Under review as a conference paper at ICLR 2026

IMPROVED ¢, REGRESSION VIA ITERATIVELY
REWEIGHTED LEAST SQUARES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce fast algorithms for solving £, regression problems using the iteratively
reweighted least squares (IRLS) method. Our approach achieves state-of-the-art
iteration complexity, outperforming the IRLS algorithm by Adil-Peng-Sachdeva
(NeurIPS 2019) and matching the theoretical bounds established by the complex
algorithm of Adil-Kyng-Peng-Sachdeva (SODA 2019, J. ACM 2024) via a simpler
lightweight iterative scheme. This bridges the existing gap between theoretical and
practical algorithms for £, regression. Our algorithms depart from prior approaches,
using a primal-dual framework, in which the update rule can be naturally derived
from an invariant maintained for the dual objective. Empirically, we show that
our algorithms significantly outperform both the IRLS algorithm by Adil-Peng-
Sachdeva and MATLAB/CVX implementations.

1 INTRODUCTION

In this paper, we study the £, regression problem defined as follows. The input to the problem is a
matrix A € R a vector b € R? that lies in the column span of A, and an accuracy parameter €.
The goal is to approximately solve the problem min,egn . az=s |||, i.€., find a solution x € R™
such that Az = b and ||z||, < (1 + ¢)||z*||p, where =* is an optimal solution to the problem, and
[[[|, denotes the £, norm. Solving £, regression for all values of p is a fundamental problem in
machine learning with numerous applications and has been studied in a long line of research beyond
the classical least squares regression with p = 2. L,,-norm regression problems with general p arise
in several areas, including supervised learning, graph clustering, and wireless networks. Examples of
applications include £,-norm based algorithms in semi-supervised learning (Alaoui, [2016; [Liu and
Gleich, [2020), k-clustering with £,-norm (Huang and Vishnoi, [2020), robust regression and robust
clustering (Meng and Mahoneyl 2013} /Huang et al., 2023)).

For this general class of convex optimization problems, designing provably fast iterative algorithms
to obtain high accuracy solutions with empirical efficiency is an important question. General convex
programming methods such as interior point methods are usually slow in practice. In theory, Bubeck
et al.| (2018) show that algorithms based on interior point methods cannot improve beyond O(+/n)
iteration for any p ¢ {1, 2, co}. Breaking this barrier and finding iterative algorithms that are faster
than interior point methods both in theory and practice is the goal of this line of work.

Recent developments have led to new algorithmic approaches such as a homotopy method (Bubeck
et al., [2018), and an iterative refinement approach (Adil et al., 2019agb; [2024)) for ¢, regression
with p € {1, c0}. We highlight the notable works by |Adil et al.|(2019a3b; 2024)). On the one hand,
the algorithm with the best known theoretical runtime is given by |Adil et al.| (2019a; 2024) with

—2
O(pzn 352 log (%)) callto a linear system solver. This algorithm, however, relies on complex
subroutines and includes theoretical choices for several hyperparameters. In practice, to obtain an

"For simplicity in the introduction, we assume that d = ©(n). In the regime when n >> d, the IPM iteration
complexity improves to O(+v/d).
=15 =1l="17
€
[+ 115 = ll= 117

el o IE) = O(p2n312’%22 log (2)) for finding Z such that || Z]|, <

(1 + €) ming. ap=p |||, for 2 initialized to ming. az=s [|z|,-

2 o . 22 e T I ; P
The original result is O (pn 322 log ()) for finding such that]} < ming.az=s [z}, +

p—2
e. This translates to O (pn -2 log (

Under review as a conference paper at ICLR 2026

efficient implementation, hyperparameters require tuning. Due to these reasons, this theoretical
algorithm by |Adil et al.|(2019a;|2024) does not provide a practical implementation. On the other hand,
an algorithm known as p-IRLS by|Adil et al.| (2019b)) has been shown to have significant speed up over
standard solvers such as CVX. This algorithm is implemented based on an Iteratively Reweighted
Least Squares (IRLS) method, which is a general iterative framework for solving regression problems.
The key element of an IRLS method is solving a weighted least squares regression problem in each
iteration. This is equivalent to solving a linear system of the form min,ecgrn. 4x=p 2! Rx, where R is
a diagonal matrix, which can be computed very efficiently in practice with the advance of numerical
solvers. IRLS algorithms are favored in practice (Burrus, [2012), but designing IRLS algorithms with
strong convergence guarantees is challenging. In particular, to obtain the efficiency, the algorithm by

Adil et al.|(2019b) sacrifices the theoretical guarantee, requiring O(psnﬁﬂ;*22 log (2)) linear system
solves. This brings forth the question:

Can we design an algorithm that retains the empirical efficiency of an IRLS approach while
achieving the state-of-the-art theoretical runtime?

In this work, we give a positive answer to this question. We provide a new algorithmic framework for
¢, regression based on an IRLS approach for all values of p € (1, c0). We propose an algorithm that

p—2
uses O (p?n-2 log (2)) linear system solves, matching the state-of- the art theoretical algorithm

by |Adil et al, (2019a), and improving upon the guarantee of O (p*n¥-2 % log (2)) for the p-IRLS
algorithm by|Adil et al.|(2019b)). We experimentally compare our algorithm with the p-IRLS algorithm
(Adil et al., 2019b) and CVX solvers, and we observe significant improvements in all instances.

1.1 OUR CONTRIBUTIONS

For the simplicity of the exposition, we study the £, regression problem in both low and high precision
regimes for p > 2.

Remark 1.1. In Appendix we show a simple reduction for the more general problem
ming. gq—p [[N& — v||, to the form min_, ;. _; ||z, with the dependence of the runtime on the
number of rows of NV instead of the dimension of 2. We also show in Appendix [C|a reduction for the
case 1 < p < 2tothe case p > 2.

In the low precision regime when the runtime dependence on € is poly (%), we have the following
theorem.

Theorem 1.1. For any p > 2, there is an iterative algorithm for the {, regression problem
milgern: az=b |||, that solves O (loglogn +log (1/€)) subproblems, each of which makes

3p2_
O(((%)zpp:;’ I n%(%)%)]ﬂg(l
epP—

)) calls to solve a linear system of the form
2

ADAT ¢ = b, where D is an arbitrary non-negative diagonal matrix.

Remark 1.2. When p = oo, each subproblem makes O(+ ﬁ log(%)) calls to a linear system
solver.

Prior approaches for solving £, regression problem in the low precision regime commonly use the

Taylor expansion of ||z||?, which then allows for deriving and bounding the updates. In contrast

to this, our algorithm relies on a primal-dual approach using the dual formulation of the squared

objective ming. ae—p [|2[|3 = ming. az—s [|2?[|,/2 = max, % where /, is the dual norm of £,/
q

and £(r) = ming. a,—p(r, %). The term &(r) is often referred to as the energy. The high level idea
of our approach is as follows. Starting with an initial solution r for the dual problem, we will increase
the coordinates of r as much as possible so that the increase in the energy £(r) relative to the increase
of |||, is also sufficiently large, until we can obtain a (1 — €) optimal dual solution and whereby
recover an approximately optimal primal solution. This template is close to the approach for ¢,
regression by |[Ene and Vladu| (2019). However, £,, regression does not have the readily decomposable
structure along the coordinates as ., regression and novel technique is required in the design of
the algorithm. Our approach is also a reminiscence of the width-independent multiplicative weights
update method for solving mixed packing covering linear program, where in each step the algorithm
updates the coordinates the maximize the bang-for-buck ratio (Quanrud, 2020). In contrast to MWU,
we do not use a mirror map or regularize £, norms to make them smooth as in standard approaches.

Under review as a conference paper at ICLR 2026

Our scheme allows our method to take much longer steps, where in each step, the coordinates of the
dual solution are allowed to change by large polynomial factors and thereby achieve faster running
time.

To obtain faster algorithms in the high accuracy regime with a logarithmic dependence on the accuracy,
we adapt the iterative refinement approach of |Adil et al.|(2019a) and obtain improved running times.

Theorem 1.2. For any p > 2, there is an iterative algorithm for the {, regression problem
milgepn: Az=b ||2||p that solves O (p2 log n log (%)) subproblems, each of which makes O(n%)
calls to solve a linear system of the form ADA" ¢ = z, where D is an arbitrary non-negative

diagonal matrix, A is a matrix obtained from A by appending a single row, and z is a vector obtained
from the all-zero vector by appending a single non-zero coordinate.

Using the iterative refinement template by (Adil et al.,[2019azbj 2024), we instead use an IRLS solver
for the residual problems with improved runtime. The residual solver solves a mixed £, + {5 problem
in the form ming. a,—p Hx||12) + <9, x2>, only to a constant approximation. Here the challenge lies
in the fact that the /5 term makes the dual problem no longer scale-free and thus our low precision
solver is not immediately usable. However, by an appropriate initialization of the dual solution and

—2
careful adjustments to the step size, our algorithm achieves the desired O(n 32*2) bound. Since
regularized ¢, 4+ {5 regression problems arise in many applications in machine learning and beyond,
our algorithm for the mixed ¢, + ¢2 objective is of independent interest.

Finally, we experimentally evaluate our high-precision algorithm. Our algorithm significantly
outperforms the p-IRLS algorithm (Adil et al., 2019a) both in the number of linear system solves as
well as the overall running time. Our algorithm is significantly faster than CVX solvers and is able to
run on large instances, which is not possible for CVX solvers within a time constraint.

1.2 RELATED WORK

¢, regression problems have received significant attention. Here we summarize the results that are
closest to our work. The surveyed algorithms are iterative algorithms where the running time of each
iteration is dominated by a single linear system solve.

Algorithms based on interior point methods use O (y/n) iterations for any p € [1, 00] (Nesterov
and Nemirovskii, (1994), which was improved to O (\/8) iterations for p € {1,00} (Lee and
Sidford, 2014). Bubeck-Cohen-Lee-Li (Bubeck et al.l 2018)) show that this iteration bound is
generally necessary for interior point methods and propose a homotopy-based algorithm that uses
O(poly(i) - nlt/2=1/7l) jterations for any p ¢ {1, oo} Adil et al.| (2019a; [2024) introduced

an iterative refinement framework that uses O(= log(2)) iterations for any p > 2. Using
Lewis weight sampling, Jambulapati- L1u SldfOI‘d (Jambulapatl et al.l [2022) improve the method

by |Adil et al.|(2019a}; |2024) to O (pp - d2 polylog(;)), for overconstrained regression problems
min,ega [|[Az — b|, where A € R™*4 and n is much larger than d (the iteration complexity of
the prior algorithms will still depend on the larger dimension n in this case). Bullins| (2018) gives
a faster algorithm for minimizing structured convex quartics, which implies an algorithm for /4
regression with O(né) iterations. Building on the work of |Christiano et al.| (2011)); (Chin et al.

(2013)) for maximum flows and regression, [Ene and Vladu| (2019)) give an algorithm for ¢; and /.,

. . 1/3100(1
regression using O(%/g;/e) + 106%) iterations. This work also uses a primal-dual framework

but the algorithm and analysis are specific to the special structure of the ¢; and ¢/, norm and work
only in the low precision regime with poly(%) convergence.

2 OUR ALGORITHM WITH poly (£) CONVERGENCE

In this section, we present our algorithm with guarantee provided in Theorem

Before describing the algorithm, we first introduce some basic notations. For a constant a € R, we
abuse the notation and use a € R™ to denote the vector with all entries equal to a (the dimension will
be clear from context). When it is clear from the context, we apply scalar operations to vectors with

Under review as a conference paper at ICLR 2026

Algorithm 1 ¢5,-minimization(A, b, €)

Input: Matrix A € R4*™, vector b € R¢, accuracy e

Output: Vector z such that Az = band [|z||,, < (1 + €) ming. az=s [|7([5,

Initialize 2(*)
TR0 _

L = max {z (146 < ”1|1|2} U=min{i:(1+e)"> ||x(0)||2}

while L < U:
P=[MU M= (1+¢"
if SubSolver(A, b, e, M) is infeasible then
L=P+1
else
Let 2(*T1) be the output of SubSolver(A, b, e, M)
U=P;t+—t+1
end if
end while
return z(*)

= minx:szb ||17||2

Algorithm 2 SubSolver(A, b, e, M)

Input: Matrix A € R4*™, vector b € RY, accuracy e, target value M
Output: Vector x such that Az = b and |[z||,, < (1+ €)M,

or approximate infeasibility certificate r, |||, = 1.
t=0,r" =~ ¢ =0,5" =0
while || (r®@) [< ¢
) = arg ming. gp—p (1), 2?)
af|lrlld=t)t 2
A0 = { bt > (1 oM

M2pd=? g , for all ¢
1 otherwise

if v() =1 then return z(*) end if > Case 1
1
al®) = (y®) T p+D) =y . (0

if o < (%)ﬁ then s('+1) = s() 4 (. ¢ = ¢/ + 1 end if

it/ > 0and ||s()/t'|| < (1+ €)M then return s*') /¢’ end if > Case 2
2p
t=t+1
end while
return 7(*) > Case 3

the interpretation that they are applied coordinate-wise. For p > 1, we let g be such that % + % =1
and {, is the dual norm of the £, norm.

2.1 OUR ALGORITHM

For ease of notation, it is convenient to consider the following equivalent formulation of the problem:
For p > 1, we solve ming. 4, ||x||§p = ming. Az ||:1:2Hp to (1 + €) multiplicative error. We
provide our algorithm in Algorithms[T]and[2] We give an overview of our approach and explain the
intuition in the following section.

2.2 OVERVIEW OF OUR APPROACH

Our algorithm is based on a primal-dual approach, starting with the following dual formulation of the
problem. Using ¢ as the dual norm of p and by duality, we write

max (r,z®) max min (r,z?) = max@

min ||z|,, = min [|2?| = min :)
z:Az=b p r:Az=b p z:Az=br:|r||,<1 r20:|r]], <1 z:Az=b r>0 HT”q

Under review as a conference paper at ICLR 2026

where we defined £(r) := min,. a,—(r, 2?). The main part of our algorithm is the subroutine
shown in Algorithm 2 which takes as input a guess M for the optimum value [z*||,,,. To find an

(1 4 €) approximation of the optimum value, the main Algorithm || performs a binary search as
follows. Since (%) is initialized to min,. o, ||7||,, We can show that [|z* ||, is contained in the

2(© ,
range {|;2|1|27 Hx(o) HQ} . The algorithm performs binary search over the indices 4 such that (1 + ¢)*
n P

is in that range. Note that the main algorithm only needs to perform at most log (M) iterations,

€

each of which makes one call to the subproblem solver.

We now focus on the subproblem when we are given a guess M and a target precision e. The goal is to
find a primal solution z that satisfies |||, < M (1 + ¢) or a dual solution (infeasibility certificate)
E(r) M
T, = (e
of the problem tells us that we can increase the guess M.

which can certify that ming. 4,— ||:13||§p >)2. This lower bound on the optimal value

The objective function £(r) has a very useful monotonicity property: it increases when r increases.
The overall strategy of our algorithm is to start with an initial dual solution r(*) (which we initialize
uniformly to #) and increase it while maintaining the following invariant

£(rtHD) — (0 > Mz(HT(tH) Hr(t)

-)a (1)
q q
or equivalently,
E(rt)) — £(r1)
I = [l @1,
q q

The telescoping property of both sides of (I]) will guarantee that, if the algorithm outputs a dual

2
solution 7 with sufficiently large |||, this solution will satisfy £(r) > (f‘fﬁ) I, i-e, W >
q

2
(lj‘fe) . To maintain the invariant we have two useful bounds for the change in the objective and

dual solution:

2 (*)
) —e) = 3 r (2 (1 Zntll))? @)
i L&

L e
T, =TT, = 5 (Y — ()

Both inequalities allow us to decompose the invariant along the coordinates. That is, we can maintain
the invariant by ensuring for each coordinate ¢ that we increase that

_ 2
T

(T£t+1)>q B (TEt))q r(t+1)

®

%

3

® _ ||’"‘“||Z_l) (xgt))z
i = N e
(Ttm>

as much as possible, by setting a target

In order to do this, we update each r;’ multiplicatively, via the term -

(®

%

To guarantee fast convergence, we want to increase 7

1/q
i(t): if 'y(t) exceeds the threshold, we update P 7’1@ (%'(t)) ; otherwise, r®

threshold on ~ i i g
remains unchanged. When we can no longer increase while preserving the invariant, we can be
sure that we have found the corresponding primal solution = with small norm. During the course of
the algorithm, we also keep track of iterations with small increases in r and use the uniform average
over the corresponding primal solutions to obtain an approximately feasible primal solution, in case

the algorithm fails to return an infeasibility certificate quickly enough.

We note that our update approach is derived in a completely different way from standard iterative
frameworks such as multiplicatives weights updates and, generally, mirror descent. In contrast to

Under review as a conference paper at ICLR 2026

Algorithm 3 Iteratively Reweighted Least Squares

Input: Matrix A € R¥*™, vector b € R?, e
Output: Vector x such that Az = b that minimizes ||z}

Initialize 2(°) = arg ming. 4z—p H33||§

0)||P : 2logn
Hr ||p t 0 K = 1 lfp S logn—1
16p > ’ ﬁ otherwise

MO .=

. ¢ p
g® = ‘gC(t)‘P*?m(t); R® — 9 ‘xu)‘H
A« ResidualSolver(ﬁ, { (g(jg)T] , [07 %m] ,(M(t))zppR(t),Q\/E(M(t))zl)
if A is an infeasibility certificate or { R®), AQ> > 2M® then
MO+ M0 j, 441 — 40

else _
MY o pp@®) 2@+ — () _ 64Ap/<
end if
t+—t+1
end while

return z(*)

these standard approaches, we do not use a mirror map or regularize £, norms to make them smooth.
Our update scheme allows our algorithm to take much longer steps, and the coordinates of the dual
solution are allowed to change by large polynomial factors in each step. This allows us to obtain a
fast convergence rate.

We provide the complete analysis and proof of Theorem [I.T]in Appendix D]

3 OUR ALGORITHM WITH log (1) CONVERGENCE

e
3.1 ALGORITHM

In this section, we present our algorithm with guarantee provided in Theorem|I.2] For the ease of the
exposition, we consider a slight variation of the problem: for p > 2, we solve ming. 4,y ||x||§ to

(1 + €) multiplicative error. We show our algorithm in Algorithms and

3.2 OVERVIEW OF OUR APPROACH

At the highest level, the main algorithm relies on a simple yet powerful observation by |Adil et al.
(2019a)), which is that the £, minimization problem we are attempting to solve supports iterative
refinement. |Adil et al|(2019a) show that having access to a weak solver which gives a constant
factor multiplicative approximation to a mixed objective of £, and ¢, norms suffices to boost the
multiplicative error to 1 4 ¢ while only making O, (log 1/¢) calls to the solver. This reduces the
entire difficulty of the problem to implementing the weak solver.

More precisely, starting with an initial solution (set to arg ming. az—s ||z|,), we maintain M ®) as an
upper bound for the function value gap, ie. ||z" Hi — [la*||? < 16pM "), We show this invariant in
Lemmal[E.2] In each iteration, the algorithm makes a call to a solver for the residual problem which
approximates the function value progress ||:1:||§ —|lz—A ||§ if we update the solution z <— x—A. The
residual solution tells us either the progress is too small, in which case we can improve the upperbound
on the suboptimality gap by reducing M ®), or the progress is at least {2 (M (t)), in which case we
can perform the update and obtain a new solution. This new solution improves the function value gap

2O P ||z*||P
by at least a factor 1 — Q) (), and thus the algorithm requires only O (p log ”H"Il”) calls

1
P ellz*lp

to the residual solver. We show this guarantee in Lemma [E.2

Under review as a conference paper at ICLR 2026

Algorithm 4 ResidualSolver(p, A, b, 0, M)

Input: Matrix A € R4*™ vector b € R?, target value M, weight 0
Output: Vector z such that Az = b, [|z]|,, < 2M and (0, 2?) < ming. ap—p HCUQHP + (6, z?)

or approximate infeasibility certificate 7, ||7||, = 1.
if p < 18" _ then

logn—1
r= -2 = argming. gp—p (r + 0, 22)
n4d
if ||Z][,, < 2M then return else return r end if
else
t=0,70 = 20=L y_ st) =
2qna
while ||(+)7|| <1
1
=) = arg minm:Am:b<r(t) +0,2%)
o | = | P 2
q q >
,yi(t) = ¢ Mm2ri7? if ri=t = 2M , for all ¢
1 otherwise
1/q
agt) _ (/yi(t)
if o = 1 then return z® end if > Case 1
P — o0 0
if o® < 7T then s'+D = s) 4 2 ¢/ = ¢ 4 1 end if
if/ > 0and ||s()/t'| < 2M then return s/’ end if > Case 2
2p
t=t+1
end while
end if
return r(*) > Case 3

We give the pseudocode for the residual solver in AlgorithmElﬂ Prior works by |Adil et al.| (2019aib;
2024])) give algorithms for this solver either via a width-reduced multiplicative weights update method
which achieves the state-of-the-art theoretical runtime but does not support a practical implementation
or via a practical IRLS method with suboptimal theoretical guarantee. In contrast, we build on ideas
from the low precision IRLS solver we have shown in the previous section and design a new IRLS
algorithm that attains the best of both worlds.

Our residual solver outputs an approximate solution to a constant factor to the objective of the form

minb||x2||p+<9,x2> @)

r:Ar=
for p > 1 and a positive weight vector § € R™. We also start with the dual formulation of the problem

. 2 2 ; 2 r
_ 0,22) = 0,2%) = TP
@ Jin, s (r,a%) +(0,2%) Tzolﬁ}?ﬁ:m?}iib@* a7) =maxé <|7“||q +)

where ¢ is the dual norm to p and £(r + 0) = ming. a,—,(r + 0, 2%). Given a target M, our goal
is to find a primal solution x that satisfies ||z (|5, < 2M and (0,27) < ming. ag—s ||x2Hp + (0, 2%)
or a dual solution » € R™ (infeasibility certificate) which can certify that ming. 4,— Hx||§p >
S(ﬁ +6) > 1;4—:, where k is a value set as shown in Algorithm

q

logn
logn—1

for which we

logn
logn—1°

We distinguish between two regimes: when p is sufficiently small, 1 < p <

will show that we can obtain a solution by O(1) calls to the linear solver, and when p > to

3Note that while the residual solver takes as input the original matrix A augmented with an extra row, the
least squares problems required by the residual solver reduce to least squares problems involving only A, using
the Sherman-Morrison formula. This guarantees that we only require a linear system solver for structured
matrices of the form AT D A, for non-negative diagonal D.

Under review as a conference paper at ICLR 2026

e

o0pT3
cox sedumi

3

(e)size=nx (n—50),p =8 (f) size=500 x 400 (g) size=n x (n — 100) (h) size=n x (n — 100)
Figure 1: Performance on random matrices: min || Az — b||]’; with € = 10710, We compare our
algorithm with CVX using SDPT3 and SeDuM i solvers and p-IRLS by |Adil et al.|(2019b). Figures

(a),(b),(e),(f) plot the average and standard deviation of number of iterations and time taken by the
solvers to find a solution over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

which we need to pay more attention. In the latter case, similarly to Algorithm 2] we want to maintain
the invariant

E(rttD) 10) — £(r® +0) 9
[[r@Df| =@,
q q

Notice the differences between this objective and the problem ming. 4, ||z Hp which we solve in

the previous section. The /5 term <9, :172> makes this objective no longer scale-free. However, this {5

2 (t)
term does not affect the lower bound } °, rgt) (:rgt)> (1 - :t+1)> in the change in the objective

(1)

) ()2 i)
2T (ﬂ”) (“m
K

eI,

(eq. (2)); thus it suffices to maintain > M? in order to guarantee the

5(7.(t+1) +9)_g(7.(t) +6)
([l =l
q q

invariant > M?. At the same time, if we maintain ||| g < 1, wecan show

that if the algorithm outputs a primal solution z, the /5 term <9, x2> < ming. gz—p ||fr2 Hp + <9, x2>.
This requires us to initialize r with sufficiently small ||7||,. Algorithm E|then follows similarly to
Algorithm 2] with the note that it suffices to obtain only a constant approximation. We give the
correctness and convergence of Algorithm [@]in Lemma [E.T| whose proof is based on the same idea as
the analysis for Algorithm 2]

The complete analysis of our algorithm is provided in Appendix [E]

4 EXPERIMENTAL EVALUATION

On synthetic data. We follow the experimental setup in |Adil et al.| (2019b), and build on the
provided codeg’| We evaluate the performance of our high-precision Algorithm [3| on the problem
min [[Az — b||;, on two types of instances: (1) Random matrices: the entries of A and b are generated
uniformly at randomly between 0 and 1, and (2) Random graphs: We use the procedure in|Adil et al.
(2019Db)) to generate random graphs and the corresponding A and b (the details are provided in the
appendix).

We vary p and the size of the matrices and graphs, while keeping the error ¢ = 1071°. All imple-
mentations were done on MATLAB 2024a on a MacBook Pro M2 with 16GB RAM. We measure

“The code is available at https: //github.com/fast-algos/pIRLS

https://github.com/fast-algos/pIRLS

Under review as a conference paper at ICLR 2026

(c) n nodes

(b) Number of nodes=500

(@p=38

: 7+7x\/+”‘
e

o
R L I B R

(f) Number of nodes=500

(g) n nodes (h) n nodes

e)p=38

Figure 2: Performance on random graph instances: min || Az — b||g with e = 10719, We compare our
algorithm with CVX using SDPT3 and SeDuM i solvers and p-IRLS by |Adil et al.|(2019b). Figures
(a),(b),(e),(f) measure over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

Table 1: Performance of our algorithm against p-IRLS on six real-world datasets for p = 8, € =
10710,

KEGG Power Buzz in Song
. | Consump- . .
. Metabolic . Social Protein Year Pre-
CT slices tion . .
Naeem . Media Property diction
Graf et al. Hebrail .
©011) and and Kawala Rana Berf[m-
Asghar Berard et al. (2013) Mahieux
(2011) (2006) (2013) (2011)
. 48150 57248 1844352 524925 463811
Size %385 27 11 x77 | AT g0
no. p-IRLS 48 50 45 50 44 45
iters Ours 36 42 36 42 36 36
time | p-IRLS 14.3 2.5 32. 28. 1.6 22.5
(s) Ours 9.2 1.7 15.7 18.1 1.1 13.3

the number of iterations and running time for each algorithm and report them in Figures[[}[2] In the
appendix, we provide additional experimental results when 1 < p < 2 and when e varies.

On real-world datasets. We test our algorithm against p-IRLS on six regression datasets from the
UCI repository. CVX has excessive runtime and hence is excluded from the comparison. Results are
provided in Table[T}

Remark 4.1. Regarding the correctness of the algorithm, we use the output by CVX as the baseline.
In all experiments, our algorithm has error within the e margin compared with the objective value of
the CVX solution (see appendix).

On smaller instances, we compare our algorithm with CVX using SDPT3 and Sedumi solvers and the
p-IRLS algorithm by |Adil et al.| (2019b). While CVX solvers generally need fewer iterations to find a
solution, they are significantly slower on all instances than our algorithm and p-IRLS. Our algorithm
also significantly outperforms p-IRLS in both the number of iterations (calls to a linear system solver)
and running time. When the size of the problem and the value of p increases, the gap between our
algorithm and p-IRLS also increases. On average, our algorithm is 1-2.6 times faster than p-IRLS.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For the reproducibility purpose, we submitted the source code in the supplementary material. We
included the MATLAB implementation by |Adil et al.| (2019b).

REFERENCES

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for £,-norm
regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1405-1424. SIAM, 2019a.

Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent irls algorithm for
p-norm linear regression. Advances in Neural Information Processing Systems, 32, 2019b.

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for ¢,,-regression.
J. ACM, T1(5):34:1-34:45, 2024. URL https://doi.org/10.1145/3686794.

Ahmed El Alaoui. Asymptotic behavior of \(\ell_p\)-based laplacian regularization in semi-supervised
learning. In COLT, volume 49 of JMLR Workshop and Conference Proceedings, pages 879-906.
JMLR.org, 2016.

T. Bertin-Mahieux. Year Prediction MSD. UCI Machine Learning Repository, 2011. DOI:
https://doi.org/10.24432/C50K61.

Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for ¢,
regression provably beyond self-concordance and in input-sparsity time. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1130-1137. ACM, 2018.

Brian Bullins. Fast minimization of structured convex quartics. arXiv preprint arXiv:1812.10349,
2018.

C Sidney Burrus. Iterative reweighted least squares. OpenStax CNX. Available online: http://cnx.
org/contents/92b90377-2b34-49e4-b26f-7fe572db78al, 12(2012):6, 2012.

Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees for
regression problems. In Robert D. Kleinberg, editor, Innovations in Theoretical Computer Science,
ITCS 13, Berkeley, CA, USA, January 9-12, 2013, pages 269-282. ACM, 2013. ISBN 978-1-4503-
1859-4. doi: 10.1145/2422436.2422469. URL https://doi.org/10.1145/2422436.
24224609.

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng.
Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected
graphs. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 273-282. ACM,
2011. ISBN 978-1-4503-0691-1. doi: 10.1145/1993636.1993674. URL https://doi.org/
10.1145/1993636.1993674.

Alina Ene and Adrian Vladu. Improved convergence for ¢; and /., regression via iteratively
reweighted least squares. In International Conference on Machine Learning, pages 1794-1801,
2019.

F. Graf, H.-P. Kriegel, M. Schubert, S. Poelsterl, and A. Cavallaro. Relative location of CT slices on
axial axis. UCI Machine Learning Repository, 2011. DOI: https://doi.org/10.24432/C5CP6G.

Georges Hebrail and Alice Berard. Individual Household Electric Power Consumption. UCI Machine
Learning Repository, 2006. DOI: https://doi.org/10.24432/C58K54.

Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance
sampling is nearly optimal. In STOC, pages 1416-1429. ACM, 2020.

Lingxiao Huang, Shaofeng H.-C. Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for robust
clustering. In ICLR. OpenReview.net, 2023.

10

https://doi.org/10.1145/3686794
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/1993636.1993674
https://doi.org/10.1145/1993636.1993674

Under review as a conference paper at ICLR 2026

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration complexities for overcon-
strained p-norm regression. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 529-542, 2022.

Franois Kawala, Ahlame Douzal, Eric Gaussier, and Eustache Diemert. Buzz in social media . UCI
Machine Learning Repository, 2013. DOI: https://doi.org/10.24432/C56G6V.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 424-433. IEEE, 2014.

Meng Liu and David F. Gleich. Strongly local p-norm-cut algorithms for semi-supervised learning
and local graph clustering. In NeurIPS, 2020.

Xiangrui Meng and Michael Mahoney. Robust regression on mapreduce. In International Conference
on Machine Learning, pages 888—896. PMLR, 2013.

Muhammad Naeem and Sohail Asghar. KEGG Metabolic Relation Network (Directed). UCI Machine
Learning Repository, 2011. DOI: https://doi.org/10.24432/C5CK52.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Kent Quanrud. Nearly linear time approximations for mixed packing and covering problems without
data structures or randomization. In Symposium on Simplicity in Algorithms, pages 69—80. SIAM,
2020.

Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository, 2013. DOI: https://doi.org/10.24432/C5QW3H.

A PROPERTY OF THE ENERGY FUNCTION

We recall the definition of energy function and its properties used in the algorithms.

Definition A.1. (Energy function). Given a vector r € R", we let the electrical energy be £(r) =
ming. az—p(r, 22).

Lemma A.l. (Computing the energy minimizer) Given b € R and r € RY, the least squares
problem ming. o,—y,(r, %) can be solved by evaluating x = D(r)"1AT (A[D)(r)‘lAT)+ b, where
D(r) is the diagonal matrix whose entries are given by r.

The following lemma gives us a lower bound on the increase in electrical energy when we increase 7.
Lemma A.2. Given 1’ > r and letting x = arg ming. 4,—p(r, ¥), one has that

(') —E(r) > ;rix? (1 - :) .

K2

Proof. This inequality follows from the standard lower bound for £(r’) — £(r), which the reader can
find in [Ene and Vladu|(2019). O

B REDUCING GENERAL REGRESSION PROBLEMS TO THE
AFFINE-CONSTRAINED VERSION

In this section we show that the affine constrained version of the problem we consider is in full
generality. Formally, we show that any /;, regression problem of the form mina,— [Nz — v||, can
be reduced to the form we consider.

11

Under review as a conference paper at ICLR 2026

Lemma B.1. Let A € R**™ b € R5, N € R™*™ v € R™ and consider the optimization objec-
tive minaz—p | N2 —v||,. Let [.] be a (1 +) approximate solution to the affine-constrained

regression problem
min =]l -
N —I,.xm x| [o r
A Osxm z | | b
Then x is a (1 + €) approximate solution to the original objective. Furthermore, each least squares
subproblem can be solved using two calls to a linear system solver for NTRN, and one call to a

linear system solver for A (NTRN) AT

Proof. We augment the dimension of the iterate by introducing m additional variables encoded in a
vector z € R™. Hence one can equivalently enforce the constraints

Nx—z=wv
Az =10

and simply seek to minimize | z||,, instead of || Az — b|| ., which is the suitable formulation required
by our solver. Note that while we do not have any weights on the x iterate, the analysis goes through
normally, since in fact it tolerates solving a more general weighted ¢, regression problem.

To solve the corresponding least squares problem, we need to compute

.1 o\ .1 g1 T L T
ir;lznb2<r7(Nx v) >—1£r;1:nb2x N'RNz — (N Rv,x>+20 Rv

1 1
= max min QxTNTRNx — (NTRv,z) + §UTR’U +(b— Az,y)

Y T

1 1

= max <<b, y) + min ixTNTRNx — <NTRv + ATy, x>> — ?UTRU .

Y T

where R is the diagonal matrix whose entries are given by 7. The inner problem is minimized at
2= (NTRN)" (NTRo+ATy) ,

which simplifies the problem to

1

max (b, y) = 5 (NTRu+ATy) (NTRN)Y (NTRu+ ATy) — %vTRv
Yy

— max (b= A(NTRN)" NTRu,y) - %yTA (NTRN)" ATy
- %vTRN (NTRN)" NTRu - %vTRm
which is maximized at
y=(A(NTRN)" AT)+ (b—A(NTRN)" NTRo)
50
2= (NTRN)" NTRo+ (NTRN) " AT (A(NTRN)" AT)+ (v— N (NTRN)" NTRo)

= (NTrRN)? (NTR’U +AT (A(NTRN)T AT)+ (b—Aa(NTRN)" NTRU)> :

We observer that to execute this step we require two calls to a solver for N " RN, and one call to a
solver for A (NTRN) AT, O

12

Under review as a conference paper at ICLR 2026

C SOLVING £, REGRESSION FOR 1 < p < 2

In this section we show that while our solvers are defined for £, regression when p > 2, they also
provide solutions ¢, regression for 1 < ¢ < 2. This follows directly from exploiting duality. See|Adil
et al. (2019a)), section 7.2 for a proof detailed. Here we briefly explain why this is the case. Let p, q
such that ; + é =1,1 < ¢ < 2, and consider the £, regression problem, along with its dual

i = b,y) .
min |z, \|A%&ﬁf§1<’y>

We can use our solver to provide a high precision solution to the dual maximization problem, which
we then show can be used to read off a primal nearly optimal solution. Indeed, we can equivalently
solve
: T
min |[A
(by)=1 H pr

to high precision € = ﬁ , based on which we construct the nearly-feasible primal solution

<b7 y> T \p—1
r=—"-.(A .
ATyl (4%)

To see why this is a good solution, let us assume that we achieve exact gradient optimality for y,
which means that for some scalar),

A(ATY) " =b-a. ©)

First let us verify that x is feasible. Using (5] we see that:

AzA((b,) ,(ATy)w) (b.) ,A(ATy)w((b.y) ,A>,b_

TAT P = AT P TAT P
AT yll, [ATylL, AT ylL,
Additionally we can also use (|5]) again to obtain that

1ATYIE = (.4 (AT9)") = (.5} - A,

which allows us to conclude that
Ax =0,

so z is feasible. Finally, we can measure the duality gap by calculating

1

1 _ —1)-P_ p,%l 1 —
ol = 5 (470" = 5 (T @) T =S laTly

<y7b> T p—1 <y7b>
= —— . A = 0——,
atye 14 =

which certifies optimality for b. While in general we do not solve the dual problem exactly, which
yields a slight violation in the demand for the primal iterate z, this can be fixed by adding to x a
flowz = AT (AAT)Jr (b — Az) that routes the residual demand. This affects the ¢, norm only
slightly since the residual demand is guaranteed to be very small due to the near-optimality of the
dual problem. Then we can proceed to bounding the duality gap by following the argument sketched
above, while also carrying the polynomially small error through the calculation. We refer the reader
to|Adil et al.|(2019a) for the detailed error analysis.

D PROOF OF THEOREM [.1]

In this section, we first outline the necessary lemmas needed to prove Theorem[I.T|before providing
their proofs below.

13

Under review as a conference paper at ICLR 2026

Correctness of Algorithm There are two possible outcomes of Algorithm[2] Either it returns a
primal solution (Case 1 and Case 2) or a dual certificate (Case 3). In the former two cases, Case 2
immediately gives us an approximate solution. We show in Lemma[D.2]that the returned vector in
Case 1 achieves the target approximation guarantee. In Case 3, we use the invariant shown in Lemma
[D.T]to show that the returned dual solution is an infeasibility certificate.

We formalize these statements in the lemmas below.

Lemma D.1 (Invariant). For all t, we have that if v*) # 1 then ECUUNECY) S 2

el =l el =

Lemma D.2 (Case 1). Let r be a dual solution and x = argming az—p(r,2%). If
] [T s (U4 M thenall,, < M(1+e)

E(r™M) M2
[, = Teae

Lemma D.3 (Case 3). If the algorithm returns rT), then

Convergence of Algorithm[2} We run the algorithm for T iterations. The algorithm terminates
if at any point it finds a solution « that satisfies the desired bound (otherwise it is unable to further
increase the dual solution). Otherwise, we show that it must finish very fast. Suppose we run it
for T' = Tj; + T}, iterations. Let the iterations in 7},; correspond to those where at least a single

coordinate of r was scaled by > S = n2a+1 (%) 2att " Let Tj, be the remaining iterations. The

following lemmas give an upperbound on 7}; and Tj,.
Lemma D.4. We have Ty,; < <.

Lemma D.5. We have T}, < O ((% + flln/;) ql# log (E%))

€

Since §' = nz+1 (%) 21 we obtain the following convergence guarantee:

a+3 2429

; nates i 1) (1) T 2\ iterati
Lemma D.6. Algorithm|2|terminates in O () + nzat (6) log (eq) iterations.

Equipped with these lemmas, we give the proof for Theorem|I.1]

Proof of Theorem[I1] Returning to the problem mingegn . az=p ||]|p, we have the main algorithm

()
executes a binary search over the power of (1 + €) in the range {”zlu?, HJJ(O) H 2], so the total
n2 p

number of calls to the subroutine solver is O (loglogn +log 1). By Lemma the subroutine

a+3 a?+2q
solver requires O (((1) 2 + n7aTT (L)) log (%)) linear system solves, where ¢ = -2 is
the dual norm of p/2. Substituting the value of ¢, we obtain the conclusion. O
D.1 PRrOOFs OF LEMMAS[D.T]-
Proof of Lemma|D.1} First we show (3).
t)|a—1
1 allr1,
T, =TT, = o= [T

q a q q

This is equivalent to show
P 4 g = 1) [0 2 g e+ H o
q q q q

which can easily be obtained from AM-GM inequality.
Using (3) and Lemma[A.2] we have

-1 2 (8
E(rttDy — g(r®) q ||7”(t)||z <Zi Tz@ (fﬂz('t)) (1 - M))
=@, =01, = 2 (1) - ()’

14

Under review as a conference paper at ICLR 2026

IOl (Siagor (#) (1))
= Zi$a§t)>1 (TEHI))‘I B (rgt))q .

= agt)rz(t), thus

(®)

%

_ 2 r®
Ol O (@) (1=) e () o (o)

() =) (o)

(t+1)

For i such that a; * > 1, we have 7;

a2 1
Z i M (t))q
Q;
= M?
where the first inequality is due to ;((;Xq_fl)) > %, for « > 1. We can then obtain the desired
conclusion from here. O
Proof of Lemma([D2] If
q—1 2
(==t TR
for all 7 we have
rat
x?§(1+6)2M2 qula
g

which gives

q
x?p < +€)2pM2p riqa
(Ed]
‘We obtain
2 2
5 < (1+)" M,
as needed.]

Proof of Lemma(D.3] We have that

E(rM) _ £6r) + T (E6Y) — £6))

I o, [EsRl

) + 31 ([0, — 1,) - M2

> @) I I (due to the invariant)
I,

R

> =M"-(1-
=1, I=1,
>M?-(1—¢) (since HT(T) > %)
M? '

> .
T (1497

15

Under review as a conference paper at ICLR 2026

Proof of Lemma Suppose the contrary. Then we claim that the perturbations that scale the dual
solution by > .S will have increased it a lot to the point where [|7(|? > . Indeed, since r is initialized
to ﬁ, in the worst case each perturbation in 7}, touches a different coordinate ¢. Therefore this
establishes a lower bound of Tj; - %q on ||r\|g. As this must be at most eiq, since otherwise we

obtained a good solution per Lemma[D.3] we obtain the conclusion. O

Before showing the proof of Lemma|[D.5] we claim that we can either look at the history produced in
T}, and obtain an approximately feasible solution, or a single coordinate of must have increased a
lot.

Lemma D.7. Consider the set of iterates (T(t), CL’(t)> used for the iterates in Tj,. If

1 3

M(1
T > M(1+¢)
teTi,

2p
then there exists a coordinate i for which

teT)o:al >1

E

Proof. Suppose that

> M(1+¢€)

1 S

lo yer,

2p
Note that by the update rule,

qg—1 qg—1
() a7 (1)
< (14e)f |l L W

+ 1OL7j>1

M o] ol
q q
(Tgt))‘I*l agt)q (Tgt))(I*l
< — tlasi | — o
I @113 (el
Hence we can write
a1 ®a ()7
z® ¢ (r()1™ a; (n)
%], =D A |\ T
teT, 2p teTi, q tETzo,agt)>1 q
ill2p
a1 Wa ()7}
€ (r®)? ! Q; (Ti)
<) X o] L\ e
t€Tio a lop teT)o,alt >1 q _
ill2p
(by triangle inequality)
Nor (m)‘f‘l
€ 3 [
_ <1+§) Ty + 3 T
teTyp,0l>1 HT Hq
illap
We obtain
O‘gt)q (72@>q71 €
> ot Z 5T
t€Tio,0l>1 HT(Hq
ill2p

16

Under review as a conference paper at ICLR 2026

On the other hand, we have
2p 2p

agt)q (Tz(t)>q‘1 agt) (r§t+1)>q_1
P | o e IO

o\ teTy,,0l>1

2 X

b\ teTy,,0>1

2p 2p
q q
O[S VAT < T e
i tETy0 0l >1 te€Ti,,al”>1
2p
< i max Z \/)
el ? i
t€Tio,08" >1
[
Therefore there exists ¢ such that
2p
2p
t er
> Vel = (F)
t€Tio,al >1
which gives us
1
T, eqT
Z agt) < Lo
2
teTio,al>1
Now we show the proof of Lemma[D.5]
Proof of Lemma|D.5] From Lemma [D.7]we know that there exists a coordinate ¢ for which
41
T; eqT
S Vel > 102 . (©6)

teT)o:al >1

q
Furthermore by definition for all iterates in 7}, we have that pointwise (1 4 ¢) < (a(t)) < 59,

q
This enables us to lower bound the final value of (rgT)) which is a lower bound on H’I”(T) HZ. More

precisely, we have

(TZ(T)>¢1 > (Tgo))q . H (agt))q _ l) H (al(_t))q. o
n
t€To:al? >1 teTioial>1

Now we can proceed to lower bound this coodinate i.e. we lower bound the product in ((7) using the
lower bound we have in (6).

(T)
T

q
Intuitively, the worst case behavior i.e. slowest possible increase in () is achieved in one of the

two extreme cases:

@i) the 041@ are all minimized i.e. (az(t)

q
) = (14 €) in which case © (2 log (%)) such terms are

sufficient to make their product > E%, which means that we are done, since then we have ||r(T) ||Z >
q+1

q ar= 1
(TZ(T)) > L so setting T“)% > 0 ((1+e)’7q Llog (ﬂ)) ie T, > @(1 log (6%)) is

€q

e 2
sufficient to make this happen;

. . o . . t
(i1) all the entries are maximized, i.e. ozz(-)
1
aTy, U5 att
€ 2

Ilo e 2 . Tio : sz
atleast S's1/2 2 26%,501fwesetg1j2 5 lnSzlog(Eﬂq),le.,Tlo:@(qh—lsglog(eﬂq)),

= S in which case we have that their product to power g is

17

Under review as a conference paper at ICLR 2026

we guarantee that the corresponding r; increases to a value larger than —=. The fact that these two
cases capture the slowest possible increase is shown in Lemma[F1]

1 Sl 1 n
ﬂo_O((e+qlnS> ==y 10g<))

E PROOF OF THEOREM

Therefore we can set

First, we give guarantee for the subproblem solver (Algorithm @] proof follows subsequently) .

= Togn-1 , Algorithm | either returns x such that Az = b,
q otherwise

LemmaE.l. Forp > 1, k=

Hx||2p < 2M and <0,x2> < ming. Az—p Hx2||p + <9,x2> or certifies that ming. g,—p Hx2||p +

<9, x2> >]g—z in O (nﬁ) calls to solve a linear system of the form ADA'" ¢ = b, where D is an
arbitrary non-negative diagonal matrix.

The next lemma provides guarantees on the iterate progress in the main algorithm (Algorithm 3).

1 ifp< 2t .
en—1 Algorithm|3|maintains that ||z®||” —||z*||? <
p% otherwise , Algorithm|3|maintains tha Hx ||p ||z Hp <

LemmaE.2. Forp > 2k =
2

16pM® and that if Y £ 2O then

1 P
(M)HP_ *p<(1_)(H (t)‘ B p>
T T T T .
=21 = ety < (1= 51 " el
Finally, we show the proof of Theorem [I.2]
Proof. Algorithmterminates when M®) < < TtTe ||x(t)”§_ This gives ||z || l2*))? <
T6p(150) | Wthh implies Hx(t)H (L+¢) [lz*|; and thus Hx(t)H (L+¢)|lz*||,- Hence,

o 12" szm|

z®isa (14¢) appr0x1mate solution. Since
=11,

El\r*l\p

M® can be reduced is O <10g =0 (p log %) By Lemma , the number of times the

IO
=1, -1 IP) = O (p*lognlog %) where k = O(logn).
Therefore the total number of calls to the subroutine solver is O (p2 log n log %) By lemma the
subroutine solver makes O (nﬁ) =0 (n%) calls to a linear system solver. This concludes
the proof. O

e 7

iterate makes progress is O (213p/@ log

E.1 PRrROOF oF LEMMA [ETI

Welet OPT = min,. Aw b Hx2|| +(0,2%) and 2 = arg ming: a,— szH +(6,2?). We consider
two cases: whenp < ; logn

lemmas:

7 and when p > ;

. We will prove for each case using the following

Lemma E.3. For1 < p < 98" AlgorithmW|either returns x such that Az = b, Hm||2p <2M

logn—1"

and (0, z*) < OPT or certifies that OPT > 2= in O(1) call to solve a linear system.
Lemma E4. Forp > Olog” Algorithm j » < 2M and

n—1’

<9, T > < OPT or certifies that OPT > M iy O (nﬁ> calls to solve a linear system.

To start, we have the following lemma that controls the /5 term in the objective

18

Under review as a conference paper at ICLR 2026

Lemma E.5. For r such that ||r||, < 1, suppose x = argming. az=s(r + 0, x?). Then we have
(0,2?) < OPT.

Proof. For r with |[r[|, < 1, we have

(6,2%)

(r+6,2% < (r+0,(z*)?) (by definition of x)

<
< @2l + (0, (=*)?) < OPT.

Now, let us turn to the first case when 1 < p < lologf . We give the proof for Lemma
gn—1

Proof of Lemma[E3] When1 < p < 101§i,7—bl , we have ¢ = =7 > logn. Algorlthmlcomputes

fizliw“’vﬂ

_1 .
where r; = n”~ < for all 3.

Since ||7[|, = 1, if [|Z]|,, < 2M, by Lemma we immediately have ||Z]|,, < 2M and (0, 2?) <
OPT.

Assume that [|Z]|,, > 2M. We have
OPT = [[@)* +(2.a)%) = (r. ")) +(0.2")")
<9 +r, (9:*)2> > <9 +r, (£)2>

> — szHl > = |2, (since |||, > [[2%]])
nq
> % ||§H§p (since ¢ > logn)
2
>2M* > ——
[
For the case when p > ; loi =, the proof for Lemma follows similarly to the analysis of

Algorithm[2] We proceed by showing the following invariant.

EE Vo) —£(r M 109) 2
el Tet, =

Lemma E.6 (Invariant). For all t, we have that if y*) # 1 then

Proof. Using Lemma[A2] we have

(D 4 0) — £(r® + 0) ‘T(t)”(F (Zz (’" (“”z(‘t)>2 (1‘ <(+)>++99)>
Hr(tﬂ)”q — Hr(t)Hq 3. ((t+1)) (rl(t))q
|7'(t Hq 1< 1(2 (tt)ljrie (T§t+1) —Tz(t)))
= () ()
I (2 () g (0 =)
e

19

N

Under review as a conference paper at ICLR 2026

— 2 @
0 IOy (S (7)o (70 =)

2ias (Tz(tﬂ))q - (Tz(t))q ’

) g,) ol
where in the second inequality we use ““72-9 2 (Tt - for 7«(+1)

al® (1) _ 0,0 g

rgt), 6 > 0. For 7 such that

> 1, we have r;

-1 2) ¢
IO) e) a1)
G (0)? =M P
() = () () -1
a2 . 1
= M ((t))q
@;
= M?
where the first inequality is due to ((‘Xq 11)) > aq, for & > 1. We can then obtain the desired
conclusion from here. O
Lemma E.7 (Case 1). Let r be a dual solution and v = argming az—p(r + 0,72). If

—1 -2
(IR P

< 2M then |z||,, < 2M and (0,2?) < OPT.

Proof. If
-1
‘ lrfld™ - | <2M?,
oo
for all 4 we have
q—1
%2 < 4M? T —,
[I7[lg
which gives
2p 2 2 q
S T
We obtain
oz < 222,
as needed. The second claim comes directly from Lemma[E.3] O

Lemma E.8 (Case 3). If the algorithm returns 1), then € (e H + 0) > 2q

Proof. We have that

ErM +0) E@O +0)+ X (EEEHD 40) — E(r® +9))

e, [Ir1l,
2o (e, = [,) - a2
= || (T)H g (due to the invariant)
r
q
<™, = 1) -
> q q
-]
q

20

Under review as a conference paper at ICLR 2026

29—1 2 — 1
=M (1- 22 _ (since Hr(o) e Bt
I, @2
2
= — (since > 1.
2q q

Finally since Hr(T) Hq >1

(T) (T) M2
g< r 9> > E(r™t) +6)

e] > S >
Il I, 20

O

Convergence Analysis We run the algorithm for 7" iterations. The algorithm terminates if at any
point it finds a solution x that satisfies the desired bound (otherwise it is unable to further perturb the
dual solution). Otherwise, we show that it must finish very fast.

Suppose we run it for T' = Tj,; + T, iterations. Let the iterations in T}; correspond to those where at
least a single r; was scaled by > S = nZ2s1. Let T}, be the remaining iterations.

Lemma E.9. We have Tj,; < 2%.

Proof. Suppose the contrary. Then we claim that these perturbations alone will have increased r
a lot to the point where [|7(|7 > 1. Indeed, let Ti be the current value of coordinate ¢ and 7} be

its value after being increased, and assume that -+ > S Since r is initialized to 2qq L 11/ - in the

worst case each perturbation in 7},; touches a dlfferent i. Therefore this establishes a lower bound

q
of Th; - 5= (%) > Thi- 5 on [[7][3. As this must be at most 1, since otherwise we obtained a
good solutlon per Lemma|E.8] we obtain the conclusion. O

Now we claim that we can either look at the history produced in 7}, and obtain an approximately
feasible solution, or a single coordinate r; must have increased a lot.

Lemma E.10. Consider the set of iterates (r™® , x(®)) used for the iterates in Ty,. If

|TO

1 (t)
IR

teTi,

>2M

2p

then there exists a coordinate i for which

Z af;t) > %

teT)o:al>1

Proof. Suppose H ﬁ ZteTlo z® H2p > 2M. Note that by the update rule,

(Tz(t))qfl agt)q (Tz(t))q*l

= -1
lrofs (el

+ lai>1

Hence we can write

(1)
3 T

teT,

oD (m(t))q*l

[l

(rm)*™!
||r<t>|yjl*1 * 2

teT)o,alt >1

V2

teT,

2p
2p

21

Under review as a conference paper at ICLR 2026

q—1
()71 ol (r")
<2 (Ti N7
A N 2\
€lio q 2p t€T)o,0;) >1 q
illay
(by triangle inequality)
oL (T@)‘H
- \/ETlo + Z W
teTio,0l>1 HT Hq
ill2p
We obtain
<t>q< (t))q‘l
% r
> : Zq—l —(7\@)n0>%
LET 0 >1 Hr(t)Hq
illayp
On the other hand, we have
. 2
agt)q (rl(t))qfl P al(-t) (ngtﬂ))q’l
2|z | | L e
i\ teT,,alP>1 q i\ teT,,alP>1 q
(T)* 2p (1) |4 »
(”) ® I, ®
R A I Bl e el I
i 7 \t€Ty,,al>1 q t€Tio,al >1
2p
2)q 3 ® : H (0) 2q
max a (since ||r = —)
(2(] -1 ' teTio,al>1 1 ¢ -l
2p
< Qm?x Z al(.t) , (since ¢ > 1)
teTyo,0l>1
Therefore there exists ¢ such that
2p
2p
Z) 1 (Tzo)
o > - —
v — 2\ 2 ’
t€Tho,0l>1
which gives us
z agt)z%%z%, since p > 1.
22p

tETzo,agf’)>1

This lemma enables us to upper bound 7},.

Lemma E.11. We have T}, < © (% Inn + In n)

Proof. From Lemma [E.T0]we know that there exists a coordinate ¢ for which

t T’lo

teT)o:al>1

22

®)

Under review as a conference paper at ICLR 2026

(t+1)
Furthermore by definition for all iterates in T}, we have that pointwise al(»t) = - < Sand
T

(1)

) _ (V"5 9t
a;’ = (7, > 274, This enables us to lower bound the final value of (r

q
i) which is a lower

(t+1)
bound on H?“(T) HZ. More precisely, we have “— > o thus
T

%

i

<T>q>(<o>)q, ((t))q:%—l,l_ OMN
(ri) > (r H % 5% n H (0%) . C)
teTyo:al>1 teTyo:alt>1

Now we can proceed to lower bound this r; i.e. we lower bound the product in (9) using the lower
bound we have in (8).

q
Similarly to the previous section, the worst case behavior i.e. slowest possible increase in (rZ(T)) is

achieved in one of the two extreme cases:
(t)

i

1
= 24 in which case © (Inn) such terms are sufficient to
which means that we are done, since then we have HT'(T) HZ >

. t

(i) the az(-) are all minimized i.e. «
2gqn
2q—1°

q
(rz(T)) > 1; so setting T}, > © (Inn) is sufficient to make this happen;

make their product > 2n >

(t

%

) = § in which case we have that their product to power q is

42%5% 2gn . Tioq . 851/21n(n)
at least S'as > 2n > g1 SO if we set 1ot/ InS > In2n, ie, T;, > ~Tns > We guarantee
that the corresponding r; increases to a value larger than 2. The fact that these two cases capture the

slowest possible increase is shown in Lemma[FT]

(ii) all the entries are maximized, i.e. «

Therefore we can set
1/2

InS

TlO:O< lnn+lnn>.

2
Finally, by the choice S = n2«¥1, we obtain the runtime guarantee.

71 . .
Lemma E.12. Algorithmterminates in O (n 2(1+1> iterations.

Proof of Lemma|E.4} The proof of Lemma [E.T] immediately follows from Lemmas [E.§] and
IE.12) O

E.2 PROOF OF LEMMA[EZ]
Proof of LemmalE.2] 'We define the function res,, as follows

res, (A) = (g,A) — (R, A%) — A2

where g = ||’ >z, R = 2 |z|"~. We use the following property of this function from Adil et al.
(20194;2024): For A = 16p and for all A

A p
lzlly = |lz = — | = rese (A); (10)
P
A p
z][7 = [lz = A=|| < Ares; (A). (11)
Plp
We prove the claim by induction.
_ © . N=215 =l e
For t = 0, we have M%) .= o = = 16

Now assume that we have Hx(t) Hp

- [l*[? < 16pM). We have two cases.

23

Under review as a conference paper at ICLR 2026

Case 1. ResidualSolver returns an infeasibility certificate or ResidualSolver returns a primal solution
A such that <R(t), AQ> > 2M® . In both scenarios, using Lemmawe have

18]+ e (0,02) > 2000
< (t) A) M(t)
Hence for all A such that AA = 0, (¢, A) = 2— either HAQH > (M) o lAD > M®

or (M®)5" (RM,A%) > (M®)? = <R(t),A2> > M®, For all A such that AA = 0, we

can write (g, A) = aMT(t), for some constant a € R. We obtain either [|A[} > a? M or

<R(t), A2> > a2M® and thus for all A

M®
2

= MUY,

1
res, s (A) < M® (2(1 — min {aQ,a”}> <

We write A =

, for A\ = 16p. Using property (11) of the res,, we have

>\/

P _ (t) * || P
I Ip = [« H o2

L0 _\A
p

p
< Ares) (Z)

< 16pM Y.

Case 2. We have <R, AQ> < 2M® and HAH < 4\/E(M(t))% and <g,A> = %(t)
P
A p

(t) _
v 64pk
p

2

p
[

p
- A
= resrm 64/€
A AN

M® M® M®
= 92Tk 211K2 odpyk
MO @O A
= 27k _211/@_ 28k’

M®
> > H ®)
= 29 213]9/{ (

P
_ Hx(wn
p

A p
64k

P

(sincep > 2,k > 1)

||x*|z) ,

*||P t)
- 213]% (=1

o:*nz)
1
_ @I _ .*p
g(l 213]%) (Hx e ||,,)

as needed.]

from which we obtain

|

—Ja 1y < =0

24

Under review as a conference paper at ICLR 2026

F LOWER BOUND LEMMA

1
Lemma F.1. Let a set of nonnegative reals By, . .., Bk suchthat 1+¢ < 3; < S, and Zle B > K,
where r > 2. Then for any k one has that

k K K
[5: = min {st (L eyt } :
i=1

Proof. Consider a fixed k, and let us attempt to minimize the product of 3;’s subject to the constraints.

1

W.lo.g. we have Zle B;7 = K. Equivalently we want to minimize Zle log(B;), which is a
concave function. Therefore its minimizer is attained on the boundary of the feasible domain. This
means that for some 0 < k' < k—1, there are &’ elements equal to 1 +¢, k—1—k’ equal to S, and one
which is exactly equal to the remaining budget, i.e. (K — k(14 €)"/" — (k — 1 — k/)S'/"), which
yields the product (1 + €)' S5~ =1. (K — k'(1 4 ¢)'/" — (k — 1 — k’)S"/"). This can be relaxed
by allowing k and %’ to be non-integral. Hence we aim to minimize the product (1 + e)le k—k'—1
subject to k'(1 4+ e)Y/" — (k=1 - kSY" = K

Finally, we observe that we can always obtain a better solut10n by placing all the available mass on a

single one of the factors, i.e. we lower bound either by .S B or (1+e¢) <1+‘>1/ ", whichever is lowest.

G ITERATIVE REFINEMENT

In this section we provide a general technique for solving optimization problems to high-precision,
by reducing then to an adaptive sequence of easier optimization problems, which only require
approximate solutions. This formalizes the minimal requirements for the iterative refinement scheme
employed in|Adil et al.| (2019afb) to go through. We state the main lemma below.

Lemma G.1. Let D C R"” be a convex set, and let f : D — R be a convex function. Let 1 > 0 be a
scalar, and suppose that for any x € D there exists a function h,, that approximates the Bregman
divergence at x in the sense that

Lh (08) < (@ +0) — (@) — (Vf (2),6) < hy (5) -

Given access to an oracle that for any direction v can provide k-approximate minimizers to (v,) +
hy (8) in the sense that it returns 6% such that v + 6% € D and

<v,5ﬁ> + hy ((5ﬂ) < 1 (min_ (v,) + hy (6)) ,

K \v+6€D

along with an initial point xo € D, in O (% In M) calls to the oracle one can obtain a
point x such that f (x) < f (z*) + €, where x* € argmingep f ().

Proof. Let 6% be the a k-approximate minimizer of (V f (z),6%) + hy (6%), which by definition
satisfies:

(Vf(x),0) + h, (5ﬁ)§i<min (Vf(z),0) + he (5)) (12)

v+6€D

Updating our iterate to 2’ = 2 + 6* we can bound the new function value as
f (w + 5ﬁ)
+(Vf(x),6%) + hy (5%) (Bregman divergence upper bound)
1 .
+ 1 (), ¥ —x) + Ehm (n(a* — x))) (using (12))
[z)+ (Vf(), 2" —z) + (f (") = f (2) = (V[(), 2 — "))

(Bregman divergence lower bound)

25

Under review as a conference paper at ICLR 2026

= f@)+ L (fa) - f @),

from where we equivalently obtain that
fla+d) - fe)<(1-2) (@) - fE).

Therefore to reduce the initial error f (zo) — f (*) to ¢ it suffices to iterate O (% In M)
times. O

The following lemma provides a sandwiching inequality for the Bregman divergence of ||x\|§
Lemma G.2 (Adil et al. (2019b)), Lemma B.1). For any x,§ and p > 2, we have for r = 2P~2 and
g=paP

p 1
g (o) +

2r+l

815 < Il + 6lly = Nl = (g, 6) < 2p° (r, %) +p” |6} -

As a corollary we see that the function h,, () = 2p? (2P~2,6%) + p? ||8]|} satisfies the inequality
required by Lemma for n = ﬁ. We can thus conclude that given access to an oracle that

approximately minimizes mixed /> + £, regression objectives, one can efficiently generate a high
precision solution.

Corollary G.1. Consider the £, regression problem min. g7 r_g || f ||1’; Given access to an oracle
that can compute k-approximate minimizers to the optimization problem

* = 1 p—1 A 2 2 p—2 A 2 P IA »
Vi min (pfPTNAS) 4297 (72 AF) IS

in the sense that it returns A f satisfying BT Af = 0 and

(pFP AL+ 207 (P AP 4 AT < LV

p__ *||1P
LfollE—I1£* 112
£

along with an initial point fo, satisfying B' f = d, in O (/ip In) calls to the oracle one

can obtain a point f such that || f||? < || f*||? 4 ¢, where f* € argming s—q || fI[}.

Proof. Using Lemma we verify that the function hy (Af) = 2p* (f772, Af?) + p? [|A S]]}
satisfies

Ty (AP S 1+ A - IS5+ (o7 AF) < by (A1)

P__ *||P

for n = . Therefore by Lemma we can need O (F;p 1 Motz 170
P €

e-additive error to the regression problem. O

) iterations to obtain an

O

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 DATA GENERATION

Random matrices. The entries of A and b are generated uniformly at randomly between 0 and 1.

Random graphs. We use the procedure in|Adil et al.|(2019b) to generate random graphs and the
corresponding A and b. The generated graph is a weighted graph, where the vertices are generated by
choosing a point in [0, 1]1° uniformly at random, each vertex is connected to the 10 nearest neighbors.
The edge weights are generated by a gaussian type function (by Flores-Calder-Lerman). &k (around
10) nodes are labeled in [0, 1] and let g be the label vector. Let B be the edge-vertex adjacency matrix,
W be the diagonal matrix with edge weights. We generate A = W'/PB, b = —B[:,n:n+k|g.

26

Under review as a conference paper at ICLR 2026

(a) matrix size=n x (n — (b) matrix size=500 x 400 (c) Graph of n nodes, p = 8(d) Graph of n = 500 nodes
50),p = 8

Figure 3: Error of the solution against CVX/SDPT3 solution in log10 scale.

10

(e) matrix size=2500 x 2400(f) matrix size=2500 x 2400(g) Graph of n = 10000th) Graph of n = 10000
nodes nodes

Figure 4: Performance when varying e on random matrices and random graphs instances.

H.2 CORRECTNESS OF SOLUTION

In Figure[3] we plot the error of the solutions outputted by our algorithm and p-IRLS against CVX in
the random matrices and random graphs instances for ¢ = 1071, In all cases, the error is below e.

H.3 WHEN VARYING €
In Figure] we plot iteration complexity and runtime in seconds of our algorithm, p-IRLS and CVX

when varying e. Note that, CVX does not allow varying this parameter. In all experiment, we fix
p = 8. For large instances, we only consider our solution against p-IRLS.

H4 ForRl<p<2
In Figure 5] we plot iteration complexity and runtime in seconds of our algorithm, p-IRLS and CVX

on random matrices of size n x (n — 100). In all experiment, we fix ¢ = 10719, We test with p = 1.1
and p = 1.9.

27

Under review as a conference paper at ICLR 2026

- piRLs, 4 piris, 2] 4 pims 175] & pinis
0 ours 175 ours 10 - ous ours
- cuxs0PT3 4 cvesopT3 - cxs0PT3 150 - cvxsoPT3
150
125
£ 100
£
F s
50 2
* 25 B
20 -—— o %
500 750 1000 1750 1500 1750 2000 2250 2500 530 750 1000 1250 1500 1750 2000 2250 2500 500 750 1000 1750 1500 1750 2000 2250 2500 530 750 1000 1750 1500 1750 2000 2250 2500

(@p=11 b)yp=1.1 ©p=19 (dp=1.9

Figure 5: Performance when p = 1.1 and p = 1.9 on random matrices of size n x (n — 100).

28

