
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

X-ClusterLink: An Efficient Cross-Cluster Communication
Framework in Multi-Kubernetes Clusters

Anonymous Author(s)
Submission Id: 352

Abstract
Kubernetes is widely adopted by enterprises to enhance service
availability for applications such as web services and large-scale
model training, due to its advantages in managing containerized ap-
plications. As service demands increase, a single Kubernetes cluster
often becomes insufficient, leading to the trend of using multiple
clusters to improve service scalability. However, achieving efficient
cross-cluster communication poses significant challenges due to
the need for low latency, high throughput, and strong robustness.
Existing methods for cross-cluster communication either employ a
centralized control plane, which becomes a communication bottle-
neck, or use numerous service-bound proxies, leading to increased
management complexity and possibly compromised robustness in
cross-cluster communication.

To address the above challenges, we introduce X-ClusterLink,
a framework designed for efficient cross-cluster communication
in multi-Kubernetes clusters. X-ClusterLink first employs broker
clusters to ensure low-latency cross-cluster synchronization. Then,
it aggregates multiple containerized gateways to enhance through-
put and leverages eXpress Data Path (XDP) for advanced packet
processing, thereby accelerating traffic forwarding. Finally, it in-
corporates Bucket-Based Consistent ECMP to facilitate seamless
failover and enhance robustness. Experimental results demonstrate
that X-ClusterLink significantly improves cross-cluster communi-
cation efficiency, increasing cross-cluster forwarding bandwidth by
3.1 × compared to existing solutions.

Keywords
Virtualization, Resource Management, Kubernetes, Traffic Forward-
ing, Web Infrastructure

1 Introduction
In the contemporary digital landscape, a growing number of web
applications are hosted on cloud servers to provide cost-effective
services. Enterprises increasingly seek automated, scalable, and
highly dependable management systems for these applications to
enhance operational efficiency and service quality. In response to
these demands, many enterprises advocate virtualization technolo-
gies for managing web applications [5]. Kubernetes [3, 4], a premier
open-source container orchestration platform, excels in automating
the deployment, scaling, and management of containerized applica-
tions. Specifically, its flexibility and scalability make it particularly
suitable for businesses that require robust resource management
in their web systems [21]. Additionally, Kubernetes is increasingly
utilized for flexible task scheduling in large-scale model training,
effectively improving resource management and making workflows
more efficient for fluctuating workloads. [17, 24]. Consequently, a
growing number of enterprises are beginning to adopt Kubernetes
to manage services.

Typically, Kubernetes manages a set of nodes, which are ei-
ther physical or virtual machines, in a unified manner to provide
services to users. These nodes collectively form what is known
as a Kubernetes cluster [4]. Each node can host multiple pods,
which are the fundamental operational units within Kubernetes.
Typically, a pod is a container running specific applications, such
as web services, databases, or model training jobs. To ensure high
availability, Kubernetes can deploy identical pods across different
nodes, providing consistent service [4]. This setup maintains ser-
vice continuity if a node fails and allows efficient load balancing
through automatic scaling based on demand and resource usage.

With escalating service demands, a single Kubernetes cluster fre-
quently becomes insufficient, prompting the adoption of multiple
clusters to enhance scalability. Specifically, a standard Kubernetes
cluster only supports up to 5,000 nodes and 150,000 pods. However,
large tenants may require a private cloud that hosts millions of
containers, far surpassing the capacity of a single cluster [28]. Ad-
ditionally, deploying multiple Kubernetes clusters not only boosts
fault tolerance and system availability through redundancy and
isolationmechanisms but also facilitates the implementation of com-
prehensive security measures, substantially mitigating the risks of
lateral attacks and unauthorized access [34].

However, effective communication across multiple Kubernetes
clusters entails three critical requirements [8]. (1) Low Latency: The
substantial data synchronization traffic between clusters is highly
sensitive to latency, necessitating low-latency, real-time commu-
nication to effectively manage sudden spikes. [14]. For example, a
global streaming service employs multiple Kubernetes clusters to
serve users across regions, requiring real-time data synchronization
to ensure data consistency at low latency [16]. (2) High Throughput:
High data transmission rates are crucial for forwarding large traf-
fic volumes between clusters, particularly in environments where
large models are trained on multiple Kubernetes clusters. Thus,
designing high throughput traffic forwarding solutions can consid-
erably reduce data processing times and improve the efficiency of
model training [17, 24]. (3) Strong Robustness: Although individual
components generally exhibit low failure rates, large-scale cloud
environments remain vulnerable to network anomalies, such as
node failures [6, 26] and traffic surges [30, 36]. In scenarios such as
financial transactions on Kubernetes clusters, maintaining a robust
network with fast failover is essential to prevent disruptions and
ensure robust service.

Existing solutions for cross-cluster communication, such as Ku-
bernetes Federation [15] and Istio Service Mesh [13], unfortunately
do not fully meet the above requirements. Specifically, Kubernetes
Federation orchestrates cross-cluster service communications using
a central control plane, whereas Istio Service Mesh employs Envoy
proxies for each service to facilitate cross-cluster communication.
On the one hand, the centralized management structure of the Ku-
bernetes Federation requires that all cross-cluster communications

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

The Web Conference ’25, April, 2025, Sydney, Australia Anon. Submission Id: 352

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Two Typical Cross-Cluster Communication Solutions for Multi-Kubernetes Clusters: (a) Kubernetes Federation
establishes a Control Plane to manage service communications across multiple clusters. (b) Istio Service Mesh creates Envoy
proxies in each service, then communicates across different clusters by Envoy proxies.

pass through a single control plane. This central control plane can
become a significant bottleneck, especially during periods of burst
cross-cluster traffic, consequently limiting system throughput and
elevating latency, thereby adversely affecting overall performance
and responsiveness. On the other hand, the deployment of numer-
ous service proxies by Istio Service Mesh technologies complicates
management and introduces an additional layer, increasing the risk
of configuration errors and reducing system robustness.

To overcome the above challenges, we propose X-ClusterLink, a
framework for cross-cluster communication in multi-Kubernetes
clusters. Specifically, X-ClusterLink includes the following innova-
tive designs: (1) X-ClusterLink implements a broker cluster (§4.1)
and the Rounding-Based Broker Cluster Mapping (RBCM) algo-
rithm (§4.2) to manage cross-cluster communication, incorporating
built-in load-balancing features to ensure low latency in cross-
cluster information synchronization. (2) X-ClusterLink enhances
cross-cluster network throughout by deploying multiple container-
ized gateway aggregations. It also accelerates traffic forwarding
by using extended Berkeley Packet Filter (eBPF) and Express Data
Path (XDP) [10], an advanced packet processing technology, within
these gateways [31]. (§5.1) (3) X-ClusterLink achieves fast failover
through the proposed Bucket-Based Consistent ECMP [12], thereby
enhancing system robustness. (§5.2)

The principal contributions of this paper are outlined as follows:

(1) We conduct a detailed analysis of the advantages and disad-
vantages of existing typical solutions for cross-cluster com-
munication in multi-Kubernetes clusters, and subsequently
present the design goals of our proposed framework.

(2) We design X-ClusterLink, a prototype framework compris-
ing the Broker Layer and the Worker Layer, to achieve
efficient cross-cluster communication in multi-Kubernetes
clusters. We plan to open-source it at Github soon.

(3) We evaluate the efficiency of X-ClusterLink through testbed
experiments. The results show that X-ClusterLink signifi-
cantly reduces the impact of burst traffic and abnormalities
on performance. Notably, X-ClusterLink increases cross-
cluster forwarding bandwidth by 3.1 × compared to state-
of-the-art solutions.

2 Background and Preliminaries
2.1 Multi-Kubernetes Clusters Communication
Kubernetes, released by Google in 2014 and derived from their
internal system Borg used for apps like Gmail, simplifies the de-
ployment, scaling, and management of containerized applications
across multiple nodes [35]. It enhances efficiency and adaptability,
leading to its widespread use in managing complex web systems
and supporting large-scale model training [17, 21, 24].

Kubernetes manages multiple nodes, both physical and virtual,
to deploy, scale, andmanage applications efficiently. Thesemanaged
nodes are collectively known as a cluster [4]. Each node supports
several pods, the essential operational units within Kubernetes.
Typically, a pod contains a container that runs specific applications,
such as web services, databases, or model training programs. To
maintain high availability, Kubernetes distributes identical pods
across different nodes to ensure consistent service [4].

Deploying multi-Kubernetes clusters is crucial in modern cloud-
native architectures, enhancing the scalability and fault tolerance
of web applications while facilitating service deployment across
cloud platforms [28]. This arrangement optimizes resource utiliza-
tion and improves load balancing, significantly reducing single
points of failure and boosting system reliability. Moreover, using
multiple clusters for large-scale model training distributes compu-
tational loads and data storage demands, effectively addressing the
scalability constraints of a single cluster [34].

Cross-cluster communication is vital in multi-cluster environ-
ments, enabling interaction between services across different clus-
ters, such as financial services, to ensure data consistency [8]. It
facilitates rapid information synchronization, maintaining uniform
service delivery across various clusters. Moreover, when using
multiple clusters for large-scale model training, high-throughput
cross-cluster communication improves training efficiency, keeps
the system performing optimally under heavy loads, and enhances
the user experience [17].

2.2 Limitations of Prior Works
Istio Service Mesh [7, 13] is a widely utilized tool that enhances
cross-cluster communication by deploying Envoy proxies for each

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

X-ClusterLink: An Efficient Cross-Cluster Communication Framework in Multi-Kubernetes Clusters The Web Conference ’25, April, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

service and integrating them into Istio’s service system, thereby
improving network functionality [18]. This configuration enables
seamless communication across services located in different clus-
ters. The Istio control plane manages synchronization and routing
rules among Envoy proxies to ensure smooth cross-cluster connec-
tivity. However, since Istio operates on a per-service basis, each
service requiring cross-cluster communication necessitates its own
Envoy proxy. This requirement leads to an increase in the number of
proxies when managing multiple cross-cluster services, potentially
degrading performance. Furthermore, the proliferation of proxies
complicates management, increases the overhead for information
synchronization, and heightens the risk of configuration errors,
which may result in communication failures [37].

Skupper [32] connects multiple Kubernetes clusters at the ap-
plication layer (Layer 7), creating a temporary virtual network for
secure cross-cluster communication. It utilizes the Virtual Appli-
cation Network (VAN) to link applications and services within a
hybrid cloud, effectively simulating co-location by operating at
Layer 7. Application routers manage communication between ad-
dresses. However, Skupper’s operation at this higher layer results
in performance overhead and increased resource consumption [1].

Submariner [33] improves the connectivity of Kubernetes clus-
ters by establishing secure IPSec tunnels. Each cluster employs a
Submariner Gateway Pod for tunnel management and the Light-
house component to facilitate cross-cluster communication, thereby
enhancing service connectivity. However, its reliance on a single
cross-cluster gateway means that Submariner cannot provide seam-
less failover during gateway failures, critically and significantly
compromising its robustness.

Despite the capabilities of existing solutions to communica-
tion across multiple clusters, they present several inherent chal-
lenges. These include: (1) Significant Additional Latency: In large-
scale deployments, additional control planes can increase the la-
tency of information synchronization between clusters by creat-
ing bottlenecks, leading to data inconsistencies that may affect
critical services like finance. (2) Limited Cross-Cluster Through-
put: Existing multi-cluster architectures often underutilize the net-
work bandwidth of each node, leading to insufficient throughput
in high-demand scenarios. This limitation impedes the effective
transfer of large data volumes between clusters, severely affecting
performance-sensitive applications. (3) Insufficient Fault Resilience:
Current multi-cluster solutions often depend on a single gateway to
forward cross-cluster communication, which inadequately handles
network failures or peak traffic. As a result, cross-cluster communi-
cation is prone to disruptions, resulting in a lack of robustness.

3 System Design
3.1 Design Goals
X-ClusterLink is a framework for cross-cluster communication in
multi-Kubernetes clusters. Our design goals are as follows:

• Low Latency: Low-latency cross-cluster communication is
essential for maintaining information synchronization and
data consistency across clusters. X-ClusterLink employs
broker clusters and load-balancing algorithms to manage
burst traffic and minimize delays.

Figure 2: X-ClusterLink Overview: The Broker Layer manages
traffic forwarding between clusters and ensures synchronization
of cluster information. The Worker Layer focuses on providing
efficient, large-scale cross-cluster communication while ensuring
failover and load balancing among the cluster’s gateways.

• High Throughout: The framework needs to quickly for-
ward large amounts of cross-cluster data to support high-
performance applications spanning multiple clusters. X-
ClusterLink aims to aggregate the bandwidth of various
nodes within each cluster to meet this demand.

• Fault Transparency: High reliability is crucial for cross-
cluster communication, requiring continuous service avail-
ability even during failures. Therefore, X-ClusterLink is
designed to ensure seamless failover, making disruptions
transparent to services.

• Scalability: With the rapid growth of demand, the frame-
work must scale without incurring excessive overhead. X-
ClusterLink needs to lower the overhead of syncing cross-
cluster information to support large-scale deployments and
efficiently expand as required.

3.2 System Overview
As shown in Figure 2, X-ClusterLink achieves the above design
goals through two main components: the Broker Layer and the
Worker Layer. Below is a brief overview of these two layers.

Broker Layer effectively manages traffic forwarding between
clusters and ensures synchronization of information across them.
This layer utilizes multiple brokers to achieve low-latency synchro-
nization and is adept at supporting effective load balancing. Each
broker manages and directs cross-cluster traffic, ensuring accu-
rate delivery of data packets to their intended destinations. This
functionality is enabled by providing an interface for cross-cluster
communication within each cluster [38].

Worker Layer focuses on providing efficient, large-scale cross-
cluster communication. It employs VXLAN tunnels [19] to establish
basic connectivity, implements Multi-Gateway Aggregation to en-
hance cross-cluster throughput, and utilizes eBPF/XDP technologies
[10] for efficient packet forwarding at gateways. These strategies
collectively optimize the routing and processing of substantial traf-
fic volumes across multiple Kubernetes clusters. Furthermore, this
layer integrates failover mechanisms through Bucket-Based Con-
sistent ECMP, which ensures robust traffic management during
gateway failures and maintains load balancing among the cluster’s

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

The Web Conference ’25, April, 2025, Sydney, Australia Anon. Submission Id: 352

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: Illustration of interaction between broker cluster
and worker cluster.When cluster1 needs to communicate with
cluster2, the agent first finds the corresponding broker using the
mapping algorithm, then sets up a direct path between the clusters,
offloading the cross-cluster traffic.

gateways. Additionally, X-ClusterLink agents are instrumental in
synchronizing cluster information, and managing routing configu-
rations across multiple gateways.

4 Broker Layer Design
4.1 Handling Burst Traffic by Broker Cluster
We virtualize a broker cluster utilizing Kubernetes to manage traffic
spikes and prevent overload, significantly enhancing scalability and
flexibility beyond the capabilities of a single broker. Distributed
across multiple nodes, our brokers ensure efficient cross-cluster
information synchronization with minimal latency [23]. Each bro-
ker synchronizes the cross-cluster communication interfaces and
ensures consistent forwarding rules [9]. This approach adeptly
meets growing network demands by deploying standardized broker
instances within the Kubernetes framework.

To achieve effective load balancing among brokers, we deploy
an innovative mapping algorithm within the worker clusters to
identify and select the appropriate broker. This algorithm dynami-
cally recalculates the relationships between brokers and clusters
upon any changes to their configurations. Detailed explanations of
the mapping algorithm’s operations between worker clusters and
brokers will be provided in §4.2.

Figure 3 demonstrates the interaction between brokers andworker
clusters. For instance, when a pod in cluster 1 needs to access a
service in cluster 2, it first uses the mapping algorithm to identify
the corresponding broker based on the established relationship.
Following this, it synchronizes the cross-cluster communication
interfaces, and a tunnel is then established between the two clusters,
efficiently offloading the cross-cluster communication traffic.

4.2 Broker Cluster Mapping Algorithm
4.2.1 System Model. In X-ClusterLink framework, the set of bro-
kers is 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏 |𝐵 | }, with each broker 𝑏 ∈ 𝐵 having a data
synchronization capacity 𝐴(𝑏). Worker clusters are represented
by 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐 |𝐶 | }. Complete set of Virtual Private Clouds

(VPCs) is𝑉 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑉 | }. Each worker cluster 𝑐 ∈ 𝐶 contains
a subset of VPCs 𝑉 𝑐 , such that 𝑉 =

⋃
𝑐∈𝐶 𝑉 𝑐 . Tenants are repre-

sented by 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡 |𝑇 | }, with each tenant 𝑡 ∈ 𝑇 associated
with a subset of VPCs 𝑉 𝑡 , forming the complete set 𝑉 =

⋃
𝑡 ∈𝑇 𝑉 𝑡 .

The traffic demand for each VPC 𝑣 ∈ 𝑉 is denoted as 𝑓 (𝑣).

4.2.2 Problem Definition. We formally define the Broker Cluster
Mapping (BCM) problem with the following constraints: (1)Worker
Cluster Constraint: Each worker cluster is mapped to only one
broker. (2) Tenant Constraint: Each tenant can only be mapped to a
limited number of brokers to prevent a single tenant’s traffic from
affecting all brokers, thereby ensuring enhanced security [27].

We use a binary variable 𝑥𝑐𝑣 ∈ {0, 1} to denote whether a VPC
𝑣 ∈ 𝑉 is mapped to a worker cluster 𝑐 ∈ 𝐶 . Similarly, binary variable
𝑦𝑏𝑡 ∈ {0, 1} represents whether the broker 𝑏 ∈ 𝐵 is assigned to
the VPC belonging to the tenant 𝑡 ∈ 𝑇 . Additionally, 𝑧𝑏𝑐 ∈ {0, 1}
specifies whether the worker cluster 𝑐 ∈ 𝐶 is mapped to a broker
𝑏 ∈ 𝐵. The objective of Broker Cluster Mapping (BCM) is to achieve
the optimal load-balance among all brokers, and is mathematically
formulated as follows:

min 𝜆

𝑆.𝑡 .



∑︁
𝑏∈𝐵

𝑧𝑏𝑐 = 1, ∀𝑐 ∈ 𝐶∑︁
𝑐∈𝐶

𝑥𝑐𝑣 = 1, ∀𝑣 ∈ 𝑉∑︁
𝑐∈𝐶

𝑧𝑏𝑐 · 𝑥𝑐𝑣 ≤ 𝑦𝑏𝑡 , ∀𝑣 ∈ 𝑉 𝑡 , 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇∑︁
𝑐∈𝐶

∑︁
𝑣∈𝑉

𝑧𝑏𝑐 · 𝑥𝑐𝑣 · 𝑓 (𝑣) ≤ 𝜆𝐴(𝑏), ∀𝑏 ∈ 𝐵∑︁
𝑏∈𝐵

𝑦𝑏𝑡 ≤ 𝑘 ≤ |𝐵 |, ∀𝑡 ∈ 𝑇

𝑥𝑐𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 , 𝑐 ∈ 𝐶

𝑦𝑏𝑡 ∈ {0, 1}, ∀𝑡 ∈ 𝑇,𝑏 ∈ 𝐵

𝑧𝑏𝑐 ∈ {0, 1}, ∀𝑐 ∈ 𝐶,𝑏 ∈ 𝐵

(1)

4.2.3 Rounding-Based Mapping Algorithm. To address the chal-
lenges in Eq. (1), we introduce the Rounding-Based Broker Cluster
Mapping (RBCM) algorithm, outlined in Algorithm 1. The RBCM
algorithm has two main phases:

Phase 1: Linear Programming Relaxation (LP-BCM). We
first convert the BCM problem into a linear programming model,
allowing each VPC’s traffic to be fractionally split across multiple
brokers. By using a solver like CPLEX [11], we obtain fractional
solutions {𝑦𝑏𝑡 } and {𝑧𝑏𝑐 }, with the optimal value �̃�.

Phase 2: Randomized Rounding. We then convert these frac-
tional solutions into integers. For each tenant 𝑡 ∈ 𝑇 and broker
𝑏 ∈ 𝐵, 𝑦𝑏𝑡 is rounded to 1 with a probability equal to its fractional
value. After determining {𝑦𝑏𝑡 }, we assign each tenant flow 𝑓 a de-
fault broker. Each decision is made independently.

Finally, we set 𝑧𝑏𝑐 to 1 with a probability 𝑧𝑏𝑐∑
𝑏∈𝐵𝑐 𝑧

𝑏
𝑐

for each cluster
𝑐 ∈ 𝐶𝑣 associated with VPC 𝑣 . If a cluster 𝑐 is not linked to VPC 𝑣 ,
𝑧𝑏𝑐 is set to 0.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

X-ClusterLink: An Efficient Cross-Cluster Communication Framework in Multi-Kubernetes Clusters The Web Conference ’25, April, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 RBCM: Rounding-based Broker Cluster Mapping
Algorithm

1: Step 1: Solving the Relaxed BCM Problem
2: Construct a linear programming formulation of the problem in

Eq. (1)
3: Assign values to {𝑥𝑐𝑣 } according to the existing clusters
4: Obtain the optimal fractional solutions {𝑦𝑏𝑡 } and {𝑧𝑏𝑐 }
5: Step 2: Broker Cluster Selection for Each Worker Cluster
6: for Each tenant 𝑡 ∈ 𝑇 do
7: Define 𝐶𝑡 = {𝑐 |𝑦𝑏𝑡 = 1}
8: repeat
9: for Each broker 𝑏 ∈ 𝐵 do
10: Set 𝑦𝑏𝑡 = 1, with the probability of 𝑦𝑏𝑡
11: until |𝐶𝑡 | > 0
12: for each worker cluster 𝑐 ∈ 𝐶 do
13: Define 𝐵𝑐 = {𝑏 |𝑧𝑏𝑐 = 1, 𝑐 ∈ 𝐶}
14: for each 𝑏 ∈ 𝐵𝑐 do
15: Set 𝑧𝑏𝑐 = 1, with the probability of 𝑧𝑏𝑐∑

𝑏∈𝐵𝑐 𝑧
𝑏
𝑐

5 Worker Layer Design
5.1 Optimizing Forwarding through

Multi-Gateway Aggregation and eBPF/XDP
5.1.1 Enhancing Cluster Throughput with Multi-Gateway Aggre-
gation. To enhance traffic forwarding efficiency between clusters,
we employ Multi-Gateway Aggregation to increase cross-cluster
bandwidth. Traditional systems such as Submariner [33] typically
utilize a master-slave model, where only one gateway manages
traffic at any given time while others serve as backups. This model
results in suboptimal resource utilization and becomes inadequate
as traffic demands and cluster sizes increase.

We address the challenge of cross-cluster traffic exceeding the
capacity of a single network interface by implementing a highly
robust Multi-Gateway Aggregation using Open Virtual Network
(OVN) [25] and Equal-Cost Multi-Path (ECMP) [12] technologies.
Typically, nodes within a cluster are strategically located in a single
data center where intra-cluster bandwidth substantially exceeds
cross-cluster bandwidth. OVN creates a virtual overlay for central-
ized management [31], and ECMP facilitates the efficient hashing
and even distribution of packets across multiple active gateways,
preventing any one gateway from becoming a bottleneck. This
Multi-Gateway Aggregation operation significantly increases total
forwarding capacity and enhances the reliability of cross-cluster
communication, effectively handling high traffic demands and lead-
ing to a more resilient and highly scalable network infrastructure.
For specific ECMP implementations, see §5.2.

5.1.2 Leveraging eBPF/XDP for Efficient Packet Forwarding at Gate-
ways. To minimize packet latency in gateway pods, we employ
eBPF/XDP technology to enhance traffic forwarding. In a Kuber-
netes environment, each gateway pod utilizes the macvlan tech-
nique to connect its virtual network interface to the host node’s
physical interface. The eXpress Data Path (XDP) operates early in
packet processing, bypassing the kernel’s network stack to speed
up traffic forwarding between the node and the gateway pod. When

Figure 4: Illustration of Multi-Gateway Aggregation and
eBPF/XDP: Packets for cross-cluster are first optimized by Multi-
Gateway Aggregation, combining gateway bandwidth. Then, the
eBPF/XDP program bypasses the kernel and sends traffic directly
to the physical NIC.

cross-cluster traffic hits the node’s physical interface, the XDP pro-
gram quickly detects it and forwards it directly to the gateway,
which then routes it to the appropriate pod.

Each gateway pod has two network interface cards (NICs): one
for internal Kubernetes networks and another for external traf-
fic via the host’s physical interface. This setup ensures seamless
communication between internal and external networks. We also
enhance data forwarding by implementing eBPF programs at the
gateway’s socket layer. When an intra-cluster packet arrives, the
eBPF program performs source network address translation (SNAT)
and forwards the packet directly to the physical interface. For exter-
nal packets, it retrieves the mapping, performs destination network
address translation (DNAT), and sends the packet to the internal
network. Integrating eBPF and XDP programs with the NICs signif-
icantly boosts packet forwarding speed, reducing CPU usage and
enabling the gateway to handle high volumes of traffic efficiently.

5.1.3 Comprehensive Workflow for Optimizing Forwarding with
Multi-Gateway Aggregation and eBPF/XDP. Figure 4 illustrates the
traffic paths established through Multi-Gateway Aggregation and
eBPF/XDP acceleration. When a cluster encounters large-scale
cross-cluster traffic, since the bandwidth between nodes within
the cluster significantly exceeds each node’s cross-cluster band-
width, the traffic is immediately distributed to multiple gateways
for efficient cross-cluster forwarding. These gateways are strate-
gically deployed across various nodes within the cluster to fully
utilize the cross-cluster communication bandwidth.

In a gateway pod, when the net0 NIC, tasked with handling
internal Kubernetes network communications, receives traffic des-
ignated for cross-cluster forwarding, an eBPF (extended Berkeley
Packet Filter) program inspects the packet header. This program
captures the source and destination IP addresses and executes sev-
eral network functions, such as Network Address Translation (NAT).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

The Web Conference ’25, April, 2025, Sydney, Australia Anon. Submission Id: 352

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 5: Illustration of Failover by Bucket-Based Consistent
ECMP: When gateway1 fails, the OVN logic router reassign pod1,
originally bound to bucket1 on gateway1, to bucket3 on gateway2
by Bucket-Based Consistent ECMP. A fixed-length hash ring mini-
mizes global route updates, with each gateway assigned multiple
buckets that are evenly distributed on the ring to maintain load
balance among the gateways.

The packet is then quickly relayed to the outbound NIC, net1, with
XDP (Express Data Path) technology accelerating the forwarding
process from net1 to the physical NIC, eth0.

In summary, the deployment of multiple gateway pods signif-
icantly enhances the forwarding of cross-cluster traffic. By em-
ploying Multi-Gateway Aggregation and eBPF/XDP technologies,
we enable multiple gateway containers to operate concurrently.
This approach effectively harnesses the bandwidth of external net-
work interfaces across various nodes within the cluster, thereby
improving cross-cluster communication.

5.2 Failover by Bucket-Based Consistent ECMP
5.2.1 Gateway Failure Management by Bucket-Based Consistent
ECMP. To implement Multi-Gateway Aggregation (§5.1), we uti-
lize Equal-Cost Multi-Path (ECMP) technology [12], enabling si-
multaneous data forwarding across multiple gateways to enhance
throughout. However, in large-scale network environments, fail-
ures, particularly at gateways, are inevitable and can significantly
impact inter-cluster communication efficiency. Traditional ECMP,
which relies on random hashing, necessitates a complete system
reroute whenever gateways are added or removed. This process
requires updating gateway assignments and routing tables for each
pod, which can be disruptive and time-consuming. To address this
challenge, we adopt a Bucket-Based Consistent ECMP approach.

Initially, we establish a hash ring of fixed length. Subsequently,
we meticulously create multiple buckets for each gateway and hash
them onto this ring. When a pod requiring cross-cluster commu-
nication initiates a request, it is efficiently hashed onto the hash
ring, followed by a search for the first bucket clockwise on the ring.
Once the first bucket clockwise is found, the pod is directly routed
to the gateway corresponding to that bucket.

This algorithm’s effectiveness stems from the fixed length of the
hash ring, ensuring that each pod’s hash value remains unchanged.
Consequently, with our approach, adding or removing gateways

affects only the routing of pods proximal to the buckets linked
with the modified gateway. This localized change circumvents the
extensive global routing updates typically required by traditional
ECMP, reducing downtime. Furthermore, each gateway is assigned
multiple buckets, evenly distributed on the hash ring, ensuring a
load-balance distribution across gateways.

Additionally, we leverageOpenVirtual Network (OVN) to stream-
line the connections between pods and their respective gateways
through virtual routers. OVN’s role as a mediator in abstracting the
underlying physical network complexities is crucial for seamless
integration and efficient management of these connections. This
architecture ensures that modifications in the calculated ECMP
routing information have no detrimental impact on the pod routing
tables. Consequently, it supports seamless failover, significantly
enhancing system resilience by ensuring continuous service avail-
ability even during gateway changes.

5.2.2 Workflow for Failover through Bucket-Based Consistent ECMP.
In Figure 5, we illustrate how Bucket-Based Consistent ECMP sup-
ports failover during gateway failures. Initially, cluster1 employed
three gateway pods, configured via OVN logic router with Bucket-
Based Consistent ECMP routing. According to the Bucket-Based
Consistent algorithm, pod1 was linked to bucket1 and assigned to
gateway1, while pod2 and pod3, pod4 were respectively mapped
to gateway2 and gateway3. Upon detecting a failure in gateway1
via a Kubernetes probe, the Bucket-Based Consistent algorithm
recalculates the pod-bucket bindings, reassigning pod1 to gateway2
while maintaining other mappings to avoid unnecessary hash recal-
culations and global routing disruptions. Once gateway1 is restored,
the algorithm reverts pod1 to it, preserving the rest of the mappings.
This process effectively demonstrates that Bucket-Based Consis-
tent ECMP minimizes the impact of failures on global routing and
ensures balanced load distribution across gateways.

In summary, ourmulti-gateway pod architecture employs Bucket-
Based Consistent ECMP to strategically minimize the impact of
gateway changes. It achieves this by remapping only the pods asso-
ciated with the affected gateway, rather than the entire system. This
targeted approach not only drastically reduces the time required
for failover and recovery but also ensures even load distribution
by mapping multiple buckets to each gateway. Moreover, this strat-
egy facilitates the rapid scalability of gateways, thereby enhancing
cross-cluster communication.

6 Performance Evaluation
6.1 Performance Metrics and Benchmarks
6.1.1 Performance Metrics: We categorize the performance metrics
into three sets:

(1) To illustrate the high efficiency of X-ClusterLink in cross-
cluster communication, we adopt the following performance
metrics: (i) CPU utilization of gateways; (ii) maximum for-
warding load of gateways; (iii) round-trip time (RTT); (iv)
packet loss rate; (v) request per second; (vi) time per request.

(2) To evaluate the failover capability of X-ClusterLink dur-
ing abnormal events, we measure (i) recovery latency of
abnormal events.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

X-ClusterLink: An Efficient Cross-Cluster Communication Framework in Multi-Kubernetes Clusters The Web Conference ’25, April, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 6: Max. RTT vs. No.
Burst Flows

Figure 7: Packet Loss Rate
vs. No. Burst Flows

Figure 8: Request Per Sec-
ond vs. No. Request

Figure 9: Time Per Request
vs. No. Request

(3) To show the advantages of the X-ClusterLink during cluster
scaling, we adopt the following metrics in large-scale tests:
(i) cross-cluster information synchronizes latency; and (ii)
CPU load of brokers.

6.1.2 Benchmarks: In comprehensive testbed experiments, we eval-
uate the efficiency of X-ClusterLink with the designs of Multi-
GatewayAggregation and eBPF/XDP and assess the robustness of X-
ClusterLink with the designs of Bucket-Based Consistent ECMP and
broker cluster. We then compare the performance of X-ClusterLink
against that of other typical fabrics. The first fabric is Istio Service
Mesh [13], the most popular choice in service meshes. Istio provides
a robust way to manage microservices and their interactions and is
ideally suitable for use on Kubernetes clusters. The second fabric is
Skupper [32], a Layer-7 service facilitating multi-cluster intercon-
nection. Skupper enables secure communication across Kubernetes
clusters by establishing an ad-hoc virtual networking substrate.
The third fabric is Submariner [33], which allows direct network-
ing between pods and services in different Kubernetes clusters,
whether on-premises or in the cloud. Additionally, X-ClusterLink
functionality is demonstrated in two scenarios: single gateway pod
and multiple gateway pods.

6.1.3 System Implementation: We establish a testbed consisting of
10 servers, all running Ubuntu 18.04 with Linux kernel 5.4. These
servers are equipped with a 22-core Intel Xeon 6152 processor,
128GB of memory, and an Intel X710 10GbE NIC. We deploy 30
Kernel-based VMs (KVMs) [29] across 5 of these servers, with each
KVM node configured with 4 vCPUs and 6GB of memory. For the X-
ClusterLink architecture, we organize these 30 KVMs into 6 evenly
distributed Kubernetes worker clusters.

Figure 10: Max. Bandwidth
vs. Burst Flows (64B/packet)

Figure 11: Max. Bandwidth
vs. Burst Flows (640B/packet)

Connectivity between each KVM working node and its host
machine is seamlessly facilitated through a Linux bridge, allowing
all KVMs on different host machines to function cohesively as a
single Kubernetes cluster.

6.2 Efficiency Evaluation
6.2.1 Coping with Large Traffic: To test the system’s capacity to
handle large-scale traffic effectively, we initiate 103 − 104 burst
flow events, with traffic intensity ranging from 1Mbps to 1Gbps [2].
Source and destination clusters for each flow are selected randomly.
We strategically utilize multiple iperf client pods within these clus-
ters to generate burst flows, setting packet sizes to 64 Bytes to
rigorously test the forwarding performance of X-ClusterLink [22].
This setup allows for precise measurements of critical performance
metrics such as RTT and bandwidth.

Additionally, we configure eight pods within a single cluster to
offer HTTP services, which are aggregated and exposed through
a Kubernetes Service to enable load balancing. Using the Apache
Bench tool located in a separate cluster, we conduct a 30-second
concurrent access test to assess service responsiveness. This test
provides valuable data on Requests per Second (RPS) and Time
Per Request, showcasing the system’s performance under varying
levels of service access concurrency.

Figures 6-9 illustrate the performance of X-ClusterLink under
high-traffic conditions, focusing on maximum RTT, packet loss rate,
Requests Per Second (RPS), and Time Per Request (TPR).

Figure 6 illustrates that X-ClusterLink significantly lowers the
maximum Round-Trip Time (RTT) compared to other network fab-
rics. Specifically, under conditions of 1K burst traffic, it reduces the
maximum RTT by 71.7% relative to Submariner and by 68.7% rela-
tive to Skupper. Additionally, Figure 7 highlights X-ClusterLink’s
superior performance in reducing packet loss rates, achieving re-
ductions of 73.6% compared to Submariner and 79.0% compared to
Skupper in a multi-Kubernetes cluster cloud environment. These
results demonstrate X-ClusterLink’s efficiency in maintaining high-
quality network performance under substantial load conditions.

Figure 8 demonstrates that X-ClusterLink substantially outper-
forms other network fabrics in Requests Per Second (RPS), handling
up to 55.7%, 575.4%, and 638.9% more requests than Submariner,
Istio Service Mesh, and Skupper, respectively, under scenarios of
10K+ concurrent access requests. Concurrently, Figure 9 clearly
shows that X-ClusterLink significantly reduces Time Per Request
(TPR), achieving reductions of 35.8%, 85.1%, and 86.4% compared to
the same competitors. These remarkable enhancements in handling

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

The Web Conference ’25, April, 2025, Sydney, Australia Anon. Submission Id: 352

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 12: Recovery Latency
vs. Abnormal Events

Figure 13: Gateways CPU
Load in a Cluster vs. Time

HTTP requests and processing efficiency are largely attributed to
the highly effective use of Multi-Gateway Aggregation and bucket-
based ECMP, which optimally distributes burst traffic loads across
multiple gateways, thereby optimizing network throughput and
minimizing response times.

To accurately assess the performance enhancement provided
by Multi-Gateway Aggregation configurations, we conduct burst
traffic tests using iperf with packet sizes of 64 bytes and 640 bytes,
detailed in Figure 10 and Figure 11. For 64-byte packets, all tested
systems, including Submariner, Istio Service Mesh, Skupper, and
X-ClusterLink, show a bandwidth of approximately 200 Mbit/s,
with no significant edge for X-ClusterLink due to the iperf pod’s
generation limit. However, with 640-byte packets, X-ClusterLink’s
multi-gateway setup significantly outperforms, achieving up to
2130 Mbit/s by more effectively utilizing the combined bandwidths
of multiple nodes’ physical network interfaces, unlike the single-
gateway configurations which were constrained by the bandwidth
limits of individual network cards.

6.3 Robustness Evaluation
6.3.1 Coping with Abnormal Events: We evaluate the robustness
of X-ClusterLink in handling abnormal events such as gateway
failures, overloads, and expansions, focusing particularly on the
recovery time metric. X-ClusterLink employs Multi-Gateway with
Bucket-Based Consistent ECMP that facilitates rapid and efficient
failover in these scenarios.

Compared to X-ClusterLink, other network solutions have var-
ied recovery strategies for abnormal events. Submariner utilizes a
standby gateway node that activates upon the primary gateway’s
failure, providing a quicker but still conditional response. Istio Ser-
viceMesh, with only one gateway per cluster, faces delays as it waits
for the gateway to recover. Skupper’s recovery time is constrained
by the speed of its Layer 7 routers’ recovery processes.

Figures 12-13 demonstrate the capability of X-ClusterLink’s
Bucket-Based Consistent ECMP in managing abnormal events like
gateway failures and expansions. To assess recovery latency, we
transmit 2000 Ping probe packets per second across clusters through
the gateways experiencing disruptions. Recovery latency is gauged
by the number of probe packets lost during these events.

The results shown in Figure 12 reveal that X-ClusterLink sig-
nificantly reduces recovery latency compared to other network
architectures. Specifically, X-ClusterLink’s gateway failure recov-
ery latency is 706 milliseconds, approximately 1.89 times faster
than that of Istio Service Mesh and 2.77 times faster than Skupper.

Figure 14: Info Sync La-
tency vs. No. Service

Figure 15: Broker CPU
Load vs. No. Service

Figure 13 illustrates the load dynamics during a gateway failure
within an X-ClusterLink cluster configured with three gateways.
Initially, each gateway operates at around 45% CPU load. Following
the failure of gateway pod3 at 400ms, which stops forwarding
traffic, the system redirects the load to pod1 and pod2, resulting in
increased CPU utilization at these nodes. By 1200ms, pod3 restarts
successfully, and the load distribution among the three gateways
stabilizes back to normal levels.

6.3.2 Coping with Cluster Scaling: Based on the designs of the
X-ClusterLink framework, we implement a broker cluster by Ku-
bernetes and propose the Rounding-Based Broker Cluster Map-
ping (RBCM) algorithm, aimed at enhancing load balancing within
broker clusters and reducing latency in cross-cluster information
synchronization. This section outlines scalability tests conducted
to assess the efficiency of the Broker Layer.

We conduct a testbed to compare cross-cluster information syn-
chronization latency and agent overhead amongX-ClusterLink, Sub-
mariner, and Skupper. As depicted in Figures 14-15, X-ClusterLink
consistently demonstrates lower latency and overhead as the num-
ber of services increases. Notably, for 2×104 services, X-ClusterLink
achieves a service synchronization latency of 86 seconds, which
is 19.8% faster than Skupper (103 seconds) and 11.6% faster than
Submariner (96 seconds). Additionally, X-ClusterLink exhibits a
33.5% reduction in synchronization overhead compared to Skupper
and a 12.4% reduction compared to Submariner.

X-ClusterLink leverages its broker cluster and the RBCM algo-
rithm to efficiently map worker clusters to different brokers, thus
enhancing information synchronization. This strategy minimizes
latency and overhead associated with agent updates and synchro-
nization, effectively optimizing cross-cluster information exchange
during cluster expansion.

7 Conclusion
This paper introduces X-ClusterLink, a framework designed to
efficiently enhance communication across multi-Kubernetes clus-
ters. X-ClusterLink optimizes cross-cluster communication using
Multi-Gateway Aggregation, eBPF/XDP, and the broker cluster to
manage burst traffic efficiently. Additionally, it integrates Bucket-
Based Consistent ECMP to handle network anomalies robustly. Our
comprehensive testbed experiments and simulations demonstrate
significant improvements in latency and throughput, affirming X-
ClusterLink as a superior solution for application virtualization and
cross-cluster communication.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

X-ClusterLink: An Efficient Cross-Cluster Communication Framework in Multi-Kubernetes Clusters The Web Conference ’25, April, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Daniel Bachar. 2023. Optimizing Service Selection and Load Balancing in Multi-

Cluster Microservice Systems. Master’s thesis. Reichman University (Israel).
[2] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network traf-

fic characteristics of data centers in the wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (Melbourne, Australia) (IMC
’10). Association for Computing Machinery, New York, NY, USA, 267–280.
https://doi.org/10.1145/1879141.1879175

[3] Eric A. Brewer. 2015. Kubernetes and the path to cloud native. In Proceedings of
the Sixth ACM Symposium on Cloud Computing (Kohala Coast, Hawaii) (SoCC
’15). Association for Computing Machinery, New York, NY, USA, 167. https:
//doi.org/10.1145/2806777.2809955

[4] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes: Lessons learned from three container-
management systems over a decade. Queue 14, 1 (jan 2016), 70–93. https:
//doi.org/10.1145/2898442.2898444

[5] Qixiang Cheng, Meisam Bahadori, Madeleine Glick, Sébastien Rumley, and Keren
Bergman. 2018. Recent advances in optical technologies for data centers: a review.
Optica 5, 11 (2018), 1354–1370.

[6] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani, Rob
Sherwood, Ying Zhang, and Hongyi Zeng. 2018. FBOSS: building switch software
at scale. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (Budapest, Hungary) (SIGCOMM ’18). Association for
Computing Machinery, New York, NY, USA, 342–356. https://doi.org/10.1145/
3230543.3230546

[7] Yehia Elkhatib and Jose Povedano Poyato. 2023. An Evaluation of Service Mesh
Frameworks for Edge Systems. In Proceedings of the 6th International Workshop on
Edge Systems, Analytics and Networking (Rome, Italy) (EdgeSys ’23). Association
for Computing Machinery, New York, NY, USA, 19–24. https://doi.org/10.1145/
3578354.3592867

[8] Baasanjargal Erdenebat, Bayarjargal Bud, and Tamás Kozsik. 2023. Challenges
in service discovery for microservices deployed in a Kubernetes cluster–a case
study. Infocommunications Journal 15, SI (2023), 69–75.

[9] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. 2015. Network
function virtualization: Challenges and opportunities for innovations. IEEE
communications magazine 53, 2 (2015), 90–97.

[10] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress data
path: fast programmable packet processing in the operating system kernel. In Pro-
ceedings of the 14th International Conference on Emerging Networking EXperiments
and Technologies (Heraklion, Greece) (CoNEXT ’18). Association for Computing
Machinery, New York, NY, USA, 54–66. https://doi.org/10.1145/3281411.3281443

[11] Kenneth Holmström, Anders O Göran, and Marcus M Edvall. 2009. User’s Guide
for TOMLAB/CPLEX v12. 1. Tomlab Optim. Retrieved 1 (2009), 2017.

[12] C. Hopps. 2000. RFC2992: Analysis of an Equal-Cost Multi-Path Algorithm. Tech-
nical Report. RFC Editor, USA.

[13] Istio. 2017. Istio. https://istio.io/
[14] Nodir Kodirov, Sam Bayless, Fabian Ruffy, Ivan Beschastnikh, Holger H. Hoos,

and Alan J. Hu. 2018. VNF chain allocation and management at data center
scale. In Proceedings of the 2018 Symposium on Architectures for Networking
and Communications Systems (Ithaca, New York) (ANCS ’18). Association for
Computing Machinery, New York, NY, USA, 125–140. https://doi.org/10.1145/
3230718.3230724

[15] kubefed. 2022. kubefed. https://github.com/kubernetes-retired/kubefed
[16] Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin Li, Jufeng Chen, Jingyu

Yang, Chunli Zong, Aiyun Chen, Qinghua Wu, Chen Sun, Gareth Tyson, and
Hongqiang Harry Liu. 2022. LiveNet: a low-latency video transport network for
large-scale live streaming. In Proceedings of the ACM SIGCOMM 2022 Conference
(Amsterdam, Netherlands) (SIGCOMM ’22). Association for Computing Machin-
ery, New York, NY, USA, 812–825. https://doi.org/10.1145/3544216.3544236

[17] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang.
2023. Lyra: Elastic Scheduling for Deep Learning Clusters. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys ’23).
Association for Computing Machinery, New York, NY, USA, 835–850. https:
//doi.org/10.1145/3552326.3587445

[18] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han. 2019. Service Mesh: Challenges,
State of the Art, and Future Research Opportunities. In 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE). IEEE Computer Soci-
ety, Los Alamitos, CA, USA, 122–1225. https://doi.org/10.1109/SOSE.2019.00026

[19] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright. 2014. RFC 7348: Virtual eXtensible Local Area Network (VXLAN):
A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks.
Technical Report. RFC Editor, USA.

[20] Ethel Mokotoff. 2001. Parallel machine scheduling problems: A survey. Asia-
Pacific Journal of Operational Research 18, 2 (2001), 193.

[21] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phillip Porras, Vinod Yegneswaran,
and Seungwon Shin. 2020. BASTION: a security enforcement network stack
for container networks. In Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC’20). USENIX Association, USA, Article
6, 15 pages.

[22] Yipei Niu, Panpan Jin, Jian Guo, Yikai Xiao, Rong Shi, Fangming Liu, Chen Qian,
and Yang Wang. 2021. Postman: Rapidly mitigating bursty traffic via on-demand
offloading of packet processing. IEEE Transactions on Parallel and Distributed
Systems 33, 2 (2021), 374–387.

[23] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. 2018.
Stateless datacenter load-balancing with beamer. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI’18). USENIX Association, USA, 125–139.

[24] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and Wei Lin.
2021. DL2: A Deep Learning-Driven Scheduler for Deep Learning Clusters.
IEEE Transactions on Parallel and Distributed Systems 32, 8 (2021), 1947–1960.
https://doi.org/10.1109/TPDS.2021.3052895

[25] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith
Amidon, and Martín Casado. 2015. The design and implementation of open
vSwitch. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (Oakland, CA) (NSDI’15). USENIX Association, USA,
117–130.

[26] Rahul Potharaju and Navendu Jain. 2013. Demystifying the dark side of the
middle: a field study of middlebox failures in datacenters. In Proceedings of the
2013 Conference on Internet Measurement Conference (Barcelona, Spain) (IMC
’13). Association for Computing Machinery, New York, NY, USA, 9–22. https:
//doi.org/10.1145/2504730.2504737

[27] Konstantinos Poularakis, Qiaofeng Qin, LiangMa, Sastry Kompella, Kin K. Leung,
and Leandros Tassiulas. 2019. Learning the Optimal Synchronization Rates in
Distributed SDN Control Architectures. In IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications. IEEE Press, Paris, France, 1099–1107. https:
//doi.org/10.1109/INFOCOM.2019.8737388

[28] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng
Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai, and Dennis Cai.
2024. Alibaba HPN: A Data Center Network for Large Language Model Training.
In Proceedings of the ACM SIGCOMM 2024 Conference (Sydney, NSW, Australia)
(ACM SIGCOMM ’24). Association for Computing Machinery, New York, NY,
USA, 691–706. https://doi.org/10.1145/3651890.3672265

[29] Avi Qumranet, Yaniv Qumranet, Dor Qumranet, Uri Qumranet, and Anthony
Liguori. 2007. KVM: The Linux virtual machine monitor. Proceedings Linux
Symposium 15 (01 2007).

[30] Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo.
2020. Observing and Mitigating Micro-Burst Traffic in Data Center Networks.
IEEE/ACM Transactions on Networking 28, 1 (Feb 2020), 98–111. https://doi.org/
10.1109/tnet.2019.2953793

[31] Hua Shao, Xiaoliang Wang, Yuanwei Lu, Yanbo Yu, Shengli Zheng, and Youjian
Zhao. 2021. Accessing Cloud with Disaggregated Software-Defined Router. In
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, Virtual, 1–14.

[32] Skupper. 2020. Skupper. https://skupper.io/
[33] Submariner. 2019. Submariner. https://submariner.io/
[34] Kfir Toledo, Pravein Govindan Kannan, Michal Malka, Etai Lev-Ran, Katherine

Barabash, and Vita Bortnikov. 2023. ClusterLink: A Multi-Cluster Application
Interconnect. In Proceedings of the 16th ACM International Conference on Systems
and Storage (Haifa, Israel) (SYSTOR ’23). Association for Computing Machinery,
New York, NY, USA, 138. https://doi.org/10.1145/3579370.3594747

[35] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(Bordeaux, France) (EuroSys ’15). Association for Computing Machinery, New
York, NY, USA, Article 18, 17 pages. https://doi.org/10.1145/2741948.2741964

[36] Jingzhou Wang, Gongming Zhao, Hongli Xu, Yutong Zhai, Qianyu Zhang, He
Huang, and Yongqiang Yang. 2022. A Robust Service Mapping Scheme for Multi-
Tenant Clouds. IEEE/ACM Transactions on Networking 30, 3 (Jun 2022), 1146–1161.
https://doi.org/10.1109/tnet.2021.3133293

[37] ŁukaszWojciechowski, Krzysztof Opasiak, Jakub Latusek, Maciej Wereski, Victor
Morales, Taewan Kim, and Moonki Hong. 2021. NetMARKS: Network Metrics-
AwaRe Kubernetes Scheduler Powered by Service Mesh. In IEEE INFOCOM 2021
- IEEE Conference on Computer Communications. IEEE Press, Vancouver, BC,
Canada, 1–9. https://doi.org/10.1109/INFOCOM42981.2021.9488670

[38] Qianyu Zhang, Gongming Zhao, Hongli Xu, Zhuolong Yu, Liguang Xie, Yang-
ming Zhao, Chunming Qiao, Ying Xiong, and Liusheng Huang. 2022. Zeta: A
Scalable and Robust East-West Communication Framework in Large-Scale Clouds.
In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22). USENIX Association, Renton, WA, 1231–1248.

9

https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/3230543.3230546
https://doi.org/10.1145/3230543.3230546
https://doi.org/10.1145/3578354.3592867
https://doi.org/10.1145/3578354.3592867
https://doi.org/10.1145/3281411.3281443
https://istio.io/
https://doi.org/10.1145/3230718.3230724
https://doi.org/10.1145/3230718.3230724
https://github.com/kubernetes-retired/kubefed
https://doi.org/10.1145/3544216.3544236
https://doi.org/10.1145/3552326.3587445
https://doi.org/10.1145/3552326.3587445
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/TPDS.2021.3052895
https://doi.org/10.1145/2504730.2504737
https://doi.org/10.1145/2504730.2504737
https://doi.org/10.1109/INFOCOM.2019.8737388
https://doi.org/10.1109/INFOCOM.2019.8737388
https://doi.org/10.1145/3651890.3672265
https://doi.org/10.1109/tnet.2019.2953793
https://doi.org/10.1109/tnet.2019.2953793
https://skupper.io/
https://submariner.io/
https://doi.org/10.1145/3579370.3594747
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1109/tnet.2021.3133293
https://doi.org/10.1109/INFOCOM42981.2021.9488670

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

The Web Conference ’25, April, 2025, Sydney, Australia Anon. Submission Id: 352

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Performance Analysis of Broker Cluster
Mapping Algorithm

Theorem 1: The BCM problem is NP-hard.
Proof: Consider a simplified version of the BCG problem without

the Tenant Constraint. This simplification reduces the BCG problem
to a Parallel Machine Scheduling (PMS) problem[20], known as
NP-hard. Thus, the BCG problem is also NP-hard. Due to the space
limit, we omit the detailed proof here.

This section provides an approximate analysis of the tenant
constraint ratio and load balancing performance. We first introduce
two well-known probability theory lemmas:

Lemma 2 (Chernoff Bound): Given𝑛 independent variables:𝑥1, 𝑥2, . . . , 𝑥𝑛 ,
where 𝑥𝑖 ∈ [0, 1]. Let 𝜇 = E[∑𝑛

𝑖=1 𝑥𝑖]. Then,

Pr

[
𝑛∑︁
𝑖=1

𝑥𝑖 ≥ (1 + 𝜖)𝜇
]
≤ 𝑒−

𝜖2𝜇
2+𝜖 , (2)

where 𝜖 is an arbitrarily positive value.
Lemma 3 (Union Bound): Given a countable set of 𝑛 events

𝐴1, 𝐴2, . . . , 𝐴𝑛 , each event𝐴𝑖 happens with possibility Pr(𝐴𝑖). Then,

Pr

[
𝑛⋃
𝑖=1

𝐴𝑖

]
≤

𝑛∑︁
𝑖=1

Pr(𝐴𝑖) . (3)

Analysis of the worker Cluster Constraint: The expected
number of worker clusters assigned to the flow 𝑓 is:

E

[∑︁
𝑐∈C

𝑧𝑏𝑐

]
=
∑︁
𝑐∈C
E[𝑧𝑏𝑐] =

∑︁
𝑐∈C

Pr[𝑧𝑏𝑐 = 1]

=
∑︁
𝑐∈C𝑣

Pr[𝑧𝑏𝑐 = 1] +
∑︁

𝑐∈C\C𝑣
Pr[𝑧𝑏𝑐 = 1]

= 1 + 0 = 1

(4)

where the last equation holds according to the second step of
RBCM, which selects a default cluster from 𝐶𝑣 for flow 𝑓 ∈ 𝐹 with
the probability of 𝑧𝑏𝑐

�̃�𝑐𝑣
, thus, the RBCM algorithm will assign only

one worker cluster to each flow, ensuring compliance with the flow
constraint.

Analysis of the Tenant Constraint: The first step of RBCM
will yield the fractional solution 𝑦𝑏𝑡 of the relaxed BCM problem.
Using randomized rounding, 𝑦𝑏𝑡 is set to 1 with the probability of
𝑦𝑏𝑡 .

Thus, the expected number of worker clusters allocated to the
VPC 𝑣 is given by:

E

[∑︁
𝑐∈C

𝑦𝑏𝑡

]
=
∑︁
𝑐∈C

𝑦𝑏𝑡 ≤ 𝑘 (5)

Theorem 4: With the rounding-based mapping algorithm, the
number of brokers assigned to the tenant 𝑡 will not exceed 𝑘 by a
factor of 3 ln𝑑 + 3 with high probability, where 𝑑 represents the
number of VPCs.

Proof : For each 𝑣𝑐 , 𝑦𝑏𝑡 ∈ {0, 1} are independent variables with an
expected value E

[∑
𝑐∈C 𝑦

𝑏
𝑡

]
≤ 𝑘 . According to Lemma 2, we have:

Pr

[∑︁
𝑐∈C

𝑣𝑐 ≥ (1 + 𝜖)𝑘
]
≤ 𝑒−

𝜖2𝑘
2+𝜖 (6)

We assume that

𝑒−
𝜖2𝑘
2+𝜖 ≤ 1

𝑑3
, 𝑑 = |𝑇 | (7)

which implies that the probability bound in Eq. 4 rapidly ap-
proaches zero as the number of VPCs 𝑑 increases. To satisfy this, 𝜖
should be:

𝜖 ≥ 3 ln𝑑 +
√︁
9 ln2 𝑑 + 24𝑘 ln𝑑
2𝑘

(8)

If we select 𝜖 = 3 ln𝑑
𝑘

+ 2, the above inequality holds. In other
words, we have:

Pr

[∑︁
𝑐∈C

𝑦𝑏𝑡 ≥ (1 + 𝜖)𝑘
]
≤ 1

𝑑3
, 𝜖 =

3 ln𝑑
𝑘

+ 2 (9)

Finally, we ensure the upper bound on the probability the number
of worker clusters assigned to a VPC is violated by Lemma 3:

Pr

[⋃
𝑣∈𝑉

∑︁
𝑐∈C

𝑦𝑏𝑡 ≥ (1 + 𝜖)𝑘
]

≤
∑︁
𝑣∈𝑉

Pr

[∑︁
𝑐∈C

𝑦𝑏𝑡 ≥ (1 + 𝜖)𝑘
]

≤ 𝑑 · 1
𝑑3

=
1
𝑑2

, 𝜖 =
3 ln𝑑
𝑘

+ 2

(10)

Therefore, the number of brokers assigned to tenant 𝑡 will not
exceed 𝑘 by a factor of 1 + 𝜖 = 3 ln𝑑

𝑘
+ 3 with high probability.

Load Balancing Performance Analysis: We calculate the ex-
pected forwarding load of worker clusters and bound the probability
that the load will be violated. First, we define 𝑙𝑐

𝑓
as the forwarding

load of the cluster 𝑐 ∈ 𝐶 assigned to flow 𝑓 ∈ 𝐹 :

𝑙𝑐
𝑓
=

{
𝑡 (𝑓), with the probability of 𝑧𝑏𝑐

�̃�𝑐𝑣

0, otherwise
(11)

The expected forwarding load of the cluster 𝑐 is:

E


∑︁
𝑓 ∈𝐹𝑟

𝑙𝑐
𝑓

 =
∑︁
𝑓 ∈𝐹𝑟

E[𝑙𝑐
𝑓
] =

∑︁
𝑓 ∈𝐹𝑟

𝑡 (𝑓) · 𝑧𝑐
𝑓
≤ 𝜆 · 𝐴(𝑏) (12)

To understand the relationship between load variables and the
optimal result, we define:

𝛽 =
𝜆 · 𝐴(𝑏)

max𝑓 ∈𝐹𝑟 𝑡 (𝑓)
(13)

Theorem 5: The rounding-based mapping algorithm achieves a
load balancing factor at most 3 ln𝑑

𝛽
+3 times worse than the optimal

result with high probability. Due to the space limit, we omit the
detailed proof here.

10

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Multi-Kubernetes Clusters Communication
	2.2 Limitations of Prior Works

	3 System Design
	3.1 Design Goals
	3.2 System Overview

	4 Broker Layer Design
	4.1 Handling Burst Traffic by Broker Cluster
	4.2 Broker Cluster Mapping Algorithm

	5 Worker Layer Design
	5.1 Optimizing Forwarding through Multi-Gateway Aggregation and eBPF/XDP
	5.2 Failover by Bucket-Based Consistent ECMP

	6 Performance Evaluation
	6.1 Performance Metrics and Benchmarks
	6.2 Efficiency Evaluation
	6.3 Robustness Evaluation

	7 Conclusion
	References
	A Performance Analysis of Broker Cluster Mapping Algorithm

