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Abstract

Deep neural networks excel in visual recognition tasks,
but their success hinges on access to balanced datasets.
Yet, real-world datasets often exhibit a long-tailed distri-
bution, compromising network efficiency and hampering
generalization on unseen data. To enhance the model’s
generalization in long-tailed scenarios, we present a novel
feature augmentation approach termed SeMAntic tRansfer
from head to Tail (SMART), which enriches the feature pat-
terns for tail samples by transferring semantic covariance
from the head classes to the tail classes along semantically
correlating dimensions. This strategy boosts the model’s
generalization ability by implicitly and adaptively weight-
ing the logits, thereby widening the classification margin
of tail classes. Inspired by the success of this weighting,
we further incorporate a semantic-aware weighting strategy
for the loss tied to tail samples. This amplifies the effect of
enlarging the margin for tail classes. We are the first to pro-
vide theoretical analysis that demonstrates a large seman-
tic diversity in tail samples can increase class margins dur-
ing the training stage, leading to improved generalization.
Empirical observations support our theory. Notably, with
no need for extra data or learnable parameters, SMART
achieves state-of-the-art results on five long-tailed bench-
mark datasets: CIFAR-10/100-LT, Places-LT, ImageNet-LT,
and iNaturalist 2018.

1. Introduction

The breakthroughs in deep neural networks [26] are
rooted in the utilization of abundant training data from di-
verse balanced categories. These meticulously curated bal-
anced datasets have empowered deep models to excel across
computer vision tasks, including image recognition [ 14,57],
video analysis [48,52], object detection [8, 9], image gener-
ation [42—44] and self-supervised learning [54,72,73], etc.

Despite impressive achievements of deep models, their
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Figure 1. Semantic data augmentation for long-tailed problems
increases the diversity of samples of tail classes and enlarges the
classification margin boundary.

success hinges on data that is evenly distributed across cat-
egories. Yet, most real-world datasets exhibit a long-tailed
distribution, with few dominant (head) classes with numer-
ous instances and most classes (tail classes) with sparse
samples. This imbalance hinders the efficacy of deep mod-
els, causing poor generalization to unseen data, especially
for the tail classes [19].

To tackle this challenge, recent research has focused on
three main approaches. The first involves re-sampling the
imbalanced dataset [4, 7, 19, 35, 45, 47] either by ‘over-
sampling’ tail classes or ‘under-sampling’ the head classes.
Yet, simplistic re-sampling has the potential to overfit to
tail classes, as the repeatedly selected samples often share
similar image contexts [49]. The second approach empha-
sizes re-weighting the loss of tail samples, employing a fac-
tor inversely proportional to the sample frequency of each
class. This ensures that instances from tail classes receive
greater importance compared to those from head classes
[6, 13,46, 74]. The goal is to achieve balanced training gra-
dients. However, this method often overlooks the inherent
diversity of samples within tail classes, leading to limited
within-class variations.

The third branch emphasizes the enrichment of tail sam-
ples through data augmentation, targeting either the raw-
pixel space [45] of an image or the feature space [35]. How-
ever, methods that operate on raw pixel space or the vari-
ance vector of features may inadvertently erode the underly-
ing semantics. Our SMART adheres to this family of meth-
ods, yet sets itself apart by leveraging a technique based
on research [57], that highlights the role of the covariance
matrix in preserving semantic diversity. Accordingly, as il-
lustrated in Figure 1, we channel the diversity of samples

1350



of the head classes, captured by their covariance, into the
feature space of tail classes. Intuitively, diversifying the tail
features via such an augmentation will increase the seman-
tic overlap with the head ones. However, as we optimize the
classifier to distinguish between them, it naturally separates
the tail features further from the head features, creating a
larger margin for these tail classes.

Our theoretical analysis confirms the enhanced effect of
enlarging the tail margin. Delving deeper, we discovered
that the success of this augmentation is due to its implicit
and adaptive adjustment of sample logits. Drawing inspi-
ration from this, we further introduce a semantic-aware re-
weighting strategy for the loss on tail samples. This strat-
egy utilizes the second-order co-occurrences of classes to
adaptively enhance tail ‘hard’ points ! with ‘push-back soft
weights’, giving them greater emphasis and ensuring they
are not overshadowed by the dominant classes.

Our extensive experiments validate the margin-enlarging
effect of SMART and affirm its design rationale, highlight-
ing its effectiveness in enhancing the model’s generalization
ability. Our contributions can be summarized as follows:

i. We are the first to devise a semantic covariance trans-
formation matrix that ensures augmented features align
closely with desired head features. We are also the first
to theoretically prove that this semantic transfer from
head to tail classes has the effect of enlarging margin
for tail classes, enhancing the model’s generalization.

ii. The proposed SeMAntic tRansfer from head to Tail,
abbreviated as SMART, borrows semantic information
from head classes to augment tail classes without requir-
ing extra data or learnable parameters. This approach
not only enriches the tail classes but also calibrates the
feature distribution distorted by limited tail data.

iii. The proposed method gains significant improvement
over the state-of-the-art on five popular long-tailed
benchmarks, including CIFAR-10/100-LT, Places-LT,
ImageNet-LT and iNaturalist 2018.

2. Related Works

Traditional strategies to counter an imbalanced distribu-

tion fall into three branches: re-sampling methods [4,7, 19,
—65], re-weighting strategies [0, 13,31,40,46,46,58,61,
] and data augmentation [7,24,35,45,60].

2.1. Re-sampling methods

Numerous studies [4,7,47,62—65] have centered on ad-
dressing class imbalances in training using re-sampling,
which includes under-sampling and over-sampling. Under-
sampling mainly reduces the majority of samples. However,

ITail hard points are samples within tail classes that most closely re-
semble head classes in terms of semantic characteristics.

in cases of significant class disparity, it is often impractical
and can cause training instability, especially under extreme
imbalance [47]. Over-sampling entails increasing the num-
ber minority class samples to achieve balance but it might
fail to capture the full diversity of the majority classes, risk-
ing overfitting to the minority classes.

2.2. Re-weighting strategies

Re-weighting strategies primarily involve two ap-
proaches: loss function re-weighting and logit adjustment.
Loss function re-weighting allocates different weights to
individual training samples, rebalancing their contribution
to the overall loss function during training. Approaches
[6,13,31,46,74] assign higher weights to instances from tail
classes than those from head classes. Alternatively, logit
adjustment methods recalibrate the logit values to main-
tain a balanced gradient. For example, techniques from
[40,61] enhance the accuracy of model via adjusting these
logits post-training. However, many re-weighting methods
hinge on heuristic designs. In contrast, our semantic-aware
weighting strategy prioritizes second-order co-occurrences
within classes, avoiding the risk of semantic eroding of the
conventional first-order frequency methods.

2.3. Data augmentation

Data augmentation in the context of long-tailed learning
can be broadly classified into two categories: image-level
augmentation and feature-level augmentation.

Image-level augmentation. Image-level augmentation
techniques, such as works [15, 34, 51] have shown promise
in computer vision tasks, and their potential extends to ad-
dressing imbalanced data scenarios. For example, CMO
[45] selects images across different distributions based on
specific characteristics of long-tailed distributions. Image
generation based method SMOTE [7] enriches tail classes
by interpolating minority samples with their neighboring
majority counterparts. Major-to-minor Translation (M2m)
[22] transfers knowledge from dominant classes with the
aid of a pre-trained classifier. BLT [24] employs gradient-
driven image generation. Method [060] directly uses pure
noisy images as tail class samples. Despite merits, these
methods largely use raw-pixel image space which lacks
deep semantic meaning. Moreover, the integration of deep
generative models inflates the computational demands. In
contrast, our SMART operates in a semantically rich space,
bypassing the pitfalls of raw-pixel based methods and elim-
inating the need for extra learning parameters.

Feature-level augmentation. Complementing traditional
image-level augmentation, feature-level augmentation in
CNN s helps prevent overfitting. This is grounded in the ob-
servation that CNNs prowess to capture high-level seman-
tic details, where altering deep features leads to meaning-
ful semantic changes in the image space [3]. To address
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Figure 2. The pipeline of SeMAntic tRansfer from head to Tail (SMART). The head class data and tail class data are fed into the feature
extractor to obtain the deep features. The augmented features are produced by transferring the diversity of the head sample to the tail sample
along the semantically meaningful directions, as measured by the covariance matrix. Refer to the text for details and the pseudo-code 1 for
the training procedure. The augmentation process is adopted in the training phase, without incurring inference overheads.

class imbalances, LEAP [35] leverages the angle variance
of head classes to aid tail classes. Similarly, ISDA [57]
employs class-conditional statistics for semantic augmen-
tation, though it fails to measure covariance in underrepre-
sented classes. MetaSAug [30] opts for an intricate meta-
learning approach, necessitating extensive iterations and ad-
ditional validation samples from tail classes. In contrast,
our method applies Exponential Moving Average (EMA)
[23] to update the covariance matrix across iterations based
on label frequencies. This facilitates the transfer of rich se-
mantic content from dominant to minority classes, enhanc-
ing intra-class variability without the need for extra data or
demanding computation. While concurrent research [29]
also endorses augmenting tail classes with head class se-
mantics, the semantics are represented by feature points that
differ in their co-occurrences of covariance matrix. More-
over, our approach is underpinned by robust theoretical mo-
tivation and a proof, offering solid foundations.

3. Method

Starting with the long-tailed setting, we identify two
principles that improve its performance from theoretical and
experimental standpoints. Using such insights, we develop
our method, grounded in theory and empirical evidence.

3.1. Preliminaries

In the long-tailed learning, the goal is to train a deep
neural network model using an imbalanced training dataset,
represented as D={(x;, y;)}I"; where n is the number of
training samples. Each training sample x; is associated with
label y; from a set of K classes, denoted as y;,€{1, ..., K'}.
Within each class k, ny indicates the number of samples,
and Dy, represents the set of samples in class k.

A neural network employs a feature extractor, described
by f(-;®y) : & — a, which is parameterized with © y and
is comprised of several convolutional layers. This extrac-
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Figure 3. Comparison of confusion matrices: Our method vs. the
baseline on CIFAR100-LT shows our approach dramatically re-
duces misclassification among tail classes and their top 10 similar
head classes, with ‘0’ on the x-axis indicating the tail class.

tor transforms the input into a feature space. Following
the feature extraction, a linear classifier, represented as
o(; W, b) : ar z, produces the output logit z, and is char-
acterized by its weight matrix W = [wy, ..., wx]T €RFXC
where C defines the feature dimension, and a bias vector
b=[b1, ..., bx]T€RE. All network parameters are encapsu-
lated within @ ={© ;,W, b}.

3.2. Motivations

As we are interested in improving the performance of
the model on an imbalanced dataset, we present the follow-
ing lemma that bounds the generalization error in the long-
tailed setting.

Lemma 1. (Theorem 2 of [16]) Let v, =t—maX (4 y)ep, lk
be the margin for class k under threshold t > 0 where l, is
the standard negative log-likelihood with Softmax. Denote
errpal as the 0-1 error on the balanced test dataset and C as
some complexity measure related to the Rademacher com-
plexity [2]. With probability 1—9, for all vy, > 0, we have
the balanced-class generalization error bounded by:

1 & /1 ¢ logn
erratﬁ—g — —|—>, 1
bai(t) Kk_1<vk\/nk NG M
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where we use < to hide constant factors. The optimal erry,)
is obtained at vy;, = —71 With a constraint on

B
Yo
K
B = Zj:l i

Lemma 1 reveals that to optimize the generalization ca-
pability in long-tailed settings, one can: 1) increase the
number of training samples per class, which means more
samples help achieve better generalization; 2) enlarge the
margin for each class relative to the decision boundaries.
The optimal ~;; further underscores that tail classes with
fewer samples require a larger margin for better general-
ization.

In deep learning, empirical observations consistently in-
dicate that misclassification predominantly occurs between
semantically related categories. Addressing this requires
researchers to use more balanced datasets, ensuring mod-
els can distinguish between such closely related categories.
We hypothesize this challenge is likely more pronounced
in long-tail learning, where the significant imbalance be-
tween the well-represented head categories and the under-
represented tail ones heightens the misclassification risk.

To test our hypothesis about tail-class misclassification,
we employed WordNet [4 1] to identify semantically similar
head classes for tail classes on CIFAR100-LT. Leveraging
Lin Similarity [33], we quantified semantic similarities be-
tween classes. For instance, in Figure 3, using Lin Simi-
larity, the top 10 semantically similar head classes (indexed
from 1-10) to the tail class ‘train’ (indexed 0) are: bus, bicy-
cle, bridge, motorcycle, road, pickup truck, camel, elephant,
lawn mower, and mountain. In Figure 3a, the confusion ma-
trix reveals that tail classes are often misclassified into their
top-10 semantically similar head classes rather than their
true categories. This consistent mislabeling matches our hy-
pothesis and highlights that the feature space of tail classes,
despite being limited, overlaps significantly with the more
expansive features of their analogous head classes.

Based on the above analysis and observations, to en-
hance performance in the long-tailed setting, it is essential
to expand the margin of tail classes, with the focus on in-
creasing distances to decision boundaries from their seman-
tically similar head classes.

3.3. Semantic augmentation for the tail classes

To improve the classification of tail classes in relation
to their semantically similar head classes, we propose to
leverage the diversity inherent in head classes. Our method
augments tail class features by integrating the covariance
matrix of head classes, while preserving the content of tail
class samples.

We initiate this semantic augmentation by extracting fea-
tures from f, and subsequently, we update the mean and
covariance for each class. Denote the flattened feature ex-
tracted from f for sample z as F' € R¥W*C¢ where HW

is the spatial dimension. We update the mean p1;, € R¢*!
and covariance Xj, € SY, (or X, € S if rank deficient)
for each class k£ using the exponential moving average as
(EMA):

pe = (= o™ + o, @
2P = (1 -zl 4 asl, 3)

where ukB and EkB are estimations from the current batch
for class k, with a!” = MB/N" and N\ = N7V +
M, kB where Ny, is the number of samples for class & the fea-
ture extractor has seen, and M ,f is the number of samples
for class k in current batch.

Leveraging pj and X, in pursuit of enhancing feature
diversity without compromising the content of the original
features, we randomly sample a head class kj, for a given
tail class k;. After augmentation, the features of class k;,
originally denoted as { F} }, are transformed to { F}}. These
augmented features {13}} are expected to preserve the tail
class mean u; and achieve a covariance of X, that is akin
to the covariance of head class 33;,. The computation of 3,
is detailed as follows:

2th = E?EM
I = SoftmaX(i:thé T)7 (4)
S =T 0y, ©)

Here, ¥; is the covariance of tail class, Softmax incorpo-
rates a temperature parameter 7 > 0 and operates over the
final dimension of the matrix X;,. A larger 7 implies a
greater emphasis on the most similar features, and ©® de-
notes the element-wise multiplication. The validity for this
approach is theoretically elaborated in Appendix §A.4 and
experimentally ablated in Sec. 4.3.
We acquire the augmented feature as follows:

A U S ©)
Voi+e

Here, € = 1e—8 prevents division by 0 and o2 =diag(X;) €

RE*1 s used specifically to sidestep matrix inversion oper-

ations that are not friendly for GPU processing.

3.4. Analysis for semantic augmentation

Based on the theoretical analysis provided below, we af-
firm the effectiveness of our semantic augmentation. This
augmentation implicitly strengthens the effect of enlarging
the margin for tail classes, leading to improved generaliza-
tion as evidenced in Lemma 1 for long-tailed scenarios. The
detailed proofs are available in Appendix §A.

Assumption 1. Assume that after augmentation, the fea-
ture @t presented to the classifier, which comes from a tail
sample x!, can be approximately represented by a distribu-
tion at ~ N(at, AX!,). Here, al is the feature obtained
without augmentation, and AE% ., 1s a positive definite co-
variance matrix.
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Lemma 2. Given the negative log softmax function, the loss
Ly, for samples of class k without augmentation can be de-
rived as:

1 &k Wi @it
Ly =— —log
_ Zlog(l+z €d [|w; —wy||2-sign(cos 6;, ch)> (7)
J#k

Drawing upon [37], the decision boundary between class j
and class k can be formulated as: (w; — wi)a + (b; —
bi) = 0, d; is the distance from point a; to the decision
boundary, 0; ;i denotes the angle between w;— wy, and a;.

Lemma 2 (the proof is in Appendix §A.2) indicates that
an easy sample a; of class k, which aligns with wy, typi-
cally has an opposite direction with w; — wy, resulting in
the condition sign(cos 6;, j&) = —1. Minimizing Lj under
this condition enlarges d;, pushes a; away from the deci-
sion boundary, thereby expanding the margin of class k. For
hard samples on the wrong side with sign(cos 6; ;) =1, the
minimization of L works to correct their position. Build-
ing on this intuition, the loss function has the intrinsic ef-
fect of increasing the margin of easy samples and correcting
hard samples. However, in long-tailed situations, this effect
weakens for tail classes as head classes overshadow it.

Theorem 1. Assert that Assumption 1 holds when using our
augmentation. The the loss function L}, for tail class k is:

1 Qe [ Wi @+,
Lt = =S E | —log ]
k ne ; a; Zf:l ew]Taﬁ—&-bj
< Zlog (1_,'_251 di||wj—wyg||2- mgn(coseuk)) (8)
k Jj#k

where ﬁ;k:e%(“’j—wk) Ay (wi—wk) | Fyrthermore,
1 o
B = exp (303 Avjy) > 1, 9)

where VIAIViT =AX!, and v;k = ViT(wj — wg).

The proof can be found in Appendix §A.2. Comparing
Eq. 8 in Theorem | with Lemma 2, it becomes evident that
the augmentation implicitly strengths the effect of enlarging
the margin and rectifying hard samples for tail classes us-
ing the factor Bji- x- Bq. 9 in Theorem 1 further demonstrates
that this strengthening factor ﬂ; i 18 not only larger than the
strength (equal to 1) in Lemma 2, but is also adaptively ad-
justed by AX?, . Notably, the covariance matrix borrowed
from a head class with greater diversity and semantic simi-
larity to the tail class will have larger values in A%, resulting
in a larger 3. With a larger 7, the effect of expanding
the margin for tail classes will be amplified, leading to im-
proved generalization in Lemma 1.

3.5. Semantic-aware weighted loss function

The insights drawn from Theorem | suggest that the
augmentation process indirectly assigns weights to the el-
ements within the log function, favorably influencing gen-
eralization. To further harness this potential, we introduce a
more explicit approach, leveraging the covariance matrix to
create “push-back soft weights” to counter the overshadow-
ing effect of the dominant classes. This method prioritizes
and applies greater penalties to hard tail samples, ensuring
our model undergoes a semantic-aware optimization. Con-
sequently, this results in a semantic-aware weighted loss:

1 n
Lssarr = — > wil ((F},4:): ©), (10)

=1

where £(-; ©) is the loss function for a sample and for each
w; EW:
1 for (x;,y;) € D,
B c c
Wi = ZZ wlj, k] for (zs,y;) € DT, (D

j=1k=1
where X¢p,[7, k] is the (j, k)-th entry of Xy;. Algorithm 1
and the pipeline in Figure 2 illustrate our method.

Algorithm 1 SeMAntic tRansfer from head to Tail

Input: Training dataset D, learned parameters ©, loss
function L(-);
Output: Trained model;
Sample tail-class dominated dataset D7 ~ T
Sample head-class dominated dataset D* ~ H
forepoch=1,..., F do

for batchj =1,..., B do

Sample a batch (x?, yt)lB‘ from D7

Sample a batch (z", yh)lB‘ from D*
Update px, and ¥y, in Eq. 2 & 3

Estimate covariance 3, in Eq. 5
Generate augmented features Fyin Eq. 6
Computer the weights W!B! in Eq. 10

n: © « 0 —pvWIBIL((E'" (y1)7); ©)
12: end for

13: end for

R A U

=4

4. Experiments
4.1. Experiment setup

Datasets. We test our method on the most commonly
used long-tailed recognition benchmark datasets, including
CIFAR10-LT [13], CIFAR100-LT [13], ImageNet-LT [38],
Places-LT [70], and iNaturalist 2018 [53]. CIFAR10-LT
and CIFAR100-LT [13] are derived from the balanced CI-
FAR datasets [25] and are sampled using an exponential
decay across classes. The CIFAR-10 dataset consists of
50,000 training images and 10,000 validation images, with a
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resolution of 32x32 and 10 classes. The CIFAR-100 main-
tains the same number of images and resolution as CIFAR-
10, but spans 100 classes. We utilized the long-tailed ver-
sions of these datasets, introducing imbalance factors of 100
and 50, respectively. The degree of data imbalance was con-
trolled using an Imbalance Factor (IF), calculated as the ra-
tio between number of instances in the most frequent cate-
gory and the least frequent category. ImageNet-LT [38] isa
long-tailed version of vanilla ImageNet. It was constructed
by sampling a subset of images following the Pareto distri-
bution with a power value of & = 0.6. ImageNet-LT com-
prises 115.8K images across 1,000 categories. Places-LT is
created from the large-scale dataset Places [70]. It consists
of 184.5K images distributed across 365 categories, with
the number of instances per class ranging from 5 to 4,980.
iNaturalist 2018 [53] stands as the largest dataset for long-
tailed visual recognition. It encompasses 437.5K images
belonging to 8,142 classes. This dataset exhibits extreme
imbalance with an imbalance factor of 512.

Implementation Details. Following works [13, 21], per-
formance is mainly reported as the overall top-1 accuracy
on three disjoint subsets: many (more than 100 images),
medium (20 to 100 images), and few (less than 20 images).
For the CIFAR datasets, we use ResNet-32 [16] as our
backbone network. The network is trained for 200 epochs,
and the initial learning rate is set to 0.1 and decreases by 0.1
at epoch 220 and 260, respectively, following the training
strategy in work [45]. For ImageNet-LT, we utilize ResNet-
50 [16], and train the network for 100 epochs using an ini-
tial learning rate of 0.1. The learning rate is decayed at
the 60" and 80'" epochs by 0.1. In addition, as stated in
works [12,21, 38], ResNet-50 is used for iNaturalist 2018,
while for Places-LT, we utilize the ResNet-152 pre-trained
on imageNet. We train the networks for 200 epochs using
an initial learning rate of 0.1, and decay the learning rate
at epochs 75 and 160 by 0.1. We use Stochastic Gradient
Descent (SGD) with a momentum of 0.9 and weight decay
of 2 x 10™* as the optimizer to train all models.

4.2. Comparison with the state of the arts

We compare SMART with the state-of-the-art long-tail
recognition methods, e.g., ACE [5], GCL [28], CMO
[45], GCL+CR [39] and PC [50] on CIFAR10/10-LT and
CIFAR10/100-LT. Table 1 shows that SMART consistently
outperforms all prior methods across all imbalance ratios
in both datasets. This demonstrates that SMART can be
applied to different datasets and imbalance ratios. Our de-
signed loss function is build upon the basic cross-entropy
(CE) loss with pairwise semantic bias. Replacing CE with
balanced softmax cross-entropy (BSCE) [46] can further
boost performance. The gap between classical CE and
class-balanced BSCE is smaller than that between image-
level augmentation CMO [45], indicating that our augmen-

Table 1. Comparisons on CIFAR100-LT and CIFARI10-LT
datasets with the IF of 100 and 50. T indicates the ensemble per-
formance is reported.

CIFAR100-LT CIFARI0-LT
100 50 100 50

CVPR’19 387 462 746 793
NeurIPS’19 42.0 451 770 793
CVPR’20 441 492 800 822

Method Ref.

CB Focal loss [13]
LDAM+DRW [0]
LDAM+DAP [20]

BBN [69] CVPR'20 394 470 798 822
LFME [59] ECCV'20 423 - - -
CAM [66] AAAT21 478 517 800 836
Logit Adj. [40] ICLR21 439 - 7717 -
LDAM+M2m [22] CVPR21 435 - 791 -
MiSLAS [68] CVPR21 470 523 821 857
LADE [18] CVPR21 454 505 - -

Hybrid-SC [55] CVPR’21 4677 519 814 854
CE+MetaSAug [30] CVPR’21 469 519 80.1 84.0

DiVE [17] ICCV’21l 454 513 - -
SSD [32] ICCV’21  46.0 50.5 - -
PaCo [12] ICCV’21 520 56.0 - -
XERM [71] AAAT22 469 528 - -

RISDA [10] AAAT22 502 538 799 842

GCL [28] CVPR’22 487 536 827 855
BCL [74] CVPR’22 519 566 843 872
CE+CMO [45] CVPR’22 439 483 - -

BSCE+CMO [45]
RIDE (3 experts)’ [56]
ACE (4 experts)Jr [5]

CVPR’22 466 514 - -
ICLR’21  49.1 - - -
ICCV’21  49.6 519 814 849

TLC (4 experts)! [27]  CVPR’22  49.8 - 804 -
RIDE+CMO+CR [39] CVPR’23  50.7 543 - -
GCL+CR [39] CVPR23 - - 83.5 868
PC [50] IJCAI'23 534 57.8 - -
SMART - 554 604 840 872
BSCE+SMART — 561 612 845 879

tation strategy is more effective for long-tailed recognition
tasks. Moreover, our proposed method even surpasses the
performance of previous state-of-the-art models that use an
ensemble of multiple experts. TLC [27] employs four ex-
perts for prediction, which results in higher computational
complexity. In contrast, our method achieves better results
with only a single model for evaluation, without the need
for any extra computation.

Table 2 presents comparisons on ImageNet-LT and
Places-LT. The significant improvements demonstrate that
our semantic augmentation for tail classes mitigates over-
fitting and enhances the generalization ability of the long-
tailed learner, even on large-scale imbalanced datasets. Fur-
thermore, when combined with BSCE, it consistently im-
proves performance, demonstrating the versatility of our
method and potential to seamlessly combine it with state-
of-the-art long-tailed recognition methods. Lastly, apply-
ing SMART to ACE further boosts performance, outper-
forming the results of ACE with three experts. On the
naturally-skewed dataset, as shown in Table 3, applying
SMART to the simple training scheme surpasses the state of
the arts as our performance improvement is not dependent
on multi-stage training [21,32] or post-processing [40,61].
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Table 2. Comparisons on ImageNet-LT and Places-LT datasets.
indicates the ensemble performance is reported.

Table 3. Comparisons on iNaturalist 2018 dataset with ResNet-50.
f indicates the ensemble performance is reported.

ImageNet-LT ~ Places-LT Method Ref. Accurac

Method Ref. ResS0 ResX50  Resl52 Y

N OLTR [38] CVPR’19 63.9
OLTR [38] CVPR’19 - - 359 ,
BBN [69] CVPR'20 483 493 - BBN [69] CVPR20 66.3
NCM [21] ICLR'20 443 473 36.4 DAP [20] CVPR’20 67.6
cRT [21] ICLR’20 473 49.6 36.7 cRT [21] ICLR’20 65.2
7-norm [21] ICLR20 467 494 379 7-norm [21] ICLR’20 65.6
LWS [21] ICLR’20 47.7 49.9 37.6 LWS [21] ICLR’20 65.9
giili[n[] | Ng{‘j}ﬁ?;o 20 - 387 LDAM+DRW [6] NeurIPS'19 68.0
DIVE L17] coval a1 - - Logit Adj. [40] ICLR 21 66.4
SSD [27] CCVal = 56.0 B CAM [66] AAAT21 70.9
PaCo [12] ICCV’21 57.0 582 412 PaCo [17] Iccve2l 732
ALA Loss [67] AAAI22 524 533 40.1 ALA Loss [67] AAAT22 70.7
XERM [71] AAAT22 - 54.1 393 XERM [71] AAAT22 673
RISDA [10] AAAI'22 50.7 - - RISDA [10] AAATI22 69.1
MBI [36] AAAT22 - 52.1 38.1 .
WD Sm so o B 1) AAATZ2 100
GCL [28] CVPR'22 549 - 40.6 :
BCL [74] CVPR'22 560  57.1 - GCL [28] CVPR’22 72.0
CE+CMO [45] CVPR'22  49.1 - - BCL [74] CVPR’22 71.8
BS+CMO [45] CVPR'22 523 - - CE+CMO [45] CVPR’22 68.9
ACE (3 experts)' [5] ICCV21 547  56.6 - BSCE+CMO [45] CVPR’22 70.9
RIDE (3 experls)T [56] ) ICLR’21 55.4 56.8 - RIDE (3 experts)T [56] ICLR’21 72.6
MBJ+RIDE (4 experts)t [36]  AAAI22 - 577 - .
TLC (4 experts) [27] CVPR'22 ss.1 B B ACE (3 eXperts)TT[ ] ICCV ’21 72.9
RIDE (4 experts) +CR [30] ~ CVPR'23  — 57.8 - RIDE (4 experts)'+CR [39] CVPR’23 73.5
PC [50] IUCAI'23 549 - - PC[50] 1ICAI'23 70.6
SMART - 578 582 410 SMART - 727
BSCE+SMART - 58.1 58.6 413 BSCE+SMART _ 73.1
ACE (3 experts)T+SMART = 59.2 59.4 42.6 ACE (3 experts)T+SMART _ 74.3

Overall, SMART improves previous methods on CIFAR10-
LT , CIFAR100-LT, ImageNet-LT, Places-LT and iNatural-
ist2018 with accuracies of 84.5% (IF of 100), 56.1% (IF of
100), 59.2% (with ResNet-50), 42.6% and 74.3%, respec-
tively. The significant performance over the state of the art
underscores the efficacy of our SMART.

4.3. Ablation Study

In order to gain an understanding of the effectiveness
of various components of SMART, various experiments are
conducted on the CIFAR100-LT dataset with an IF of 100,
as shown in Table 4. Specifically, several variants are con-
sidered: (1) ‘Baseline model’ trained with the CE loss, (2)
‘Minority Aug.” adapting the semantic data augmentation
on minority samples, (3) ‘W’ weighting imbalanced sam-
ples using the semantic-aware bias, and (4) combining with
the class-aware loss ‘BSCE’.

Impact of semantic data augmentation. The impact of
semantic data augmentation is evident in the superior per-
formance of the ‘Minority Aug.” compared to the baseline
model, achieving an accuracy of 38.62% vs. 52.12%, re-
spectively. This improvement can be attributed to two key
factors: 1) our method diversifies data points around de-
cision boundaries. Consequently, it bolsters the generaliz-
ability, particularly for the minority classes, and 2) by ex-
plicitly transferring information from head samples to tail

samples, thus inducing semantic similarity, the risk of mis-
classification during training is reduced. This effectively
avoids overfitting in the tail classes. Furthermore, our data
augmentation technique effectively reinstates the accurate
data distribution of minority classes, even without utilizing
any specialized balanced loss function. The results show
a 12.18% accuracy gap between the use of BSCE against
CE loss. However, our augmentation approach significantly
reduces this gap to just 2.69%.

Impact of semantic-aware weighting. BSCE helps ad-
dress a severe class imbalance by adjusting losses based
on prior class distributions, thereby providing a balancing
cue. We propose an alternative solution based on pair-
wise semantic relationships. Our strategy assigns higher
weights to hard-tail samples that exhibit the highest seman-
tic correlation with head features. This approach subse-
quently leads to heightened penalization during the training
phase. In essence, our model undergoes training through a
semantic-aware optimization mechanism. The comparison
results are presented in the third panel of Table 4, where
the performance scores are similar with each other (50.80%
vs. 50.73%). Re-weighing BSCE according to semantic
cues further boosts accuracy, demonstrating their synergy
(50.80% vs. 53.89%).

The meaningful semantic directions. Building on the dis-
cussion in §3.2, we employ WordNet as an auxiliary tool
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Figure 4. The variation in scaling hyperparameter 7, contrasting
adaptive online vs. fixed offline semantic sampling scheme (4a),
and visualization on the classification margin (4b).

to define the semantic relationships between classes. More-
over, we also turn to Word2Vec [ 1], generating word em-
beddings for each class name. Using a cosine function,
we assess pairwise similarities based on these embeddings.
Leveraging the ranked class similarity, we randomly pick
one from the top-5 head classes that closely aligns with each
tail class. The head classes provide valuable semantic guid-
ance and facilitate diversity transfer to the tail classes. Ref-
erencing Figure 4a, these offline methods require a minor
scaling hyperparameter 7. In contrast, our online strategy
demands a greater 7 to yield a sharper distribution from the
softmax. This constrains search directions while also en-
sures flexibility, allowing for the discovery of meaningful
semantic directions.

Visualization of the margin. We empirically show that
SMART achieves larger margins in majority classes com-
pared to both the baseline and image-level augmentation
[45]. We plot the average margin of each class. As depicted
in Figure 4b, the baseline margins exhibit an imbalance:
tail classes have notably smaller margins than head classes.
While the image-level augmentation approach seems to de-
crease the margins of head classes in an attempt to balance
them out, our method distinctively enlarge the margins of
tail classes, which in turn leads to improved performance
and generalization ability.

Types of transformation matrix. The formulation in Eq. 5
and Appendix §A.4 suggest that the transfer matrix, which
is derived from the covariance of both tail and head sam-
ples, can guarantee optimal transformation. To validate
this assertion, we examined scenarios with covariances cal-
culated from either head instances, tail instances, or both
combined. The resulting scores for these scenarios were
53.14%, 50.71%, and 55.42%, respectively, highlighting
the advantage of our combined approach.

Impact of different layers on covariance. Each layer of
feature extractor is responsible for capturing and processing
specific feature patterns inherent in the input data. As data
processes through these layers, the covariance will change
across layers. This means the choice of layers plays a piv-
otal role in determining the effectiveness of the covariance.
Table 5 shows that the 4t" layer yields the best result.

Table 4. Ablation results w.r.t. minority augmentation (Minority
Aug.), semantic-aware weights (JV), the basic cross entropy loss
(CE) and the balanced softmax cross-entropy loss (BSCE).

Minority Aug. w CE BSCE Accuracy
v 38.62
v v 52.12
v v 54.81
v 50.80
v v 50.73
v v 53.89
v v v 55.42
v v v 56.13

Table 5. Impact on the different layers of feature extractor and the
EMA momentum (y) on covariance estimation.

#Layer |  Accuracy || o' |  Accuracy
1 48.57 0.01 36.21
2 51.72 0.05 35.32
3 52.98 0.10 35.62
4 55.42 Dynamic 55.42

Impact of EMA momentum. In situations where a class
is sparsely represented, accurately capturing its data covari-
ance and identifying the correct semantic direction can be
challenging. To counter this, EMA is often employed to
stabilize the estimation of covariance matrices across itera-
tions. With EMA, the covariance estimates can be updated
gradually, mitigating the effect of severely data imbalances
or noise. EMA improves the robustness of covariance esti-
mates and reduces their sensitivity to short-term variations,
provided the momentum parameter -y is appropriately cho-
sen. Table 5 shows that the fixed preset value for -y can be
biased by long-tailed distributions, while dynamic adjust-
ment based on sample frequency performs best.

5. Conclusions

We have introduced SeMAntic tRansfer from head to
Tail (SMART), a novel data augmentation method that en-
hances the model generalization in long-tailed scenarios.
Our thorough theoretical analysis and comprehensive ex-
perimental ablations, attest that SMART enjoys reasonable
design and confirm its efficacy in enlarging the margin for
tail classes. This highlights the effectiveness of SMART in
improving the generalization ability in imbalanced settings.
SMART performs well across five popular benchmarks and
consistently outperforms existing methods. Thus, SMART
presents a valuable approach to countering the pitfalls of
learning with long-tailed distribution.
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