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Abstract

In this paper, we derive an upper bound of the
difference between a kernel matrix and its expec-
tation under a mild assumption. Specifically, we
assume that the true distribution of the training
data is an unknown isotropic Gaussian distribu-
tion. When the kernel function is a Gaussian
kernel, and the mean of each cluster is sufficiently
separated, we find that the expectation of a kernel
matrix can be close to a rank-k matrix, where k
is the cluster number. Moreover, we prove that
the normalized kernel matrix of the training set
deviates (w.r.t. Frobenius norm) from its expec-
tation in the order of Õ(1/

√
d), where d is the

dimension of samples. Based on the above theo-
retical results, we propose a novel multiple kernel
clustering framework which attempts to learn the
information of the expectation kernel matrices.
First, we aim to minimize the distance between
each base kernel and a rank-k matrix, which is a
proxy of the expectation kernel. Then, we fuse
these rank-k matrices into a consensus rank-k
matrix to find the clustering structure. Using an
anchor-based method, the proposed framework
is flexible with the sizes of input kernel matrices
and able to handle large-scale datasets. We also
provide the approximation guarantee by deriving
two non-asymptotic bounds for the consensus ker-
nel and clustering indicator matrices. Finally, we
conduct extensive experiments to verify the clus-
tering performance of the proposed method and
the correctness of the proposed theoretical results.
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1. Introduction
A fundamental principle of learned models is to study the
parameters of the true distribution of sample space from
a set of training samples. In the learning task, we should
explore more general information about the distribution of
samples with its empirical distribution. In kernel cluster-
ing (Dhillon et al., 2004), the empirical kernel matrix is
essential to improve clustering performance. It is necessary
to know how the empirical kernel matrix deviates from its
expectation. In this paper, for a multi-view training set,
we assume that samples of each view are generated from
an unknown isotropic Gaussian distribution. If we use the
Gaussian kernel function to compute the kernel matrix, then
we can derive an upper bound of the difference between the
empirical kernel matrix and its expectation. Assuming that
the dimension of the samples is d, the above upper bound
is basically Õ(1/

√
d)1. When the means of the clusters are

well separated, the expectation of the kernel matrix can be
close to a rank-k matrix.

Based on the above observations, we attempt to devise a
novel multiple kernel clustering (MKC) algorithm. MKC
(Zhao et al., 2009) is proposed to improve the clustering
performance of the single kernel clustering (Dhillon et al.,
2004). It constructs several base kernel matrices {Kv}Vv=1

with different kernel functions and fuses Kv’s into a consen-
sus one. Then, the standard kernel k-means (Dhillon et al.,
2004) is performed on the consensus kernel matrix for the
final clustering result. MKC has been extensively studied in
recent years (Liang et al., 2023; 2022; Liu, 2023; 2022; Ren
& Sun, 2020; Liu et al., 2017; 2016; Li et al., 2016). Among
them, Liu (2022) proposes a new fusion style by a min-max
optimization objective and improves clustering performance
without any hyper-parameter tuning. Liu (2023) further
improves the work of (Liu, 2022). Subsequently, Liang
et al. (2022) study the stability and generalization of MKC
and derive the excess risk bound of MKC for the first time.
Liang et al. (2023) establish the strong consistency of MKC
by proving the empirical kernel weights can converge to the
corresponding expected version.

Although the research mentioned enriches the fields of

1Õ(·) hides logarithmic terms.
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MKC, the design of MKC algorithms is almost entirely
based on heuristic observations. This weakens the explana-
tion of MKC. In this paper, we propose a scalable multiple
kernel clustering (SMKC) based on the concentration results
of kernel matrices for stronger rationality. By the low-rank
property of the expectation kernel, we use a rank-k matrix
as its proxy. The proposed objective function aims to min-
imize the distance between each base kernel and a rank-k
matrix. Meanwhile, these rank-k matrices are then fused
into a rank-k consensus matrix. The proposed SMKC has
two noticeable advantages: free of tuning hyper-parameters
and scalable to large-scale datasets. Existing MKC algo-
rithms that have hyper-parameters need true labels for hyper-
parameter tuning. In clustering tasks, the lack of true labels
makes it impossible for these methods to handle real-world
datasets. Our method doesn’t need to tune hyper-parameters
and can be easily implemented. In addition, the proposed
SMKC is flexible to the size of input base kernel matri-
ces. Inspired by some anchor-based large-scale multi-view
clustering methods (Yu et al., 2023; 2024a), we can sample
s (s ≪ n) columns from each base kernel matrix of size
n × n. When the input kernels are several n× s matrices
Gv’s, the complexity of the corresponding optimization al-
gorithm is basically O(ns2). Since the complexity is linear
with n, SMKC can handle large-scale datasets. Assume
that the consensus kernel learned from Gv’s is G∗. When
s = n, we denote the output consensus kernel as K∗. For
an approximation guarantee, we establish a non-asymptotic
bound to depict the difference between G∗ and K∗. We also
derive an upper bound of the distance between the clustering
indicator matrices obtained from the above two consensus
kernel matrices.

Subsequently, we conduct comprehensive experiments to
test the clustering performance in 11 benchmark datasets
including 6 middle-scale and 5 large-scale datasets. The
experimental results show the superiority of the proposed
SMKC in both clustering performance and execution effi-
ciency. Moreover, we also perform an experiment for the
verification of the theoretical approximation guarantee. The
contributions of this paper can be summarized as follows.

1. By assuming the samples are generated from isotropic
Gaussian distributions, we obtain the expectation of a
kernel matrix computed by the Gaussian kernel func-
tion. We then theoretically study how far the empirical
kernel matrix is from its expectation.

2. We find the expectation of a kernel matrix has an ap-
parent clustering structure. We use this phenomenon
to devise a novel MKC algorithm with theoretical ap-
proximation guarantees. Our method is free of tun-
ing hyper-parameters and able to handle large-scale
datasets.

3. Extensive experiments on real-world datasets demon-
strate the advantages of the proposed SMKC and the
correctness of our theoretical results.

The paper is organized as follows. Section 2 gives an intro-
duction to the related work of our work. Section 3 elaborates
the notations and assumptions throughout this paper. Sec-
tion 4 gives two theoretical results about the expectation of
an empirical kernel matrix and explains the motivation of
the proposed SMKC. The objective function of SMKC and
its optimization method is also placed in Section 4. We give
the theoretical analysis in Section 5. Section 6 records the
results of numerical experiments. Section 7 concludes this
paper.

2. Related Work
In this section, we introduce two related works, i.e., the as-
sumption of Gaussian distribution in clustering and multiple
kernel clustering.

2.1. Gaussian Distributed Datasets in Clustering

In the existing literature on clustering, a common assump-
tion is that the training datasets obey Gaussian distribution
(Shi et al., 2009; Löffler et al., 2021; Ding & Ma, 2023;
Srivastava et al., 2023). Specifically, for each point x, a
data-generative model assumes that

x = y + ϵ,

where y is the signal of x, and ϵ is the noise of x. Usually,
it is typically assumed that ϵ obeys Gaussian distribution
N (0,Σ), where Σ is the covariance matrix. Based on this
assumption, the researchers design various clustering al-
gorithms and derive the corresponding theoretical results
(Yang et al., 2012; Abbe et al., 2022; Han et al., 2023).
However, in the multi-view setting, this assumption is never
discussed. If we let the data-generative model of each view
be Gaussian distributed, can we design a multi-view cluster-
ing algorithm to explore the clustering structure sufficiently
from all base views? This paper tries to answer the above
question by proposing a novel clustering algorithm.

2.2. Multiple Kernel Clustering

Multiple kernel clustering (MKC) can be used to handle
multi-view clustering tasks (Yu et al., 2023; 2024b). MKC
algorithms construct a kernel matrix for each view and then
fuse them on different principles. Existing MKC methods
give a weight for each kernel matrix and try to optimize the
weight by a unified objective. We will briefly introduce two
MKC methods as follows. Assuming that the γ ∈ RV are
the weights and {Kv}Vv=1, multiple kernel k-means (Huang
et al., 2012) (MKKM) optimizes the following objective
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function:

min
γ∈∆,H⊤H=Ik

1

n
Tr(Kγ(In −HH⊤)),

where Kγ =
∑V

v=1 γ
2
vKv, H ∈ Rn×k, and ∆ is the con-

straint of simplex. Liu (2022) modifies the above method in
a min-max manner:

min
γ∈∆

max
H⊤H=Ik

1

n
Tr(KγHH⊤).

The work in (Liu, 2022) improves MKKM and becomes one
of the most popular MKC algorithms. Despite the success
of these MKC methods, they lack the exploration of the
statistical properties of kernel matrices. We will fill this gap
by learning the expectation of kernel matrices.

3. Notations and Assumptions
In this section, we introduce the main notations and general
assumptions.

Mathematical notations. This section presents the mathe-
matical notations utilized throughout the paper to enhance
readability. For the asymptotic notations O,Θ, we re-
fer to Chapter 3 of (Cormen et al., 2022). The notation
u(n) = O(v(n)) implies u(n) ≤ cv(n) for some con-
stant c, also denoted as u(n) ≾ v(n). Õ(·) is similar to
O but hides logarithmic terms. u(n) = Θ(v(n)) means
u(n) ≾ v(n) ≾ u(n). The operator norm of a matrix or
operator A is defined as ∥A∥ := max∥x∥=1 ∥Ax∥.

In the multi-view setting, there are V views {X(v)}Vv=1 in a
training set. The v-th view is denoted by X(v) = {x(v)

i }ni=1,
where x

(v)
i ∈ Rd(v)

and d(v) denotes the dimension of the
v-th view. As the following assumption, we suppose all the
samples are composed of signal and noise.

Assumption 3.1. For i-th point of the v-th view, if it belongs
to the p-th cluster, we assume that

x
(v)
i = µ(v)

p + ϵ
(v)
i ,

where µ
(v)
p is the mean of the p-th cluster in the v-th view,

and ϵ
(v)
i ∼ N (0d(v) , (σ

(v)
p /

√
d(v))Id(v)) is the isotropic

Gaussian noise.

In the above assumption, because E∥ϵ(v)i ∥ is Θ(
√
d(v)), we

normalize the scale of covariance σ
(v)
p by dividing

√
d(v).

4. Motivation and Method
In this section, we begin with a theoretical analysis of the
expectation kernel matrix, followed by the presentation of
our method and its associated optimization algorithm.

4.1. Theoretical Analysis of the Expectation Kernel
Matrix

We can compute the expectation of the kernel matrix as
follows with our assumptions.

Theorem 4.1. Under Assumption 3.1, if the kernel matrix
is computed by Gaussian kernel function

K(xi,xj) = exp
(
−∥xi − xj∥2/(2(δ(v))2)

)
,

the v-th expectation of the kernel matrix is represented by

[E(Kv)]ij =

 δ(v)√
(δ(v))2 + (σ

(v)
p )2/d(v) + (σ

(v)
q )2/d(v)

d(v)

·

exp

(
−

∥µ(v)
p − µ(v)

q ∥2

2(δ(v))2 + 2(σ
(v)
p /)2/d(v) + 2(σ

(v)
q )2/d(v)

)
,

(1)

for the i-th and j-th samples belonged to the p-th and q-th
cluster.

Remark. It is easy to see that E(Kv) is also a kernel matrix.
For two different clusters p and q, if their means µ(v)

p and
µ

(v)
q are well separated, then E(Kv) can approach to a low

rank block matrix with rank k. In this sense, E(Kv) has an
explicit clustering structure.

Denote that the normalized version of Kv as Kv/n. The
next theorem shows that the normalized kernel matrix can
converge to its expectation as d(v) → ∞.

Theorem 4.2. The following inequality holds with proba-
bility at least 1− exp(−ξ2),∥∥∥∥ 1nKv −

1

n
EKv

∥∥∥∥
F

≾
σ
(v)
∞

δ(v)
√
d(v)

(1 + ξ/
√
n),

where σ
(v)
∞ = max{σ(v)

1 , · · · , σ(v)
k }.

Remark. Theorem 4.2 means that the empirical kernel ma-
trix is near its expectation. Meanwhile, according to Theo-
rem 4.1, the rank of the expectation kernel matrix is close to
k. The proposed method aims to learn a rank-k matrix from
each base kernel matrix and fuse them into a unified one for
clustering.

4.2. Proposed Method

According to Theorem 4.1, we know that the expectation,
denoted as EKv , exhibits a noiseless quality and manifests a
distinct clustering structure. However, direct acquisition of
EKv is unattainable. As stated in Theorem 4.2, the empiri-
cal kernel matrix closely approximates its expectation. Our
objective is to extract information regarding EKv from Kv .
Utilizing the representation theorem, we express K(x,y)
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for any x,y ∈ X as an inner product ⟨ϕ(x), ϕ(y)⟩ within a
Hilbert space, where ϕ(x) is defined as the feature map for
x. Consequently, we can represent Kv by ΦΦ⊤, where the
rows of Φ correspond to the feature maps of the training set.
Initially, we employ kernel principal component analysis
(KPCA) to denoise Kv , as follows:

min
U⊤U=Ik

∥Φ−UU⊤Φ∥2F. (2)

The solution of Eq. (2) is the first k left singular vectors of
Φ. Thus, Eq. (2) is equivalent to

min
U⊤U=Ik

∥Kv −UU⊤Kv∥2F. (3)

According to Section 2 of (Cohen et al., 2015), the problem
in Eq. (3) can be reformed as

min
K̃v∈Mk

∥K̃v −Kv∥2F. (4)

From Theorem 4.1, the expectation of each base kernel
shows a clear clustering structure. To unify the clustering
information of all views, we aim to minimize the distance
between K̃v and a rank-k consensus kernel matrix K∗, i.e.,
the following optimization problem:

min
K̃v,K∗∈Mk

V∑
v=1

∥K̃v −K∗∥2F. (5)

Combining Eq. (4) and Eq. (5), we can obtain the following
objective function:

min
K̃v,K∗∈Mk

V∑
v=1

∥K̃v −Kv∥2F + ∥K̃v −K∗∥2F, (6)

where Mk denotes the set of all matrices with rank k.

Obviously, the objective function (6) has a critical issue, i.e.,
high complexity. It needs to compute V base kernel ma-
trices which occupy O(V n2) space and are certain to cost
more time than O(V n2). Inspired by the Nyström based
kernel clustering (Wang et al., 2019) and the anchor-based
methods (Yu et al., 2024a;b), we can effectively reveal the
clustering structure from a small portion of the whole kernel
matrix. Specifically, for each view, we can randomly select
s (s ≪ n) anchors A(v) = {a(v)t }st=1 from the training set
X(v). Then, we construct V base kernel similarity matrices
{Gv}Vv=1, where Gv(i, t) = Kv(x

(v)
i ,a

(v)
t ). By replac-

ing Kv with Gv, we can obtain a scalable multiple kernel
clustering method with the following objective function:

min
G̃v,G∗∈Mk

V∑
v=1

∥G̃v −Gv∥2F + ∥G̃v −G∗∥2F. (7)

4.3. Optimization

We can alternately optimize G̃v,G
∗ in Eq. (7) by the fol-

lowing procedures.

1. Minimizing G̃v with fixed G∗ and Gu (u ̸= v). With
fixed G∗, the optimization problem in Eq. (7) can be written
as

min
G̃v∈Mk

∥G̃v −Gv∥2F + ∥G̃v −G∗∥2F. (8)

It is equivalent to the following problem.

min
G̃v∈Mk

∥G̃v − (Gv +G∗)/2∥2F. (9)

The problem in (9) is a best rank-k approximation prob-
lem of (Gv + G∗)/2. We can solve it by the following
steps. First, we perform singular value decomposition on
(Gv +G∗)/2, i.e., (Gv +G∗)/2 = UDV⊤. Then, we let
Gv = UkDkV

⊤
k , where Uk,Vk are respectively the first

k columns of U,V, and Dk is a diagonal matrix composed
of the first k diagonal elements of D.

2. Minimizing G∗ with fixed {G̃v}Vv=1. With fixed
{G̃v}Vv=1, the optimization problem in Eq. (7) can be writ-
ten as

min
G∗∈Mk

V∑
v=1

∥G̃v −G∗∥2F. (10)

It can be converted to the following problem.

min
G∗∈Mk

∥∥∥∥∥G∗ −

(
V∑

v=1

G̃v

)
/V

∥∥∥∥∥
2

F

. (11)

We can optimize (11) with a similar method as the optimiza-
tion of (9). The optimization algorithm and the correspond-
ing initialization are listed in Algorithm 1. We provide the
convergence analysis in Section A.4 of the appendix.

5. Theoretical Analysis
We will make a comprehensive theoretical analysis of the
proposed scalable multiple kernel clustering (SMKC) from
the following two perspectives: 1) storage and computa-
tional complexity and 2) the degree of approximation be-
tween G∗ and K∗ learned by optimizing (7) and (6), respec-
tively.

1. Storage and computational complexity. From Algo-
rithm 1, we need to store V base kernel similarity matrices
(their sizes are n × s) which occupy O(V sn) space. The
space to store other variables is less than O(V sn). Thus, the
storage complexity of SMKC is O(V sn). In the initializa-
tion, we perform SVD on V matrices with size n× s. This
costs O(V s2n) times. Assume that the proposed SMKC
can converge after T iterations. In each iteration, solv-
ing the problem in Eq. (11) consumes O(sn + s2n) time
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Algorithm 1 Scalable Multiple Kernel Clustering

1: Input: Training set V views {X(v)}Vv=1; anchor sets
{A(v)}Vv=1 (sampling from X(v) without replacement);
Gaussian kernel functions {Kv(·, ·)}Vv=1 with different
width {δ(v)}Vv=1; number of clusters k.

2: Output: The clustering results.
3: Compute V base kernel similarity matrices {Gv}Vv=1

by Gv(i, t) = Kv(x
(v)
i ,a

(v)
t ), for any i ∈ [n], t ∈ [s].

4: Initialize G̃v = UkDkV
⊤
k , where Uk,Dk,Vk are

obtained by the rank-k truncated SVD of Gv; sign = 1.
5: while sign=1 do
6: Solve the problem in (11) to optimize G∗.
7: Solve the problem in (9) to optimize {Gv}Vv=1.
8: if G∗ converges then
9: sign = 0.

10: end if
11: end while
12: Perform k-means on the first k left singular vectors G∗

for the final clustering results.

caused by the addition of two n × s matrices and the sub-
sequent SVD. To optimize Eq. (9), we should add up V
matrices with size n× s and perform SVD on their summa-
tion. This step will cost O((V − 1)sn+ s2n) time. Above
all, the total computational complexity can be bounded by
O(TV sn+ (V + T )s2n). In the general setting, T, V can
be regarded as constants, so the computational complexity
is all basically O(s2n). If we let the s ≪ n, the proposed
SMKC can efficiently handle large-scale datasets. We will
verify its efficiency by experiments in Section 6.

2. The degree of approximation. Now, we prepare to make
a theoretical analysis of the approximation degree between
G∗ and K∗. Before we give the results, we first introduce
an assumption about the eigen gap of kernel matrices.

Assumption 5.1. Assume that δk is the difference between
the k-th and the (k + 1)-th eigenvalue of some kernel ma-
trix in the optimization of Algorithm 1. There exists some
constant c ≥ 0 such that δk ≥ c holds.

Remark. In Assumption 5.1, we assume that the k-th eigen
gap and the first k singular values of the matrices involved in
the proposed algorithm are strictly larger than 0. For a base
kernel matrix, when the sample number n → ∞, the eigen-
values of the kernel matrix can converge to the eigenvalues
of some integral operator. When the kernel function and
sample space are fixed, the eigenvalues of the above integral
operator can be regarded as constants. As the discussions
about the spectral properties of the integral operator defined
by Gaussian distribution and Gaussian kernel function (Shi
et al., 2008), it can be easy to see that the eigen gap is larger
than a constant. Thus, the assumption about the eigen gap is
rational. The assumption of the eigengap can also be found

in existing literature, such as (Von Luxburg et al., 2008;
Mitz & Shkolnisky, 2022).
Theorem 5.2. Under Assumption 3.1 and Assumption 5.1,
when the inputs of Algorithm 1 are V whole base kernel ma-
trices {Kv}Vv=1 (Kv ∈ Rn×n), the output is K∗ ∈ Rn×n.
When the inputs are {Gv}Vv=1 (Gv ∈ Rn×s, and Gv is
composed of the columns sampled from Kv uniformly with-
out replacement), we assume the output is G∗. In the above
two situations, if the iteration numbers of Algorithm 1 are
less than T , we have the following approximation bound∥∥∥∥ 1

ns
G∗(G∗)⊤ − 1

n2
K∗(K∗)⊤

∥∥∥∥ ≾ (ξ+
√

log T )

√
1

s
− 1

n

holds with probability at least 1− exp(−ξ2).

Remark. Theorem 5.2 gives an approximation bound be-
tween the solutions of Eq. (6) and Eq. (7). The bound is
basically O(1/

√
s). It shows that Eq. (7) can well approxi-

mate Eq. (6) with regard to the fusion of base kernels. In the
clustering task, the clustering indicator matrix (i.e., the first
k left singular vectors G∗) plays an important role. Theo-
rem 5.2 can also derive an upper bound about the clustering
indicator matrices obtained from G∗ and K∗.
Corollary 5.3. Under the same assumption in Theorem
5.2, assume the first k singular vectors of G∗ and K∗ are
U ∈ Rn×k and H ∈ Rn×k. The distance between the
subspace spanned by U and H has an upper bound as∥∥UU⊤ −HH⊤∥∥

F
≾ (ξ +

√
log T )

√
1

s
− 1

n

holds with probability at least 1− exp(−ξ2).

Remark. It is easy to prove Corollary 5.3 with Theorem
5.2 and Lemma A.7 in the appendix. From Corollary 5.3,
we can see that G∗ and K∗ can produce similar clustering
performance by performing k-means on their first k left
singular vectors. We will empirically verify Corollary 5.3
in the real-world datasets in Section 6.

6. Experiments
The experiments are composed of four parts. 1) We ver-
ify the effectiveness of the proposed SMKC with 7 com-
pared methods on 6 real-world datasets. 2) We empirically
study the convergence of the objective function. 3) We
perform SMKC on large-scale datasets to demonstrate its
efficiency. 4) We learn the approximation degree of U
and H in Corollary 5.3 with different numbers of anchors.
All experiments are conducted on a desktop with Intel(R)
Core(TM)-i7-10870H CPU.

6.1. Information of Datasets

We first introduce all the datasets used in the experiments.
The detailed information is listed in Table 1. As seen, the
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first 6 datasets are small-scale and middle-scale datasets.
Their number of samples varies from 600 to 10800. We
choose these datasets to compare the proposed method with
other baseline multiple kernel methods. The remaining
5 large-scale datasets are used to verify the efficiency of
the proposed SMKC. The smallest number of samples is
30475, and the largest is 325834. Existing multiple kernel
clustering methods make it almost impossible to handle the
datasets on such a large scale with a desktop. All the URLs
of used datasets are listed in Section B of the appendix.

Table 1: Detailed information of the datasets used in experi-
ments.

Dataset Number of
Samples Views Clusters

Synthetic3d 600 3 3
100Leaves 1600 3 100
Mfeat 2000 6 10
Wiki 2866 2 10
Handwritten 10000 2 10
ALOI-100 10800 4 100
AwA 30475 6 50
Cifar10 50000 3 10
Cifar100 50000 3 100
YtVideo 101499 5 31
Winnipeg 325834 2 7

6.2. Comparison Experiments

In the comparison experiments, we select 7 multiple kernel
clustering methods as baselines, and their detailed informa-
tion is as follows.

• Single best is the best clustering performance by stan-
dard kernel k-means on each base kernels.

• Multiple kernel k-means (MKKM) (Huang et al.,
2012). MKKM utilizes an alternative optimization
method to update the clustering partitions and kernel
weights to achieve the optimal result.

• Optimal neighborhood kernel clustering (ONKC)
(Liu et al., 2017). ONKC selects the potentially optimal
consensus kernel from the neighbourhood field formed
by a linear combination of base kernels.

• Multiple kernel k-means with matrix-induced regu-
larization (MKKM-MiR) (Liu et al., 2016). MKKM-
MiR introduces a new regularization term to learn the
optimal kernel weights, enhancing kernel diversity and
reducing redundancy.

• Mulitple kernel clustering with local alignment max-
imization (LKAM) (Li et al., 2016). LKAM seeks

to learn the ideal similarity matrix by aligning each
sample with its k-nearest neighbours rather than con-
sidering all samples.

• Localized multiple kernel k-means (LMKKM)
(Gönen & Margolin, 2014). LMMKM aims to unite
multiple local kernels about the data samples.

• Simple Multiple Kernel k-means (SMKKM) (Liu,
2022). SMKKM proposes a min-max learning
paradigm, minimizing kernel weights while maximiz-
ing the clustering partition matrix.

We perform them on the first 6 datasets in Table 1, and
record their clustering performance and consumed time. We
use the default setting for all the comparison algorithms
according to the corresponding papers. For the methods
with hyper-parameters, we use grid search to select the op-
timal hyper-parameters according to clustering results. In
fact, due to the lack of true labels, it is impossible to use
clustering results to select the optimal hyper-parameters.
The proposed SMKC has no hyper-parameters for tuning;
thus, we can easily deploy it in real applications. For each
view, the Gaussian kernel function is used to construct the
kernel matrix, and the width δ2 is specified as the mean
of the pairwise squared distances. In SMKC, we fix the
number of anchors as 1000 for sufficient anchors, i.e., 1000
columns from each base kernel matrix are sampled without
replacement as the input of SMKC (except for the dataset
termed Synthetic3d). For Synthetic3d, we choose all 600
columns. We use three commonly used clustering evaluat-
ing indicators to evaluate the clustering performance, i.e.,
accuracy (ACC), normalized mutual information (NMI),
and purity. The records of experiments are listed in Table 2.
“-” represents the consumed time that is longer than an hour.

As observed from Table 2, the proposed SMKC shows supe-
rior clustering performance compared with other 7 baseline
methods. We can also find that:

1. SMKKM is a hyper-parameter-free method and demon-
strates desirable clustering performance in many kernel
datasets. (Liu, 2022). As a strong baseline, the pro-
posed method outperforms SMKKM in most datasets. In
“Handwritten”, SMKC exceeds SMKKM 5.33%, 0.91% and
3.27% regarding ACC, NMI, and purity.

2. The proposed method has the advantage of high exe-
cution efficiency. As Table 2 shows, SMKC costs much
less time than ONKC, MKKM-MiR, LKAM, LMKKM
and SMKKM. Meanwhile, our method is comparable with
MKKM regarding the running time but obtains much better
clustering results.
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Table 2: ACC, NMI, purity and time comparison of different clustering algorithms on 6 benchmark datasets. We use bold
font to indicate the best performance among all algorithms. “-” represents the algorithm which consumes more than an hour.

Method Single best MKKM ONKC MKKM-MiR LKAM LMKKM SMKKM Proposed
ACC (%)

Synthetic3d 89.50 89.67 96.00 94.65 94.67 94.67 97.33 97.67
100Leaves 58.36 43.13 80.87 76.74 80.12 43.23 81.14 81.10

Mfeat 86.45 63.85 88.03 82.21 94.16 64.41 92.58 94.95
Wiki 53.15 53.15 48.45 45.23 38.57 52.98 48.97 54.08

Handwritten 47.93 70.25 - 70.88 69.38 63.86 72.11 77.44
ALOI-100 65.51 63.55 - 70.54 - - 73.24 74.46

NMI (%)
Synthetic3d 69.13 67.37 84.53 80.58 81.38 80.69 88.36 89.63
100Leaves 78.08 69.83 91.96 89.61 90.04 69.88 92.39 92.50

Mfeat 75.79 65.17 78.82 73.85 90.03 65.61 86.44 89.48
Wiki 51.96 51.97 40.45 35.41 34.73 51.85 42.51 52.73

Handwritten 43.98 63.27 - 64.00 65.34 58.62 64.87 65.78
ALOI-100 79.19 78.10 - 81.35 - - 83.16 83.83

Purity (%)
Synthetic3d 89.50 89.67 96.00 94.65 94.67 94.67 97.33 97.67
100Leaves 61.77 46.63 83.78 79.69 82.94 46.95 83.98 84.12

Mfeat 86.45 66.04 88.03 82.21 94.21 65.64 92.58 94.95
Wiki 61.29 61.29 51.65 47.92 47.49 61.22 53.31 61.57

Handwritten 52.28 70.67 - 73.49 72.61 68.39 74.17 77.44
ALOI-100 67.57 66.19 - 72.39 - - 74.88 76.14

Time (s)
Synthetic3d 0.90 0.41 23.06 1.78 8.23 21.62 2.21 0.73
100Leaves 27.36 10.14 468.19 47.65 252.94 102.07 52.56 13.26

Mfeat 16.90 4.42 676.46 24.50 142.79 1225.06 25.61 11.47
Wiki 10.08 5.79 983.52 45.87 245.54 97.51 20.93 10.02

Handwritten 41.28 59.67 - 328.30 2045.23 1315.36 401.72 49.44
ALOI-100 372.23 455.59 - 945.41 - - 1960.15 112.88

6.3. Approximation

In this subsection, we conduct experiments to verify the
correctness of Corollary 5.3. The objective function Eq. (7)
of the proposed SMKC is an approximation of Eq. (6). We
derive two theoretical results as the approximation guaran-
tee. Theorem 5.2 gives the approximation degree between
the consensus kernel matrices G∗ and K∗. Notice that the
final clustering indicator matrices U and H are produced by
SVD on G∗ or K∗, respectively. Corollary 5.3 gives the ap-
proximation guarantee of U with regard to H. We use two
datasets for verification, i.e., Handwritten and ALOI-100.
We first construct the whole kernel matrices as the input
of SMKC to obtain H. Then we let the anchor number s
vary in the range of {100, 200, · · · , 3000}, and uniformly
sample s columns of the whole kernel matrices as the input
for different U. For each s, we record the subspace distance
of U and H, i.e., ∥UU⊤ −HH∥F. We illustrate the varia-
tion trend of the above distance in Figure 1. Meanwhile, we
also record the corresponding execution time and clustering
performance (i.e., NMI). To reduce the influence of random-
ness, we repeat the above sampling process for 20 times,
and record the average values for different s. As the two
subfigures on the left side of Figure 1 show, the error can
decrease quickly as the number of anchors increases. As a

reference, we also plot the curve of f(s) = c
√
1/s− 1/n,

where c is a specified constant. We can see that the curve
of true error can be upper bounded by f(s) with different
constant c. It testifies the validity of Corollary 5.3 empiri-
cally. The two subfigures in the middle of Figure 1 show
that the execution time dramatically increases as s becomes
large. Meanwhile, the NMI obtained by U first increases
when s is smaller than 1000 and then fluctuates around the
NMI obtained by H. It shows that even if the number of
anchors is much less than the sample number, the proposed
method can also obtain similar clustering results acquired by
performing SMKC on the whole kernel matrices. To sum-
marize, the proposed SMKC can obtain desirable clustering
performance in a short time.

6.4. Convergence

We illustrate the variation of the objective values in algo-
rithm convergence in Figure 2. Four examples of the objec-
tive values of our algorithm at each iteration are recorded.
We can observe that the objective function monotonically
decreases and has a fast convergence rate.
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Figure 1: The experimental results for the verification of Corollary 5.3. Two subfigures on the left side show that the distance
between U and H can be upper bounded by c

√
1/s− 1/n, where c is some constant. Two subfigures in the middle report

the execution time of the proposed SMKC with the variation of sample number, while The subfigures on the right side
record the corresponding NMI.

Table 3: Experimental results on AwA.

ACC NMI Purity Time (s)
View 1 7.64 8.38 9.49

106.22

View 2 7.38 8.85 9.21
View 3 7.22 7.51 8.95
View 4 7.61 8.90 9.25
View 5 7.67 9.45 9.45
View 6 8.02 9.40 10.21

Proposed 9.56 11.52 11.76 96.86

Table 4: Experimental results on Cifar10.

ACC NMI Purity Time (s)
View 1 88.48 78.85 88.48

16.51View 2 85.50 72.09 85.50
View 3 86.37 73.58 86.37

Proposed 99.17 97.74 99.17 33.78

Table 5: Experimental results on Cifar100.

ACC NMI Purity Time (s)
View 1 86.10 96.80 89.98

243.47View 2 86.50 96.96 89.98
View 3 84.81 91.71 87.04

Proposed 91.45 98.16 92.77 315.16
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Figure 2: Illustration of the objective values of each iteration
in the process of algorithm convergence.

6.5. Experiments on Large-Scale Datasets

We conduct experiments on five large-scale datasets to ver-
ify SMKC’s ability to handle large-scale datasets. In these
datasets, the least number of samples is 30475, and the
largest is 325834. Existing multiple kernel clustering is
almost impossible to deal with such scale datasets because
they all need to construct the whole kernel matrix and the

8
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consequent eigen (singular) decomposition. In the proposed
SMKC, we only need to compute a few columns of the
whole kernel matrix. As shown in the previous section, the
complexity can be reduced to be linear with the sample num-
ber. In the large-scale experiments, we randomly sampled
s = 3 ∗ [

√
n] anchors. We let the Gaussian width be the

average squared distance between s selected anchors and n
samples. For comparison, we perform kernel k-means with
Nyström approximation (Kumar et al., 2012) on each single
kernel and record the clustering results. To reduce the ran-
domness, we repeat all experiments 20 times and report the
average performance and consuming time from Table 3 to
Table 7. From these tables, we can see that: 1. The proposed
SMKC consistently outperforms the kernel k-means with
Nyström in terms of clustering performance. SMKC can ex-
ceed the best single view by 1.54%, 10.69%, 4.95%, 2.49%,
and 7.18% in terms of NMI on all 5 datasets. It shows that
our method can effectively fuse the clustering structure of
all single views. 2. In the aspect of execution time, SMKC
can manage all large-scale datasets in the manner of kernel
clustering method within hundreds of seconds. It shows the
high efficiency of SMKC in handling large-scale datasets.

Table 6: Experimental results on YtVideo.

ACC NMI Purity Time (s)
View 1 8.95 5.55 26.86

148.64
View 2 17.52 16.91 29.67
View 3 12.73 11.38 26.94
View 4 17.57 15.69 29.26
View 5 18.40 16.02 29.27

Proposed 20.89 17.64 33.02 258.76

Table 7: Experimental results on Winnipeg.

ACC NMI Purity Time (s)
View 1 61.56 48.36 73.60 62.98View 2 58.65 45.70 65.81

Proposed 68.74 55.07 80.84 247.90

7. Conclusions and Limitations
In this paper, we obtain the expectation of kernel matri-
ces under the assumption of a Gaussian-distributed data
model. Then, we obtain an upper bound to measure how the
empirical kernel matrix is concentrated in its expectation.
Based on the theoretical results of the expectation kernel
matrix, we then propose a scalable multiple kernel cluster-
ing algorithm with an anchor-based method. With different
anchor numbers s, we give the approximation bounds for
the consensus kernel and clustering indicator matrix. We
provide strict and detailed proofs for all proposed theorems.
Finally, we conduct experiments to test the effectiveness of
the proposed method and the relevant theoretical results.

However, there are also some limitations existing in our
work which can be summarized as follows:

1. Equal view weights: Our approach assumes that all views
carry equal weight, neglecting to account for variations in
the importance of individual views.

2. Sole use of Frobenius norm: We exclusively rely on
the Frobenius norm for measuring the distance between
matrices, potentially overlooking other metrics that might
provide valuable insights.

3. Limited consideration of dataset distribution: The
proposed method is tailored specifically for Gaussian-
distributed datasets, thus failing to address potential varia-
tions present in datasets with alternative distributions.

We will address the above issues in the future.

Acknowledgments
This work was supported by the National Natural Sci-
ence Foundation of China (NO. 62376252, 62325604,
62276271, 62376039, 62306324, 62376279), the Key
Project of Natural Science Foundation of Zhejiang Province
(LZ22F030003).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbe, E., Fan, J., and Wang, K. An lp theory of pca and

spectral clustering. The Annals of Statistics, 50(4):2359–
2385, 2022.

Bardenet, R. and Maillard, O.-A. Concentration inequal-
ities for sampling without replacement. In Bernoulli,
volume 21, pp. 1361–1385, 2015.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. Dimensionality reduction for k-means clustering and
low rank approximation. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing
(STOC), pp. 163–172, 2015.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to algorithms. MIT press, 2022.

Dhillon, I. S., Guan, Y., and Kulis, B. Kernel k-means: spec-
tral clustering and normalized cuts. In Proceedings of the
tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 551–556, 2004.

9



Scalable Multiple Kernel Clustering: Learning Clustering Structure from Expectation

Ding, X. and Ma, R. Learning low-dimensional nonlinear
structures from high-dimensional noisy data: an integral
operator approach. The Annals of Statistics, 51(4):1744–
1769, 2023.

Gönen, M. and Margolin, A. A. Localized data fusion
for kernel k-means clustering with application to cancer
biology. In Advances in Neural Information Processing
Systems, pp. 1305–1313, 2014.

Han, X., Tong, X., and Fan, Y. Eigen selection in spectral
clustering: a theory-guided practice. Journal of the Amer-
ican Statistical Association, 118(541):109–121, 2023.

Huang, H.-C., Chuang, Y.-Y., and Chen, C.-S. Multiple
kernel fuzzy clustering. IEEE Transactions on Fuzzy
Systems, 20(1):120–134, 2012.

Kumar, S., Mohri, M., and Talwalkar, A. Sampling meth-
ods for the nyström method. The Journal of Machine
Learning Research, 13(1):981–1006, 2012.

Li, M., Liu, X., Wang, L., Dou, Y., Yin, J., and Zhu, E.
Multiple kernel clustering with local kernel alignment
maximization. In Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI), pp. 1704–1710, 2016.

Liang, W., Liu, X., Liu, Y., Huang, J.-J., Wang, S., Liu, J.,
Zhang, Y., Zhu, E., et al. Stability and generalization of
kernel clustering: From single kernel to multiple kernel.
Advances in Neural Information Processing Systems, 35:
33633–33645, 2022.

Liang, W., Liu, X., Liu, Y., Ma, C., Zhao, Y., Liu, Z.,
and Zhu, E. Consistency of multiple kernel clustering.
In International Conference on Machine Learning, pp.
20650–20676. PMLR, 2023.

Liu, X. Simplemkkm: Simple multiple kernel k-means.
IEEE Transactions on Pattern Analysis and Machine In-
telligence (TPAMI), 45(4):5174–5186, 2022.

Liu, X. Hyperparameter-free localized simple multiple ker-
nel k-means with global optimum. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

Liu, X., Dou, Y., Yin, J., Wang, L., and Zhu, E. Multiple
kernel k-means clustering with matrix-induced regular-
ization. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pp. 1888–1894, 2016.

Liu, X., Zhou, S., Wang, Y., Li, M., Dou, Y., Zhu, E., and
Yin, J. Optimal neighborhood kernel clustering with
multiple kernels. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA, pp. 2266–2272, 2017.
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A. Proof
A.1. The proof of Theorem 4.1

We need the following lemma to prove Theorem 4.1.

Lemma A.1. For any two real numbers a, b and random variable x ∼ N (0, σ2), the equality

Ex

[
exp

(
− (ax+ b)2

2

)]
=

1√
1 + a2σ2

· exp
(
− b2

2 + 2a2σ2

)
holds.

Proof of Lemma A.1. Since x ∼ N (0, σ2), we have∫ +∞
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Now, we can proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. For any two samples x(v)
i ∈ Cp and x

(v)
j ∈ Cq , we have

[E(Kv)]ij =E exp

−

∥∥∥µ(v)
p + ϵ

(v)
i − µ

(v)
q − ϵ

(v)
j

∥∥∥2
2(δ(v))2


=
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E exp
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(
µ
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(v)
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(v)
jt

)2
2(δ(v))2

 ,

(13)

where µ
(v)
pt is the t-th component of µ(v)

p , and the definitions of µ(v)
qt , ϵ

(v)
it , ϵ

(v)
jt are similar to µ

(v)
pt .
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By the definition of ϵ
(v)
i , ϵ

(v)
j , we have ϵ

(v)
i ∼ N (0, (σ
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p )2/d) and ϵ
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The second equality holds according to Lemma A.1. Combining Eq. (13) and Eq. (14), we can obtain Theorem 4.1.

A.2. The proof of Theorem 2

For ease of deduction, we omit the superscript (v) and subscript v in the proof, e.g., µp is µ(v)
p and K(·, ·) is Kv(·, ·). The

following lemma is an equivalent form of Theorem 5.2.2 of (Vershynin, 2018).

Lemma A.2. (Gaussian concentration). Consider a random vector z ∈ N (0d, Id) and a L-Lipschitz function f : Rd 7→ R.
Then,

Pr(f(z)− E f(z) ≥ Lt) ≤ exp(−ct2)

holds with some constant c.

Then, we prove the following two Lipschitz properties of the Gaussian kernel function.

Lemma A.3. By Assumption 3.1, the training set of some view can be written as X = U+E, where X = [x1, · · · ,xn] ∈
Rd×n, U = [µ1j , · · · ,µnj

] (for some sample i and j ∈ [k], ij means that xi belongs to the j-th cluster), and E =
[ϵ1, · · · , ϵn] is the matrix of Gaussian noise. We denote the kernel matrix constructed by X and Gaussian kernel function
K(x,y) = fδ(∥x− y∥) := (−∥x− y∥2/2δ2) as K(X) := [K(X)]i×j = K(xi,xj). Then, the following two Lipschitz
properties hold

1. fδ(x) := exp(−x2/2δ2) is 1√
eδ

-Lipschitz.

2. K(X) is 2
√
n√
eδ

-Lipschitz, w.r.t. F-norm.

Proof of Lemma A.3. We first prove the first part of Lemma A.3. Notice that fδ(x) is continuously differentiable. For any
x, y ∈ R, by Newton-Leibniz formula,

|fδ(y)− fδ(x)| =
∣∣∣∣∫ y

x

f ′
δ(t)dt

∣∣∣∣ = ∣∣∣∣∫ y

x
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dt

∣∣∣∣ ≤ 1√
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The last inequality holds due to the maximum of t
δ2 exp

(
− t2

2δ2

)
is 1√

eδ
for any t ∈ R.

13
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Then, we prove the latter part.
∥K(X)−K(X′)∥2F

=

n∑
i=1

n∑
j=1

(K(xi,xj)−K(x′
i,x

′
j))

2

=

n∑
i=1

n∑
j=1

(fδ(∥xi − xj∥)− fδ(∥x′
i − x′

j∥))2

≤ 1

eδ2

n∑
i=1

n∑
j=1

(∥xi − xj∥ − ∥x′
i − x′

j∥)2

≤ 1

eδ2

n∑
i=1

n∑
j=1

(∥xi − x′
i + xj − x′

j∥)2

≤ 2

eδ2

n∑
i=1

n∑
j=1

(∥xi − x′
i∥2 + ∥xj − x′

j∥2)

=
4n

eδ2
∥X−X′∥2F.

(15)

Thus, K(X) is 2
√
n√
eδ

-Lipschitz, w.r.t. F-norm.

Lemma A.4. The variance of K(xi,xj) has the following upper bound

E(K(xi,xj)− EK(xi,xj))
2 ≾

σ2
p,q

δ2d
,

where σp,q = max{σp, σq}, and σp, σq are the noise scale of xi,xj , respectively. Furthermore,

E ∥K(X)− EK(X)∥F ≾
nσ∞

δ
√
d
.

Proof of Lemma A.4. For any sample xi and its copy x′
i, we assume that xi = µp + ϵi and x′

i = µp + ϵ′i, where
ϵi, ϵ

′
i ∼ N (0d,

σp√
d
Id). Similarly, we suppose xj = µq + ϵj , and let x′

j be its copy. Then, we have

|K(xi,xj)−K(x′
i,x

′
j)|

=|K(µp + ϵi,µq + ϵj)−K(µp + ϵ′i,µq + ϵ′j)|
=|fδ(∥µp + ϵi − µq − ϵj∥)− fδ(∥µp + ϵ′i − µq − ϵ′j∥)|

≤ 1√
eδ

∣∣∥∥µp + ϵi − µq − ϵj∥ − ∥µp + ϵ′i − µq − ϵ′j∥
∣∣

≤ 1√
eδ

(
∥ϵi − ϵ′i + ϵj − ϵ′j∥

)
=

1√
eδ

(
∥ϵi − ϵ′i∥+ ∥ϵj − ϵ′j∥

)
=

1√
eδ

(
σp√
d
∥zi − z′i∥+

σq√
d
∥zj − z′j∥

)
≤ 2σp,q

δ
√
ed

√
∥zi − z′i∥2 + ∥zj − z′j∥2

=
2σp,q

δ
√
ed

∥[zi; zj ]− [z′i; z
′
j ]∥.

(16)

Thus, the function [zi; zj ] 7→ K(µp +
σp√
d
zi,µq +

σq√
d
zj) is 2σp,q

δ
√
ed

-Lipschitz. Notice that [zi; zj ] ∼ N (02d, I2d), according
to Lemma A.2, we have

Pr

(
|K(xi,xj)− EK(xi,xj)|) ≥

2σp,q

δ
√
ed

)
≤ 2 exp(−ct2),

14



Scalable Multiple Kernel Clustering: Learning Clustering Structure from Expectation

where c is some constant. Assuming that L =
2σp,q

δ
√
ed

, we have

E(K(xi,xj)− EK(xi,xj))
2

=

∫ +∞

0

Pr((K(xi,xj)− EK(xi,xj))
2 > x)dx

=

∫ +∞

0

2tPr(|K(xi,xj)− EK(xi,xj)| > t)dt

=2L2

∫ +∞

0

tPr(|K(xi,xj)− EK(xi,xj)| > Lt)dt

≤2L2

∫ +∞

0

2t exp(−ct2)dt

=
2L2

c
.

(17)

Above all, we know that

E(K(xi,xj)− EK(xi,xj))
2 ≾

σ2
p,q

δ2d
.

We then prove the latter part of this lemma, and we have

E ∥K(X)− EK(X)∥2F =

n∑
i=1

n∑
j=1

(K(xi,xj)− EK(xi,xj))
2 ≾

n2σ2
∞

δ2d
,

where σ∞ = max{σ1, · · · , σk}. Then, by Jensen’s inequality, we have

E ∥K(X)− EK(X)∥F ≤
√

E ∥K(X)− EK(X)∥2F ≾
nσ∞

δ
√
d
.

Lemma A.5. the probability inequality

Pr(∥K(X)− EK(X)∥F − E ∥K(X)− EK(X)∥F ≥ 2
√
nσ∞t

δ
√
ed

)) ≤ exp(−ct2)

holds with some constant c.

We repeat to use Lemma A.2 to prove Lemma A.5. The detailed process is as follows.

Proof of Lemma A.5. Assuming that F (X) = ∥K(X)−EK(X)∥F and X′ = U+E′ is another copy of X, we can deduce
that

|F (X)− F (X′)|
= |∥K(X)− EK(X)∥F − ∥K(X′)− EK(X′)∥F|
≤∥K(X)−K(X′)∥F

≤2
√
n√
eδ

∥X−X′∥F. (By Lemma A.3.)

(18)

Then, we can have

∥X−X′∥2F = ∥E−E′∥2F =

n∑
i=1

∥ϵi − ϵ′i∥2 ≤ σ2
∞
d

n∑
i=1

∥zi − z′i∥2 =
σ2
∞
d

∥[z1; · · · ; zn]− [z′1; · · · ; z′n]∥2,

15
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where σ∞ = max{σ1, · · · , σk}, and z1, · · · , zn, z′1, · · · , z′n are standard Gaussian variables with distribution N (0d, Id).
By the above deduction, we know that [z1; · · · ; zn] 7→ F

(
U+

[
σ1j√

d
z1, · · · ,

σnj√
d
zn

])
is 2

√
nσ∞

δ
√
ed

-Lipschitz. Notice that
[z1; · · · ; zn] ∼ N (0dn, Idn). According to Lemma A.2,

Pr(∥K(X)− EK(X)∥F − E ∥K(X)− EK(X)∥F ≥ 2
√
nσ∞t

δ
√
ed

) ≤ exp(−ct2)

with some constant c.

Now, we can complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Combining Lemma A.4 and Lemma A.5, we can obtain

∥K(X)− EK(X)∥F ≾ E ∥K(X)− EK(X)∥F +

√
nσ∞t

δ
√
d

≾
σ∞

δ
√
d
(n+

√
nt)

holds with probability at least 1− exp(−t2).

A.3. The proof of Theorem 5.2

We need several lemmas and a definition to prove Theorem 5.2. The first lemma is the famous Weyl’s bound.
Lemma A.6. Suppose A ∈ Rn×s has rank r, let {λj}rj=1 be its singular values. Then, for an arbitrary matrix E, assume
that {λ̃j}rj=1 are the singular values of A+E. Then, for any integer 1 ≤ j ≤ r, the following inequality holds

max
j∈[r]

|λj − λ̃j | ≤ ∥E∥.

The following lemma is about the perturbation of eigenvectors of Hermitian matrices.
Lemma A.7. (Yu et al., 2014) Let A,B ∈ Rn×n be Hermitian, with eigenvalues λ1 ≥ · · ·λn and λ̂1 ≥ · · · λ̂n respectively.
Fixed 1 ≤ r ≤ s ≤ n and assume that min(λr−1 − λr, λs − λs+1) > 0, where λ0 := ∞ and λn+1 := −∞. Let
d := s − r + 1, let H = [hr,hr+1, · · · ,hs] ∈ Rn×d and Ĥ = [ĥr, ĥr+1, · · · , ĥs] ∈ Rn×d have orthonormal columns
satisfying Ahj = λjhj and Bĥj = λ̂jĥj for j = r, r + 1, · · · , s. Then∥∥∥sinθ(H, Ĥ)

∥∥∥
F
≤

2min(d1/2∥A−B∥op, ∥A−B∥F)

min(λr−1 − λr, λs − λs+1)
,

where θ(H, Ĥ) ∈ Rd×d is the diagonal matrix whose j-th diagonal entry is the j-th principal angle, i.e., arccos(h⊤
j ĥj).

The following lemma gives a perturbation bound of the best rank-k approximation of some matrix A.
Lemma A.8. For some real matrix A ∈ Rn×s, denote its SVD is A = UDV. Then, it is easy to check the best rank-k
approximation of A is UkDkVk, where Uk,Vk are respectively composed of the first columns of U,V, and Dk is a
diagonal matrix whose diagonal elements are the first k singular values of A. For another matrix B ∈ Rn×s, we similarly
assume the rank-k approximation of B as ŨkD̃kṼk. Then, we have

∥ŨkD̃
2
kŨk −UkD

2
kUk∥ ≾ ∥AA⊤ −BB⊤∥+ max{λ̃2

1, λ
2
1}∥AA⊤ −BB⊤∥
λk − λk+1

.

Moreover, when λ1, λ̃1 ≤ 1, we have

∥ŨkD̃
2
kŨ

⊤
k −UkD

2
kU

⊤
k ∥ ≾ ∥AA⊤ −BB⊤∥.

Proof of Lemma A.8. We can make a decomposition as follows.

∥ŨkD̃
2
kŨk −UkD

2
kUk∥

=∥ŨkD̃
2
kŨ

⊤
k −UkD̃

2
kŨ

⊤
k +UkD̃

2
kŨ

⊤
k −UkD

2
kŨ

⊤
k −UkD

2
kU

⊤
k ∥

≤∥ŨkD̃
2
kŨk −UkD̃

2
kŨ

⊤
k ∥︸ ︷︷ ︸

A

+ ∥UkD̃
2
kŨ

⊤
k −UkD

2
kŨ

⊤
k ∥︸ ︷︷ ︸

B

+ ∥UkD
2
kŨ

⊤
k −UkD

2
kU

⊤
k ∥︸ ︷︷ ︸

C

(19)
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For Item A, we have

A ≤ ∥Ũk −Uk∥ · ∥D̃2
k∥ · ∥Ũk∥ ≤ λ̃2

1

∥∥∥Ũk −Uk

∥∥∥
F
= λ̃2

1

√
2k − 2Tr

(
Ũ⊤

k Uk

)
≾ λ̃2

1 ∥sinθ(Hγ ,Hβ)∥F .

By Lemma A.7, we have

A ≾
λ̃2
1∥AA⊤ −BB⊤∥

λk − λk+1
.

Similarly, we can obtain

C ≾
λ2
1∥AA⊤ −BB⊤∥

λk − λk+1
.

By Lemma A.6, we have

B ≤ ∥Uk∥ · ∥D̃2
k −D2

k∥ · ∥Ṽk∥ ≤ max
j∈[k]

|λ̃2
j − λ2

j | ≤ ∥AA⊤ −BB⊤∥.

Thus, we have

∥ŨkD̃kṼk −UkDkVk∥ ≾ ∥AA⊤ −BB⊤∥+ max{λ̃2
1, λ

2
1}∥AA⊤ −BB⊤∥
λk − λk+1

.

Lemma A.9. (Bardenet & Maillard, 2015) Let An = {xi}ni=1 be a finite sequence of real numbers, and As = {xt}st=1 are
s points uniformly selected from it without replacement. Then, for any t > 0, the following probability inequality holds

Pr

(∣∣∣∣∣1s
s∑

t=1

xt −
1

n

n∑
i=1

xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2st2

(1− s/n)(1 + 1/s)(b− a)2

)
,

where a = mini∈[n] xi and b = maxi∈[n] xi.

Definition A.10. By the reproducing property of kernel functions, for any two samples x, y and a kernel function K(·, ·)
have the following property,

K(x, y) = ⟨Kx,Ky⟩H,

where H represents Hilbert space, and Kx,Ky are two elements of H. For some datasets {xi}ni=1, we define an operator as
follows,

Tn : H → H, Tn =
1

n

n∑
i=1

⟨·,Kxi
⟩HKxi

.

Similarly, for some anchor set {at}st=1, we define an operator as

Ts : H → H, Ts =
1

s

s∑
t=1

⟨·,Kai
⟩HKai

.

Lemma A.11. For some Gaussian kernel matrix K ∈ Rn×n, we denote a kernel similarity kernel matrix composed of s
(uniformly sampled without replacement) columns of K as G. Then, we have∥∥∥∥ 1

ns
GG⊤ − 1

n2
KK⊤

∥∥∥∥ ≾ t

√
1

s
− 1

n
(20)

holds with probability at least 1− exp(−t2).
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Proof of Lemma A.11. By the reproducing property of the kernel function, we can write G = Φ⊤
nΦs, where Φn =

[Kx1 , · · · ,Kxn ] and Φs = [Ka1 , · · · ,Kas ] composed of the anchors corresponding sampled columns. We can also let
K = Φ⊤

nΦn. By Definition A.10, we have

∥ 1

ns
GG⊤ − 1

n2
KK⊤∥

=∥ 1

ns
Φ⊤

nΦsΦ
⊤
s Φn − 1

n2
Φ⊤

nΦnΦ
⊤
nΦn∥

=∥ 1
n
Φ⊤

n (Ts − Tn)Φn∥

≤∥Ts − Tn∥ · ∥Tn∥.

(21)

Moreover, we have

∥Tn∥ = ∥ 1
n
K∥ ≤ ∥ 1

n
K∥F =

1

n
Tr(K) = 1,

and

∥Ts − Tn∥ ≤ sup
∥f∥=1,∥g∥=1

∣∣∣∣∣ 1n
n∑

i=1

f(xi)g(xi)−
1

s

s∑
t=1

f(xt)g(xt)

∣∣∣∣∣ ≤ 2t

√
1

s
− 1

n

holds with probability at least 1− exp(−t2). The last inequality holds due to Lemma A.9. Combining all, we can derive
Eq.(20).

Proof of Theorem 5.2. We denote the best rank-k approximation of some matrix A as Mk. After the t-iteration (t ∈ [T ]),
we assume that G∗,K∗ are updated as G(t),K(t), respectively. Then, we have∥∥∥∥ 1

ns
G(t+1)(G(t+1))⊤ − 1

n2
K(t+1)(K(t+1))⊤

∥∥∥∥
=

∥∥∥∥∥Mk

(
1

V

V∑
v=1

G̃
(t+1)
v√
ns

)
M⊤

k

(
1

V

V∑
v=1

G̃
(t+1)
v√
ns

)
−Mk

(
1

V

V∑
v=1

K̃
(t+1)
v

n

)
M⊤

k

(
1

V

V∑
v=1

K̃
(t+1)
v

n

)∥∥∥∥∥
≾

∥∥∥∥∥∥
(

1

V

V∑
v=1

G̃
(t+1)
v√
ns

)(
1

V

V∑
v=1

G̃
(t+1)
v√
ns

)⊤

−

(
1

V

V∑
v=1

K̃
(t+1)
v

n

)(
1

V

V∑
v=1

K̃
(t+1)
v

n

)⊤∥∥∥∥∥∥
≾ max

v∈[V ]

∥∥∥∥∥∥
(
G̃

(t+1)
v√
ns

)(
G̃

(t+1)
v√
ns

)⊤

−

(
K̃

(t+1)
v

n

)(
K̃

(t+1)
v

n

)⊤
∥∥∥∥∥∥ ,

(22)

where the second last inequality holds due to Mk(A)M⊤
k (A) is the best rank-k approximation of AA⊤ and Lemma A.8.

For the v-th item in the last line of Eq. (22), we have∥∥∥∥∥∥
(
G̃

(t+1)
v√
ns

)(
G̃

(t+1)
v√
ns

)⊤

−

(
K̃

(t+1)
v

n

)(
K̃

(t+1)
v

n

)⊤
∥∥∥∥∥∥

=

∥∥∥∥Mk

(
Gv +G(t)

2
√
ns

)
M⊤

k

(
Gv +G(t)

2
√
ns

)
−Mk

(
Kv +K(t)

2n

)
M⊤

k

(
Kv +K(t)

2n

)∥∥∥∥
≾

∥∥∥∥ 1

ns
GvG

⊤
v − 1

n2
KvK

⊤
v

∥∥∥∥+ ∥∥∥∥ 1

ns
G(t)(G(t))⊤ − 1

n2
K(t)(K(t))⊤

∥∥∥∥ ,
(23)

where the last inequality can be derived by the similar way as Eq (22).

Combining Eq. (22), Eq. (23) and Lemma A.11, we have∥∥∥∥ 1

ns
G(t+1)(G(t+1))⊤ − 1

n2
K(t+1)(K(t+1))⊤

∥∥∥∥ ≾

∥∥∥∥ 1

ns
G(t)(G(t))⊤ − 1

n2
K(t)(K(t))⊤

∥∥∥∥+ ξ

√
1

s
− 1

n
(24)
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holds with probability at least 1− exp(−ξ2).

By the recurrence relation in (24), we have∥∥∥∥ 1

ns
G∗(G∗)⊤ − 1

n2
K∗(K∗)⊤

∥∥∥∥
=

∥∥∥∥ 1

ns
GT (GT )⊤ − 1

n2
KT (KT )⊤

∥∥∥∥
≾

∥∥∥∥ 1

ns
G(T−1)(G(T−1))⊤ − 1

n2
K(T−1)(K(T−1))⊤

∥∥∥∥+ ξ

√
1

s
− 1

n

≾ · · ·

≾

∥∥∥∥ 1

ns
G1(G1)⊤ − 1

n2
K1(K1)⊤

∥∥∥∥+ ξ

√
1

s
− 1

n

(25)

holds with probability at least (1− exp(−ξ2))(T−1).

From the initialization of the proposed algorithm, we can obtain∥∥∥∥ 1

ns
G1(G1)⊤ − 1

n2
K1(K1)⊤

∥∥∥∥
≾

∥∥∥∥∥Mk

(
1

V

V∑
v=1

Gv√
ns

)
M⊤

k

(
1

V

V∑
v=1

Gv√
ns

)
−Mk

(
1

V

V∑
v=1

Kv

n

)
M⊤

k

(
1

V

V∑
v=1

Kv

n

)∥∥∥∥∥
≾ξ

√
1

s
− 1

n

(26)

holds with probability at least 1− exp(−ξ2).

Combining Eq. (25) and Eq. (26), by union bound, we have∥∥∥∥ 1

ns
G∗(G∗)⊤ − 1

n2
K∗(K∗)⊤

∥∥∥∥ ≾ (ξ +
√

log T )

√
1

s
− 1

n

holds with probability at least 1− exp(−ξ2).

A.4. Convergence Analysis

Now we prove the convergence of the objective function. Let the objective function be

f(G̃v,G
∗) =

V∑
v=1

∥G̃v −Gv∥2F + ∥G̃v −G∗∥2F.

According to (Cohen et al., 2015), the best rank-k approximation can be obtained by singular value decomposition. In the
t-th iteration, when (G̃v)(t) (v ∈ [V ]) are updated, we know

f((G̃v)(t+1), (G
∗)(t)) ≤ f((G̃v)(t), (G

∗)(t)).

Subsequently, after updating (G∗)(t), we know

f((G̃v)(t+1), (G
∗)(t+1)) ≤ f((G̃v)(t+1), (G

∗)(t)).

Then, we have f((G̃v)(t+1), (G
∗)(t+1)) ≤ f((G̃v)(t), (G

∗)(t)). We can see that f is a monotonically decreased function
w.r.t. the iteration t. Obviously, f((G̃v)(t), (G

∗)(t)) ≥ 0 for all t. By the monotone convergence theorem, we can ensure
the convergence of the objective function by the proposed optimization method.
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B. Datasets
1. 100Leaves: https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+

leaves+data+set

2. ALOI-100: https://aloi.science.uva.nl/

3. Mfeat: https://archive.ics.uci.edu/dataset/72/multiple+features

4. Handwritten: https://cs.nyu.edu/roweis/data.html

5. Synthetic3d: https://cdinstitute.github.io/Building-Dataset-Generator/

6. Wiki: http://www.svcl.ucsd.edu/projects/crossmodal/

7. AwA: https://cvml.ista.ac.at/AwA/

8. Cifar10 & Cifar100: https://www.cs.toronto.edu/˜kriz/cifar.html

9. YtVideo: http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+
Dataset

10. Winnipeg: https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+fused+
optical-radar+data+set
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