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Abstract
Kubernetes is widely adopted by enterprises to enhance service
availability for applications such as web services and large-scale
model training, due to its advantages in managing containerized ap-
plications. As service demands increase, a single Kubernetes cluster
often becomes insufficient, leading to the trend of using multiple
clusters to improve service scalability. However, achieving efficient
cross-cluster communication poses significant challenges due to
the need for low latency, high throughput, and strong robustness.
Existing methods for cross-cluster communication either employ a
centralized control plane, which becomes a communication bottle-
neck, or use numerous service-bound proxies, leading to increased
management complexity and possibly compromised robustness in
cross-cluster communication.

To address the above challenges, we introduce X-ClusterLink,
a framework designed for efficient cross-cluster communication
in multi-Kubernetes clusters. X-ClusterLink first employs broker
clusters to ensure low-latency cross-cluster synchronization. Then,
it aggregates multiple containerized gateways to enhance through-
put and leverages eXpress Data Path (XDP) for advanced packet
processing, thereby accelerating traffic forwarding. Finally, it in-
corporates Bucket-Based Consistent ECMP to facilitate seamless
failover and enhance robustness. Experimental results demonstrate
that X-ClusterLink significantly improves cross-cluster communi-
cation efficiency, increasing cross-cluster forwarding bandwidth by
3.1 × compared to existing solutions.

Keywords
Virtualization, Resource Management, Kubernetes, Traffic Forward-
ing, Web Infrastructure

1 Introduction
In the contemporary digital landscape, a growing number of web
applications are hosted on cloud servers to provide cost-effective
services. Enterprises increasingly seek automated, scalable, and
highly dependable management systems for these applications to
enhance operational efficiency and service quality. In response to
these demands, many enterprises advocate virtualization technolo-
gies for managing web applications [5]. Kubernetes [3, 4], a premier
open-source container orchestration platform, excels in automating
the deployment, scaling, and management of containerized applica-
tions. Specifically, its flexibility and scalability make it particularly
suitable for businesses that require robust resource management
in their web systems [21]. Additionally, Kubernetes is increasingly
utilized for flexible task scheduling in large-scale model training,
effectively improving resource management and making workflows
more efficient for fluctuating workloads. [17, 24]. Consequently, a
growing number of enterprises are beginning to adopt Kubernetes
to manage services.

Typically, Kubernetes manages a set of nodes, which are ei-
ther physical or virtual machines, in a unified manner to provide
services to users. These nodes collectively form what is known
as a Kubernetes cluster [4]. Each node can host multiple pods,
which are the fundamental operational units within Kubernetes.
Typically, a pod is a container running specific applications, such
as web services, databases, or model training jobs. To ensure high
availability, Kubernetes can deploy identical pods across different
nodes, providing consistent service [4]. This setup maintains ser-
vice continuity if a node fails and allows efficient load balancing
through automatic scaling based on demand and resource usage.

With escalating service demands, a single Kubernetes cluster fre-
quently becomes insufficient, prompting the adoption of multiple
clusters to enhance scalability. Specifically, a standard Kubernetes
cluster only supports up to 5,000 nodes and 150,000 pods. However,
large tenants may require a private cloud that hosts millions of
containers, far surpassing the capacity of a single cluster [28]. Ad-
ditionally, deploying multiple Kubernetes clusters not only boosts
fault tolerance and system availability through redundancy and
isolationmechanisms but also facilitates the implementation of com-
prehensive security measures, substantially mitigating the risks of
lateral attacks and unauthorized access [34].

However, effective communication across multiple Kubernetes
clusters entails three critical requirements [8]. (1) Low Latency: The
substantial data synchronization traffic between clusters is highly
sensitive to latency, necessitating low-latency, real-time commu-
nication to effectively manage sudden spikes. [14]. For example, a
global streaming service employs multiple Kubernetes clusters to
serve users across regions, requiring real-time data synchronization
to ensure data consistency at low latency [16]. (2) High Throughput:
High data transmission rates are crucial for forwarding large traf-
fic volumes between clusters, particularly in environments where
large models are trained on multiple Kubernetes clusters. Thus,
designing high throughput traffic forwarding solutions can consid-
erably reduce data processing times and improve the efficiency of
model training [17, 24]. (3) Strong Robustness: Although individual
components generally exhibit low failure rates, large-scale cloud
environments remain vulnerable to network anomalies, such as
node failures [6, 26] and traffic surges [30, 36]. In scenarios such as
financial transactions on Kubernetes clusters, maintaining a robust
network with fast failover is essential to prevent disruptions and
ensure robust service.

Existing solutions for cross-cluster communication, such as Ku-
bernetes Federation [15] and Istio Service Mesh [13], unfortunately
do not fully meet the above requirements. Specifically, Kubernetes
Federation orchestrates cross-cluster service communications using
a central control plane, whereas Istio Service Mesh employs Envoy
proxies for each service to facilitate cross-cluster communication.
On the one hand, the centralized management structure of the Ku-
bernetes Federation requires that all cross-cluster communications

1
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Figure 1: Two Typical Cross-Cluster Communication Solutions for Multi-Kubernetes Clusters: (a) Kubernetes Federation
establishes a Control Plane to manage service communications across multiple clusters. (b) Istio Service Mesh creates Envoy
proxies in each service, then communicates across different clusters by Envoy proxies.

pass through a single control plane. This central control plane can
become a significant bottleneck, especially during periods of burst
cross-cluster traffic, consequently limiting system throughput and
elevating latency, thereby adversely affecting overall performance
and responsiveness. On the other hand, the deployment of numer-
ous service proxies by Istio Service Mesh technologies complicates
management and introduces an additional layer, increasing the risk
of configuration errors and reducing system robustness.

To overcome the above challenges, we propose X-ClusterLink, a
framework for cross-cluster communication in multi-Kubernetes
clusters. Specifically, X-ClusterLink includes the following innova-
tive designs: (1) X-ClusterLink implements a broker cluster (§4.1)
and the Rounding-Based Broker Cluster Mapping (RBCM) algo-
rithm (§4.2) to manage cross-cluster communication, incorporating
built-in load-balancing features to ensure low latency in cross-
cluster information synchronization. (2) X-ClusterLink enhances
cross-cluster network throughout by deploying multiple container-
ized gateway aggregations. It also accelerates traffic forwarding
by using extended Berkeley Packet Filter (eBPF) and Express Data
Path (XDP) [10], an advanced packet processing technology, within
these gateways [31]. (§5.1) (3) X-ClusterLink achieves fast failover
through the proposed Bucket-Based Consistent ECMP [12], thereby
enhancing system robustness. (§5.2)

The principal contributions of this paper are outlined as follows:

(1) We conduct a detailed analysis of the advantages and disad-
vantages of existing typical solutions for cross-cluster com-
munication in multi-Kubernetes clusters, and subsequently
present the design goals of our proposed framework.

(2) We design X-ClusterLink, a prototype framework compris-
ing the Broker Layer and the Worker Layer, to achieve
efficient cross-cluster communication in multi-Kubernetes
clusters. We plan to open-source it at Github soon.

(3) We evaluate the efficiency of X-ClusterLink through testbed
experiments. The results show that X-ClusterLink signifi-
cantly reduces the impact of burst traffic and abnormalities
on performance. Notably, X-ClusterLink increases cross-
cluster forwarding bandwidth by 3.1 × compared to state-
of-the-art solutions.

2 Background and Preliminaries
2.1 Multi-Kubernetes Clusters Communication
Kubernetes, released by Google in 2014 and derived from their
internal system Borg used for apps like Gmail, simplifies the de-
ployment, scaling, and management of containerized applications
across multiple nodes [35]. It enhances efficiency and adaptability,
leading to its widespread use in managing complex web systems
and supporting large-scale model training [17, 21, 24].

Kubernetes manages multiple nodes, both physical and virtual,
to deploy, scale, andmanage applications efficiently. Thesemanaged
nodes are collectively known as a cluster [4]. Each node supports
several pods, the essential operational units within Kubernetes.
Typically, a pod contains a container that runs specific applications,
such as web services, databases, or model training programs. To
maintain high availability, Kubernetes distributes identical pods
across different nodes to ensure consistent service [4].

Deploying multi-Kubernetes clusters is crucial in modern cloud-
native architectures, enhancing the scalability and fault tolerance
of web applications while facilitating service deployment across
cloud platforms [28]. This arrangement optimizes resource utiliza-
tion and improves load balancing, significantly reducing single
points of failure and boosting system reliability. Moreover, using
multiple clusters for large-scale model training distributes compu-
tational loads and data storage demands, effectively addressing the
scalability constraints of a single cluster [34].

Cross-cluster communication is vital in multi-cluster environ-
ments, enabling interaction between services across different clus-
ters, such as financial services, to ensure data consistency [8]. It
facilitates rapid information synchronization, maintaining uniform
service delivery across various clusters. Moreover, when using
multiple clusters for large-scale model training, high-throughput
cross-cluster communication improves training efficiency, keeps
the system performing optimally under heavy loads, and enhances
the user experience [17].

2.2 Limitations of Prior Works
Istio Service Mesh [7, 13] is a widely utilized tool that enhances
cross-cluster communication by deploying Envoy proxies for each
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service and integrating them into Istio’s service system, thereby
improving network functionality [18]. This configuration enables
seamless communication across services located in different clus-
ters. The Istio control plane manages synchronization and routing
rules among Envoy proxies to ensure smooth cross-cluster connec-
tivity. However, since Istio operates on a per-service basis, each
service requiring cross-cluster communication necessitates its own
Envoy proxy. This requirement leads to an increase in the number of
proxies when managing multiple cross-cluster services, potentially
degrading performance. Furthermore, the proliferation of proxies
complicates management, increases the overhead for information
synchronization, and heightens the risk of configuration errors,
which may result in communication failures [37].

Skupper [32] connects multiple Kubernetes clusters at the ap-
plication layer (Layer 7), creating a temporary virtual network for
secure cross-cluster communication. It utilizes the Virtual Appli-
cation Network (VAN) to link applications and services within a
hybrid cloud, effectively simulating co-location by operating at
Layer 7. Application routers manage communication between ad-
dresses. However, Skupper’s operation at this higher layer results
in performance overhead and increased resource consumption [1].

Submariner [33] improves the connectivity of Kubernetes clus-
ters by establishing secure IPSec tunnels. Each cluster employs a
Submariner Gateway Pod for tunnel management and the Light-
house component to facilitate cross-cluster communication, thereby
enhancing service connectivity. However, its reliance on a single
cross-cluster gateway means that Submariner cannot provide seam-
less failover during gateway failures, critically and significantly
compromising its robustness.

Despite the capabilities of existing solutions to communica-
tion across multiple clusters, they present several inherent chal-
lenges. These include: (1) Significant Additional Latency: In large-
scale deployments, additional control planes can increase the la-
tency of information synchronization between clusters by creat-
ing bottlenecks, leading to data inconsistencies that may affect
critical services like finance. (2) Limited Cross-Cluster Through-
put: Existing multi-cluster architectures often underutilize the net-
work bandwidth of each node, leading to insufficient throughput
in high-demand scenarios. This limitation impedes the effective
transfer of large data volumes between clusters, severely affecting
performance-sensitive applications. (3) Insufficient Fault Resilience:
Current multi-cluster solutions often depend on a single gateway to
forward cross-cluster communication, which inadequately handles
network failures or peak traffic. As a result, cross-cluster communi-
cation is prone to disruptions, resulting in a lack of robustness.

3 System Design
3.1 Design Goals
X-ClusterLink is a framework for cross-cluster communication in
multi-Kubernetes clusters. Our design goals are as follows:

• Low Latency: Low-latency cross-cluster communication is
essential for maintaining information synchronization and
data consistency across clusters. X-ClusterLink employs
broker clusters and load-balancing algorithms to manage
burst traffic and minimize delays.

Figure 2: X-ClusterLink Overview: The Broker Layer manages
traffic forwarding between clusters and ensures synchronization
of cluster information. The Worker Layer focuses on providing
efficient, large-scale cross-cluster communication while ensuring
failover and load balancing among the cluster’s gateways.

• High Throughout: The framework needs to quickly for-
ward large amounts of cross-cluster data to support high-
performance applications spanning multiple clusters. X-
ClusterLink aims to aggregate the bandwidth of various
nodes within each cluster to meet this demand.

• Fault Transparency: High reliability is crucial for cross-
cluster communication, requiring continuous service avail-
ability even during failures. Therefore, X-ClusterLink is
designed to ensure seamless failover, making disruptions
transparent to services.

• Scalability: With the rapid growth of demand, the frame-
work must scale without incurring excessive overhead. X-
ClusterLink needs to lower the overhead of syncing cross-
cluster information to support large-scale deployments and
efficiently expand as required.

3.2 System Overview
As shown in Figure 2, X-ClusterLink achieves the above design
goals through two main components: the Broker Layer and the
Worker Layer. Below is a brief overview of these two layers.

Broker Layer effectively manages traffic forwarding between
clusters and ensures synchronization of information across them.
This layer utilizes multiple brokers to achieve low-latency synchro-
nization and is adept at supporting effective load balancing. Each
broker manages and directs cross-cluster traffic, ensuring accu-
rate delivery of data packets to their intended destinations. This
functionality is enabled by providing an interface for cross-cluster
communication within each cluster [38].

Worker Layer focuses on providing efficient, large-scale cross-
cluster communication. It employs VXLAN tunnels [19] to establish
basic connectivity, implements Multi-Gateway Aggregation to en-
hance cross-cluster throughput, and utilizes eBPF/XDP technologies
[10] for efficient packet forwarding at gateways. These strategies
collectively optimize the routing and processing of substantial traf-
fic volumes across multiple Kubernetes clusters. Furthermore, this
layer integrates failover mechanisms through Bucket-Based Con-
sistent ECMP, which ensures robust traffic management during
gateway failures and maintains load balancing among the cluster’s
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Figure 3: Illustration of interaction between broker cluster
and worker cluster.When cluster1 needs to communicate with
cluster2, the agent first finds the corresponding broker using the
mapping algorithm, then sets up a direct path between the clusters,
offloading the cross-cluster traffic.

gateways. Additionally, X-ClusterLink agents are instrumental in
synchronizing cluster information, and managing routing configu-
rations across multiple gateways.

4 Broker Layer Design
4.1 Handling Burst Traffic by Broker Cluster
We virtualize a broker cluster utilizing Kubernetes to manage traffic
spikes and prevent overload, significantly enhancing scalability and
flexibility beyond the capabilities of a single broker. Distributed
across multiple nodes, our brokers ensure efficient cross-cluster
information synchronization with minimal latency [23]. Each bro-
ker synchronizes the cross-cluster communication interfaces and
ensures consistent forwarding rules [9]. This approach adeptly
meets growing network demands by deploying standardized broker
instances within the Kubernetes framework.

To achieve effective load balancing among brokers, we deploy
an innovative mapping algorithm within the worker clusters to
identify and select the appropriate broker. This algorithm dynami-
cally recalculates the relationships between brokers and clusters
upon any changes to their configurations. Detailed explanations of
the mapping algorithm’s operations between worker clusters and
brokers will be provided in §4.2.

Figure 3 demonstrates the interaction between brokers andworker
clusters. For instance, when a pod in cluster 1 needs to access a
service in cluster 2, it first uses the mapping algorithm to identify
the corresponding broker based on the established relationship.
Following this, it synchronizes the cross-cluster communication
interfaces, and a tunnel is then established between the two clusters,
efficiently offloading the cross-cluster communication traffic.

4.2 Broker Cluster Mapping Algorithm
4.2.1 System Model. In X-ClusterLink framework, the set of bro-
kers is 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏 |𝐵 | }, with each broker 𝑏 ∈ 𝐵 having a data
synchronization capacity 𝐴(𝑏). Worker clusters are represented
by 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐 |𝐶 | }. Complete set of Virtual Private Clouds

(VPCs) is𝑉 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑉 | }. Each worker cluster 𝑐 ∈ 𝐶 contains
a subset of VPCs 𝑉 𝑐 , such that 𝑉 =

⋃
𝑐∈𝐶 𝑉 𝑐 . Tenants are repre-

sented by 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡 |𝑇 | }, with each tenant 𝑡 ∈ 𝑇 associated
with a subset of VPCs 𝑉 𝑡 , forming the complete set 𝑉 =

⋃
𝑡 ∈𝑇 𝑉 𝑡 .

The traffic demand for each VPC 𝑣 ∈ 𝑉 is denoted as 𝑓 (𝑣).

4.2.2 Problem Definition. We formally define the Broker Cluster
Mapping (BCM) problem with the following constraints: (1)Worker
Cluster Constraint: Each worker cluster is mapped to only one
broker. (2) Tenant Constraint: Each tenant can only be mapped to a
limited number of brokers to prevent a single tenant’s traffic from
affecting all brokers, thereby ensuring enhanced security [27].

We use a binary variable 𝑥𝑐𝑣 ∈ {0, 1} to denote whether a VPC
𝑣 ∈ 𝑉 is mapped to a worker cluster 𝑐 ∈ 𝐶 . Similarly, binary variable
𝑦𝑏𝑡 ∈ {0, 1} represents whether the broker 𝑏 ∈ 𝐵 is assigned to
the VPC belonging to the tenant 𝑡 ∈ 𝑇 . Additionally, 𝑧𝑏𝑐 ∈ {0, 1}
specifies whether the worker cluster 𝑐 ∈ 𝐶 is mapped to a broker
𝑏 ∈ 𝐵. The objective of Broker Cluster Mapping (BCM) is to achieve
the optimal load-balance among all brokers, and is mathematically
formulated as follows:

min 𝜆

𝑆.𝑡 .



∑︁
𝑏∈𝐵

𝑧𝑏𝑐 = 1, ∀𝑐 ∈ 𝐶∑︁
𝑐∈𝐶

𝑥𝑐𝑣 = 1, ∀𝑣 ∈ 𝑉∑︁
𝑐∈𝐶

𝑧𝑏𝑐 · 𝑥𝑐𝑣 ≤ 𝑦𝑏𝑡 , ∀𝑣 ∈ 𝑉 𝑡 , 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇∑︁
𝑐∈𝐶

∑︁
𝑣∈𝑉

𝑧𝑏𝑐 · 𝑥𝑐𝑣 · 𝑓 (𝑣) ≤ 𝜆𝐴(𝑏), ∀𝑏 ∈ 𝐵∑︁
𝑏∈𝐵

𝑦𝑏𝑡 ≤ 𝑘 ≤ |𝐵 |, ∀𝑡 ∈ 𝑇

𝑥𝑐𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 , 𝑐 ∈ 𝐶

𝑦𝑏𝑡 ∈ {0, 1}, ∀𝑡 ∈ 𝑇,𝑏 ∈ 𝐵

𝑧𝑏𝑐 ∈ {0, 1}, ∀𝑐 ∈ 𝐶,𝑏 ∈ 𝐵

(1)

4.2.3 Rounding-Based Mapping Algorithm. To address the chal-
lenges in Eq. (1), we introduce the Rounding-Based Broker Cluster
Mapping (RBCM) algorithm, outlined in Algorithm 1. The RBCM
algorithm has two main phases:

Phase 1: Linear Programming Relaxation (LP-BCM). We
first convert the BCM problem into a linear programming model,
allowing each VPC’s traffic to be fractionally split across multiple
brokers. By using a solver like CPLEX [11], we obtain fractional
solutions {𝑦𝑏𝑡 } and {𝑧𝑏𝑐 }, with the optimal value �̃�.

Phase 2: Randomized Rounding. We then convert these frac-
tional solutions into integers. For each tenant 𝑡 ∈ 𝑇 and broker
𝑏 ∈ 𝐵, 𝑦𝑏𝑡 is rounded to 1 with a probability equal to its fractional
value. After determining {𝑦𝑏𝑡 }, we assign each tenant flow 𝑓 a de-
fault broker. Each decision is made independently.

Finally, we set 𝑧𝑏𝑐 to 1 with a probability 𝑧𝑏𝑐∑
𝑏∈𝐵𝑐 𝑧

𝑏
𝑐

for each cluster
𝑐 ∈ 𝐶𝑣 associated with VPC 𝑣 . If a cluster 𝑐 is not linked to VPC 𝑣 ,
𝑧𝑏𝑐 is set to 0.

4
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Algorithm 1 RBCM: Rounding-based Broker Cluster Mapping
Algorithm

1: Step 1: Solving the Relaxed BCM Problem
2: Construct a linear programming formulation of the problem in

Eq. (1)
3: Assign values to {𝑥𝑐𝑣 } according to the existing clusters
4: Obtain the optimal fractional solutions {𝑦𝑏𝑡 } and {𝑧𝑏𝑐 }
5: Step 2: Broker Cluster Selection for Each Worker Cluster
6: for Each tenant 𝑡 ∈ 𝑇 do
7: Define 𝐶𝑡 = {𝑐 |𝑦𝑏𝑡 = 1}
8: repeat
9: for Each broker 𝑏 ∈ 𝐵 do
10: Set 𝑦𝑏𝑡 = 1, with the probability of 𝑦𝑏𝑡
11: until |𝐶𝑡 | > 0
12: for each worker cluster 𝑐 ∈ 𝐶 do
13: Define 𝐵𝑐 = {𝑏 |𝑧𝑏𝑐 = 1, 𝑐 ∈ 𝐶}
14: for each 𝑏 ∈ 𝐵𝑐 do
15: Set 𝑧𝑏𝑐 = 1, with the probability of 𝑧𝑏𝑐∑

𝑏∈𝐵𝑐 𝑧
𝑏
𝑐

5 Worker Layer Design
5.1 Optimizing Forwarding through

Multi-Gateway Aggregation and eBPF/XDP
5.1.1 Enhancing Cluster Throughput with Multi-Gateway Aggre-
gation. To enhance traffic forwarding efficiency between clusters,
we employ Multi-Gateway Aggregation to increase cross-cluster
bandwidth. Traditional systems such as Submariner [33] typically
utilize a master-slave model, where only one gateway manages
traffic at any given time while others serve as backups. This model
results in suboptimal resource utilization and becomes inadequate
as traffic demands and cluster sizes increase.

We address the challenge of cross-cluster traffic exceeding the
capacity of a single network interface by implementing a highly
robust Multi-Gateway Aggregation using Open Virtual Network
(OVN) [25] and Equal-Cost Multi-Path (ECMP) [12] technologies.
Typically, nodes within a cluster are strategically located in a single
data center where intra-cluster bandwidth substantially exceeds
cross-cluster bandwidth. OVN creates a virtual overlay for central-
ized management [31], and ECMP facilitates the efficient hashing
and even distribution of packets across multiple active gateways,
preventing any one gateway from becoming a bottleneck. This
Multi-Gateway Aggregation operation significantly increases total
forwarding capacity and enhances the reliability of cross-cluster
communication, effectively handling high traffic demands and lead-
ing to a more resilient and highly scalable network infrastructure.
For specific ECMP implementations, see §5.2.

5.1.2 Leveraging eBPF/XDP for Efficient Packet Forwarding at Gate-
ways. To minimize packet latency in gateway pods, we employ
eBPF/XDP technology to enhance traffic forwarding. In a Kuber-
netes environment, each gateway pod utilizes the macvlan tech-
nique to connect its virtual network interface to the host node’s
physical interface. The eXpress Data Path (XDP) operates early in
packet processing, bypassing the kernel’s network stack to speed
up traffic forwarding between the node and the gateway pod. When

Figure 4: Illustration of Multi-Gateway Aggregation and
eBPF/XDP: Packets for cross-cluster are first optimized by Multi-
Gateway Aggregation, combining gateway bandwidth. Then, the
eBPF/XDP program bypasses the kernel and sends traffic directly
to the physical NIC.

cross-cluster traffic hits the node’s physical interface, the XDP pro-
gram quickly detects it and forwards it directly to the gateway,
which then routes it to the appropriate pod.

Each gateway pod has two network interface cards (NICs): one
for internal Kubernetes networks and another for external traf-
fic via the host’s physical interface. This setup ensures seamless
communication between internal and external networks. We also
enhance data forwarding by implementing eBPF programs at the
gateway’s socket layer. When an intra-cluster packet arrives, the
eBPF program performs source network address translation (SNAT)
and forwards the packet directly to the physical interface. For exter-
nal packets, it retrieves the mapping, performs destination network
address translation (DNAT), and sends the packet to the internal
network. Integrating eBPF and XDP programs with the NICs signif-
icantly boosts packet forwarding speed, reducing CPU usage and
enabling the gateway to handle high volumes of traffic efficiently.

5.1.3 Comprehensive Workflow for Optimizing Forwarding with
Multi-Gateway Aggregation and eBPF/XDP. Figure 4 illustrates the
traffic paths established through Multi-Gateway Aggregation and
eBPF/XDP acceleration. When a cluster encounters large-scale
cross-cluster traffic, since the bandwidth between nodes within
the cluster significantly exceeds each node’s cross-cluster band-
width, the traffic is immediately distributed to multiple gateways
for efficient cross-cluster forwarding. These gateways are strate-
gically deployed across various nodes within the cluster to fully
utilize the cross-cluster communication bandwidth.

In a gateway pod, when the net0 NIC, tasked with handling
internal Kubernetes network communications, receives traffic des-
ignated for cross-cluster forwarding, an eBPF (extended Berkeley
Packet Filter) program inspects the packet header. This program
captures the source and destination IP addresses and executes sev-
eral network functions, such as Network Address Translation (NAT).
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Figure 5: Illustration of Failover by Bucket-Based Consistent
ECMP: When gateway1 fails, the OVN logic router reassign pod1,
originally bound to bucket1 on gateway1, to bucket3 on gateway2
by Bucket-Based Consistent ECMP. A fixed-length hash ring mini-
mizes global route updates, with each gateway assigned multiple
buckets that are evenly distributed on the ring to maintain load
balance among the gateways.

The packet is then quickly relayed to the outbound NIC, net1, with
XDP (Express Data Path) technology accelerating the forwarding
process from net1 to the physical NIC, eth0.

In summary, the deployment of multiple gateway pods signif-
icantly enhances the forwarding of cross-cluster traffic. By em-
ploying Multi-Gateway Aggregation and eBPF/XDP technologies,
we enable multiple gateway containers to operate concurrently.
This approach effectively harnesses the bandwidth of external net-
work interfaces across various nodes within the cluster, thereby
improving cross-cluster communication.

5.2 Failover by Bucket-Based Consistent ECMP
5.2.1 Gateway Failure Management by Bucket-Based Consistent
ECMP. To implement Multi-Gateway Aggregation (§5.1), we uti-
lize Equal-Cost Multi-Path (ECMP) technology [12], enabling si-
multaneous data forwarding across multiple gateways to enhance
throughout. However, in large-scale network environments, fail-
ures, particularly at gateways, are inevitable and can significantly
impact inter-cluster communication efficiency. Traditional ECMP,
which relies on random hashing, necessitates a complete system
reroute whenever gateways are added or removed. This process
requires updating gateway assignments and routing tables for each
pod, which can be disruptive and time-consuming. To address this
challenge, we adopt a Bucket-Based Consistent ECMP approach.

Initially, we establish a hash ring of fixed length. Subsequently,
we meticulously create multiple buckets for each gateway and hash
them onto this ring. When a pod requiring cross-cluster commu-
nication initiates a request, it is efficiently hashed onto the hash
ring, followed by a search for the first bucket clockwise on the ring.
Once the first bucket clockwise is found, the pod is directly routed
to the gateway corresponding to that bucket.

This algorithm’s effectiveness stems from the fixed length of the
hash ring, ensuring that each pod’s hash value remains unchanged.
Consequently, with our approach, adding or removing gateways

affects only the routing of pods proximal to the buckets linked
with the modified gateway. This localized change circumvents the
extensive global routing updates typically required by traditional
ECMP, reducing downtime. Furthermore, each gateway is assigned
multiple buckets, evenly distributed on the hash ring, ensuring a
load-balance distribution across gateways.

Additionally, we leverageOpenVirtual Network (OVN) to stream-
line the connections between pods and their respective gateways
through virtual routers. OVN’s role as a mediator in abstracting the
underlying physical network complexities is crucial for seamless
integration and efficient management of these connections. This
architecture ensures that modifications in the calculated ECMP
routing information have no detrimental impact on the pod routing
tables. Consequently, it supports seamless failover, significantly
enhancing system resilience by ensuring continuous service avail-
ability even during gateway changes.

5.2.2 Workflow for Failover through Bucket-Based Consistent ECMP.
In Figure 5, we illustrate how Bucket-Based Consistent ECMP sup-
ports failover during gateway failures. Initially, cluster1 employed
three gateway pods, configured via OVN logic router with Bucket-
Based Consistent ECMP routing. According to the Bucket-Based
Consistent algorithm, pod1 was linked to bucket1 and assigned to
gateway1, while pod2 and pod3, pod4 were respectively mapped
to gateway2 and gateway3. Upon detecting a failure in gateway1
via a Kubernetes probe, the Bucket-Based Consistent algorithm
recalculates the pod-bucket bindings, reassigning pod1 to gateway2
while maintaining other mappings to avoid unnecessary hash recal-
culations and global routing disruptions. Once gateway1 is restored,
the algorithm reverts pod1 to it, preserving the rest of the mappings.
This process effectively demonstrates that Bucket-Based Consis-
tent ECMP minimizes the impact of failures on global routing and
ensures balanced load distribution across gateways.

In summary, ourmulti-gateway pod architecture employs Bucket-
Based Consistent ECMP to strategically minimize the impact of
gateway changes. It achieves this by remapping only the pods asso-
ciated with the affected gateway, rather than the entire system. This
targeted approach not only drastically reduces the time required
for failover and recovery but also ensures even load distribution
by mapping multiple buckets to each gateway. Moreover, this strat-
egy facilitates the rapid scalability of gateways, thereby enhancing
cross-cluster communication.

6 Performance Evaluation
6.1 Performance Metrics and Benchmarks
6.1.1 Performance Metrics: We categorize the performance metrics
into three sets:

(1) To illustrate the high efficiency of X-ClusterLink in cross-
cluster communication, we adopt the following performance
metrics: (i) CPU utilization of gateways; (ii) maximum for-
warding load of gateways; (iii) round-trip time (RTT); (iv)
packet loss rate; (v) request per second; (vi) time per request.

(2) To evaluate the failover capability of X-ClusterLink dur-
ing abnormal events, we measure (i) recovery latency of
abnormal events.
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Figure 6: Max. RTT vs. No.
Burst Flows

Figure 7: Packet Loss Rate
vs. No. Burst Flows

Figure 8: Request Per Sec-
ond vs. No. Request

Figure 9: Time Per Request
vs. No. Request

(3) To show the advantages of the X-ClusterLink during cluster
scaling, we adopt the following metrics in large-scale tests:
(i) cross-cluster information synchronizes latency; and (ii)
CPU load of brokers.

6.1.2 Benchmarks: In comprehensive testbed experiments, we eval-
uate the efficiency of X-ClusterLink with the designs of Multi-
GatewayAggregation and eBPF/XDP and assess the robustness of X-
ClusterLink with the designs of Bucket-Based Consistent ECMP and
broker cluster. We then compare the performance of X-ClusterLink
against that of other typical fabrics. The first fabric is Istio Service
Mesh [13], the most popular choice in service meshes. Istio provides
a robust way to manage microservices and their interactions and is
ideally suitable for use on Kubernetes clusters. The second fabric is
Skupper [32], a Layer-7 service facilitating multi-cluster intercon-
nection. Skupper enables secure communication across Kubernetes
clusters by establishing an ad-hoc virtual networking substrate.
The third fabric is Submariner [33], which allows direct network-
ing between pods and services in different Kubernetes clusters,
whether on-premises or in the cloud. Additionally, X-ClusterLink
functionality is demonstrated in two scenarios: single gateway pod
and multiple gateway pods.

6.1.3 System Implementation: We establish a testbed consisting of
10 servers, all running Ubuntu 18.04 with Linux kernel 5.4. These
servers are equipped with a 22-core Intel Xeon 6152 processor,
128GB of memory, and an Intel X710 10GbE NIC. We deploy 30
Kernel-based VMs (KVMs) [29] across 5 of these servers, with each
KVM node configured with 4 vCPUs and 6GB of memory. For the X-
ClusterLink architecture, we organize these 30 KVMs into 6 evenly
distributed Kubernetes worker clusters.

Figure 10: Max. Bandwidth
vs. Burst Flows (64B/packet)

Figure 11: Max. Bandwidth
vs. Burst Flows (640B/packet)

Connectivity between each KVM working node and its host
machine is seamlessly facilitated through a Linux bridge, allowing
all KVMs on different host machines to function cohesively as a
single Kubernetes cluster.

6.2 Efficiency Evaluation
6.2.1 Coping with Large Traffic: To test the system’s capacity to
handle large-scale traffic effectively, we initiate 103 − 104 burst
flow events, with traffic intensity ranging from 1Mbps to 1Gbps [2].
Source and destination clusters for each flow are selected randomly.
We strategically utilize multiple iperf client pods within these clus-
ters to generate burst flows, setting packet sizes to 64 Bytes to
rigorously test the forwarding performance of X-ClusterLink [22].
This setup allows for precise measurements of critical performance
metrics such as RTT and bandwidth.

Additionally, we configure eight pods within a single cluster to
offer HTTP services, which are aggregated and exposed through
a Kubernetes Service to enable load balancing. Using the Apache
Bench tool located in a separate cluster, we conduct a 30-second
concurrent access test to assess service responsiveness. This test
provides valuable data on Requests per Second (RPS) and Time
Per Request, showcasing the system’s performance under varying
levels of service access concurrency.

Figures 6-9 illustrate the performance of X-ClusterLink under
high-traffic conditions, focusing on maximum RTT, packet loss rate,
Requests Per Second (RPS), and Time Per Request (TPR).

Figure 6 illustrates that X-ClusterLink significantly lowers the
maximum Round-Trip Time (RTT) compared to other network fab-
rics. Specifically, under conditions of 1K burst traffic, it reduces the
maximum RTT by 71.7% relative to Submariner and by 68.7% rela-
tive to Skupper. Additionally, Figure 7 highlights X-ClusterLink’s
superior performance in reducing packet loss rates, achieving re-
ductions of 73.6% compared to Submariner and 79.0% compared to
Skupper in a multi-Kubernetes cluster cloud environment. These
results demonstrate X-ClusterLink’s efficiency in maintaining high-
quality network performance under substantial load conditions.

Figure 8 demonstrates that X-ClusterLink substantially outper-
forms other network fabrics in Requests Per Second (RPS), handling
up to 55.7%, 575.4%, and 638.9% more requests than Submariner,
Istio Service Mesh, and Skupper, respectively, under scenarios of
10K+ concurrent access requests. Concurrently, Figure 9 clearly
shows that X-ClusterLink significantly reduces Time Per Request
(TPR), achieving reductions of 35.8%, 85.1%, and 86.4% compared to
the same competitors. These remarkable enhancements in handling
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Figure 12: Recovery Latency
vs. Abnormal Events

Figure 13: Gateways CPU
Load in a Cluster vs. Time

HTTP requests and processing efficiency are largely attributed to
the highly effective use of Multi-Gateway Aggregation and bucket-
based ECMP, which optimally distributes burst traffic loads across
multiple gateways, thereby optimizing network throughput and
minimizing response times.

To accurately assess the performance enhancement provided
by Multi-Gateway Aggregation configurations, we conduct burst
traffic tests using iperf with packet sizes of 64 bytes and 640 bytes,
detailed in Figure 10 and Figure 11. For 64-byte packets, all tested
systems, including Submariner, Istio Service Mesh, Skupper, and
X-ClusterLink, show a bandwidth of approximately 200 Mbit/s,
with no significant edge for X-ClusterLink due to the iperf pod’s
generation limit. However, with 640-byte packets, X-ClusterLink’s
multi-gateway setup significantly outperforms, achieving up to
2130 Mbit/s by more effectively utilizing the combined bandwidths
of multiple nodes’ physical network interfaces, unlike the single-
gateway configurations which were constrained by the bandwidth
limits of individual network cards.

6.3 Robustness Evaluation
6.3.1 Coping with Abnormal Events: We evaluate the robustness
of X-ClusterLink in handling abnormal events such as gateway
failures, overloads, and expansions, focusing particularly on the
recovery time metric. X-ClusterLink employs Multi-Gateway with
Bucket-Based Consistent ECMP that facilitates rapid and efficient
failover in these scenarios.

Compared to X-ClusterLink, other network solutions have var-
ied recovery strategies for abnormal events. Submariner utilizes a
standby gateway node that activates upon the primary gateway’s
failure, providing a quicker but still conditional response. Istio Ser-
viceMesh, with only one gateway per cluster, faces delays as it waits
for the gateway to recover. Skupper’s recovery time is constrained
by the speed of its Layer 7 routers’ recovery processes.

Figures 12-13 demonstrate the capability of X-ClusterLink’s
Bucket-Based Consistent ECMP in managing abnormal events like
gateway failures and expansions. To assess recovery latency, we
transmit 2000 Ping probe packets per second across clusters through
the gateways experiencing disruptions. Recovery latency is gauged
by the number of probe packets lost during these events.

The results shown in Figure 12 reveal that X-ClusterLink sig-
nificantly reduces recovery latency compared to other network
architectures. Specifically, X-ClusterLink’s gateway failure recov-
ery latency is 706 milliseconds, approximately 1.89 times faster
than that of Istio Service Mesh and 2.77 times faster than Skupper.

Figure 14: Info Sync La-
tency vs. No. Service

Figure 15: Broker CPU
Load vs. No. Service

Figure 13 illustrates the load dynamics during a gateway failure
within an X-ClusterLink cluster configured with three gateways.
Initially, each gateway operates at around 45% CPU load. Following
the failure of gateway pod3 at 400ms, which stops forwarding
traffic, the system redirects the load to pod1 and pod2, resulting in
increased CPU utilization at these nodes. By 1200ms, pod3 restarts
successfully, and the load distribution among the three gateways
stabilizes back to normal levels.

6.3.2 Coping with Cluster Scaling: Based on the designs of the
X-ClusterLink framework, we implement a broker cluster by Ku-
bernetes and propose the Rounding-Based Broker Cluster Map-
ping (RBCM) algorithm, aimed at enhancing load balancing within
broker clusters and reducing latency in cross-cluster information
synchronization. This section outlines scalability tests conducted
to assess the efficiency of the Broker Layer.

We conduct a testbed to compare cross-cluster information syn-
chronization latency and agent overhead amongX-ClusterLink, Sub-
mariner, and Skupper. As depicted in Figures 14-15, X-ClusterLink
consistently demonstrates lower latency and overhead as the num-
ber of services increases. Notably, for 2×104 services, X-ClusterLink
achieves a service synchronization latency of 86 seconds, which
is 19.8% faster than Skupper (103 seconds) and 11.6% faster than
Submariner (96 seconds). Additionally, X-ClusterLink exhibits a
33.5% reduction in synchronization overhead compared to Skupper
and a 12.4% reduction compared to Submariner.

X-ClusterLink leverages its broker cluster and the RBCM algo-
rithm to efficiently map worker clusters to different brokers, thus
enhancing information synchronization. This strategy minimizes
latency and overhead associated with agent updates and synchro-
nization, effectively optimizing cross-cluster information exchange
during cluster expansion.

7 Conclusion
This paper introduces X-ClusterLink, a framework designed to
efficiently enhance communication across multi-Kubernetes clus-
ters. X-ClusterLink optimizes cross-cluster communication using
Multi-Gateway Aggregation, eBPF/XDP, and the broker cluster to
manage burst traffic efficiently. Additionally, it integrates Bucket-
Based Consistent ECMP to handle network anomalies robustly. Our
comprehensive testbed experiments and simulations demonstrate
significant improvements in latency and throughput, affirming X-
ClusterLink as a superior solution for application virtualization and
cross-cluster communication.
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A Performance Analysis of Broker Cluster
Mapping Algorithm

Theorem 1: The BCM problem is NP-hard.
Proof: Consider a simplified version of the BCG problem without

the Tenant Constraint. This simplification reduces the BCG problem
to a Parallel Machine Scheduling (PMS) problem[20], known as
NP-hard. Thus, the BCG problem is also NP-hard. Due to the space
limit, we omit the detailed proof here.

This section provides an approximate analysis of the tenant
constraint ratio and load balancing performance. We first introduce
two well-known probability theory lemmas:

Lemma 2 (Chernoff Bound): Given𝑛 independent variables:𝑥1, 𝑥2, . . . , 𝑥𝑛 ,
where 𝑥𝑖 ∈ [0, 1]. Let 𝜇 = E[∑𝑛

𝑖=1 𝑥𝑖 ]. Then,

Pr

[
𝑛∑︁
𝑖=1

𝑥𝑖 ≥ (1 + 𝜖)𝜇
]
≤ 𝑒−

𝜖2𝜇
2+𝜖 , (2)

where 𝜖 is an arbitrarily positive value.
Lemma 3 (Union Bound): Given a countable set of 𝑛 events

𝐴1, 𝐴2, . . . , 𝐴𝑛 , each event𝐴𝑖 happens with possibility Pr(𝐴𝑖 ). Then,

Pr

[
𝑛⋃
𝑖=1

𝐴𝑖

]
≤

𝑛∑︁
𝑖=1

Pr(𝐴𝑖 ) . (3)

Analysis of the worker Cluster Constraint: The expected
number of worker clusters assigned to the flow 𝑓 is:

E

[∑︁
𝑐∈C

𝑧𝑏𝑐

]
=
∑︁
𝑐∈C
E[𝑧𝑏𝑐 ] =

∑︁
𝑐∈C

Pr[𝑧𝑏𝑐 = 1]

=
∑︁
𝑐∈C𝑣

Pr[𝑧𝑏𝑐 = 1] +
∑︁

𝑐∈C\C𝑣
Pr[𝑧𝑏𝑐 = 1]

= 1 + 0 = 1

(4)

where the last equation holds according to the second step of
RBCM, which selects a default cluster from 𝐶𝑣 for flow 𝑓 ∈ 𝐹 with
the probability of 𝑧𝑏𝑐

�̃�𝑐𝑣
, thus, the RBCM algorithm will assign only

one worker cluster to each flow, ensuring compliance with the flow
constraint.

Analysis of the Tenant Constraint: The first step of RBCM
will yield the fractional solution 𝑦𝑏𝑡 of the relaxed BCM problem.
Using randomized rounding, 𝑦𝑏𝑡 is set to 1 with the probability of
𝑦𝑏𝑡 .

Thus, the expected number of worker clusters allocated to the
VPC 𝑣 is given by:

E

[∑︁
𝑐∈C

𝑦𝑏𝑡

]
=
∑︁
𝑐∈C

𝑦𝑏𝑡 ≤ 𝑘 (5)

Theorem 4: With the rounding-based mapping algorithm, the
number of brokers assigned to the tenant 𝑡 will not exceed 𝑘 by a
factor of 3 ln𝑑 + 3 with high probability, where 𝑑 represents the
number of VPCs.

Proof : For each 𝑣𝑐 , 𝑦𝑏𝑡 ∈ {0, 1} are independent variables with an
expected value E

[∑
𝑐∈C 𝑦

𝑏
𝑡

]
≤ 𝑘 . According to Lemma 2, we have:

Pr

[∑︁
𝑐∈C

𝑣𝑐 ≥ (1 + 𝜖)𝑘
]
≤ 𝑒−

𝜖2𝑘
2+𝜖 (6)

We assume that

𝑒−
𝜖2𝑘
2+𝜖 ≤ 1

𝑑3
, 𝑑 = |𝑇 | (7)

which implies that the probability bound in Eq. 4 rapidly ap-
proaches zero as the number of VPCs 𝑑 increases. To satisfy this, 𝜖
should be:

𝜖 ≥ 3 ln𝑑 +
√︁
9 ln2 𝑑 + 24𝑘 ln𝑑
2𝑘

(8)

If we select 𝜖 = 3 ln𝑑
𝑘

+ 2, the above inequality holds. In other
words, we have:

Pr

[∑︁
𝑐∈C

𝑦𝑏𝑡 ≥ (1 + 𝜖)𝑘
]
≤ 1

𝑑3
, 𝜖 =

3 ln𝑑
𝑘

+ 2 (9)

Finally, we ensure the upper bound on the probability the number
of worker clusters assigned to a VPC is violated by Lemma 3:

Pr

[⋃
𝑣∈𝑉

∑︁
𝑐∈C

𝑦𝑏𝑡 ≥ (1 + 𝜖)𝑘
]

≤
∑︁
𝑣∈𝑉

Pr

[∑︁
𝑐∈C

𝑦𝑏𝑡 ≥ (1 + 𝜖)𝑘
]

≤ 𝑑 · 1
𝑑3

=
1
𝑑2

, 𝜖 =
3 ln𝑑
𝑘

+ 2

(10)

Therefore, the number of brokers assigned to tenant 𝑡 will not
exceed 𝑘 by a factor of 1 + 𝜖 = 3 ln𝑑

𝑘
+ 3 with high probability.

Load Balancing Performance Analysis: We calculate the ex-
pected forwarding load of worker clusters and bound the probability
that the load will be violated. First, we define 𝑙𝑐

𝑓
as the forwarding

load of the cluster 𝑐 ∈ 𝐶 assigned to flow 𝑓 ∈ 𝐹 :

𝑙𝑐
𝑓
=

{
𝑡 (𝑓 ), with the probability of 𝑧𝑏𝑐

�̃�𝑐𝑣

0, otherwise
(11)

The expected forwarding load of the cluster 𝑐 is:

E


∑︁
𝑓 ∈𝐹𝑟

𝑙𝑐
𝑓

 =
∑︁
𝑓 ∈𝐹𝑟

E[𝑙𝑐
𝑓
] =

∑︁
𝑓 ∈𝐹𝑟

𝑡 (𝑓 ) · 𝑧𝑐
𝑓
≤ 𝜆 · 𝐴(𝑏) (12)

To understand the relationship between load variables and the
optimal result, we define:

𝛽 =
𝜆 · 𝐴(𝑏)

max𝑓 ∈𝐹𝑟 𝑡 (𝑓 )
(13)

Theorem 5: The rounding-based mapping algorithm achieves a
load balancing factor at most 3 ln𝑑

𝛽
+3 times worse than the optimal

result with high probability. Due to the space limit, we omit the
detailed proof here.
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