

000 IMPROVED ℓ_p REGRESSION VIA ITERATIVELY 001 002 REWEIGHTED LEAST SQUARES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT

011 We introduce fast algorithms for solving ℓ_p regression problems using the iteratively
012 reweighted least squares (IRLS) method. Our approach achieves state-of-the-art
013 iteration complexity, outperforming the IRLS algorithm by Adil-Peng-Sachdeva
014 (NeurIPS 2019) and matching the theoretical bounds established by the complex
015 algorithm of Adil-Kyng-Peng-Sachdeva (SODA 2019, J. ACM 2024) via a simpler
016 lightweight iterative scheme. This bridges the existing gap between theoretical and
017 practical algorithms for ℓ_p regression. Our algorithms depart from prior approaches,
018 using a primal-dual framework, in which the update rule can be naturally derived
019 from an invariant maintained for the dual objective. Empirically, we show that
020 our algorithms significantly outperform both the IRLS algorithm by Adil-Peng-
021 Sachdeva and MATLAB/CVX implementations.

023 1 INTRODUCTION

025 In this paper, we study the ℓ_p regression problem defined as follows. The input to the problem is a
026 matrix $A \in \mathbb{R}^{d \times n}$, a vector $b \in \mathbb{R}^d$ that lies in the column span of A , and an accuracy parameter ϵ .
027 The goal is to approximately solve the problem $\min_{x \in \mathbb{R}^n : Ax=b} \|x\|_p$, i.e., find a solution $x \in \mathbb{R}^n$
028 such that $Ax = b$ and $\|x\|_p \leq (1 + \epsilon)\|x^*\|_p$, where x^* is an optimal solution to the problem, and
029 $\|\cdot\|_p$ denotes the ℓ_p norm. Solving ℓ_p regression for all values of p is a fundamental problem in
030 machine learning with numerous applications and has been studied in a long line of research beyond
031 the classical least squares regression with $p = 2$. L_p -norm regression problems with general p arise
032 in several areas, including supervised learning, graph clustering, and wireless networks. Examples of
033 applications include ℓ_p -norm based algorithms in semi-supervised learning (Alaoui, 2016; Liu and
034 Gleich, 2020), k -clustering with ℓ_p -norm (Huang and Vishnoi, 2020), robust regression and robust
035 clustering (Meng and Mahoney, 2013; Huang et al., 2023).

036 For this general class of convex optimization problems, designing provably fast iterative algorithms
037 to obtain high accuracy solutions with empirical efficiency is an important question. General convex
038 programming methods such as interior point methods are usually slow in practice. In theory, Bubeck
039 et al. (2018) show that algorithms based on interior point methods cannot improve beyond $O(\sqrt{n})$
040 iterations¹ for any $p \notin \{1, 2, \infty\}$. Breaking this barrier and finding iterative algorithms that are faster
041 than interior point methods both in theory and practice is the goal of this line of work.

042 Recent developments have led to new algorithmic approaches such as a homotopy method (Bubeck
043 et al., 2018), and an iterative refinement approach (Adil et al., 2019a;b; 2024) for ℓ_p regression
044 with $p \notin \{1, \infty\}$. We highlight the notable works by Adil et al. (2019a;b; 2024). On the one hand,
045 the algorithm with the best known theoretical runtime is given by Adil et al. (2019a; 2024) with
046 $O(p^2 n^{\frac{p-2}{3p-2}} \log(\frac{n}{\epsilon}))$ calls² to a linear system solver. This algorithm, however, relies on complex
047 subroutines and includes theoretical choices for several hyperparameters. In practice, to obtain an

048 ¹For simplicity in the introduction, we assume that $d = \Theta(n)$. In the regime when $n \gg d$, the IPM iteration
049 complexity improves to $\tilde{O}(\sqrt{d})$.

050 ²The original result is $O(pn^{\frac{p-2}{3p-2}} \log(\frac{\|x^{(0)}\|_p^p - \|x^*\|_p^p}{\epsilon}))$ for finding \hat{x} such that $\|\hat{x}\|_p^p \leq \min_{x:Ax=b} \|x\|_p^p +$
051 ϵ . This translates to $O(pn^{\frac{p-2}{3p-2}} \log(\frac{\|x^{(0)}\|_p^p - \|x^*\|_p^p}{p\epsilon\|x^*\|_p^p})) = O(p^2 n^{\frac{p-2}{3p-2}} \log(\frac{n}{\epsilon}))$ for finding \hat{x} such that $\|\hat{x}\|_p \leq$
052 $(1 + \epsilon) \min_{x:Ax=b} \|x\|_p$ for $x^{(0)}$ initialized to $\min_{x:Ax=b} \|x\|_2$.

054 efficient implementation, hyperparameters require tuning. Due to these reasons, this theoretical
 055 algorithm by Adil et al. (2019a; 2024) does not provide a practical implementation. On the other hand,
 056 an algorithm known as p -IRLS by Adil et al. (2019b) has been shown to have significant speed up over
 057 standard solvers such as CVX. This algorithm is implemented based on an Iteratively Reweighted
 058 Least Squares (IRLS) method, which is a general iterative framework for solving regression problems.
 059 The key element of an IRLS method is solving a weighted least squares regression problem in each
 060 iteration. This is equivalent to solving a linear system of the form $\min_{x \in \mathbb{R}^n: Ax=b} x^\top Rx$, where R is
 061 a diagonal matrix, which can be computed very efficiently in practice with the advance of numerical
 062 solvers. IRLS algorithms are favored in practice (Burrus, 2012), but designing IRLS algorithms with
 063 strong convergence guarantees is challenging. In particular, to obtain the efficiency, the algorithm by
 064 Adil et al. (2019b) sacrifices the theoretical guarantee, requiring $O(p^3 n^{\frac{p-2}{2p-2}} \log(\frac{n}{\epsilon}))$ linear system
 065 solves. This brings forth the question:

066 *Can we design an algorithm that retains the empirical efficiency of an IRLS approach while
 067 achieving the state-of-the-art theoretical runtime?*

069 In this work, we give a positive answer to this question. We provide a new algorithmic framework for
 070 ℓ_p regression based on an IRLS approach for all values of $p \in (1, \infty)$. We propose an algorithm that
 071 uses $O(p^2 n^{\frac{p-2}{3p-2}} \log(\frac{n}{\epsilon}))$ linear system solves, matching the state-of-the-art theoretical algorithm
 072 by Adil et al. (2019a), and improving upon the guarantee of $O(p^3 n^{\frac{p-2}{2p-2}} \log(\frac{n}{\epsilon}))$ for the p -IRLS
 073 algorithm by Adil et al. (2019b). We experimentally compare our algorithm with the p -IRLS algorithm
 074 (Adil et al., 2019b) and CVX solvers, and we observe significant improvements in all instances.

076 1.1 OUR CONTRIBUTIONS

078 For the simplicity of the exposition, we study the ℓ_p regression problem in both low and high precision
 079 regimes for $p \geq 2$.

080 *Remark 1.1.* In Appendix B, we show a simple reduction for the more general problem
 081 $\min_{x: Ax=b} \|Nx - v\|_p$ to the form $\min_{x: \tilde{A}x=\tilde{b}} \|x\|_p$ with the dependence of the runtime on the
 082 number of rows of N instead of the dimension of x . We also show in Appendix C a reduction for the
 083 case $1 < p < 2$ to the case $p \geq 2$.

084 In the low precision regime when the runtime dependence on ϵ is $\text{poly}(\frac{1}{\epsilon})$, we have the following
 085 theorem.

086 **Theorem 1.1.** *For any $p \geq 2$, there is an iterative algorithm for the ℓ_p regression problem
 087 $\min_{x \in \mathbb{R}^n: Ax=b} \|x\|_p$ that solves $O(\log \log n + \log(1/\epsilon))$ subproblems, each of which makes
 088 $O\left(\left(\frac{1}{\epsilon}\right)^{\frac{2p-3}{p-2}} + n^{\frac{p-2}{3p-2}}\left(\frac{1}{\epsilon}\right)^{\frac{3p^2-4p}{3p^2-8p+4}}\right) \log\left(\frac{n}{\epsilon^{\frac{p}{p-2}}}\right)$ calls to solve a linear system of the form
 089 $ADA^\top \phi = b$, where D is an arbitrary non-negative diagonal matrix.*

090 *Remark 1.2.* When $p = \infty$, each subproblem makes $O\left(\frac{1}{\epsilon^2} + \frac{n^{\frac{1}{2}}}{\epsilon} \log(\frac{n}{\epsilon})\right)$ calls to a linear system
 091 solver.

092 Prior approaches for solving ℓ_p regression problem in the low precision regime commonly use the
 093 Taylor expansion of $\|x\|_p^p$, which then allows for deriving and bounding the updates. In contrast
 094 to this, our algorithm relies on a primal-dual approach using the dual formulation of the squared
 095 objective $\min_{x: Ax=b} \|x\|_p^2 = \min_{x: Ax=b} \|x^2\|_{p/2} = \max_r \frac{\mathcal{E}(r)}{\|r\|_q}$ where ℓ_q is the dual norm of $\ell_{p/2}$
 096 and $\mathcal{E}(r) = \min_{x: Ax=b} \langle r, x^2 \rangle$. The term $\mathcal{E}(r)$ is often referred to as the energy. The high level idea
 097 of our approach is as follows. Starting with an initial solution r for the dual problem, we will increase
 098 the coordinates of r as much as possible so that the increase in the energy $\mathcal{E}(r)$ relative to the increase
 099 of $\|r\|_q$ is also sufficiently large, until we can obtain a $(1 - \epsilon)$ optimal dual solution and whereby
 100 recover an approximately optimal primal solution. This template is close to the approach for ℓ_∞
 101 regression by Ene and Vladu (2019). However, ℓ_p regression does not have the readily decomposable
 102 structure along the coordinates as ℓ_∞ regression and novel technique is required in the design of
 103 the algorithm. Our approach is also a reminiscence of the width-independent multiplicative weights
 104 update method for solving mixed packing covering linear program, where in each step the algorithm
 105 updates the coordinates to maximize the bang-for-buck ratio (Quanrud, 2020). In contrast to MWU,
 106 we do not use a mirror map or regularize ℓ_p norms to make them smooth as in standard approaches.

108 Our scheme allows our method to take much longer steps, where in each step, the coordinates of the
 109 dual solution are allowed to change by large polynomial factors and thereby achieve faster running
 110 time.

111 To obtain faster algorithms in the high accuracy regime with a logarithmic dependence on the accuracy,
 112 we adapt the iterative refinement approach of Adil et al. (2019a) and obtain improved running times.

113 **Theorem 1.2.** *For any $p \geq 2$, there is an iterative algorithm for the ℓ_p regression problem
 114 $\min_{x \in \mathbb{R}^n : Ax=b} \|x\|_p$ that solves $O(p^2 \log n \log(\frac{n}{\epsilon}))$ subproblems, each of which makes $O(n^{\frac{p-2}{3p-2}})$
 115 calls to solve a linear system of the form $\tilde{A}D\tilde{A}^\top \phi = z$, where D is an arbitrary non-negative
 116 diagonal matrix, \tilde{A} is a matrix obtained from A by appending a single row, and z is a vector obtained
 117 from the all-zero vector by appending a single non-zero coordinate.*

118 Using the iterative refinement template by (Adil et al., 2019a;b; 2024), we instead use an IRLS solver
 119 for the residual problems with improved runtime. The residual solver solves a mixed $\ell_p + \ell_2$ problem
 120 in the form $\min_{x: Ax=b} \|x\|_p^2 + \langle \theta, x^2 \rangle$, only to a constant approximation. Here the challenge lies
 121 in the fact that the ℓ_2 term makes the dual problem no longer scale-free and thus our low precision
 122 solver is not immediately usable. However, by an appropriate initialization of the dual solution and
 123 careful adjustments to the step size, our algorithm achieves the desired $O(n^{\frac{p-2}{3p-2}})$ bound. Since
 124 regularized $\ell_p + \ell_2$ regression problems arise in many applications in machine learning and beyond,
 125 our algorithm for the mixed $\ell_p + \ell_2$ objective is of independent interest.

126 Finally, we experimentally evaluate our high-precision algorithm. Our algorithm significantly
 127 outperforms the p -IRLS algorithm (Adil et al., 2019a) both in the number of linear system solves as
 128 well as the overall running time. Our algorithm is significantly faster than CVX solvers and is able to
 129 run on large instances, which is not possible for CVX solvers within a time constraint.

132 1.2 RELATED WORK

133 ℓ_p regression problems have received significant attention. Here we summarize the results that are
 134 closest to our work. The surveyed algorithms are iterative algorithms where the running time of each
 135 iteration is dominated by a single linear system solve.

136 Algorithms based on interior point methods use $\tilde{O}(\sqrt{n})$ iterations for any $p \in [1, \infty]$ (Nesterov
 137 and Nemirovskii, 1994), which was improved to $\tilde{O}(\sqrt{d})$ iterations for $p \in \{1, \infty\}$ (Lee and
 138 Sidford, 2014). Bubeck-Cohen-Lee-Li (Bubeck et al., 2018) show that this iteration bound is
 139 generally necessary for interior point methods and propose a homotopy-based algorithm that uses
 140 $\tilde{O}(\text{poly}(\frac{p^2}{p-1}) \cdot n^{1/2-1/p})$ iterations for any $p \notin \{1, \infty\}$. Adil et al. (2019a; 2024) introduced
 141 an iterative refinement framework that uses $O(p^2 \cdot n^{\frac{p-2}{3p-2}} \log(\frac{n}{\epsilon}))$ iterations for any $p > 2$. Using
 142 Lewis weight sampling, Jambulapati-Liu-Sidford (Jambulapati et al., 2022) improve the method
 143 by Adil et al. (2019a; 2024) to $O(p^p \cdot d^{\frac{p-2}{3p-2}} \text{polylog}(\frac{n}{\epsilon}))$, for overconstrained regression problems
 144 $\min_{x \in \mathbb{R}^d} \|Ax - b\|_p$ where $A \in \mathbb{R}^{n \times d}$ and n is much larger than d (the iteration complexity of
 145 the prior algorithms will still depend on the larger dimension n in this case). Bullins (2018) gives
 146 a faster algorithm for minimizing structured convex quartics, which implies an algorithm for ℓ_4
 147 regression with $\tilde{O}(n^{\frac{1}{5}})$ iterations. Building on the work of Christiano et al. (2011); Chin et al.
 148 (2013) for maximum flows and regression, Ene and Vladu (2019) give an algorithm for ℓ_1 and ℓ_∞
 149 regression using $O(\frac{n^{1/3} \log(1/\epsilon)}{\epsilon^{2/3}} + \frac{\log n}{\epsilon^2})$ iterations. This work also uses a primal-dual framework
 150 but the algorithm and analysis are specific to the special structure of the ℓ_1 and ℓ_∞ norm and work
 151 only in the low precision regime with $\text{poly}(\frac{1}{\epsilon})$ convergence.

152 2 OUR ALGORITHM WITH $\text{poly}(\frac{1}{\epsilon})$ CONVERGENCE

153 In this section, we present our algorithm with guarantee provided in Theorem 1.1.

154 Before describing the algorithm, we first introduce some basic notations. For a constant $a \in \mathbb{R}$, we
 155 abuse the notation and use $a \in \mathbb{R}^n$ to denote the vector with all entries equal to a (the dimension will
 156 be clear from context). When it is clear from the context, we apply scalar operations to vectors with

162 **Algorithm 1** ℓ_{2p} -minimization(A, b, ϵ)
163
164 **Input:** Matrix $A \in \mathbb{R}^{d \times n}$, vector $b \in \mathbb{R}^d$, accuracy ϵ
165 **Output:** Vector x such that $Ax = b$ and $\|x\|_{2p} \leq (1 + \epsilon) \min_{x:Ax=b} \|x\|_{2p}$
166 Initialize $x^{(0)} = \min_{x:Ax=b} \|x\|_2$
167 $L = \max \left\{ i : (1 + \epsilon)^i \leq \frac{\|x^{(0)}\|_2}{n^{\frac{1}{2} - \frac{1}{2p}}} \right\}; U = \min \left\{ i : (1 + \epsilon)^i \geq \|x^{(0)}\|_2 \right\}$
168
169 **while** $L < U$:
170 $P = \lfloor \frac{L+U}{2} \rfloor, M = (1 + \epsilon)^P$
171 **if** SubSolver(A, b, ϵ, M) is infeasible **then**
172 $L = P + 1$
173 **else**
174 Let $x^{(t+1)}$ be the output of SubSolver(A, b, ϵ, M)
175 $U = P; t \leftarrow t + 1$
176 **end if**
177 **end while**
178 **return** $x^{(t)}$

179 **Algorithm 2** SubSolver(A, b, ϵ, M)
180
181 **Input:** Matrix $A \in \mathbb{R}^{d \times n}$, vector $b \in \mathbb{R}^d$, accuracy ϵ , target value M
182 **Output:** Vector x such that $Ax = b$ and $\|x\|_{2p} \leq (1 + \epsilon)M$,
183 or approximate infeasibility certificate $r, \|r\|_q = 1$.
184 $t = 0, r^{(0)} = \frac{1}{n^{1/q}}, t' = 0, s^{(t')} = 0$
185 **while** $\|(r^{(t)})\|_q \leq \frac{1}{\epsilon}$
186 $x^{(t)} = \arg \min_{x:Ax=b} \langle r^{(t)}, x^2 \rangle$
187 $\gamma_i^{(t)} = \begin{cases} \frac{x_i^2 \|r\|_q^{q-1}}{M^2 r_i^{q-1}} & \text{if } \frac{x_i^2 \|r\|_q^{q-1}}{r_i^{q-1}} \geq (1 + \epsilon)M^2, \text{ for all } i \\ 1 & \text{otherwise} \end{cases}$
188 **if** $\gamma^{(t)} = 1$ **then return** $x^{(t)}$ **end if** ▷ Case 1
189 $\alpha^{(t)} = (\gamma^{(t)})^{\frac{1}{q}}; r^{(t+1)} = r^{(t)} \cdot \alpha^{(t)}$
190 **if** $\alpha^{(t)} \leq n^{\frac{2}{2q+1}} \left(\frac{1}{\epsilon}\right)^{\frac{q-1}{2q+1}}$ **then** $s^{(t'+1)} = s^{(t')} + x^{(t)}; t' = t' + 1$ **end if**
191 **if** $t' > 0$ **and** $\|s^{(t')}/t'\|_{2p} \leq (1 + \epsilon)M$ **then return** $s^{(t')}/t'$ **end if** ▷ Case 2
192 $t = t + 1$
193 **end while**
194 **return** $r^{(t)}$ ▷ Case 3

195
196 the interpretation that they are applied coordinate-wise. For $p \geq 1$, we let q be such that $\frac{1}{p} + \frac{1}{q} = 1$
197 and ℓ_q is the dual norm of the ℓ_p norm.

203 **2.1 OUR ALGORITHM**

204
205 For ease of notation, it is convenient to consider the following equivalent formulation of the problem:
206 For $p \geq 1$, we solve $\min_{x:Ax=b} \|x\|_{2p}^2 = \min_{x:Ax=b} \|x^2\|_p$ to $(1 + \epsilon)$ multiplicative error. We
207 provide our algorithm in Algorithms 1 and 2. We give an overview of our approach and explain the
208 intuition in the following section.

209

210 **2.2 OVERVIEW OF OUR APPROACH**

211

212 Our algorithm is based on a primal-dual approach, starting with the following dual formulation of the
213 problem. Using q as the dual norm of p and by duality, we write

214
215
$$\min_{x:Ax=b} \|x\|_{2p} = \min_{x:Ax=b} \|x^2\|_p = \min_{x:Ax=b} \max_{r: \|r\|_q \leq 1} \langle r, x^2 \rangle = \max_{r \geq 0} \min_{x:Ax=b} \langle r, x^2 \rangle = \max_{r \geq 0} \frac{\mathcal{E}(r)}{\|r\|_q},$$

216 where we defined $\mathcal{E}(r) := \min_{x:Ax=b} \langle r, x^2 \rangle$. The main part of our algorithm is the subroutine
 217 shown in Algorithm 2, which takes as input a guess M for the optimum value $\|x^*\|_{2p}$. To find an
 218 $(1 + \epsilon)$ approximation of the optimum value, the main Algorithm 1 performs a binary search as
 219 follows. Since $x^{(0)}$ is initialized to $\min_{x:Ax=b} \|x\|_2$, we can show that $\|x^*\|_p$ is contained in the
 220 range $\left[\frac{\|x^{(0)}\|_2}{n^{\frac{1}{2} - \frac{1}{2p}}}, \|x^{(0)}\|_2 \right]$. The algorithm performs binary search over the indices i such that $(1 + \epsilon)^i$
 221 is in that range. Note that the main algorithm only needs to perform at most $\log\left(\frac{\log n}{\epsilon}\right)$ iterations,
 222 each of which makes one call to the subproblem solver.

223 We now focus on the subproblem when we are given a guess M and a target precision ϵ . The goal is to
 224 find a primal solution x that satisfies $\|x\|_{2p} \leq M(1 + \epsilon)$ or a dual solution r (infeasibility certificate)
 225 which can certify that $\min_{x:Ax=b} \|x\|_{2p}^2 \geq \frac{\mathcal{E}(r)}{\|r\|_q} \geq \left(\frac{M}{1+\epsilon}\right)^2$. This lower bound on the optimal value
 226 of the problem tells us that we can increase the guess M .

227 The objective function $\mathcal{E}(r)$ has a very useful monotonicity property: it increases when r increases.
 228 The overall strategy of our algorithm is to start with an initial dual solution $r^{(0)}$ (which we initialize
 229 uniformly to $\frac{1}{n^{1/q}}$) and increase it while maintaining the following invariant

$$230 \quad \mathcal{E}(r^{(t+1)}) - \mathcal{E}(r^{(t)}) \geq M^2 (\|r^{(t+1)}\|_q - \|r^{(t)}\|_q), \quad (1)$$

231 or equivalently,

$$232 \quad \frac{\mathcal{E}(r^{(t+1)}) - \mathcal{E}(r^{(t)})}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq M^2.$$

233 The telescoping property of both sides of (1) will guarantee that, if the algorithm outputs a dual
 234 solution r with sufficiently large $\|r\|_q$, this solution will satisfy $\mathcal{E}(r) \geq \left(\frac{M}{1+\epsilon}\right)^2 \|r\|_q$, i.e., $\frac{\mathcal{E}(r)}{\|r\|_q} \geq$
 235 $\left(\frac{M}{1+\epsilon}\right)^2$. To maintain the invariant 1, we have two useful bounds for the change in the objective and
 236 dual solution:

$$237 \quad \mathcal{E}(r^{(t+1)}) - \mathcal{E}(r^{(t)}) \geq \sum_i r_i^{(t)} \left(x_i^{(t)} \right)^2 \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right), \quad (2)$$

$$238 \quad \frac{1}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq \frac{q \|r^{(t)}\|_q^{q-1}}{\sum_i \left(r_i^{(t+1)} \right)^q - \left(r_i^{(t)} \right)^q}. \quad (3)$$

239 Both inequalities allow us to decompose the invariant along the coordinates. That is, we can maintain
 240 the invariant by ensuring for each coordinate i that we increase that

$$241 \quad \frac{q \|r^{(t)}\|_q^{q-1} r_i^{(t)} \left(x_i^{(t)} \right)^2}{\left(r_i^{(t+1)} \right)^q - \left(r_i^{(t)} \right)^q} \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right) \geq M^2.$$

242 In order to do this, we update each $r_i^{(t)}$ multiplicatively, via the term $\gamma_i^{(t)} = \frac{\|r^{(t)}\|_q^{q-1}}{\left(r_i^{(t)} \right)^{q-1}} \cdot \frac{\left(x_i^{(t)} \right)^2}{M^2}$.

243 To guarantee fast convergence, we want to increase $r_i^{(t)}$ as much as possible, by setting a target
 244 threshold on $\gamma_i^{(t)}$: if $\gamma_i^{(t)}$ exceeds the threshold, we update $r_i^{(t+1)} = r_i^{(t)} \left(\gamma_i^{(t)} \right)^{1/q}$; otherwise, $r_i^{(t)}$
 245 remains unchanged. When we can no longer increase r while preserving the invariant, we can be
 246 sure that we have found the corresponding primal solution x with small norm. During the course of
 247 the algorithm, we also keep track of iterations with small increases in r and use the uniform average
 248 over the corresponding primal solutions to obtain an approximately feasible primal solution, in case
 249 the algorithm fails to return an infeasibility certificate quickly enough.

250 We note that our update approach is derived in a completely different way from standard iterative
 251 frameworks such as multiplicative weights updates and, generally, mirror descent. In contrast to

270 **Algorithm 3** Iteratively Reweighted Least Squares

271 **Input:** Matrix $A \in \mathbb{R}^{d \times n}$, vector $b \in \mathbb{R}^d$, ϵ

272 **Output:** Vector x such that $Ax = b$ that minimizes $\|x\|_p^p$

273 Initialize $x^{(0)} = \arg \min_{x: Ax=b} \|x\|_2^2$

274 $M^{(0)} := \frac{\|x^{(0)}\|_p^p}{16p}$, $t \leftarrow 0$; $\kappa = \begin{cases} 1 & \text{if } p \leq \frac{2 \log n}{\log n - 1} \\ \frac{p}{p-2} & \text{otherwise} \end{cases}$

275 **while** $M^{(t)} \geq \frac{\epsilon}{16p(1+\epsilon)} \|x^{(t)}\|_p^p$

276 $g^{(t)} = |x^{(t)}|^{p-2} x^{(t)}$; $R^{(t)} = 2 |x^{(t)}|^{p-2}$

277 $\tilde{\Delta} \leftarrow \text{ResidualSolver}\left(\frac{p}{2}, \begin{bmatrix} A \\ (g^{(t)})^\top \end{bmatrix}, \left[0, \frac{M^{(t)}}{2}\right], (M^{(t)})^{\frac{2-p}{p}} R^{(t)}, 2\sqrt{\kappa}(M^{(t)})^{\frac{1}{p}}\right)$

278 **if** $\tilde{\Delta}$ is an infeasibility certificate or $\langle R^{(t)}, \tilde{\Delta}^2 \rangle \geq 2M^{(t)}$ **then**

279 $M^{(t+1)} \leftarrow M^{(t)}/2$, $x^{(t+1)} = x^{(t)}$

280 **else**

281 $M^{(t+1)} \leftarrow M^{(t)}$, $x^{(t+1)} = x^{(t)} - \frac{\tilde{\Delta}}{64p\kappa}$

282 **end if**

283 $t \leftarrow t + 1$

284 **end while**

285 **return** $x^{(t)}$

291

292 these standard approaches, we do not use a mirror map or regularize ℓ_p norms to make them smooth.

293 Our update scheme allows our algorithm to take much longer steps, and the coordinates of the dual

294 solution are allowed to change by large polynomial factors in each step. This allows us to obtain a

295 fast convergence rate.

296 We provide the complete analysis and proof of Theorem 1.1 in Appendix D.

299 **3 OUR ALGORITHM WITH $\log\left(\frac{1}{\epsilon}\right)$ CONVERGENCE**

301 **3.1 ALGORITHM**

302 In this section, we present our algorithm with guarantee provided in Theorem C.1. For the ease of the

303 exposition, we consider a slight variation of the problem: for $p \geq 2$, we solve $\min_{x: Ax=b} \|x\|_p^p$ to

304 $(1 + \epsilon)$ multiplicative error. We show our algorithm in Algorithms 3 and 4.

306 **3.2 OVERVIEW OF OUR APPROACH**

308 At the highest level, the main algorithm relies on a simple yet powerful observation by Adil et al.

309 (2019a), which is that the ℓ_p minimization problem we are attempting to solve supports iterative

310 refinement. Adil et al. (2019a) show that having access to a weak solver which gives a constant

311 factor multiplicative approximation to a mixed objective of ℓ_p and ℓ_2 norms suffices to boost the

312 multiplicative error to $1 + \epsilon$ while only making $\tilde{O}_p(\log 1/\epsilon)$ calls to the solver. This reduces the

313 entire difficulty of the problem to implementing the weak solver.

315 More precisely, starting with an initial solution (set to $\arg \min_{x: Ax=b} \|x\|_2$), we maintain $M^{(t)}$ as an

316 upper bound for the function value gap, ie. $\|x^{(t)}\|_p^p - \|x^*\|_p^p \leq 16pM^{(t)}$. We show this invariant in

317 Lemma E.2. In each iteration, the algorithm makes a call to a solver for the residual problem which

318 approximates the function value progress $\|x\|_p^p - \|x - \Delta\|_p^p$ if we update the solution $x \leftarrow x - \Delta$. The

319 residual solution tells us either the progress is too small, in which case we can improve the upperbound

320 on the suboptimality gap by reducing $M^{(t)}$, or the progress is at least $\Omega(M^{(t)})$, in which case we

321 can perform the update and obtain a new solution. This new solution improves the function value gap

322 by at least a factor $1 - \Omega\left(\frac{1}{p}\right)$, and thus the algorithm requires only $O\left(p \log \frac{\|x^{(0)}\|_p^p - \|x^*\|_p^p}{\epsilon \|x^*\|_p^p}\right)$ calls

323 to the residual solver. We show this guarantee in Lemma E.2.

324 **Algorithm 4** ResidualSolver(p, A, b, θ, M)
325
326 **Input:** Matrix $A \in \mathbb{R}^{d \times n}$, vector $b \in \mathbb{R}^d$, target value M , weight θ
327 **Output:** Vector x such that $Ax = b$, $\|x\|_{2p} \leq 2M$ and $\langle \theta, x^2 \rangle \leq \min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle$
328 or approximate infeasibility certificate r , $\|r\|_q = 1$.
329 **if** $p \leq \frac{\log n}{\log n-1}$ **then**
330 $r = \frac{1}{\frac{1}{\lambda}}; \hat{x} = \arg \min_{x:Ax=b} \langle r + \theta, x^2 \rangle$
331 **if** $\|\hat{x}\|_{2p} \leq 2M$ **then return** \hat{x} **else return** r **end if**
332 **else**
333 $t = 0, r^{(0)} = \frac{2q-1}{2qn^{\frac{1}{q}}}, t' = 0, s^{(t')} = 0$
334 **while** $\left\| (r^{(t)})^q \right\|_1 \leq 1$ ▷ Case 1
335 $x^{(t)} = \arg \min_{x:Ax=b} \langle r^{(t)} + \theta, x^2 \rangle$
336 $\gamma_i^{(t)} = \begin{cases} \frac{x_i^2 \|r\|_q^{q-1}}{M^2 r_i^{q-1}} & \text{if } \frac{x_i^2 \|r\|_q^{q-1}}{r_i^{q-1}} \geq 2M^2, \text{ for all } i \\ 1 & \text{otherwise} \end{cases}$
337 $\alpha_i^{(t)} = \left(\gamma_i^{(t)} \right)^{1/q}$
338 **if** $\alpha^{(t)} = 1$ **then return** $x^{(t)}$ **end if**
339 $r^{(t+1)} = \alpha^{(t)} \cdot r^{(t)}$
340 **if** $\alpha^{(t)} \leq n^{\frac{2}{2q+1}}$ **then** $s^{(t+1)} = s^{(t')} + x^{(t)}; t' = t' + 1$ **end if**
341 **if** $t' > 0$ **and** $\left\| s^{(t')}/t' \right\|_{2p} \leq 2M$ **then return** $s^{(t')}/t'$ **end if** ▷ Case 2
342 $t = t + 1$
343 **end while**
344 **end if**
345 **return** $r^{(t)}$ ▷ Case 3
350
351

352 We give the pseudocode for the residual solver in Algorithm 4³. Prior works by Adil et al. (2019a;b;
353 2024) give algorithms for this solver either via a width-reduced multiplicative weights update method
354 which achieves the state-of-the-art theoretical runtime but does not support a practical implementation
355 or via a practical IRLS method with suboptimal theoretical guarantee. In contrast, we build on ideas
356 from the low precision IRLS solver we have shown in the previous section and design a new IRLS
357 algorithm that attains the best of both worlds.

358 Our residual solver outputs an approximate solution to a constant factor to the objective of the form
359

$$\min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle \quad (4)$$

360 for $p \geq 1$ and a positive weight vector $\theta \in \mathbb{R}^n$. We also start with the dual formulation of the problem
361

$$(4) = \min_{x:Ax=b} \max_{r: \|r\|_q=1} \langle r, x^2 \rangle + \langle \theta, x^2 \rangle = \max_{r \geq 0: \|r\|_q=1} \min_{x:Ax=b} \langle r + \theta, x^2 \rangle = \max_{r \geq 0} \mathcal{E} \left(\frac{r}{\|r\|_q} + \theta \right),$$

362 where q is the dual norm to p and $\mathcal{E}(r + \theta) = \min_{x:Ax=b} \langle r + \theta, x^2 \rangle$. Given a target M , our goal
363 is to find a primal solution x that satisfies $\|x\|_{2p} \leq 2M$ and $\langle \theta, x^2 \rangle \leq \min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle$
364 or a dual solution $r \in \mathbb{R}^n$ (infeasibility certificate) which can certify that $\min_{x:Ax=b} \|x\|_{2p}^2 \geq$
365 $\mathcal{E} \left(\frac{r}{\|r\|_q} + \theta \right) \geq \frac{M^2}{2\kappa}$, where κ is a value set as shown in Algorithm 3.

366 We distinguish between two regimes: when p is sufficiently small, $1 \leq p \leq \frac{\log n}{\log n-1}$ for which we
367 will show that we can obtain a solution by $O(1)$ calls to the linear solver, and when $p > \frac{\log n}{\log n-1}$, to
368

369 ³Note that while the residual solver takes as input the original matrix A augmented with an extra row, the
370 least squares problems required by the residual solver reduce to least squares problems involving only A , using
371 the Sherman-Morrison formula. This guarantees that we only require a linear system solver for structured
372 matrices of the form $A^\top D A$, for non-negative diagonal D .

Figure 1: Performance on random matrices: $\min \|Ax - b\|_p^p$ with $\epsilon = 10^{-10}$. We compare our algorithm with CVX using SDPT3 and SeDuMi solvers and p -IRLS by Adil et al. (2019b). Figures (a),(b),(e),(f) plot the average and standard deviation of number of iterations and time taken by the solvers to find a solution over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

which we need to pay more attention. In the latter case, similarly to Algorithm 2, we want to maintain the invariant

$$\frac{\mathcal{E}(r^{(t+1)} + \theta) - \mathcal{E}(r^{(t)} + \theta)}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq M^2.$$

Notice the differences between this objective and the problem $\min_{x:Ax=b} \|x^2\|_p$ which we solve in the previous section. The ℓ_2 term $\langle \theta, x^2 \rangle$ makes this objective no longer scale-free. However, this ℓ_2 term does not affect the lower bound $\sum_i r_i^{(t)} \left(x_i^{(t)} \right)^2 \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right)$ in the change in the objective (eq. (2)); thus it suffices to maintain $\frac{\sum_i r_i^{(t)} \left(x_i^{(t)} \right)^2 \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right)}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq M^2$ in order to guarantee the invariant $\frac{\mathcal{E}(r^{(t+1)} + \theta) - \mathcal{E}(r^{(t)} + \theta)}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq M^2$. At the same time, if we maintain $\|r\|_q \leq 1$, we can show that if the algorithm outputs a primal solution x , the ℓ_2 term $\langle \theta, x^2 \rangle \leq \min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle$. This requires us to initialize r with sufficiently small $\|r\|_q$. Algorithm 4 then follows similarly to Algorithm 2, with the note that it suffices to obtain only a constant approximation. We give the correctness and convergence of Algorithm 4 in Lemma E.1 whose proof is based on the same idea as the analysis for Algorithm 2.

The complete analysis of our algorithm is provided in Appendix E.

4 EXPERIMENTAL EVALUATION

On synthetic data. We follow the experimental setup in Adil et al. (2019b), and build on the provided code⁴. We evaluate the performance of our high-precision Algorithm 3 on the problem $\min \|Ax - b\|_p^p$ on two types of instances: (1) Random matrices: the entries of A and b are generated uniformly at randomly between 0 and 1, and (2) Random graphs: We use the procedure in Adil et al. (2019b) to generate random graphs and the corresponding A and b (the details are provided in the appendix).

We vary p and the size of the matrices and graphs, while keeping the error $\epsilon = 10^{-10}$. All implementations were done on MATLAB 2024a on a MacBook Pro M2 with 16GB RAM. We measure

⁴The code is available at <https://github.com/fast-algos/pIRLS>

Figure 2: Performance on random graph instances: $\min \|Ax - b\|_p^p$ with $\epsilon = 10^{-10}$. We compare our algorithm with CVX using SDPT3 and SeDuMi solvers and p -IRLS by Adil et al. (2019b). Figures (a),(b),(e),(f) measure over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

Table 1: Performance of our algorithm against p -IRLS on six real-world datasets for $p = 8$, $\epsilon = 10^{-10}$.

		CT slices Graf et al. (2011)	KEGG Metabolic Naeem and Asghar (2011)	Power Consump- tion Hebrail and Berard (2006)	Buzz in Social Media Kawala et al. (2013)	Protein Property Rana (2013)	Song Year Pre- diction Bertin- Mahieux (2011)
	Size	48150 $\times 385$	57248 $\times 27$	1844352 $\times 11$	524925 $\times 77$	41157×9	463811 $\times 90$
no. iters	p -IRLS	48	50	45	50	44	45
	Ours	36	42	36	42	36	36
time (s)	p -IRLS	14.3	2.5	32.	28.	1.6	22.5
	Ours	9.2	1.7	15.7	18.1	1.1	13.3

the number of iterations and running time for each algorithm and report them in Figures 1-2. In the appendix, we provide additional experimental results when $1 < p < 2$ and when ϵ varies.

On real-world datasets. We test our algorithm against p -IRLS on six regression datasets from the UCI repository. CVX has excessive runtime and hence is excluded from the comparison. Results are provided in Table 1.

Remark 4.1. Regarding the correctness of the algorithm, we use the output by CVX as the baseline. In all experiments, our algorithm has error within the ϵ margin compared with the objective value of the CVX solution (see appendix).

On smaller instances, we compare our algorithm with CVX using SDPT3 and Sedumi solvers and the p -IRLS algorithm by Adil et al. (2019b). While CVX solvers generally need fewer iterations to find a solution, they are significantly slower on all instances than our algorithm and p -IRLS. Our algorithm also significantly outperforms p -IRLS in both the number of iterations (calls to a linear system solver) and running time. When the size of the problem and the value of p increases, the gap between our algorithm and p -IRLS also increases. On average, our algorithm is 1-2.6 times faster than p -IRLS.

486 REPRODUCIBILITY STATEMENT
487488 For the reproducibility purpose, we submitted the source code in the supplementary material. We
489 included the MATLAB implementation by Adil et al. (2019b).
490491 REFERENCES
492

493 Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for ℓ_p -norm
494 regression. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*,
495 pages 1405–1424. SIAM, 2019a.

496 Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent irls algorithm for
497 p -norm linear regression. *Advances in Neural Information Processing Systems*, 32, 2019b.

498 Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for ℓ_p -regression.
499 *J. ACM*, 71(5):34:1–34:45, 2024. URL <https://doi.org/10.1145/3686794>.

500 Ahmed El Alaoui. Asymptotic behavior of ℓ_p -based laplacian regularization in semi-
501 supervised learning. In *COLT*, volume 49 of *JMLR Workshop and Conference Proceedings*,
502 pages 879–906. JMLR.org, 2016.

503 T. Bertin-Mahieux. Year Prediction MSD. UCI Machine Learning Repository, 2011. DOI:
504 <https://doi.org/10.24432/C50K61>.

505 Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for ℓ_p
506 regression provably beyond self-concordance and in input-sparsity time. In *Proceedings of the*
507 *50th Annual ACM SIGACT Symposium on Theory of Computing*, pages 1130–1137. ACM, 2018.

508 Brian Bullins. Fast minimization of structured convex quartics. *arXiv preprint arXiv:1812.10349*,
509 2018.

510 C Sidney Burrus. Iterative reweighted least squares. *OpenStax CNX. Available online: <http://cnx.org/contents/92b90377-2b34-49e4-b26f-7fe572db78a1>*, 12(2012):6, 2012.

511 Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees for
512 regression problems. In Robert D. Kleinberg, editor, *Innovations in Theoretical Computer Science*,
513 *ITCS '13, Berkeley, CA, USA, January 9-12, 2013*, pages 269–282. ACM, 2013. ISBN 978-1-4503-
514 1859-4. doi: 10.1145/2422436.2422469. URL <https://doi.org/10.1145/2422436.2422469>.

515 Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng.
516 Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected
517 graphs. In Lance Fortnow and Salil P. Vadhan, editors, *Proceedings of the 43rd ACM Symposium*
518 *on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011*, pages 273–282. ACM,
519 2011. ISBN 978-1-4503-0691-1. doi: 10.1145/1993636.1993674. URL <https://doi.org/10.1145/1993636.1993674>.

520 Alina Ene and Adrian Vladu. Improved convergence for ℓ_1 and ℓ_∞ regression via iteratively
521 reweighted least squares. In *International Conference on Machine Learning*, pages 1794–1801,
522 2019.

523 F. Graf, H.-P. Kriegel, M. Schubert, S. Poelsterl, and A. Cavallaro. Relative location of CT slices on
524 axial axis. UCI Machine Learning Repository, 2011. DOI: <https://doi.org/10.24432/C5CP6G>.

525 Georges Hebrail and Alice Berard. Individual Household Electric Power Consumption. UCI Machine
526 Learning Repository, 2006. DOI: <https://doi.org/10.24432/C58K54>.

527 Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance
528 sampling is nearly optimal. In *STOC*, pages 1416–1429. ACM, 2020.

529 Lingxiao Huang, Shaofeng H.-C. Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for robust
530 clustering. In *ICLR*. OpenReview.net, 2023.

540 Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration complexities for overcon-
 541 strained p-norm regression. In *Proceedings of the 54th Annual ACM SIGACT Symposium on*
 542 *Theory of Computing*, pages 529–542, 2022.

543

544 Franois Kawala, Ahlame Douzal, Eric Gaussier, and Eustache Diemert. Buzz in social media . UCI
 545 Machine Learning Repository, 2013. DOI: <https://doi.org/10.24432/C56G6V>.

546

547 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
 548 programs in $\mathcal{O}(\text{vrank})$ iterations and faster algorithms for maximum flow. In *2014 IEEE 55th*
 549 *Annual Symposium on Foundations of Computer Science*, pages 424–433. IEEE, 2014.

550

551 Meng Liu and David F. Gleich. Strongly local p-norm-cut algorithms for semi-supervised learning
 552 and local graph clustering. In *NeurIPS*, 2020.

553

554 Xiangrui Meng and Michael Mahoney. Robust regression on mapreduce. In *International Conference*
 555 *on Machine Learning*, pages 888–896. PMLR, 2013.

556

557 Muhammad Naeem and Sohail Asghar. KEGG Metabolic Relation Network (Directed). UCI Machine
 558 Learning Repository, 2011. DOI: <https://doi.org/10.24432/C5CK52>.

559

560 Yurii Nesterov and Arkadii Nemirovskii. *Interior-point polynomial algorithms in convex program-*
 561 *ming*. SIAM, 1994.

562

563 Kent Quanrud. Nearly linear time approximations for mixed packing and covering problems without
 564 data structures or randomization. In *Symposium on Simplicity in Algorithms*, pages 69–80. SIAM,
 565 2020.

566

567 Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
 568 Repository, 2013. DOI: <https://doi.org/10.24432/C5QW3H>.

569

A PROPERTY OF THE ENERGY FUNCTION

570 We recall the definition of energy function and its properties used in the algorithms.

571 **Definition A.1.** (Energy function). Given a vector $r \in \mathbb{R}_+^n$, we let the electrical energy be $\mathcal{E}(r) = \min_{x:Ax=b} \langle r, x^2 \rangle$.

572 **Lemma A.1.** (Computing the energy minimizer) Given $b \in \mathbb{R}^d$ and $r \in \mathbb{R}_+^n$, the least squares
 573 problem $\min_{x:Ax=b} \langle r, x^2 \rangle$ can be solved by evaluating $x = \mathbb{D}(r)^{-1} A^\top (A \mathbb{D}(r)^{-1} A^\top)^+ b$, where
 574 $\mathbb{D}(r)$ is the diagonal matrix whose entries are given by r .

575 The following lemma gives us a lower bound on the increase in electrical energy when we increase r .

576 **Lemma A.2.** Given $r' \geq r$ and letting $x = \arg \min_{x:Ax=b} \langle r, x^2 \rangle$, one has that

$$577 \mathcal{E}(r') - \mathcal{E}(r) \geq \sum_i r_i x_i^2 \left(1 - \frac{r_i}{r'_i}\right).$$

585 *Proof.* This inequality follows from the standard lower bound for $\mathcal{E}(r') - \mathcal{E}(r)$, which the reader can
 586 find in Ene and Vladu (2019). \square

B REDUCING GENERAL REGRESSION PROBLEMS TO THE 589 AFFINE-CONSTRAINED VERSION

592 In this section we show that the affine constrained version of the problem we consider is in full
 593 generality. Formally, we show that any ℓ_p regression problem of the form $\min_{Ax=b} \|Nx - v\|_p$ can
 be reduced to the form we consider.

594 **Lemma B.1.** Let $A \in \mathbb{R}^{s \times n}$, $b \in \mathbb{R}^s$, $N \in \mathbb{R}^{m \times n}$, $v \in \mathbb{R}^m$ and consider the optimization objective $\min_{Ax=b} \|Nx - v\|_p$. Let $\begin{bmatrix} x \\ z \end{bmatrix}$ be a $(1 + \varepsilon)$ approximate solution to the affine-constrained regression problem

$$\begin{bmatrix} N & -I_{m \times m} \\ A & 0_{s \times m} \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} v \\ b \end{bmatrix} \quad \min \|z\|_p.$$

602 Then x is a $(1 + \varepsilon)$ approximate solution to the original objective. Furthermore, each least squares
603 subproblem can be solved using two calls to a linear system solver for $N^\top RN$, and one call to a
604 linear system solver for $A(N^\top RN)^+ A^\top$.

606 *Proof.* We augment the dimension of the iterate by introducing m additional variables encoded in a
607 vector $z \in \mathbb{R}^m$. Hence one can equivalently enforce the constraints

$$\begin{aligned} Nx - z &= v \\ Ax &= b \end{aligned}$$

612 and simply seek to minimize $\|z\|_p$ instead of $\|Ax - b\|_p$, which is the suitable formulation required
613 by our solver. Note that while we do not have any weights on the x iterate, the analysis goes through
614 normally, since in fact it tolerates solving a more general weighted ℓ_p regression problem.

615 To solve the corresponding least squares problem, we need to compute

$$\begin{aligned} \min_{Ax=b} \frac{1}{2} \langle r, (Nx - v)^2 \rangle &= \min_{Ax=b} \frac{1}{2} x^\top N^\top RN x - \langle N^\top Rv, x \rangle + \frac{1}{2} v^\top Rv \\ &= \max_y \min_x \frac{1}{2} x^\top N^\top RN x - \langle N^\top Rv, x \rangle + \frac{1}{2} v^\top Rv + \langle b - Ax, y \rangle \\ &= \max_y \left(\langle b, y \rangle + \min_x \frac{1}{2} x^\top N^\top RN x - \langle N^\top Rv + A^\top y, x \rangle \right) - \frac{1}{2} v^\top Rv. \end{aligned}$$

624 where R is the diagonal matrix whose entries are given by r . The inner problem is minimized at

$$x = (N^\top RN)^+ (N^\top Rv + A^\top y),$$

628 which simplifies the problem to

$$\begin{aligned} \max_y \langle b, y \rangle - \frac{1}{2} (N^\top Rv + A^\top y)^\top (N^\top RN)^+ (N^\top Rv + A^\top y) - \frac{1}{2} v^\top Rv \\ = \max_y \langle b - A(N^\top RN)^+ N^\top Rv, y \rangle - \frac{1}{2} y^\top A(N^\top RN)^+ A^\top y \\ - \frac{1}{2} v^\top RN(N^\top RN)^+ N^\top Rv - \frac{1}{2} v^\top Rv, \end{aligned}$$

636 which is maximized at

$$y = (A(N^\top RN)^+ A^\top)^+ (b - A(N^\top RN)^+ N^\top Rv),$$

640 so

$$\begin{aligned} x &= (N^\top RN)^+ N^\top Rv + (N^\top RN)^+ A^\top (A(N^\top RN)^+ A^\top)^+ (b - N(N^\top RN)^+ N^\top Rv) \\ &= (N^\top RN)^+ (N^\top Rv + A^\top (A(N^\top RN)^+ A^\top)^+ (b - A(N^\top RN)^+ N^\top Rv)). \end{aligned}$$

646 We observe that to execute this step we require two calls to a solver for $N^\top RN$, and one call to a
647 solver for $A(N^\top RN)^+ A^\top$. \square

648 **C SOLVING ℓ_p REGRESSION FOR $1 \leq p < 2$**
 649

650 In this section we show that while our solvers are defined for ℓ_p regression when $p \geq 2$, they also
 651 provide solutions ℓ_q regression for $1 \leq q < 2$. This follows directly from exploiting duality. See Adil
 652 et al. (2019a), section 7.2 for a proof detailed. Here we briefly explain why this is the case. Let p, q
 653 such that $\frac{1}{p} + \frac{1}{q} = 1$, $1 \leq q < 2$, and consider the ℓ_q regression problem, along with its dual
 654

$$\min_{x: Ax=b} \|x\|_q = \max_{\|A^\top y\|_p \leq 1} \langle b, y \rangle.$$

655 We can use our solver to provide a high precision solution to the dual maximization problem, which
 656 we then show can be used to read off a primal nearly optimal solution. Indeed, we can equivalently
 657 solve
 658

$$\min_{\langle b, y \rangle = 1} \|A^\top y\|_p$$

659 to high precision $\varepsilon = \frac{1}{n^{O(1)}}$, based on which we construct the nearly-feasible primal solution
 660

$$x = \frac{\langle b, y \rangle}{\|A^\top y\|_p^p} \cdot (A^\top y)^{p-1}.$$

661 To see why this is a good solution, let us assume that we achieve exact gradient optimality for y ,
 662 which means that for some scalar λ ,

$$A (A^\top y)^{p-1} = b \cdot \lambda. \quad (5)$$

663 First let us verify that x is feasible. Using (5) we see that:

$$Ax = A \left(\frac{\langle b, y \rangle}{\|A^\top y\|_p^p} \cdot (A^\top y)^{p-1} \right) = \frac{\langle b, y \rangle}{\|A^\top y\|_p^p} \cdot A (A^\top y)^{p-1} = \left(\frac{\langle b, y \rangle}{\|A^\top y\|_p^p} \cdot \lambda \right) \cdot b.$$

664 Additionally we can also use (5) again to obtain that

$$\|A^\top y\|_p^p = \langle y, A (A^\top y)^{p-1} \rangle = \langle y, b \rangle \cdot \lambda,$$

665 which allows us to conclude that

$$Ax = b,$$

666 so x is feasible. Finally, we can measure the duality gap by calculating

$$\begin{aligned} \|x\|_q &= \frac{1}{\lambda} \left\| (A^\top y)^{p-1} \right\|_q = \frac{1}{\lambda} \cdot \left(\sum (A^\top y)^{(p-1)\frac{p}{p-1}} \right)^{\frac{p-1}{p}} = \frac{1}{\lambda} \|A^\top y\|_p^{p-1} \\ &= \frac{\langle y, b \rangle}{\|A^\top y\|_p^p} \cdot \|A^\top y\|_p^{p-1} = \frac{\langle y, b \rangle}{\|A^\top y\|_p}, \end{aligned}$$

667 which certifies optimality for b . While in general we do not solve the dual problem exactly, which
 668 yields a slight violation in the demand for the primal iterate x , this can be fixed by adding to x a
 669 flow $\tilde{x} = A^\top (AA^\top)^+ (b - Ax)$ that routes the residual demand. This affects the ℓ_q norm only
 670 slightly since the residual demand is guaranteed to be very small due to the near-optimality of the
 671 dual problem. Then we can proceed to bounding the duality gap by following the argument sketched
 672 above, while also carrying the polynomially small error through the calculation. We refer the reader
 673 to Adil et al. (2019a) for the detailed error analysis. We have the following theorem.

674 **Theorem C.1.** *For any $1 < p \leq 2$, there is an iterative algorithm for the ℓ_p regression problem
 675 $\min_{x \in \mathbb{R}^n: Ax=b} \|x\|_p$ that solves $O(q^2 \log n \log(\frac{n}{\epsilon}))$ subproblems, each of which makes $O(n^{\frac{q-2}{3q-2}})$
 676 calls to solve a linear system of the form $\tilde{A}D\tilde{A}^\top \phi = z$, where $q = \frac{p}{p-1}$, D is an arbitrary non-
 677 negative diagonal matrix, \tilde{A} is a matrix obtained from A by appending a single row, and z is a vector
 678 obtained from the all-zero vector by appending a single non-zero coordinate.*

698 **D PROOF OF THEOREM 1.1**
 699

700 In this section, we first outline the necessary lemmas needed to prove Theorem 1.1 before providing
 701 their proofs below.

702 **Correctness of Algorithm 2.** There are two possible outcomes of Algorithm 2. Either it returns a
 703 primal solution (Case 1 and Case 2) or a dual certificate (Case 3). In the former two cases, Case 2
 704 immediately gives us an approximate solution. We show in Lemma D.2 that the returned vector in
 705 Case 1 achieves the target approximation guarantee. In Case 3, we use the invariant shown in Lemma
 706 D.1 to show that the returned dual solution is an infeasibility certificate.

707 We formalize these statements in the lemmas below.

708 **Lemma D.1** (Invariant). *For all t , we have that if $\gamma^{(t)} \neq 1$ then $\frac{\mathcal{E}(r^{(t+1)}) - \mathcal{E}(r^{(t)})}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq M^2$.*

709 **Lemma D.2** (Case 1). *Let r be a dual solution and $x = \arg \min_{\hat{x}: A\hat{x}=b} \langle r, \hat{x}^2 \rangle$. If
 710 $\left\| \|r\|_q^{q-1} \cdot \frac{x^2}{r^{q-1}} \right\|_\infty \leq (1 + \epsilon) M^2$ then $\|x\|_{2p} \leq M(1 + \epsilon)$.*

711 **Lemma D.3** (Case 3). *If the algorithm returns $r^{(T)}$, then $\frac{\mathcal{E}(r^{(T)})}{\|r^{(T)}\|_q} \geq \frac{M^2}{(1+\epsilon)^2}$.*

712 **Convergence of Algorithm 2.** We run the algorithm for T iterations. The algorithm terminates
 713 if at any point it finds a solution x that satisfies the desired bound (otherwise it is unable to further
 714 increase the dual solution). Otherwise, we show that it must finish very fast. Suppose we run it
 715 for $T = T_{hi} + T_{lo}$ iterations. Let the iterations in T_{hi} correspond to those where at least a single
 716 coordinate of r was scaled by $\geq S := n^{\frac{2}{2q+1}} (\frac{1}{\epsilon})^{\frac{q-1}{2q+1}}$. Let T_{lo} be the remaining iterations. The
 717 following lemmas give an upperbound on T_{hi} and T_{lo} .

718 **Lemma D.4.** *We have $T_{hi} \leq \frac{n}{S^q \epsilon^q}$.*

719 **Lemma D.5.** *We have $T_{lo} \leq O \left(\left(\frac{1}{\epsilon} + \frac{S^{1/2}}{q \ln S} \right) \frac{1}{\epsilon^{\frac{q+1}{2}}} \log \left(\frac{n}{\epsilon^q} \right) \right)$.*

720 Since $S = n^{\frac{2}{2q+1}} (\frac{1}{\epsilon})^{\frac{q-1}{2q+1}}$, we obtain the following convergence guarantee:

721 **Lemma D.6.** *Algorithm 2 terminates in $O \left(\left(\left(\frac{1}{\epsilon} \right)^{\frac{q+3}{2}} + n^{\frac{1}{2q+1}} \left(\frac{1}{\epsilon} \right)^{\frac{q^2+2q}{2q+1}} \right) \log \left(\frac{n}{\epsilon^q} \right) \right)$ iterations.*

722 Equipped with these lemmas, we give the proof for Theorem 1.1.

723 *Proof of Theorem 1.1.* Returning to the problem $\min_{x \in \mathbb{R}^n : Ax=b} \|x\|_p$, we have the main algorithm
 724 executes a binary search over the power of $(1 + \epsilon)$ in the range $\left[\frac{\|x^{(0)}\|_2}{n^{\frac{1}{2} - \frac{1}{p}}}, \|x^{(0)}\|_2 \right]$, so the total
 725 number of calls to the subroutine solver is $O(\log \log n + \log \frac{1}{\epsilon})$. By Lemma D.6, the subroutine
 726 solver requires $O \left(\left(\left(\frac{1}{\epsilon} \right)^{\frac{q+3}{2}} + n^{\frac{1}{2q+1}} \left(\frac{1}{\epsilon} \right)^{\frac{q^2+2q}{2q+1}} \right) \log \left(\frac{n}{\epsilon^q} \right) \right)$ linear system solves, where $q = \frac{p}{p-2}$ is
 727 the dual norm of $p/2$. Substituting the value of q , we obtain the conclusion. \square

728 D.1 PROOFS OF LEMMAS D.1 - D.5

729 *Proof of Lemma D.1.* First we show (3).

$$730 \frac{1}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq \frac{q \|r^{(t)}\|_q^{q-1}}{\|r^{(t+1)}\|_q^q - \|r^{(t)}\|_q^q}.$$

731 This is equivalent to show

$$732 \left\| r^{(t+1)} \right\|_q^q + (q-1) \left\| r^{(t)} \right\|_q^q \geq q \left\| r^{(t+1)} \right\|_q \left\| r^{(t)} \right\|_q^{q-1}$$

733 which can easily be obtained from AM-GM inequality.

734 Using (3) and Lemma A.2 we have

$$735 \frac{\mathcal{E}(r^{(t+1)}) - \mathcal{E}(r^{(t)})}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq \frac{q \|r^{(t)}\|_q^{q-1} \left(\sum_i r_i^{(t)} \left(x_i^{(t)} \right)^2 \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right) \right)}{\sum_i \left(r_i^{(t+1)} \right)^q - \left(r_i^{(t)} \right)^q}$$

$$= \frac{q \|r^{(t)}\|_q^{q-1} \left(\sum_{i, \alpha_i^{(t)} > 1} r_i^{(t)} (x_i^{(t)})^2 \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right) \right)}{\sum_{i, \alpha_i^{(t)} > 1} (r_i^{(t+1)})^q - (r_i^{(t)})^q}.$$

For i such that $\alpha_i^{(t)} > 1$, we have $r_i^{(t+1)} = \alpha_i^{(t)} r_i^{(t)}$, thus

$$\begin{aligned} \frac{q \|r^{(t)}\|_q^{q-1} r_i^{(t)} (x_i^{(t)})^2 \left(1 - \frac{r_i^{(t)}}{r_i^{(t+1)}} \right)}{(r_i^{(t+1)})^q - (r_i^{(t)})^q} &= \frac{\|r^{(t)}\|_q^{q-1} (x_i^{(t)})^2}{(r_i^{(t)})^{q-1}} \cdot \frac{q \left(1 - \frac{1}{\alpha_i^{(t)}} \right)}{\left(\alpha_i^{(t)} \right)^q - 1} \\ &\geq \gamma_i^{(t)} M^2 \cdot \frac{1}{\left(\alpha_i^{(t)} \right)^q} \\ &= M^2, \end{aligned}$$

where the first inequality is due to $\frac{q(\alpha-1)}{\alpha(\alpha^q-1)} \geq \frac{1}{\alpha^q}$, for $\alpha > 1$. We can then obtain the desired conclusion from here. \square

Proof of Lemma D.2. If

$$\left\| \|r\|_q^{q-1} \cdot \frac{x^2}{r^{q-1}} \right\|_\infty \leq (1 + \epsilon) M^2,$$

for all i we have

$$x_i^2 \leq (1 + \epsilon)^2 M^2 \frac{r_i^{q-1}}{\|r\|_q^{q-1}},$$

which gives

$$x_i^{2p} \leq (1 + \epsilon)^{2p} M^{2p} \frac{r_i^q}{\|r\|_q^q},$$

We obtain

$$\|x\|_{2p}^{2p} \leq (1 + \epsilon)^{2p} M^{2p},$$

as needed. \square

Proof of Lemma D.3. We have that

$$\begin{aligned} \frac{\mathcal{E}(r^{(T)})}{\|r^{(T)}\|_q} &= \frac{\mathcal{E}(r^{(0)}) + \sum_{t=0}^{T-1} (\mathcal{E}(r^{(t+1)}) - \mathcal{E}(r^{(t)}))}{\|r^{(T)}\|_q} \\ &\geq \frac{\mathcal{E}(r^{(0)}) + \sum_{t=0}^{T-1} (\|r^{(t+1)}\|_q - \|r^{(t)}\|_q) \cdot M^2}{\|r^{(T)}\|_q} \quad (\text{due to the invariant}) \\ &\geq \frac{(\|r^{(T)}\|_q - 1) \cdot M^2}{\|r^{(T)}\|_q} = M^2 \cdot \left(1 - \frac{1}{\|r^{(T)}\|_q} \right) \\ &\geq M^2 \cdot (1 - \epsilon) \quad (\text{since } \|r^{(T)}\|_q \geq \frac{1}{\epsilon}) \\ &\geq \frac{M^2}{(1 + \epsilon)^2}. \end{aligned}$$

\square

810 *Proof of Lemma D.4.* Suppose the contrary. Then we claim that the perturbations that scale the dual
 811 solution by $\geq S$ will have increased it a lot to the point where $\|r\|_q^q \geq \frac{1}{\epsilon^q}$. Indeed, since r is initialized
 812 to $\frac{1}{n^{1/q}}$, in the worst case each perturbation in T_{hi} touches a different coordinate i . Therefore this
 813 establishes a lower bound of $T_{hi} \cdot \frac{S^q}{n}$ on $\|r\|_q^q$. As this must be at most $\frac{1}{\epsilon^q}$, since otherwise we
 814 obtained a good solution per Lemma D.3, we obtain the conclusion. \square
 815

816 Before showing the proof of Lemma D.5, we claim that we can either look at the history produced in
 817 T_{lo} and obtain an approximately feasible solution, or a single coordinate of r must have increased a
 818 lot.

819 **Lemma D.7.** *Consider the set of iterates $(r^{(t)}, x^{(t)})$ used for the iterates in T_{lo} . If*

$$820 \quad \left\| \frac{1}{T_{lo}} \sum_{t \in T_{lo}} x^{(t)} \right\|_{2p} > M(1 + \epsilon)$$

821 *then there exists a coordinate i for which*

$$822 \quad \sum_{t \in T_{lo}: \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \geq \frac{T_{lo} \epsilon^{\frac{q+1}{2}}}{2}.$$

823 *Proof.* Suppose that

$$824 \quad \left\| \frac{1}{T_{lo}} \sum_{t \in T_{lo}} x^{(t)} \right\|_{2p} > M(1 + \epsilon)$$

825 Note that by the update rule,

$$826 \quad \frac{x_i^{(t)}}{M} \leq (1 + \epsilon)^{\frac{1}{2}} \sqrt{\frac{(r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} + \mathbf{1}_{\alpha_i > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}}$$

$$827 \quad \leq \left(1 + \frac{\epsilon}{2}\right) \sqrt{\frac{(r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} + \mathbf{1}_{\alpha_i > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}}$$

828 Hence we can write

$$829 \quad \left\| \sum_{t \in T_{lo}} \frac{x^{(t)}}{M} \right\|_{2p} \leq \left\| \left(1 + \frac{\epsilon}{2}\right) \sum_{t \in T_{lo}} \sqrt{\frac{(r^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} + \overrightarrow{\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)}_i \right\|_{2p}$$

$$830 \quad \leq \left(1 + \frac{\epsilon}{2}\right) \sum_{t \in T_{lo}} \left\| \sqrt{\frac{(r^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right\|_{2p} + \left\| \overrightarrow{\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)}_i \right\|_{2p}$$

831 (by triangle inequality)

$$832 \quad = \left(1 + \frac{\epsilon}{2}\right) T_{lo} + \left\| \overrightarrow{\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)}_i \right\|_{2p}.$$

833 We obtain

$$834 \quad \left\| \overrightarrow{\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)}_i \right\|_{2p} \geq \frac{\epsilon}{2} T_{lo}$$

864 On the other hand, we have

$$\begin{aligned}
 & \sum_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)^{2p} = \sum_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)} (r_i^{(t+1)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)^{2p} \\
 & \leq \sum_i \left(r_i^{(T)} \right)^q \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \leq \|r^{(T)}\|_q^q \max_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \\
 & \leq \frac{1}{\epsilon^q} \max_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p}
 \end{aligned}$$

□

880 Therefore there exists i such that

$$\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \geq \left(\frac{\epsilon T}{2} \right)^{2p} \epsilon^q,$$

885 which gives us

$$\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \geq \frac{T_{lo} \epsilon^{\frac{q+1}{2}}}{2}.$$

890 Now we show the proof of Lemma D.5.

892 *Proof of Lemma D.5.* From Lemma D.7 we know that there exists a coordinate i for which

$$\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} > \frac{T_{lo} \epsilon^{\frac{q+1}{2}}}{2}. \quad (6)$$

897 Furthermore by definition for all iterates in T_{lo} we have that pointwise $(1 + \epsilon) \leq (\alpha_i^{(t)})^q \leq S^q$.

899 This enables us to lower bound the final value of $(r_i^{(T)})^q$ which is a lower bound on $\|r^{(T)}\|_q^q$. More
900 precisely, we have

$$(r_i^{(T)})^q \geq (r_i^{(0)})^q \cdot \prod_{t \in T_{lo}, \alpha_i^{(t)} > 1} (\alpha_i^{(t)})^q = \frac{1}{n} \cdot \prod_{t \in T_{lo}, \alpha_i^{(t)} > 1} (\alpha_i^{(t)})^q. \quad (7)$$

904 Now we can proceed to lower bound this coordinate i.e. we lower bound the product in (7) using the
905 lower bound we have in (6).

907 Intuitively, the worst case behavior i.e. slowest possible increase in $(r_i^{(T)})^q$ is achieved in one of the
908 two extreme cases:

909 (i) the $\alpha_i^{(t)}$ are all minimized i.e. $(\alpha_i^{(t)})^q = (1 + \epsilon)$ in which case $\Theta(\frac{1}{\epsilon} \log(\frac{n}{\epsilon^q}))$ such terms are
910 sufficient to make their product $\geq \frac{n}{\epsilon^q}$, which means that we are done, since then we have $\|r^{(T)}\|_q^q \geq$
911 $(r_i^{(T)})^q \geq \frac{1}{\epsilon^q}$; so setting $\frac{T_{lo} \epsilon^{\frac{q+1}{2}}}{2} \geq \Theta((1 + \epsilon)^{\frac{1}{2q}} \frac{1}{\epsilon} \log(\frac{n}{\epsilon^q}))$ i.e. $T_{lo} \geq \Theta(\frac{1}{\epsilon^{\frac{q+3}{2}}} \log(\frac{n}{\epsilon^q}))$ is
912 sufficient to make this happen;

916 (ii) all the entries are maximized, i.e. $\alpha_i^{(t)} = S$ in which case we have that their product to power q is
917 at least $S^{\frac{qT_{lo}}{S^{1/2}} \frac{\epsilon^{\frac{q+1}{2}}}{2}} \geq \frac{n}{\epsilon^q}$, so if we set $\frac{qT_{lo}}{S^{1/2}} \frac{\epsilon^{\frac{q+1}{2}}}{2} \ln S \geq \log(\frac{n}{\epsilon^q})$, i.e., $T_{lo} = \Theta(\frac{S^{1/2}}{q \ln S} \frac{1}{\epsilon^{\frac{q+1}{2}}} \log(\frac{n}{\epsilon^q}))$,

918 we guarantee that the corresponding r_i increases to a value larger than $\frac{1}{\epsilon^q}$. The fact that these two
919 cases capture the slowest possible increase is shown in Lemma F.1.
920

921 Therefore we can set

$$922 \quad T_{lo} = O \left(\left(\frac{1}{\epsilon} + \frac{S^{1/2}}{q \ln S} \right) \frac{1}{\epsilon^{\frac{q+1}{2}}} \log \left(\frac{n}{\epsilon^q} \right) \right).$$

924 \square

926 E PROOF OF THEOREM C.1

928 First, we give guarantee for the subproblem solver (Algorithm 4, proof follows subsequently).
929

930 **Lemma E.1.** For $p \geq 1$, $\kappa = \begin{cases} 1 & \text{if } p \leq \frac{\log n}{\log n-1}, \text{Algorithm 4 either returns } x \text{ such that } Ax = b, \\ q & \text{otherwise} \end{cases}$,
931 $\|x\|_{2p} \leq 2M$ and $\langle \theta, x^2 \rangle \leq \min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle$ or certifies that $\min_{x:Ax=b} \|x^2\|_p +$
932 $\langle \theta, x^2 \rangle \geq \frac{M^2}{2\kappa}$ in $O\left(n^{\frac{1}{2q+1}}\right)$ calls to solve a linear system of the form $ADA^\top \phi = b$, where D is an
933 arbitrary non-negative diagonal matrix.
934

935 The next lemma provides guarantees on the iterate progress in the main algorithm (Algorithm 3).
936

937 **Lemma E.2.** For $p \geq 2$ $\kappa = \begin{cases} 1 & \text{if } p \leq \frac{2\log n}{\log n-1}, \text{Algorithm 3 maintains that } \|x^{(t)}\|_p^p - \|x^*\|_p^p \leq \\ \frac{p}{p-2} & \text{otherwise} \end{cases}$,
938 $16pM^{(t)}$ and that if $x^{(t+1)} \neq x^{(t)}$ then
939

$$940 \quad \|x^{(t+1)}\|_p^p - \|x^*\|_p^p \leq \left(1 - \frac{1}{2^{13}p\kappa}\right) \left(\|x^{(t)}\|_p^p - \|x^*\|_p^p\right).$$

941 Finally, we show the proof of Theorem C.1.
942

943 *Proof.* Algorithm 3 terminates when $M^{(t)} \leq \frac{\epsilon}{16p(1+\epsilon)} \|x^{(t)}\|_p^p$. This gives $\|x^{(t)}\|_p^p - \|x^*\|_p^p \leq$
944 $\frac{\epsilon}{16p(1+\epsilon)} \|x^{(t)}\|_p^p$, which implies $\|x^{(t)}\|_p^p \leq (1+\epsilon) \|x^*\|_p^p$ and thus $\|x^{(t)}\|_p \leq (1+\epsilon) \|x^*\|_p$. Hence,
945 $x^{(t)}$ is a $(1+\epsilon)$ approximate solution. Since $\frac{\epsilon}{16p(1+\epsilon)} \|x^{(t)}\|_p^p \geq \frac{\epsilon}{16p(1+\epsilon)} \|x^*\|_p^p$, the number of times
946 $M^{(t)}$ can be reduced is $O\left(\log \frac{\|x^{(0)}\|_p^p}{\epsilon \|x^*\|_p^p}\right) = O(p \log \frac{n}{\epsilon})$. By Lemma E.2, the number of times the
947 iterate makes progress is $O\left(2^{13}p\kappa \log \frac{\|x^{(0)}\|_p^p - \|x^*\|_p^p}{\epsilon \|x^*\|_p^p}\right) = O(p^2 \log n \log \frac{n}{\epsilon})$ where $\kappa = O(\log n)$.
948 Therefore the total number of calls to the subroutine solver is $O(p^2 \log n \log \frac{n}{\epsilon})$. By lemma E.1, the
949 subroutine solver makes $O\left(n^{\frac{1}{2q+1}}\right) = O\left(n^{\frac{p-2}{3p-2}}\right)$ calls to a linear system solver. This concludes
950 the proof. \square

951 E.1 PROOF OF LEMMA E.1

952 We let $\mathcal{OPT} = \min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle$ and $x^* = \arg \min_{x:Ax=b} \|x^2\|_p + \langle \theta, x^2 \rangle$. We consider
953 two cases: when $p \leq \frac{\log n}{\log n-1}$ and when $p > \frac{\log n}{\log n-1}$. We will prove for each case using the following
954 lemmas:

955 **Lemma E.3.** For $1 \leq p \leq \frac{\log n}{\log n-1}$, Algorithm 4 either returns x such that $Ax = b$, $\|x\|_{2p} \leq 2M$
956 and $\langle \theta, x^2 \rangle \leq \mathcal{OPT}$ or certifies that $\mathcal{OPT} \geq \frac{M^2}{2}$ in $O(1)$ call to solve a linear system.
957

958 **Lemma E.4.** For $p > \frac{\log n}{\log n-1}$, Algorithm 4 either returns x such that $Ax = b$, $\|x\|_{2p} \leq 2M$ and
959 $\langle \theta, x^2 \rangle \leq \mathcal{OPT}$ or certifies that $\mathcal{OPT} \geq \frac{M^2}{2q}$ in $O\left(n^{\frac{1}{2q+1}}\right)$ calls to solve a linear system.
960

961 To start, we have the following lemma that controls the ℓ_2 term in the objective

972 **Lemma E.5.** For r such that $\|r\|_q \leq 1$, suppose $x = \arg \min_{x:Ax=b} \langle r + \theta, x^2 \rangle$. Then we have
 973 $\langle \theta, x^2 \rangle \leq \mathcal{OPT}$.
 974

975 *Proof.* For r with $\|r\|_q \leq 1$, we have

$$\begin{aligned} 978 \quad \langle \theta, x^2 \rangle &\leq \langle r + \theta, x^2 \rangle \leq \langle r + \theta, (x^*)^2 \rangle \quad (\text{by definition of } x) \\ 979 \quad &\leq \|(x^*)^2\|_p + \langle \theta, (x^*)^2 \rangle \leq \mathcal{OPT}. \end{aligned}$$

□

981
 982 Now, let us turn to the first case when $1 \leq p \leq \frac{\log n}{\log n-1}$. We give the proof for Lemma E.3.
 983

985 *Proof of Lemma E.3.* When $1 \leq p \leq \frac{\log n}{\log n-1}$, we have $q = \frac{p}{p-1} \geq \log n$. Algorithm 4 computes
 986

$$987 \quad \hat{x} = \min_{x:Ax=b} \langle r + \theta, x^2 \rangle$$

989 where $r_i = n^{-\frac{1}{q}}$ for all i .
 990

991 Since $\|r\|_q = 1$, if $\|\hat{x}\|_{2p} \leq 2M$, by Lemma E.5, we immediately have $\|\hat{x}\|_{2p} \leq 2M$ and $\langle \theta, x^2 \rangle \leq$
 992 \mathcal{OPT} .

993 Assume that $\|\hat{x}\|_{2p} > 2M$. We have

$$\begin{aligned} 995 \quad \mathcal{OPT} &= \|(x^*)^2\|_p + \langle \theta, (x^*)^2 \rangle \geq \langle r, (x^*)^2 \rangle + \langle \theta, (x^*)^2 \rangle \\ 996 \quad &= \langle \theta + r, (x^*)^2 \rangle \geq \langle \theta + r, (\hat{x})^2 \rangle \\ 997 \quad &\geq \frac{1}{n^{\frac{1}{q}}} \|\hat{x}^2\|_1 \geq \frac{1}{n^{\frac{1}{q}}} \|\hat{x}^2\|_p \quad (\text{since } \|\hat{x}^2\|_1 \geq \|\hat{x}^2\|_p) \\ 998 \quad &\geq \frac{1}{2} \|\hat{x}\|_{2p}^2 \quad (\text{since } q \geq \log n) \\ 999 \quad &\geq 2M^2 \geq \frac{M^2}{2}. \end{aligned}$$

□

1007 For the case when $p > \frac{\log n}{\log n-1}$, the proof for Lemma E.4 follows similarly to the analysis of
 1008 Algorithm 2. We proceed by showing the following invariant.
 1009

1010 **Lemma E.6 (Invariant).** For all t , we have that if $\gamma^{(t)} \neq 1$ then $\frac{\mathcal{E}(r^{(t+1)} + \theta) - \mathcal{E}(r^{(t)} + \theta)}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} \geq M^2$.
 1011

1012 *Proof.* Using Lemma A.2 we have

$$\begin{aligned} 1015 \quad \frac{\mathcal{E}(r^{(t+1)} + \theta) - \mathcal{E}(r^{(t)} + \theta)}{\|r^{(t+1)}\|_q - \|r^{(t)}\|_q} &\geq \frac{q \cdot \|r^{(t)}\|_q^{q-1} \left(\sum_i (r_i^{(t)} + \theta_i) (x_i^{(t)})^2 \left(1 - \frac{r_i^{(t)} + \theta_i}{r_i^{(t+1)} + \theta_i} \right) \right)}{\sum_i (r_i^{(t+1)})^q - (r_i^{(t)})^q} \\ 1016 \quad &= \frac{q \cdot \|r^{(t)}\|_q^{q-1} \left(\sum_i (x_i^{(t)})^2 \frac{r_i^{(t)} + \theta_i}{r_i^{(t+1)} + \theta_i} (r_i^{(t+1)} - r_i^{(t)}) \right)}{\sum_i (r_i^{(t+1)})^q - (r_i^{(t)})^q} \\ 1017 \quad &\geq \frac{q \cdot \|r^{(t)}\|_q^{q-1} \left(\sum_i (x_i^{(t)})^2 \frac{r_i^{(t)}}{r_i^{(t+1)}} (r_i^{(t+1)} - r_i^{(t)}) \right)}{\sum_i (r_i^{(t+1)})^q - (r_i^{(t)})^q} \\ 1018 \quad &\geq \frac{q \cdot \|r^{(t)}\|_q^{q-1} \left(\sum_i (x_i^{(t)})^2 \frac{r_i^{(t)}}{r_i^{(t+1)}} (r_i^{(t+1)} - r_i^{(t)}) \right)}{\sum_i (r_i^{(t+1)})^q - (r_i^{(t)})^q} \end{aligned}$$

$$\begin{aligned}
&= \frac{q \cdot \|r^{(t)}\|_q^{q-1} \left(\sum_{i, \alpha_i^{(t)} > 1} \left(x_i^{(t)} \right)^2 \frac{r_i^{(t)}}{r_i^{(t+1)}} \left(r_i^{(t+1)} - r_i^{(t)} \right) \right)}{\sum_{i, \alpha_i^{(t)} > 1} \left(r_i^{(t+1)} \right)^q - \left(r_i^{(t)} \right)^q}, \\
&\text{where in the second inequality we use } \frac{r_i^{(t)} + \theta_i}{r_i^{(t+1)} + \theta_i} \geq \frac{r_i^{(t)}}{r_i^{(t+1)}} \text{ for } r_i^{(t+1)} \geq r_i^{(t)}, \theta \geq 0. \text{ For } i \text{ such that } \\
&\alpha_i^{(t)} > 1, \text{ we have } r_i^{(t+1)} = \alpha_i^{(t)} r_i^{(t)}, \text{ thus} \\
&\frac{q \cdot \|r^{(t)}\|_q^{q-1} \left(x_i^{(t)} \right)^2 \frac{r_i^{(t)}}{r_i^{(t+1)}} \left(r_i^{(t+1)} - r_i^{(t)} \right)}{\left(r_i^{(t+1)} \right)^q - \left(r_i^{(t)} \right)^q} = \gamma_i^{(t)} M^2 \cdot \frac{q \left(1 - \frac{1}{\alpha_i^{(t)}} \right)}{\left(\alpha_i^{(t)} \right)^q - 1} \\
&\geq \gamma_i^{(t)} M^2 \cdot \frac{1}{\left(\alpha_i^{(t)} \right)^q} \\
&= M^2,
\end{aligned}$$

where the first inequality is due to $\frac{q(\alpha-1)}{\alpha(\alpha^q-1)} \geq \frac{1}{\alpha^q}$, for $\alpha > 1$. We can then obtain the desired conclusion from here. \square

Lemma E.7 (Case 1). *Let r be a dual solution and $x = \arg \min_{\hat{x}: A\hat{x}=b} \langle r + \theta, \hat{x}^2 \rangle$. If $\left\| \|r\|_q^{q-1} \cdot \frac{x^2}{r^{q-1}} \right\|_\infty \leq 2M$ then $\|x\|_{2p} \leq 2M$ and $\langle \theta, x^2 \rangle \leq \mathcal{OPT}$.*

Proof. If

$$\left\| \|r\|_q^{q-1} \cdot \frac{x^2}{r^{q-1}} \right\|_\infty \leq 2M^2,$$

for all i we have

$$x_i^2 \leq 4M^2 \frac{r_i^{q-1}}{\|r\|_q^{q-1}},$$

which gives

$$x_i^{2p} \leq 2^{2p} M^{2p} \frac{r_i^q}{\|r\|_q^q},$$

We obtain

$$\|x\|_{2p}^{2p} \leq 2^{2p} M^{2p},$$

as needed. The second claim comes directly from Lemma E.5. \square

Lemma E.8 (Case 3). *If the algorithm returns $r^{(T)}$, then $\mathcal{E} \left(\frac{r^{(T)}}{\|r^{(T)}\|_q} + \theta \right) \geq \frac{M^2}{2q}$.*

Proof. We have that

$$\begin{aligned}
\frac{\mathcal{E}(r^{(T)} + \theta)}{\|r^{(T)}\|_q} &= \frac{\mathcal{E}(r^{(0)} + \theta) + \sum_{t=0}^{T-1} (\mathcal{E}(r^{(t+1)} + \theta) - \mathcal{E}(r^{(t)} + \theta))}{\|r^{(T)}\|_q} \\
&\geq \frac{\sum_{t=0}^{T-1} (\|r^{(t+1)}\|_q - \|r^{(t)}\|_q) \cdot M^2}{\|r^{(T)}\|_q} \quad (\text{due to the invariant}) \\
&\geq \frac{(\|r^{(T)}\|_q - \|r^{(0)}\|_q) \cdot M^2}{\|r^{(T)}\|_q}
\end{aligned}$$

$$\begin{aligned}
1080 &= M^2 \cdot \left(1 - \frac{\frac{2q-1}{2q}}{\|r^{(T)}\|_q}\right) \quad (\text{since } \|r^{(0)}\|_q = \frac{2q-1}{2q}) \\
1081 &= \frac{M^2}{2q} \quad (\text{since } \|r^{(T)}\|_q \geq 1). \\
1082 \\
1083 \\
1084 \\
1085
\end{aligned}$$

1086 Finally since $\|r^{(T)}\|_q \geq 1$

$$1087 \quad \mathcal{E}\left(\frac{r^{(T)}}{\|r^{(T)}\|_q} + \theta\right) \geq \frac{\mathcal{E}(r^{(T)} + \theta)}{\|r^{(T)}\|_q} \geq \frac{M^2}{2q}.$$

1090 □

1091
1092
1093 **Convergence Analysis** We run the algorithm for T iterations. The algorithm terminates if at any
1094 point it finds a solution x that satisfies the desired bound (otherwise it is unable to further perturb the
1095 dual solution). Otherwise, we show that it must finish very fast.

1096 Suppose we run it for $T = T_{hi} + T_{lo}$ iterations. Let the iterations in T_{hi} correspond to those where at
1097 least a single r_i was scaled by $\geq S = n^{\frac{2}{2q+1}}$. Let T_{lo} be the remaining iterations.

1098
1099 **Lemma E.9.** *We have $T_{hi} \leq \frac{2n}{S^q}$.*

1100
1101 *Proof.* Suppose the contrary. Then we claim that these perturbations alone will have increased r
1102 a lot to the point where $\|r\|_q^q \geq 1$. Indeed, let r_i be the current value of coordinate i and r'_i be
1103 its value after being increased, and assume that $\frac{r'_i}{r_i} \geq S$. Since r is initialized to $\frac{2q-1}{2q} \frac{1}{n^{1/q}}$, in the
1104 worst case each perturbation in T_{hi} touches a different i . Therefore this establishes a lower bound
1105 of $T_{hi} \cdot \frac{S^q}{n} \left(\frac{2q-1}{2q}\right)^q \geq T_{hi} \cdot \frac{S^q}{2n}$ on $\|r\|_q^q$. As this must be at most 1, since otherwise we obtained a
1106 good solution per Lemma E.8, we obtain the conclusion. □

1107
1108 Now we claim that we can either look at the history produced in T_{lo} and obtain an approximately
1109 feasible solution, or a single coordinate r_i must have increased a lot.

1110
1111 **Lemma E.10.** *Consider the set of iterates $(r^{(t)}, x^{(t)})$ used for the iterates in T_{lo} . If*

$$1112 \quad \left\| \frac{1}{T_{lo}} \sum_{t \in T_{lo}} x^{(t)} \right\|_{2p} > 2M$$

1113
1114 *then there exists a coordinate i for which*

$$1115 \quad \sum_{t \in T_{lo}: \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \geq \frac{T_{lo}}{4}.$$

1116
1117 *Proof.* Suppose $\left\| \frac{1}{T_{lo}} \sum_{t \in T_{lo}} x^{(t)} \right\|_{2p} > 2M$. Note that by the update rule,

$$1118 \quad \frac{x_i^{(t)}}{M} \leq \sqrt{2} \sqrt{\frac{\left(r_i^{(t)}\right)^{q-1}}{\|r^{(t)}\|_q^{q-1}} + \mathbf{1}_{\alpha_i > 1} \sqrt{\frac{\alpha_i^{(t)q} \left(r_i^{(t)}\right)^{q-1}}{\|r^{(t)}\|_q^{q-1}}}}$$

1119
1120 Hence we can write

$$1121 \quad \left\| \sum_{t \in T_{lo}} \frac{x^{(t)}}{M} \right\|_{2p} \leq \left\| \sqrt{2} \sum_{t \in T_{lo}} \sqrt{\frac{\left(r^{(t)}\right)^{q-1}}{\|r^{(t)}\|_q^{q-1}}} + \overbrace{\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} \left(r_i^{(t)}\right)^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)_i}^{\rightarrow} \right\|_{2p}$$

$$\begin{aligned}
& \leq \sqrt{2} \sum_{t \in T_{lo}} \left\| \sqrt{\frac{(r^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right\|_{2p} + \left\| \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)_i \right\|_{2p} \\
& \quad (\text{by triangle inequality}) \\
& = \sqrt{2} T_{lo} + \left\| \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)_i \right\|_{2p}.
\end{aligned}$$

We obtain

$$\left\| \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)_i \right\|_{2p} \geq (2 - \sqrt{2}) T_{lo} \geq \frac{T_{lo}}{2}$$

On the other hand, we have

$$\begin{aligned}
& \sum_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)q} (r_i^{(t)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)^{2p} = \sum_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\frac{\alpha_i^{(t)} (r_i^{(t+1)})^{q-1}}{\|r^{(t)}\|_q^{q-1}}} \right)^{2p} \\
& \leq \sum_i \frac{(r_i^{(T)})^q}{\|r^{(0)}\|_q^q} \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \leq \frac{\|r^{(T)}\|_q^q}{\|r^{(0)}\|_q^q} \max_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \\
& \leq \left(\frac{2q}{2q-1} \right)^q \max_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \quad (\text{since } \|r^{(0)}\|_q = \frac{2q}{2q-1}) \\
& \leq 2 \max_i \left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p}, \quad (\text{since } q \geq 1)
\end{aligned}$$

□

Therefore there exists i such that

$$\left(\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \right)^{2p} \geq \frac{1}{2} \left(\frac{T_{lo}}{2} \right)^{2p},$$

which gives us

$$\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} \geq \frac{T_{lo}}{2} \frac{1}{2^{\frac{1}{2p}}} \geq \frac{T_{lo}}{4}, \text{ since } p \geq 1.$$

This lemma enables us to upper bound T_{lo} .

Lemma E.11. *We have $T_{lo} \leq \Theta\left(\frac{S^{1/2}}{\ln S} \ln n + \ln n\right)$.*

Proof. From Lemma E.10 we know that there exists a coordinate i for which

$$\sum_{t \in T_{lo}, \alpha_i^{(t)} > 1} \sqrt{\alpha_i^{(t)}} > \frac{T_{lo}}{4}. \tag{8}$$

1188 Furthermore by definition for all iterates in T_{lo} we have that pointwise $\alpha_i^{(t)} = \frac{r_i^{(t+1)}}{r_i^{(t)}} \leq S$ and
 1189
 1190 $\alpha_i^{(t)} = \left(\gamma_i^{(t)}\right)^{1/q} \geq 2^{\frac{1}{q}}$. This enables us to lower bound the final value of $\left(r_i^{(T)}\right)^q$ which is a lower
 1191 bound on $\|r^{(T)}\|_q^q$. More precisely, we have $\frac{r_i^{(t+1)}}{r_i^{(t)}} \geq \alpha_i^{(t)}$ thus
 1192
 1193

$$1194 \quad \left(r_i^{(T)}\right)^q \geq \left(r_i^{(0)}\right)^q \cdot \prod_{t \in T_{lo}: \alpha_i^{(t)} > 1} \left(\alpha_i^{(t)}\right)^q = \frac{2q-1}{2q} \cdot \frac{1}{n} \cdot \prod_{t \in T_{lo}: \alpha_i^{(t)} > 1} \left(\alpha_i^{(t)}\right)^q. \quad (9)$$

1197 Now we can proceed to lower bound this r_i i.e. we lower bound the product in (9) using the lower
 1198 bound we have in (8).

1200 Similarly to the previous section, the worst case behavior i.e. slowest possible increase in $\left(r_i^{(T)}\right)^q$ is
 1201 achieved in one of the two extreme cases:

1202 (i) the $\alpha_i^{(t)}$ are all minimized i.e. $\alpha_i^{(t)} = 2^{\frac{1}{q}}$ in which case $\Theta(\ln n)$ such terms are sufficient to
 1203 make their product $\geq 2n \geq \frac{2qn}{2q-1}$, which means that we are done, since then we have $\|r^{(T)}\|_q^q \geq$
 1204 $\left(r_i^{(T)}\right)^q \geq 1$; so setting $T_{lo} \geq \Theta(\ln n)$ is sufficient to make this happen;

1205 (ii) all the entries are maximized, i.e. $\alpha_i^{(t)} = S$ in which case we have that their product to power q is
 1206 at least $S^{\frac{T_{lo}q}{4S^{1/2}}} \geq 2n \geq \frac{2qn}{2q-1}$, so if we set $\frac{T_{lo}q}{4S^{1/2}} \ln S \geq \ln 2n$, ie, $T_{lo} \geq \frac{8S^{1/2} \ln(n)}{q \ln S}$, we guarantee
 1207 that the corresponding r_i increases to a value larger than 2. The fact that these two cases capture the
 1208 slowest possible increase is shown in Lemma F.1.

1209 Therefore we can set

$$1210 \quad T_{lo} = O\left(\frac{S^{1/2}}{\ln S} \ln n + \ln n\right).$$

1211 \square

1212 Finally, by the choice $S = n^{\frac{2}{2q+1}}$, we obtain the runtime guarantee.

1213 **Lemma E.12.** *Algorithm 4 terminates in $O\left(n^{\frac{1}{2q+1}}\right)$ iterations.*

1214 *Proof of Lemma E.4.* The proof of Lemma E.1 immediately follows from Lemmas E.7, E.8 and
 1215 E.12. \square

1216 E.2 PROOF OF LEMMA E.2

1217 *Proof of Lemma E.2.* We define the function res_x as follows

$$1218 \quad \text{res}_x(\Delta) = \langle g, \Delta \rangle - \langle R, \Delta^2 \rangle - \|\Delta\|_p^p$$

1219 where $g = |x|^{p-2} x$, $R = 2|x|^{p-2}$. We use the following property of this function from Adil et al.
 1220 (2019a; 2024): For $\lambda = 16p$ and for all Δ

$$1221 \quad \|x\|_p^p - \left\|x - \frac{\Delta}{p}\right\|_p^p \geq \text{res}_x(\Delta); \quad (10)$$

$$1222 \quad \|x\|_p^p - \left\|x - \lambda \frac{\Delta}{p}\right\|_p^p \leq \lambda \text{res}_x(\Delta). \quad (11)$$

1223 We prove the claim by induction.

1224 For $t = 0$, we have $M^{(0)} := \frac{\|x^{(0)}\|_p^p}{16p} \geq \frac{\|x^{(t)}\|_p^p - \|x^*\|_p^p}{16p}$.

1225 Now assume that we have $\|x^{(t)}\|_p^p - \|x^*\|_p^p \leq 16pM^{(t)}$. We have two cases.

1242 Case 1. ResidualSolver returns an infeasibility certificate or ResidualSolver returns a primal solution
 1243 $\tilde{\Delta}$ such that $\langle R^{(t)}, \tilde{\Delta}^2 \rangle \geq 2M^{(t)}$. In both scenarios, using Lemma E.1 we have
 1244

$$\min_{\substack{A\Delta=0 \\ \langle g^{(t)}, \Delta \rangle = \frac{M^{(t)}}{2}}} \|\Delta^2\|_{\frac{p}{2}} + (M^{(t)})^{\frac{2-p}{p}} \langle R^{(t)}, \Delta^2 \rangle \geq 2(M^{(t)})^{\frac{2}{p}}.$$

1245
 1246 Hence for all Δ such that $A\Delta = 0$, $\langle g^{(t)}, \Delta \rangle = \frac{M^{(t)}}{2}$, either $\|\Delta^2\|_{\frac{p}{2}} \geq (M^{(t)})^{\frac{2}{p}} \Leftrightarrow \|\Delta\|_p^p \geq M^{(t)}$
 1247 or $(M^{(t)})^{\frac{2-p}{p}} \langle R^{(t)}, \Delta^2 \rangle \geq (M^{(t)})^{\frac{2}{p}} \Leftrightarrow \langle R^{(t)}, \Delta^2 \rangle \geq M^{(t)}$. For all Δ such that $A\Delta = 0$, we
 1248 can write $\langle g^{(t)}, \Delta \rangle = a \frac{M^{(t)}}{2}$, for some constant $a \in \mathbb{R}$. We obtain either $\|\Delta\|_p^p \geq a^p M^{(t)}$ or
 1249 $\langle R^{(t)}, \Delta^2 \rangle \geq a^2 M^{(t)}$, and thus for all Δ
 1250

$$\text{res}_{x^{(t)}}(\Delta) \leq M^{(t)} \left(\frac{1}{2}a - \min\{a^2, a^p\} \right) \leq \frac{M^{(t)}}{2} = M^{(t+1)}.$$

1251 We write $\bar{\Delta} = \frac{x^{(t)} - x^*}{\lambda/p}$, for $\lambda = 16p$. Using property (11) of the res_x , we have
 1252

$$\begin{aligned} \|x^{(t+1)}\|_p^p - \|x^*\|_p^p &= \|x^{(t)}\|_p^p - \|x^*\|_p^p \\ &= \|x^{(t)}\|_p^p - \left\| x^{(t)} - \lambda \frac{\bar{\Delta}}{p} \right\|_p^p \\ &\leq \lambda \text{res}_{x^{(t)}}(\bar{\Delta}) \\ &\leq 16p M^{(t+1)}. \end{aligned}$$

1253 Case 2. We have $\langle R, \tilde{\Delta}^2 \rangle < 2M^{(t)}$ and $\|\tilde{\Delta}\|_p \leq 4\sqrt{\kappa}(M^{(t)})^{\frac{1}{p}}$ and $\langle g, \tilde{\Delta} \rangle = \frac{M^{(t)}}{2}$
 1254

$$\begin{aligned} \|x^{(t)}\|_p^p - \|x^{(t+1)}\|_p^p &= \|x^{(t)}\|_p^p - \left\| x^{(t)} - \frac{\tilde{\Delta}}{64p\kappa} \right\|_p^p \\ &\geq \text{res}_{x^{(t)}}\left(\frac{\tilde{\Delta}}{64\kappa}\right) \\ &= \left\langle g, \frac{\tilde{\Delta}}{64\kappa} \right\rangle - \left\langle R, \left(\frac{\tilde{\Delta}}{64\kappa}\right)^2 \right\rangle - \left\| \frac{\tilde{\Delta}}{64\kappa} \right\|_p^p \\ &\geq \frac{M^{(t)}}{2^7\kappa} - \frac{M^{(t)}}{2^{11}\kappa^2} - \frac{M^{(t)}}{2^{4p}\kappa^{\frac{p}{2}}} \\ &\geq \frac{M^{(t)}}{2^7\kappa} - \frac{M^{(t)}}{2^{11}\kappa} - \frac{M^{(t)}}{2^{8p}\kappa}, \quad (\text{since } p \geq 2, \kappa \geq 1) \\ &\geq \frac{M^{(t)}}{2^9\kappa} \geq \frac{1}{2^{13}p\kappa} \left(\|x^{(t)}\|_p^p - \|x^*\|_p^p \right), \end{aligned}$$

1255 from which we obtain
 1256

$$\begin{aligned} \|x^{(t+1)}\|_p^p - \|x^*\|_p^p &\leq \|x^{(t)}\|_p^p - \|x^*\|_p^p - \frac{1}{2^{13}p\kappa} \left(\|x^{(t)}\|_p^p - \|x^*\|_p^p \right) \\ &\leq \left(1 - \frac{1}{2^{13}p\kappa} \right) \left(\|x^{(t)}\|_p^p - \|x^*\|_p^p \right) \end{aligned}$$

1257 as needed. □
 1258

1296 **F LOWER BOUND LEMMA**
12971298 **Lemma F.1.** *Let a set of nonnegative reals β_1, \dots, β_k such that $1 + \epsilon \leq \beta_i \leq S$, and $\sum_{i=1}^k \beta_i^{\frac{1}{r}} \geq K$,
1299 where $r \geq 2$. Then for any k one has that*
1300

1301
$$\prod_{i=1}^k \beta_i \geq \min \left\{ S^{\frac{K}{S^{1/r}}}, (1 + \epsilon)^{\frac{K}{(1+\epsilon)^{1/r}}} \right\}.$$

1302
1303

1304 *Proof.* Consider a fixed k , and let us attempt to minimize the product of β_i 's subject to the constraints.
1305 W.l.o.g. we have $\sum_{i=1}^k \beta_i^{\frac{1}{r}} = K$. Equivalently we want to minimize $\sum_{i=1}^k \log(\beta_i)$, which is a
1306 concave function. Therefore its minimizer is attained on the boundary of the feasible domain. This
1307 means that for some $0 \leq k' \leq k-1$, there are k' elements equal to $1 + \epsilon$, $k-1-k'$ equal to S , and one
1308 which is exactly equal to the remaining budget, i.e. $(K - k'(1 + \epsilon)^{1/r} - (k-1-k')S^{1/r})$, which
1309 yields the product $(1 + \epsilon)^{k'} S^{k-k'-1} \cdot (K - k'(1 + \epsilon)^{1/r} - (k-1-k')S^{1/r})$. This can be relaxed
1310 by allowing k and k' to be non-integral. Hence we aim to minimize the product $(1 + \epsilon)^{k'} S^{k-k'-1}$
1311 subject to $k'(1 + \epsilon)^{1/r} - (k-1-k')S^{1/r} = K$.
13121313 Finally, we observe that we can always obtain a better solution by placing all the available mass on a
1314 single one of the factors, i.e. we lower bound either by $S^{\frac{K}{S^{1/r}}}$ or $(1 + \epsilon)^{\frac{K}{(1+\epsilon)^{1/r}}}$, whichever is lowest.
13151316 **G ITERATIVE REFINEMENT**
13171319 In this section we provide a general technique for solving optimization problems to high-precision,
1320 by reducing them to an adaptive sequence of easier optimization problems, which only require
1321 approximate solutions. This formalizes the minimal requirements for the iterative refinement scheme
1322 employed in Adil et al. (2019a;b) to go through. We state the main lemma below.
13231324 **Lemma G.1.** *Let $\mathcal{D} \subseteq \mathbb{R}^n$ be a convex set, and let $f : \mathcal{D} \rightarrow \mathbb{R}$ be a convex function. Let $\eta \geq 0$ be a
1325 scalar, and suppose that for any $x \in \mathcal{D}$ there exists a function h_x that approximates the Bregman
1326 divergence at x in the sense that*

1327
$$\frac{1}{\eta} h_x(\eta\delta) \leq f(x + \delta) - f(x) - \langle \nabla f(x), \delta \rangle \leq h_x(\delta).$$

1328

1329 Given access to an oracle that for any direction v can provide κ -approximate minimizers to $\langle v, \delta \rangle +$
1330 $h_x(\delta)$ in the sense that it returns δ^\sharp such that $v + \delta^\sharp \in \mathcal{D}$ and

1331
$$\langle v, \delta^\sharp \rangle + h_x(\delta^\sharp) \leq \frac{1}{\kappa} \left(\min_{v+\delta \in \mathcal{D}} \langle v, \delta \rangle + h_x(\delta) \right),$$

1332

1333 along with an initial point $x_0 \in \mathcal{D}$, in $O\left(\frac{\kappa}{\eta} \ln \frac{f(x_0) - f(x^*)}{\varepsilon}\right)$ calls to the oracle one can obtain a
1334 point x such that $f(x) \leq f(x^*) + \varepsilon$, where $x^* \in \arg \min_{x \in \mathcal{D}} f(x)$.
13351336 *Proof.* Let δ^\sharp be the a κ -approximate minimizer of $\langle \nabla f(x), \delta^\sharp \rangle + h_x(\delta^\sharp)$, which by definition
1337 satisfies:

1338
$$\langle \nabla f(x), \delta^\sharp \rangle + h_x(\delta^\sharp) \leq \frac{1}{\kappa} \left(\min_{v+\delta \in \mathcal{D}} \langle \nabla f(x), \delta \rangle + h_x(\delta) \right). \quad (12)$$

1339

1340 Updating our iterate to $x' = x + \delta^\sharp$ we can bound the new function value as
1341

1342
$$\begin{aligned} & f(x + \delta^\sharp) \\ &= f(x) + \langle \nabla f(x), \delta^\sharp \rangle + h_x(\delta^\sharp) && \text{(Bregman divergence upper bound)} \\ &\leq f(x) + \frac{\eta}{\kappa} \left(\langle \nabla f(x), x^* - x \rangle + \frac{1}{\eta} h_x(\eta(x^* - x)) \right) && \text{(using (12))} \\ &= f(x) + \frac{\eta}{\kappa} (\langle \nabla f(x), x^* - x \rangle + (f(x^*) - f(x) - \langle \nabla f(x), x - x^* \rangle)) && \\ &&& \text{(Bregman divergence lower bound)} \end{aligned}$$

$$1350 = f(x) + \frac{\eta}{\kappa} (f(x^*) - f(x)) ,$$

$$1351$$

1352 from where we equivalently obtain that

$$1353$$

$$1354 f(x + \delta^\sharp) - f(x^*) \leq \left(1 - \frac{\eta}{\kappa}\right) (f(x) - f(x^*)) .$$

$$1355$$

1356 Therefore to reduce the initial error $f(x_0) - f(x^*)$ to ε it suffices to iterate $O\left(\frac{\kappa}{\eta} \ln \frac{f(x_0) - f(x^*)}{\varepsilon}\right)$
1357 times. \square

$$1358$$

1359 The following lemma provides a sandwiching inequality for the Bregman divergence of $\|x\|_p^p$.

$$1360$$

1361 **Lemma G.2** (Adil et al. (2019b), Lemma B.1). *For any x, δ and $p \geq 2$, we have for $r = x^{p-2}$ and*
1362 *$g = px^{p-1}$,*

$$1363$$

$$1364 \frac{p}{8} \langle r, \delta^2 \rangle + \frac{1}{2^{p+1}} \|\delta\|_p^p \leq \|x + \delta\|_p^p - \|x\|_p^p - \langle g, \delta \rangle \leq 2p^2 \langle r, \delta^2 \rangle + p^p \|\delta\|_p^p .$$

$$1365$$

1366 As a corollary we see that the function $h_x(\delta) = 2p^2 \langle x^{p-2}, \delta^2 \rangle + p^p \|\delta\|_p^p$ satisfies the inequality
1367 required by Lemma G.1 for $\eta = \frac{1}{4p}$. We can thus conclude that given access to an oracle that
1368 approximately minimizes mixed $\ell_2 + \ell_p$ regression objectives, one can efficiently generate a high
1369 precision solution.

$$1370$$

1371 **Corollary G.1.** *Consider the ℓ_p regression problem $\min_{f: B^\top f = d} \|f\|_p^p$. Given access to an oracle*
1372 *that can compute κ -approximate minimizers to the optimization problem*

$$1373$$

$$1374 V^* := \min_{f: B^\top \Delta f = 0} \langle pf^{p-1}, \Delta f \rangle + 2p^2 \langle f^{p-2}, \Delta f^2 \rangle + p^p \|\Delta f\|_p^p$$

$$1375$$

1376 *in the sense that it returns Δf satisfying $B^\top \Delta f = 0$ and*

$$1377$$

$$1378 \langle pf^{p-1}, \Delta f \rangle + 2p^2 \langle f^{p-2}, \Delta f^2 \rangle + p^p \|\Delta f\|_p^p \leq \frac{1}{\kappa} V^* ,$$

$$1379$$

1380 *along with an initial point f_0 , satisfying $B^\top f = d$, in $O\left(\kappa p \ln \frac{\|f_0\|_p^p - \|f^*\|_p^p}{\varepsilon}\right)$ calls to the oracle one*
1381 *can obtain a point f such that $\|f\|_p^p \leq \|f^*\|_p^p + \varepsilon$, where $f^* \in \arg \min_{B^\top f = d} \|f\|_p^p$.*

$$1382$$

1383 *Proof.* Using Lemma G.2 we verify that the function $h_f(\Delta f) = 2p^2 \langle f^{p-2}, \Delta f^2 \rangle + p^p \|\Delta f\|_p^p$
1384 satisfies

$$1385$$

$$1386 \frac{1}{\eta} h_f(\eta \Delta f) \leq \|f + \Delta f\|_p^p - \|f\|_p^p + \langle pf^{p-1}, \Delta f \rangle \leq h_f(\Delta f)$$

$$1387$$

1388 for $\eta = \frac{1}{4p}$. Therefore by Lemma G.1 we can need $O\left(\kappa p \ln \frac{\|f_0\|_p^p - \|f^*\|_p^p}{\varepsilon}\right)$ iterations to obtain an
1389 ε -additive error to the regression problem. \square

$$1390$$

1393 H ADDITIONAL EXPERIMENTAL RESULTS

$$1394$$

1395 H.1 DATA GENERATION

$$1396$$

1397 **Random matrices.** The entries of A and b are generated uniformly at randomly between 0 and 1.

$$1398$$

1399 **Random graphs.** We use the procedure in Adil et al. (2019b) to generate random graphs and the
1400 corresponding A and b . The generated graph is a weighted graph, where the vertices are generated by
1401 choosing a point in $[0, 1]^{10}$ uniformly at random, each vertex is connected to the 10 nearest neighbors.
1402 The edge weights are generated by a gaussian type function (by Flores-Calder-Lerman). k (around
1403 10) nodes are labeled in $[0, 1]$ and let g be the label vector. Let B be the edge-vertex adjacency matrix,
1404 W be the diagonal matrix with edge weights. We generate $A = W^{1/p} B$, $b = -B[:, n : n + k]g$.

$$1405$$

Figure 3: Error of the solution against CVX/SDPT3 solution in log10 scale.

Figure 4: Performance when varying ϵ on random matrices and random graphs instances.

H.2 CORRECTNESS OF SOLUTION

In Figure 3, we plot the error of the solutions outputted by our algorithm and p -IRLS against CVX in the random matrices and random graphs instances for $\epsilon = 10^{-10}$. In all cases, the error is below ϵ .

H.3 WHEN VARYING ϵ

In Figure 4, we plot iteration complexity and runtime in seconds of our algorithm, p -IRLS and CVX when varying ϵ . Note that, CVX does not allow varying this parameter. In all experiment, we fix $p = 8$. For large instances, we only consider our solution against p -IRLS.

H.4 FOR $1 < p < 2$

In Figure 5, we plot iteration complexity and runtime in seconds of our algorithm, p -IRLS and CVX on random matrices of size $n \times (n - 100)$. In all experiment, we fix $\epsilon = 10^{-10}$. We test with $p = 1.1$ and $p = 1.9$.

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481

1489 Figure 5: Performance when $p = 1.1$ and $p = 1.9$ on random matrices of size $n \times (n - 100)$.
 1490

1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511