic complexity of attention mecha-
nisms and increasing memory demands during gen-
eration (Vaswani, 2017; Tworkowski et al., 2024).
Consider a scenario in an automated customer ser-
vice system: A customer reports an issue with their
printer, referencing a setup process from a previous
conversation that occurred two hours ago. After
50 messages of troubleshooting, the customer men-
tions that the same error from the beginning has
resurfaced. Traditional LLMs, constrained by their
context window, would struggle to access the cru-
cial earlier context about the initial setup process,
leading to inconsistent or incomplete responses,
Figure 1. It is well known that handling extended
contexts remains a significant challenge, particu-
larly in applications requiring document analysis
and sustained dialogue interactions.

The recent MemLong (Liu et al., 2024) architec-
ture stores and accesses historical context through
basic chunk-level memory operations. The mem-
ory bank model is a large, non-trainable store
of past context representations. Instead of re-
computing representations for all past tokens every
time, these representations are pre-computed and

stored. Given the current context, MemLong re-
trieves relevant segments from the memory bank.
It uses a dot product similarity search to find the
memory entries most related to the current context.
This allows the model to focus only on the most
pertinent past information, rather than processing
the entire history. However, its treatment of all
key-value (K-V) pairs with equal weight, regard-
less of their contextual relevance, often leads to
information overload and reduced retrieval preci-
sion. This limitation becomes particularly evident
in scenarios requiring context management.

We have developed a novel model that addresses
the aforementioned limitations by building upon
Memlong (Liu et al., 2024), a publicly available
baseline on GitHub'. Our Enhanced Ranked
Memory Augmented Retrieval (ERMAR) model
has a novel relevance scoring mechanism that fun-
damentally improves context retrieval and utiliza-
tion for K-V embeddings. Unlike MemLong, ER-
MAR employs multiplication (Cao et al., 2007)
to compute relevance scores, enabling a more nu-
anced and context-aware assessment of semantic
alignment between queries and stored memory. ER-
MAR also incorporates a re-ranking mechanism
that dynamically reorders K-V embeddings based
on their relevance scores, ensuring that the most
pertinent information is prioritized during retrieval.
This re-ranking process, combined with an adaptive
retrieval system that integrates historical usage pat-
terns, allows ERMAR to capture subtle contextual
relationships better and refine memory prioritiza-
tion. As shown in Figure 1, ERMAR processes
incoming queries and long-context conversations
through a novel ranking architecture, employing
K-V pairs ranking (Ky-Vy, K1-V4,...,K;-V;) and cor-
responding embeddings to perform semantic search
and ranking of relevant historical information.

Our novel ERMAR model introduces three key
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Figure 1: Our novel proposed ERMAR system. Note
the difference from the MemlLong architecture where
we have introduced a novel Reranking model.

improvements: (i) A semantic similarity metric
to measure contextual alignment between query
embeddings and key-value pairs; (i1) A weighted
scoring function that considers content similarity
and contextual relevance; and (iii) Integration of
historical usage patterns to refine relevance assess-
ment.

2 Related Work

Existing memory-augmented architectures such as
RetroMAE (Xiao et al., 2022) have demonstrated
promising results but often struggle with seman-
tic coherence and retrieval efficiency. Similarly,
sparse attention mechanisms reduce computational
complexity but frequently sacrifice model capabil-
ity (Beltagy et al., 2020). Memorizing Transform-
ers (Wu et al., 2022) developed dedicated memory
tokens. Recent advances have focused on mem-
ory management through hierarchical cache struc-
tures (Wu et al., 2022) and context-aware reten-
tion strategies (Borgeaud et al., 2022). However,
these systems often struggle with distribution shifts
during training and effective information retrieval.
While these methods offer partial solutions, they
often face challenges in maintaining consistent per-
formance across varying context lengths and ensur-
ing reliable information retrieval.

Architectural modifications have focused primar-
ily on improving position representation and atten-
tion mechanisms. Position encoding adaptations
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Figure 2: The architecture diagram for ERMAR.

such as RoPE (Su et al., 2024) and ALiBi (Press
et al., 2022) have enhanced models’ ability to han-
dle longer sequences by providing more robust
position information. YARN (Peng et al., 2023)
further advanced this approach through dynamic
position embeddings, demonstrating reliable gen-
eralization up to 128k tokens. Complementing
these developments, sparse attention mechanisms
such as Longformer (Beltagy et al., 2020) and Big-
Bird (Zaheer et al., 2020) have reduced computa-
tional complexity while maintaining model capa-
bilities through selective attention patterns.

3 Our Novel ERMAR Model

Figure 2 illustrates our ERMAR framework and
Figure 1 presents the contextual ranking mecha-
nism of key, value pairs components that enable
effective retrieval. ERMAR maintains consistency
through frozen lower layers and selective parame-
ter updating. ERMAR: (i) stores important infor-
mation from earlier parts of the text; (ii) assigns
relevance scores to stored information based on its
importance to the current context, and (iii) retrieves
only the most relevant historical information when
needed. Our relevance scoring is analogous to at-
tention, allowing the model to focus on important
parts of the memory. There is also a “loose” point-
wise connection because the primary objective is
sequence likelihood.

Let V be a finite vocabulary, and
x = (r1,...,2,) € V" a token sequence with
preceding context x.;. The embedding func-
tion £:V* — R% maps sequences to retrieval
space. We introduce a memory function M
augmented with a relevance scoring mechanism
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Relevance Score: Given a query embedding
q € R% and a matrix of key embeddings
K = [k1,..., ky) € R™*d (where each row k; €
R%<t corresponds to a key embedding), the rele-
vance score is:

a(q, K) = softmax (‘3}%) (D)
Here, v/dye normalizes the similarity scores to pre-
vent excessively large values. The relevance score
a(q, K) can be interpreted as a probability distribu-
tion over the keys, where each entry «; represents
the relative importance (or attention weight) of the
t-th key to the query q. This score is used to rank
memory entries based on their importance to the
current query.

Ranked Key-Value Pairs: FEach embed-
ding e maintains a ranked set of key-value
pairs: Rinked(€) = {(Kj,V},sj)};”:l,, where s; =
a(e, K;) is the relevance score between the em-
bedding e and the key K.

ERMAR objection function is formulated as:

Given a  sequence X, maximize:
[,(0) = Z?:l pg(l‘i ‘ RRSAR(tia S),X<Z'), subject to:
si = M(K1-1, Vi:ie1;E(t1:i-1)), - ti = text(cpi/r),
a; = a(E(ti), K1:i-1)s

where a; guides key-value pair selection, and pg
represents the model’s probability distribution.

For new content (K,,V,), update the memory
M(EKn, Va; E(tn))
My(8iy Kn, Vo, ) otherwise,
where M, prunes the least relevant entries based on
historical scores, specifically by ranking the scores
and pruning those with the lowest values relative
to the current context.

We now develop the Relevance Scoring with
Adaptive Retrieval (RSAR). This approach dy-
namically ranks memory entries based on their
importance to the current query, significantly im-
proving the retrieval process. The relevance score,
a(q, K), as defined in equation 1, is used to rank
memory entries.

RSAR enhances the memory module by
introducing ranked key-value entries, represented

s (K;,Vj,sj), where s; denotes the relevance
score for each entry. These scores enable the
system to prioritize the most relevant information
during retrieval while maintaining computational
efficiency. To ensure optimal memory utilization,
a pruning strategy is applied to remove less
relevant entries. Specifically, entries with scores

if |s;| < capacity,

state as: s =

below a predefined threshold are discarded,

preserving only the most critical context. The

enhanced retrieval mechanism is expressed as:

Rrsar(tq, s) = TopK {sim(E(t,), e) - max; s; | e € s},
where E(t,) represents the encoded query, and

the operation identifies the top-K relevant entries

based on their scores. This mechanism efficiently

retrieves the most relevant information, even for

extended contexts.

3.1 Experimental Setup

We fine-tuned ERMAR on the SlimPajama
dataset (Fu et al., 2024), a high-quality, dedupli-
cated corpus designed for long-context tasks. It
contains 84.7K training rows, making it a com-
pact yet effective resource for pre-training and fine-
tuning. Performance was measured across context
lengths from 1024 to 32768 tokens, using perplex-
ity on the last 2048 tokens (Yen et al., 2024).

We fine-tuned OpenLLLaMA-3B, a pre-trained
LLM with rotational position encoding (Su et al.,
2024), using LoRA (Hu et al., 2021) for efficiency.
The model has L = 26 layers, H = 32 attention
heads, and d = 100 dimensions. The 13th layer
serves as the memory layer, while layers [14, 18,
22, 26] are used for retrieval augmentation.

ERMAR was evaluated against state-of-the-art
7B and 3B parameter models. The 7B models in-
clude LLaMA-2-7B (Touvron et al., 2023b) as a
transformer baseline, Longl.oRA-7B-32k (Chen
et al., 2023) with sparse attention for 32k-token
contexts, and YARN-128k-7B (Peng et al., 2023)
with dynamic position embeddings for 128k tokens.
The 3B models include OpenLLaMA-3B (Touvron
et al., 2023a), LongLLaMA-3B (Tworkowski et al.,
2024) (evaluated in two retrieval configurations),
and Phi3-128k (Abdin et al., 2024), which performs
well across varying context lengths. This diverse
benchmark suite ensures a robust evaluation of ER-
MAR’s long-context capabilities.

3.2 Results and Discussion

3.2.1 Long-Context Language Modeling

Following the experimental strategy adopted in
(Liu et al., 2024), Table 1 presents the mean per-
plexity scores of our model across different se-
quence lengths and datasets, demonstrating its
effectiveness in long-context modeling. Evalua-
tion was performed on test splits of three datasets:
WikiText-103 (Merity et al., 2016) (4,358 rows),
PG-19 (Rae et al., 2019) (100 rows), and Proof-
Pile (Azerbayev et al., 2023) (46.3k rows).



PG19 Proof-pile Wikitext-103
Model 1k 2k 4k 16k 1k 2k 4k 16k 1k 2k 4k 16k
7B Model
YARN-128k-7b 7.22 7.47 7.17 - 3.03 3.29 2.98 - 5.71 6.11 5.71 -
LongLoRA-7B-32k 9.76 9.71 10.37 7.62 3.68 3.35 3.23 2.60 7.99 7.83 8.39 5.47
LLaMA-2-7B 10.82  10.06 8.92 - 3.24 3.40 2.72 10.82  6.49 5.66 -
3B Model
Phi3-128k 11.31  9.90 9.66 -9.65 | 4.25 3.11 2.77 -3.08 | 7.54 7.22 7.01 -/7.20
OpenLLaMA-3B 11.60  9.77 >10% - 2.96 2.70 >10° 10.57  8.08 >10% -
LongLLaMA-3B* 1059 1002 >10° - 3.55 3.15 >10° 8.88 8.07 >10% -
LongLLaMA-3B* 1059 1025 9.87 - 3.55 3.22 2.94 10.69  8.33 7.84 -
MemLong-3B* 1066  10.09 >10%° - 358 318  >10° 872 793  >10° -
w/ 4K MemLong 10.54  9.95 9.89 9.64 3.53 3.16 3.15 2.99 8.53 7.92 7.87 7.99
w/ 4K ERMAR 1032  9.75 9.78 9.81 3.24 2.98 3.03 3.18 7.92 7.41 7.34 7.08

Table 1: Perplexity comparison of 7B and 3B models across PG19, Proof-pile, and WikiText-103, using a sliding
window evaluation. "-" denotes Out of Memory (OOM) errors, and "x/y" indicates results from single/dual GPU
setups. Memory-augmented models are tested with varying capacities. All runs use a single 3090 24GB GPU.

Among 7B models, YARN-128k-7B excels in
shorter contexts, while Longl.oRA-7B-32k scales
effectively to 16k-token sequences, though with
some performance degradation. This highlights
the trade-off between performance and scalability,
guiding model selection based on use-case needs.

The 3B models demonstrate ERMAR’s signif-
icant advantages in long-context tasks. While
OpenLLaMA-3B struggles beyond 4k tokens, and
Phi3-128k shows more consistent performance,
ERMAR sets new performance benchmarks. ER-
MAR outperforms MemLong and larger 7B models
in several configurations, including achieving a re-
markable 2.98 perplexity on Proof-pile, surpassing
MemLong’s 3.16. Despite slight underperformance
in specific Proof-pile configurations, ERMAR’s en-
hanced memory retrieval mechanism proves more
effective overall. Additionally, ERMAR maintains
stable performance up to 16k tokens, with only
a 3.2% degradation in perplexity from 4k to 16k
tokens, demonstrating its superior scalability in
long-context modelling.

3.2.2 In-Context Learning Performance

The results in Table 2 show ERMAR’s strong per-
formance across five natural language understand-
ing tasks in both 4-shot and 20-shot settings.

In the 4-shot setting, ERMAR achieves state-of-
the-art results across all tasks, outperforming Open-
LLaMA and other memory-augmented models. It
excels even in challenging tasks like SST-5 and
MPQA, maintaining high performance with limited
examples. Its stability across different memory con-
figurations highlights its robustness in low-resource
scenarios.

ERMAR continues to excel in the 20-shot sce-
nario, achieving top results in tasks like MPQA
and Subj, and setting a new benchmark for SST-5.
While it lags behind MemLong in a few tasks, ER-

MAR outperforms it overall, showcasing its scala-
bility with increased examples.

ERMAR consistently performs well across vary-
ing context lengths, effectively leveraging mem-
ory augmentation. Its ability to scale with more
examples and handle both short and long-range de-
pendencies makes it a strong candidate for general-
purpose language modelling, advancing the state-
of-the-art in language understanding tasks.

Model In-C [ SST2 MR  Subj SST-5 MPQAT -

In-M | ACCT ACCtT ACCT ACCT Acct| Y&
OpenLLaMA | 4N/A | 90.7 840 582 410 705 | 689
w./ Rag 44 909 905 616 392 632 | 69.1
LongLLaMA | 4.4 904 839 643 400 642 | 68.6
MemLong 44 915 845 615 414 702 | 69.8
ERMAR 44 936 908 653 458 852 | 76.14
LongLLaMA | 4,18 | 914 871 591 410 645 | 687
MemLong 418 | 910 89.6 617 435 694 | 710
ERMAR 418 | 936 908 653 459 852 | 7616
OpenLLaMA | 20.N/A| 936 9012 554 382 664 | 69.0
w./ Rag 20,18 | 922 913 758 398 576 | 713
LongLLaMA | 20,18 | 94.1 908 642 414 721 | 727
MemLong 20,18 | 935 938 658 433 706 | 734
ERMAR 20,18 | 947 917 828 47 86.5 | 80.54

Table 2: 4-shot and 20-shot ICL accuracy [%] on 5 NLU
tasks (SST-2, MR, Subj, SST-5, MPQA). We compare
OpenLLaMA, LongLLaMA, MemLong, and ERMAR.
Note: In-C = In-Context, In-M = In-Memory.

4 Conclusion

We presented a novel ERMAR framework that en-
hances long-context modelling through relevance
scoring and adaptive memory retrieval. ERMAR
outperforms baseline models, including OpenL-
LaMA, LonglLLaMA, and MemLong, achieving
superior perplexity and in-context learning perfor-
mance on WikiText-103, PG19, and Proof-pile. Fu-
ture work will focus on optimizing ERMAR for
specialized datasets and expanding its applicability
to complex reasoning tasks.



5 Limitations

While ERMAR improves retrieval efficiency and
context retention, it has limitations. Its reliance on
ranked memory structures increases computational
overhead compared to standard LLMs, particularly
for large-scale retrieval. Additionally, performance
variations across different task domains indicate
a need for further tuning. The framework’s ef-
fectiveness in real-world, noisy environments also
requires further validation.
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