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ABSTRACT

The spike-based neuronal responses within the ventral intraparietal area (VIP)
exhibit intricate spatial and temporal dynamics in the posterior parietal cortex,
presenting decoding challenges such as limited data availability at the biologi-
cal population level. The practical difficulty in collecting VIP neuronal response
data hinders the application of sophisticated decoding models. To address this
challenge, we propose a unified spike-based decoding framework leveraging spik-
ing neural networks (SNNs) for both generative and decoding purposes, for their
energy efficiency and suitability for neural decoding tasks. We propose the Tem-
poral Spiking Generative Adversarial Networks (T-SGAN), a model based on a
spiking transformer, to generate synthetic time-series data reflecting the neuronal
response of VIP neurons. T-SGAN incorporates temporal segmentation to reduce
the temporal dimension length, while spatial self-attention facilitates the extrac-
tion of associated information among VIP neurons. This is followed by recurrent
SNNs decoder equipped with an attention mechanism, designed to capture the
intricate spatial and temporal dynamics for heading direction decoding. Experi-
mental evaluations conducted on biological datasets from monkeys showcase the
effectiveness of the proposed framework. Results indicate that T-SGAN success-
fully generates realistic synthetic data, leading to a significant improvement of
up to 1.75% in decoding accuracy for recurrent SNNs. Furthermore, the SNN-
based decoding framework capitalizes on the low power consumption advantages,
offering substantial benefits for neuronal response decoding applications.

1 INTRODUCTION

The neuronal responses of the ventral intraparietal area (VIP) suggest pronounced spatial and tem-
poral dynamics (Bremmer et al., 2017; Chen et al., 2013). Decoding heading directions from VIP
population responses with spike trains is crucial for understanding primates self-motion. Spiking
neural networks (SNNs) are biologically plausible models known for their effectiveness in han-
dling sequence data with rich spatiotemporal dynamics (Gerstner et al., 2014; Kumarasinghe et al.,
2021). SNNs’ communication through spike trains promotes spatiotemporal dynamics and energy
efficiency, making them suitable for neuromorphic chips and energy efficient (Merolla et al., 2014;
Davies et al., 2018; Pei et al., 2019). The SNN-based heading decoding model holds promise for
improving spike-based neural population response decoding with low power consumption, leverag-
ing the abundant spatiotemporal characteristics and event-driven nature of SNNs (Roy et al., 2019).
Training SNNs requires diverse and stable data. However, acquiring VIP neuronal responses in
monkeys is expensive and time-consuming, impeding the collection of sufficient spike-based data
for effective SNN model training. The training of SNNs typically requires the stable and diverse
dataset. However, acquiring VIP neuronal responses in monkeys is expensive and time-consuming,
posing challenges in collecting sufficient spike-based data for effective SNN model training.

To alleviate the data acquisition requirements in training deep neural network models, generative
models have successfully provided synthetic data, enhancing various applications in computer vi-
sion and natural language processing (Jing et al., 2019; Tao et al., 2022; Nichol et al., 2022). Gen-
erative Adversarial Networks (GANs), for instance, consist of a generator and a discriminator. The
generator produces data matching the dimensions of real data, while the discriminator evaluates
the authenticity of the generated data. Through adversarial training, the generator and discrimina-
tor strive for equilibrium, resulting in generated data with more diversity than real data to improve
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model training. The proliferation of generative models has significantly contributed to synthetic
data for neural decoding, supporting the advancement of techniques for clinical decision support
by prototyping automated research workflows and addressing privacy concerns (Yan et al., 2022).
However, existing generative models for neural decoding primarily focus on synthetic continuous
biological data (Luo et al., 2020). While generative models based on traditional artificial neural net-
works for continuous time-series data have been extensively explored, the generation of synthetic
spike-based data using SNNs to enhance the neural decoding of population neuronal responses re-
mains an unexplored domain. Hence, we aim to enhance spike-based data decoding by introducing a
spike-based GAN model, focusing specifically on decoding neural signals from the VIP population
of neurons in response to heading directions.

Moreover, due to the highly dynamic and noisy nature of VIP neural responses in spatial and tem-
poral dimensions, denoising irrelevant information and adaptively capturing crucial information be-
come imperative. To solve this problem, we attempts attention mechanisms in SNNs to enhance crit-
ical feature extraction and improve the robustness of neural decoding models (Jiang et al., 2021b).
HHowever, the integration of SNNs with self-attention remains underexplored in current literature.
Recent works, such as the spike-driven Transformer (Yao et al., 2021), have showcased the energy
efficiency of SNNs when processing temporal sequences. However, these studies primarily focus
on SNNs’ capabilities in handling sequences, neglecting the joint consideration of spike-based data
generation and classification.

Therefore, in this study, we propose a comprehensive spike-based decoding framework that inte-
grates both data generation and decoding of neuronal responses using SNNs with attention mecha-
nisms. Our primary objective is to enhance the decoding of spike-based data. For synthetic spike-
based data augmentation, the spike-based GANs framework is considered for its realistic data and
relatively moderate computation cost. We build the temporal Transformer-based GANs with spike
computation. With the sparse spike-form Query, Key, and Value, its computation becomes more
efficient for the reduction of Multiply-and-Accumulate (MAC) calculations after introducing sparse
spike-based operation. Thus, the generated spike train data by T-SGAN is used for data augmenta-
tion. For the following heading direction decoding component, we employ the spatial and temporal
attention mechanism in recurrent SNNs decoder to adaptively select the pivotal time period and sen-
sitive neurons for each heading direction and thus strengthen direction decoding. The above unified
spike-based decoding framework could take the biological plausibility and low energy consumption
advantages of SNNs for solving the biological neuronal response decoding problem.

To summarize the main contributions of this article:

• The paper proposes a spike-based unified decoding framework, comprising the temporal
spiking generative adversarial networks (T-SGAN) for data augmentation and recurrent
SNNs with spatial and temporal attention for robust decoding. This framework is designed
to effectively map VIP population responses to heading behavior.

• The paper introduces a temporal segmentation in T-SGAN to shorten the temporal dimen-
sion and incorporates spatial self-attention to extract correlated information. This design
enhances the generation of synthetic spike data that is both long and sparse.

• By incorporating the spatial and temporal attention mechanism into the recurrent SNNs
decoder, the ReSNN decoder can adaptively select the pivotal time period and sensitive
neurons for each heading direction and thus strengthen heading direction decoding perfor-
mance.

• The experiments are conducted on the biological datasets from monkeys to evaluate the
decoding performance of the proposed framework. The ablation study is carried out to in-
dicate the effectiveness of the temporal segmentation method in T-SGAN. The results show
that the proposed model achieves competitive decoding accuracy of 95.2% on dataset1 and
93.15% on dataset2 compared with other decoding models.

The experimental dataset is collected from rhesus monkeys by presenting them with eight linear
space azimuth directions of vestibular heading stimuli. We also visualize the generated synthetic
data and real data and use t-SNE to map the multi-dimensional output sequence vectors into two
dimensions to visually observe the similarity and diversity between them.
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2 RELATED WORKS

Generative models based on SNNs. Generative models utilizing Spiking Neural Networks
(SNNs) have been a relatively underexplored area in existing literature. The Spiking-GAN, intro-
duced by Kotariya et al. (Kotariya & Ganguly, 2022), employs time-to-first-spike coding to address
static image generation. This model extends the refractory period for integrate-and-fire neurons to
ensure single-spike firing for each neuron. In a different approach, Rosenfeld et al. (Rosenfeld et al.,
2022) proposed the SpikeGAN, which incorporates a hybrid SNN-ANN architecture. This model
is designed to train SNNs to match distributions of spiking signals rather than individual spiking
signals, supporting Bayesian learning for the generator’s weights. Kamata et al. (Kamata et al.,
2022) contributed to the field with the development of a fully spiking variational autoencoder for
high-quality image generation. This model constructs the latent space using an autoregressive SNN,
ensuring that latent variables follow a Bernoulli distribution for variational learning. Despite these
advancements, the exploration of pure SNN-based generative models specifically tailored for long
time-series neural signals remains largely unexplored in current research.

GANs for Time Series Data Generation. In the realm of GANs based on ANNs, there is an on-
going effort to advance the generation of high-quality, diverse, and private time series data. Yoon
et al. (2019) (Yoon et al., 2019) introduced Time GAN, presenting a framework that combines
conventional unsupervised GAN training methods with a more controllable supervised learning ap-
proach. To address the challenges posed by the increased dimensionality of generative modeling
for long time series data streams, SigCWGAN (Ni et al. 2020) (Ni et al., 2020) offers a solution.
Meanwhile, SynSigGAN (Hazra et al., 2020) (Hazra & Byun, 2020) focused on generating various
types of continuous physiological/biomedical signal data. While prior attempts at time-series GANs
predominantly relied on Recurrent Neural Network (RNN)-based architectures, recent studies sug-
gest that theoretically, transformer-based GANs should outperform them. Jiang et al. (2021) (Jiang
et al., 2021a) presented a pure transformer GAN model for synthetic image generation, drawing
inspiration from the Vision Transformer model in discriminator design. Li et al. (2022) (Li et al.,
2022) proposed TTS-GAN, where both the generator and discriminator are transformer encoders.
They treat a time-series sequence as an image with a height of 1, introducing a novel perspective to
time-series data representation in GANs.

Decoding models based on SNNs. Neural decoding models based on Spiking Neural Networks
(SNNs) have garnered increasing attention for their biological plausibility and energy efficiency, es-
pecially when coupled with neuromorphic hardware. The potential of these models for effective clin-
ical applications in the future is particularly promising. Kumarasinghe et al. (2021) (Kumarasinghe
et al., 2021) introduced the Brain-Inspired Spiking Neural Network (BI-SNN) model, designed for
incremental learning, to predict muscle activity and upper-limb kinematics from electroencephalo-
graph signals. Integration of the BI-SNN model with the NeuCube SNN architecture, alongside the
eSPANNet model, revealed the BI-SNN’s superior performance as a neural decoder for non-invasive
brain-computer interfaces (BCIs). In an effort to leverage spatial and temporal dependencies within
EEG signals, Kumar et al. proposed SNNs incorporating spatial convolutional, temporal convo-
lutional, and recurrent layers (Kumar et al., 2022). This SNN architecture was implemented on
the Loihi neuromorphic processor, showcasing the effectiveness of SNNs in EEG decoding. The
computational advantages demonstrated in this study hold promise for future portable BCI systems.
Consequently, SNN models emerge as a highly suitable choice for decoding neural signals, particu-
larly those associated with spike-based population responses.

3 METHODS

The unified spike-based decoding framework, illustrated in Figure 1, comprises two key compo-
nents: Temporal Spiking Generative Adversarial Networks (T-SGAN) for augmenting VIP popu-
lation response spike data and Recurrent Spiking Neural Networks (ReSNNs) tailored for robust
decoding of VIP neuronal responses into heading directions.
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Figure 1: The architecture of the proposed unified spike-based decoding framework. The frame-
work contains the T-SGAN for data augmentation of VIP population responses (a), and the recur-
rent SNNs for robust decoding from VIP neuronal response to heading direction (b). The T-SGAN
consists of generator and discriminator based on the spike-based transformer structure which is
composed of the embedding block, multi-head attention, and feedforward block. Meanwhile, the
recurrent SNNs with spatial and temporal attention are employed to capture the corresponding fea-
tures to improve the heading directions decoding performance.

3.1 THE T-SGAN MODEL

The T-SGAN model consists of a generator and a discriminator, both adopting a spike-based trans-
former architecture, illustrated in Figure 1 (a). This architecture includes three main components:
an embedding block, multi-head attention, and a feedforward block. Normalization and dropout
layers are strategically positioned before and after the multi-head attention and feedforward blocks,
respectively. Residual connections have been incorporated within these two blocks.

Moreover, recognizing the significance of generated data in the training process for heading direction
classification, we employ a spike-based Constrained GAN for the generation of synthetic data along
with corresponding labels. This holistic T-SGAN model excels at efficient synthetic data generation,
thereby significantly contributing to the improved decoding performance of the subsequent recurrent
SNNs decoder, as depicted in Figure 1 (b).

3.1.1 DATA PROPROCESSING

Prior to inputting the original temporal sequence data into the GAN for training, we employ a sliding
window approach by computing the firing rate of neurons within specific time bins. The sequences
are evenly divided into multiple segments along the temporal dimension, each segment comprising
M time points corresponding to the chosen window size. To reduce the number of time points,
vectors within the same segment are aggregated. Assuming we have an initial matrix with a shape
of (T,C), applying the window function yields a matrix with a shape of (T//M,C), which is then
fed into the GAN model during the training process. It is crucial to note that the window size M
should not be excessively large to ensure the capture of a more diverse set of temporal dynamics
present in different sliding windows.
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3.1.2 NETWORK ARCHITECTURES

Generator. The generator receives 1D vector I ∈ RD. I follows Gaussian distribution, Ii ∼
N(0, 1). R and D represent the batch size and the input latent dimension which is a configurable
hyperparameter, respectively.

Embedding block. In the embedding block, the labels are initially input into the embedding layer.
Subsequently, the embedded labels are concatenated with the input vector to generate a new vector.
This new vector undergoes transformation into RT×E , where T and E represent the data length and
embedding size, respectively. Trainable positional encoding values are then added. Following this,
a leaky integrate-and-fire (LIF) neuron is employed to generate spiking data.

As the fundamental unit of SNNs, the postsynaptic spiking neuron in the LIF neuron model ac-
cumulates its membrane potential by receiving resultant currents from presynaptic neurons. Upon
surpassing the firing threshold, the postsynaptic spiking neuron emits a spike. The computational
formulation of the LIF neuron is described as follows:

H[t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset)), (1)

S[t] = Θ(H[t]− Vth), (2)
V [t] = H[t](1− S[t]) + VresetS[t], (3)

where X[t] is the input current at time step t and Θ(v) is a firing function. When v ≥ 0 the firing
function outputs 1, otherwise outputs 0. τ is the membrane time constant and Vreset represents
resting membrane potential and Vth is threshold potential. If the current potential is larger than Vth,
the neuron fire a spike. Here for a simplification we set Vreset = 0 and Vth = 1.

Before each multi-head attention block, we reshape the transformed data to execute temporal di-
mension segmentation (Details about this will be seen in Section 3.1.3).

Multi-head attention and feedforward blocks. Inside each multi-head attention block, we first apply
temporal self-attention component to extract temporal information. This component is a normal
vanilla self-attention combining spiking mechanism and processes data within a segment which is
obtained after temporal dimension segmentation. The spatial self-attention component follows by
the temporal self-attention components after the segmentation component (See details in Section
3.1.4). After obtaining Query, Key, and Value in the multi-head attention block, the LIF function
is adopted to generate spike-based features. Then the data is transmitted to feedforward blocks
with linear layer to improve the information expression capability of T-SGAN. After the multi-head
attention block and feedforward block, the Conv1D layer with (1, 1) kernel size is adopted to map
the data with the shape of (T,E) to the shape of (T,C), in order to obtain the synthetic data with
the same shape as the real data.

Discriminator. The spike-based discriminator is similar to the generator. The final layer of the
discriminator networks employs the linear layer for decoding decision, which computes the firing
rates of neurons through the whole temporal dimension to determine the results the classification.

Model Training. When training the T-SGAN, we use binary cross-entropy error as the loss function
to update parameters. We set real label as a list filled with number 1, representing input data of the
discriminator are true while fake label as 0 for synthetic data. We mark the input of the generator
as d. Then G(d) represents the output of the generator and D(G(d)) denotes the judgment of the
discriminator. Then the loss function for the discriminator and generator are as follows:

real loss = BCELoss(D(real data), real label), (4)
fake loss =BCELoss(D(G(d)),fake label), (5)

dLoss =real loss+fake loss, (6)
gLoss =BCELoss(D(G(d)),real label). (7)

where real loss represents the loss between output of discriminator and real label when the input
is real data, while fake loss is the loss when the input is fake data. We choose dLoss to update
parameters of discriminator, to expect discriminator to perform correct judgment between real data
and fake data. gLoss is used on the generator, which will cheat discriminator, judging the data
generated by generator as real data.
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Figure 2: (a)The spatial and temporal attention component used in the generator of T-SGAN.
(b)Temporal dimension segmentation method. The temporal segmentation component is introduced
to support the synthetic long but sparse VIP neuronal response generation.

During the training, random vectors are put into generator and generate fake data which has the
same shape with real data. Then real data and fake data are feed into discriminator and firstly update
parameters of discriminator using loss described above. And then it will repeat the operations to
obtain fake data and finally using gLoss to update parameters of generator. That forms a complete
updating in one epoch.

3.1.3 TEMPORAL DIMENSION SEGMENTATION

Though we have implemented a window function to the original data and reduced time points, it’s
still relatively long for the spike-based transformer to process. To address this, we design temporal
dimension segmentation before every multi-head attention block. As depicted in Figure 2, consider-
ing a matrix I ∈ RT×E , we partition it into several segments with the shape (seg num, points num,
E). Here, Seg num represents the number of segments, and points num denotes the number of time
points within each segment. The product of these two values equals T . Each segment independently
undergoes multi-head attention. Following segmentation, the number of time points decreases to
points num, significantly reducing the computational load compared to the original T .

However, a challenge arises as one time point can only compute relevance with others within the
same segment. Consequently, two highly relevant points may be unable to establish contact if they
are divided into different segments. To address this issue, we introduce a repartition step. The
data is redivided into a distinct number of segments with the shape (seg num’, points num’, E).
Here, Seg num’ and points num’ retain the same meanings as mentioned earlier but are not nec-
essarily equal to their previous counterparts. Importantly, Seg num and seg num’ should not be
multiples of each other to prevent independent computation among neighboring time points. Due to
the repartition, at least two multi-head attention blocks are now incorporated in both the generator
and discriminator.

There exists work with similar partition mechanism, such as Swin Transformer (Liu et al., 2021).
We have to emphasize the major difference between our work and Swin Transformer. Firstly, Swin
Transformer is implemented in visual tasks, whose data usually form as 2-D images. Our temporal
segmentation is applied on time-series data, usually 1-D sequences. Secondly, what’s the most
biggest difference is data processing. In Swin Transformer, through patch partition or patch merging,
channels of images will increase while height and width decresae. But ours is different. We choose to
add a dimension, for example, data with shape (T,C) transfers to (T1, T2, C). The first dimension
T1 is processed by SNN and the second dimension T2 is processed by spiking transformer. That’s
mean that we not only select time points in a segment to conduct self-attention but use one segment
as a unit to be processed by SNN, which truly combines SNN and transformer structure.

3.1.4 SPATIAL RELEVANCE EXTRACTION

In the multi-head attention block, after we execute temporal self-attention, we add a spatial self-
attention module to extract spatial relevance. As the signals are sampled from cells in the same
brain region, the spatial relationship between those cells needs to be considered to improve the
effectiveness of the decoding process. While temporal self-attention computes relevance among
time points, spatial attention computes relevance among different cells in a segment. In one multi-
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head attention block, we describe its operation as:

X = X + dropout(att(layernorm(X))), (8)
X = transpose(X), (9)

X = transpose(X + dropout(att(layernorm(X)))), (10)

where transpose means a transposition of temporal dimension and spatial dimension. The att func-
tion is as the same as the normal self-attention which contains Query, Key and Value. We choose
dropout layer to avoid over-fitting.

3.2 RECURRENT SNNS FOR HEADING DIRECTION DECODING

Due to the spatial and temporal dynamics of VIP neurons responding to the heading direction, our
decoding process aims to design SNNs that adaptively identify the relatively important time periods
within a long sequence and specific sensitive neuron populations among all VIP neurons correspond-
ing to different directions, significantly influencing decoding results.

The architecture of the recurrent SNN decoders consists of input layer, hidden layer and output
layer. Firstly, following the generation of synthetic data by the generator, we combine it with the
original data and feed the merged dataset into the input layer of the SNN decoders for the training
process. Subsequently, the hidden layer employs recurrent connection between different time steps.
And the temporal attention and spatial attention are integrated into recurrent SNN classifiers, in
order to respectively select crucial time points and cells crucial to the results. Further, prior to
direction classification, a window function is applied to the data, similar to the one employed during
T-SGAN training. The distinction lies in the window size used in classification is larger than that
used in T-SGAN training. This adjustment is to ensure data integrity, as a small window size may
compromise the completeness of the data. Therefore, we divide the sequence into several segments
and seek the crucial time in units of one segment rather than individual time points, because judging
temporal importance point by point is inefficient and unreliable for a long sequence. Then we sum
up all numbers in a segment and pass them through a sigmoid activation. If the segment is deemed
important, it will maintain its original numbers; otherwise, it will converge to be infinitely close to
zero. The final decoding directions are achieved by population decoding over these segments.

4 EXPERIMENTS AND RESULTS

Our experiments are primarily conducted on two datasets. Dataset1 is derived from 90 cells in the
brain of a single monkey, while Dataset2 is collected from 210 cells across the brains of three mon-
keys. All experimental data collecting procedures received ethical approval and adhered strictly to
the guidelines outlined in the National Institutes of Health Guide for the Care and Use of Laboratory
Animals.

Experimental settings. To ensure robust evaluation, we partition the entire dataset into a training
set and a test set using a 3:1 ratio. The training set is dedicated to training and generating within
the T-SGAN framework, while the test set exclusively serves for direction decoding testing. Sub-
sequently, we combine the generated data with the training set, leading to a merged dataset that is
further divided into training and validation sets. This division follows a 2:1 proportion and employs
a three-fold cross-validation method. After undergoing 50 cycles of training, validation, and testing,
we compute the average accuracy across these iterations, considering it as our final result. Addi-
tional details about datasets, along with comprehensive experimental settings, are provided in the
Appendix. In our analysis, three types of typical classifiers with three layers, including fully con-
nected SNN (FCSNN), LSTM, and Recurrent SNN (ReSNN) with spatial and temporal attention,
are employed to show the generalization of the proposed decoding framework. Each decoding clas-
sifier incorporates a hidden layer, and we treat the number of hidden neurons as a hyperparameter,
systematically observing its impact on overall accuracy.
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Table 1: Overall accuracy comparison

Models Hidden size dataset1 dataset2

without with seg1 seg2 seg3 without with seg1 seg2 seg3

FCSNN
64 87.70±0.45 92.30±0.34 94.55±0.28 95.85±0.23 89.60±0.26 85.45±0.48 88.45±0.40 96.40±0.27 97.45±0.29 93.10±0.30
128 87.90±0.45 94.45±0.37 96.20±0.32 95.55±0.28 91.60±0.36 86.50±0.51 91.40±0.36 97.55±0.24 98.75±0.22 94.45±0.30
256 88.45±0.49 94.75±0.35 95.05±0.29 96.60±0.25 91.20±0.30 86.30±0.44 91.55±0.50 97.60±0.24 98.70±0.23 95.00±0.30

LSTM
32 78.80±0.49 79.60±0.46 94.05±0.26 93.25±0.27 82.80±0.33 68.25±0.55 70.20±0.48 93.80±0.31 90.80±0.26 75.40±0.27
64 85.30±0.51 82.15±0.47 95.45±0.25 95.20±0.25 89.90±0.29 76.10±0.52 77.40±0.51 98.10±0.29 93.95±0.33 82.15±0.32
128 87.25±0.51 86.10±0.47 94.95±0.29 95.70±0.28 91.80±0.31 79.40±0.49 81.25±0.46 97.95±0.22 95.60±0.27 84.65±0.30

ReSNN
64 90.45±0.50 90.60±0.39 93.95±0.27 94.55±0.28 86.65±0.30 81.75±0.54 88.75±0.42 96.45±0.29 95.20±0.32 90.05±0.35
128 93.35±0.53 94.05±0.36 96.40±0.24 96.40±0.26 89.90±0.28 87.60±0.48 92.25±0.39 98.25±0.24 98.85±0.22 93.65±0.28
256 93.55±0.52 95.20±0.29 95.95±0.28 97.35±0.23 91.45±0.29 91.00±0.46 93.15±0.43 99.00±0.18 99.35±0.16 94.85±0.31

Table 2: Comparison with TTS-
GAN

Models without
Methods

T-SGAN TTS-GAN
GLM 50 52.5 -
DNN 85 90 -
FCSNN 88.45 94.75 91.0
LSTM 87.25 86.1 84.5
ReSNN 93.55 95.2 93.75

Table 3: Accuracy on different segments

Models
Hidden

size
(5,4) (50,40)

(50,40,

16)
(5,4,2) (20,16)

(20,16,

10)

FCSNN

64 90.95 78.325 47.4 89.125 90.75 48.45

128 93.0 81.325 48.75 91.85 89.95 50.275

256 92.9 82.1 50.55 91.5 89.85 51.2

LSTM

32 78.15 76.65 43.875 77.95 76.8 44.55

64 83.15 81.25 47.65 83.7 82.05 46.625

128 84.55 81.5 47.8 84.85 83.75 47.65

Overall performance comparison. We evaluate the test accuracy by comparing the decoding per-
formance with and without generated data on two datasets. The hidden sizes for FCSNN and ReSNN
are set to 64, 128, and 256, while for LSTM, they are set to 32, 64, and 128 for fair comparison. Dur-
ing the classification process, we identify that a window size of 60 is optimal for FCSNN, whereas
300 is more effective for LSTM and ReSNN. Consequently, these configurations are adopted for
our classifiers. As depicted in the left two columns of each dataset in Table 1, our T-SGAN demon-
strates a significant accuracy improvement in heading direction decoding datasets. Focusing on
results greater than 90% and excluding comparatively lower results, we observe a maximum accu-
racy boost of 6.3% in dataset1 and 5.25% in dataset2. This outcome affirms the exceptional perfor-
mance of our T-SGAN in data generation and augmentation. Moreover, among the three classifiers,
ReSNN outperforms others, achieving the highest accuracy of 95.2% in dataset1 and 93.15% in
dataset2. These findings underscore the substantial benefits conferred by the integration of recurrent
architecture and spiking neurons in decoding neural signals based on spikes. Furthermore, compar-
ing the performance with and without generative data with LSTM, we observe that the combination
of our T-SGAN and SNN decoder more closely aligns with selective segmentations’ performance.
This observation underscores the practical advantages of our T-SGAN and SNN decoder in decoding
neural signals through data augmentation.

Comparison with other GAN model. To assess the effectiveness of the proposed T-SGAN, we
conducted a comparative analysis with TTS-GAN on dataset1, one of the leading time-series data
generating models, as presented in Table 2. Across most of classifiers including GLM (General-
ized Linear Model), DNN (deep neual networks ), FCSNN, and ReSNN, the decoding model with
synthetic data generated by T-SGAN consistently achieves higher accuracy compared to TTS-GAN
using the same classifiers. However, in the case of LSTM, the accuracy without generated data sur-
passes both GANs. This discrepancy suggests a potential incompatibility of LSTM with spike data,
which further emphasizes the significance of designing the SNN-based T-SGAN model to improve
the decoding performance for spike-based neural data.

The effectiveness of temporal dimension segmentation. We conducted experiments on temporal
dimension segmentation to assess the impact of segment partition, as discussed in Section 3.1.3. In
the experiment, the window size for the classifier is set to 120. We represent the segment numbers
using a tuple (a, b), such as (5, 4), indicating the sequence is initially divided into 5 segments and
then redivided into 4 segments. As outlined in Table 3, the tuple (5, 4) yields the highest accuracy of
93%, and other tuples like (5, 4, 2) and (20, 16) also demonstrate commendable results. However, for
larger tuples, the results are comparatively poorer. The reason lies in that as the segment numbers
increase, the number of time points of each segment decreases proportionally. Consequently, the
segment becomes too short to encompass all highly related time points, which makes it difficult to
exploit the advantage of capturing long-range dependencies in sequences in T-SGAN.
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Table 4: Accuracy of without/with spatial self-attention module

Models Hidden size Window size(ms)

30 60 120 300

FCSNN
64 89.75 90.0 91.75 92.3 90.85 90.95 85.75 86.35
128 91.25 91.3 94.125 94.45 92.65 93.0 86.1 85.6
256 91.75 91.65 94.25 94.75 92.7 92.9 83.15 83.05

LSTM
32 70.15 70.4 76.4 76.5 77.625 78.15 79.5 79.6
64 75.1 75.15 80.65 80.8 83.25 83.15 82.5 82.15
128 72.65 72.5 82.325 82.55 83.925 84.55 85.95 86.1

ReSNN
64 87.25 87.5 90.1 90.15 92.0 91.9 90.2 90.6
128 88.15 88.2 92.5 93.1 92.95 93.2 93.65 94.05
256 90.75 91.05 93.6 93.7 94.3 94.7 94.85 95.2
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Figure 3: Visualization of real data and synthetic data. (a) Real data. (b) Synthetic data by T-SGAN.
(c) The t-SNE analysis.

The effectiveness of spatial self-attention. We conducted a comparative analysis of the T-SGAN
with and without the spatial self-attention module. As shown in Table 4, the left and right columns of
each window size represent the decoding accuracy without and with the spatial self-attention mod-
ule, respectively. With the spatial self-attention module, FCSNN, LSTM, and ReSNN achieved the
best results of 94.75%, 86.1%, and 95.2%, respectively, compared to 94.25%, 85.95%, and 94.85%
without this module. Meanwhile, each classifier exhibited improvement with the data augmenta-
tion by T-SGAN, demonstrating that the spatial self-attention module authentically enhances the
performance of T-SGAN.

Visualization of generated data. Additionally, we assess the performance of T-SGAN through
qualitative visualizations presented in Figure 3. The evaluation involves a comparison of spiking
data among specific neuron cells between real and generated data. To highlight the features of
synthetic data and its relationship with real data, we provide visualization examples in (c), where
data point distributions are mapped to two dimensions using t-SNE. The visualizations demonstrate
that synthetic data exhibits a more pronounced inter-class distance for different classes, contributing
to the enhanced training of the SNN decoder model for heading direction classification. Meanwhile,
the generated data brings diversity, which could enhance the model’s generalization ability and
facilitate the generation of novel instances that contribute to improved decoder training.

Power consumption estimation. Furthermore, as mentioned above, compared with DNNs, the
proposed SNNs has the biologically plausible features of event-driven, which enables low power
consumption and easy-implementation in neuromorphic hardware. As shown in appendix, the en-
ergy consumption estimation indicates that the SNNs could achieve higher decoding accuracy while
consuming less energy than ANNs.

5 CONCLUSIONS

In this work, we build a Temporal Spiking generative adversarial networks (T-SGAN) that is able
to generate time-series data that are suitable for spiking data. We implement temporal dimension
segmentation and spatial self-attention to our T-SGAN to promote the quality of generated data.
We also add spatial and temporal attention mechanism in the recurrent SNNs to raise the decoding
accuracy. We conduct heading direction decoding from VIP neuronal responses to show that the
proposed T-SGAN successfully generates synthetic data and promote decoding accuracy of recurrent
SNNs.
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A APPENDIX: SUPPLEMENTARY DATASETS DESCRIPTION AND
EXPERIMENTAL SETTINGS

Datasets. In the sampling process, the monkeys get stimulated from eight horizontal directions and
the response of VIP neurons are recorded. The collected dataset contains 160 trials in total, 20 trials
for each direction. In each trial, it contains 1200 time points to reflect signal changes. The datasets
have the shape of (160, 1200, 90) for dataset1 and (160,1200,210) for dataset2. The labels have the
shape of (160, 1) to represent the eight directions with integers from 1 to 8.

Experimental settings. When training our T-SGAN, we set the window size mentioned in Section
3.1 as a constant number 30ms, so the input sequences’ length is 40. We apply Adam to optimize
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the parameters of the generator and discriminator and train the networks with 1000 epochs. Finally,
in the whole mixed data, real data has the same proportion as synthetic data of the VIP population
neuronal responses. In the heading direction decoding process, we choose several window sizes
mentioned in Section 3.2. The unit of these windows is ’ms’, as the sample frequency of our data is
1000HZ.

B APPENDIX: PARAMETERS USED IN EXPERIMENTS

Table 5: Parameters description

name description value
ge bin size window size used in T-SGAN 30
epoch epochs to train T-SGAN 1000
label emb embedding size of labels 100
latent dim size of random vector 50
hidden size hidden size of decoding models 32/64/128/256
bin size window size used in decoding models 30/60/120/300

In our SGAN model, we use ge bin size to represent the window size in T-SGAN, which is 30
ms. We train the SGAN in 1000 epochs and the embedding size of label is 100. The size of random
vector, which we use latent dim to represent, is set to 50. And in the decoding models, we implement
hidden size of 32, 64, 128 or 256 and window size of 30, 60, 120 or 300. We list the parameters
used in our experiments in Tab. 5.

Then, the surrogate gradient of g(x) is approximated based on the derivative of spike activities of
g′(x) = α

2(1+(π
2 αx)2) , to solve the non-differential problem of discrete spikes firing behavior, where

α is set to be 2.0. Based on the above formulation and the gradient computing in (Wu et al., 2018),
the update of synaptic weights can be obtained by the gradient descent rules.

C APPENDIX: THE EFFECTIVENESS OF TEMPORAL AND SPATIAL ATTENTION

Table 6: Accuracy of without/with temporal and spatial attention

Models Hidden size Window size(ms)

30 60 120 300

FCSNN
64 90.2 90.0 91.95 92.3 90.8 90.95 89.35 86.35
128 91.1 91.3 93.95 94.45 92.5 93.0 89.95 85.6
256 91.0 91.65 94.2 94.75 92.55 92.9 89.875 83.05

ReSNN
64 87.25 87.5 90.25 90.15 91.6 91.9 89.95 90.6
128 88.15 88.2 92.85 93.1 93.0 93.2 93.75 94.05
256 90.75 91.05 93.2 93.7 93.95 94.7 94.5 95.2

The results of Tab. 1 indicate that the results are significantly impacted by different segmentation of
sequences. Therefore, it is crucial to incorporate an attention mechanism that can select the func-
tional segment adaptively. As shown in Tab. 6, we compare accuracies of FCSNN and ReSNN about
whether the classifiers contain temporal and spatial attention. The left and right column of each win-
dow size represents accuracy without and with attention mechanism, respectively. In FCSNN, the
best result without attention mechanism is 94.2% and it promotes 0.55% for the result with attention
mechanism to an accuracy 94.75%. In ReSNN, the best results of the two terms are 94.5% and
95.2%, which has a 0.7% boost.
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D APPENDIX: THE ENERGY CONSUMPTION ESTIMATION

We conduct the energy estimation of the proposed SNNs decoding models on Linux server with the
max CPU frequency of 5800MHZ. We compute power consumption of ReSNN and LSTM based
on the method used in (Zhou et al., 2022) with the window size of 120 ms and hidden size of
128. The total energy of ReSNN and LSTM is EAC ∗ 76800 + EMAC ∗ 2222080 and EMAC ∗
2222080 respectively, where EAC represents energy of one spike-based accumulate operation and
Emac represents one multiply-and-accumulate operation. Time of ReSNN and LSTM to process
a batch is 0.023s and 0.008. Thus, the power is (EAC ∗ 76800 + EMAC ∗ 2222080)/0.023 and
(EMAC ∗ 2222080)/0.008 respectively. As described in (Zhou et al., 2022), EAC , about 0.9pJ,
is much lower than EMAC which is 4.6pJ. Hence, compared with ANNs, the SNNs could achieve
higher decoding accuracy while consuming less energy.

E APPENDIX: THE PERFORMANCE OF DIFFERENT TEMPORAL
SEGMENTATION

Given the apparent temporal dynamics in VIP population responses, evident from the computation
of firing rate variation trends, there tends to be a specific temporal segment most responsive to
heading direction within each sequence. To investigate the influence of different segments, we
extract various segments from each sequence, as illustrated in the right three columns of Table 1.
Specifically, seg1, seg2, and seg3 represent segments with time points of 1∼720, 240∼ 960, and
480∼1200, respectively. In both datasets, seg1 and seg2 exhibit high accuracy, while seg3 performs
relatively poorly, highlighting the distinct temporal dynamics associated with different segments.
However, extracting the most responsive neural signals is challenging due to different time-varying
responses caused by different experimental paradigms. Comparing the results with and without
generative data, we observe that the combination of our T-SGAN and SNN decoder more closely
aligns with segmentation performance. This observation underscores the practical advantages of our
T-SGAN and SNN decoder in decoding neural signals through data augmentation.
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