
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVED ℓp REGRESSION VIA ITERATIVELY
REWEIGHTED LEAST SQUARES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce fast algorithms for solving ℓp regression problems using the iteratively
reweighted least squares (IRLS) method. Our approach achieves state-of-the-art
iteration complexity, outperforming the IRLS algorithm by Adil-Peng-Sachdeva
(NeurIPS 2019) and matching the theoretical bounds established by the complex
algorithm of Adil-Kyng-Peng-Sachdeva (SODA 2019, J. ACM 2024) via a simpler
lightweight iterative scheme. This bridges the existing gap between theoretical and
practical algorithms for ℓp regression. Our algorithms depart from prior approaches,
using a primal-dual framework, in which the update rule can be naturally derived
from an invariant maintained for the dual objective. Empirically, we show that
our algorithms significantly outperform both the IRLS algorithm by Adil-Peng-
Sachdeva and MATLAB/CVX implementations.

1 INTRODUCTION

In this paper, we study the ℓp regression problem defined as follows. The input to the problem is a
matrix A ∈ Rd×n, a vector b ∈ Rd that lies in the column span of A, and an accuracy parameter ϵ.
The goal is to approximately solve the problem minx∈Rn : Ax=b ∥x∥p, i.e., find a solution x ∈ Rn

such that Ax = b and ∥x∥p ≤ (1 + ϵ)∥x∗∥p, where x∗ is an optimal solution to the problem, and
∥·∥p denotes the ℓp norm. Solving ℓp regression for all values of p is a fundamental problem in
machine learning with numerous applications and has been studied in a long line of research beyond
the classical least squares regression with p = 2. Lp-norm regression problems with general p arise
in several areas, including supervised learning, graph clustering, and wireless networks. Examples of
applications include ℓp-norm based algorithms in semi-supervised learning (Alaoui, 2016; Liu and
Gleich, 2020), k-clustering with ℓp-norm (Huang and Vishnoi, 2020), robust regression and robust
clustering (Meng and Mahoney, 2013; Huang et al., 2023).

For this general class of convex optimization problems, designing provably fast iterative algorithms
to obtain high accuracy solutions with empirical efficiency is an important question. General convex
programming methods such as interior point methods are usually slow in practice. In theory, Bubeck
et al. (2018) show that algorithms based on interior point methods cannot improve beyond O(

√
n)

iterations1 for any p /∈ {1, 2,∞}. Breaking this barrier and finding iterative algorithms that are faster
than interior point methods both in theory and practice is the goal of this line of work.

Recent developments have led to new algorithmic approaches such as a homotopy method (Bubeck
et al., 2018), and an iterative refinement approach (Adil et al., 2019a;b; 2024) for ℓp regression
with p /∈ {1,∞}. We highlight the notable works by Adil et al. (2019a;b; 2024). On the one hand,
the algorithm with the best known theoretical runtime is given by Adil et al. (2019a; 2024) with
O
(
p2n

p−2
3p−2 log

(
n
ϵ

))
calls2 to a linear system solver. This algorithm, however, relies on complex

subroutines and includes theoretical choices for several hyperparameters. In practice, to obtain an

1For simplicity in the introduction, we assume that d = Θ(n). In the regime when n ≫ d, the IPM iteration
complexity improves to Õ(

√
d).

2The original result is O
(
pn

p−2
3p−2 log

(∥x(0)∥p

p
−∥x∗∥p

p

ϵ

))
for finding x̂ such that ∥x̂∥pp ≤ minx:Ax=b ∥x∥pp+

ϵ. This translates to O
(
pn

p−2
3p−2 log

(∥x(0)∥p

p
−∥x∗∥p

p

pϵ∥x∗∥pp

))
= O

(
p2n

p−2
3p−2 log

(
n
ϵ

))
for finding x̂ such that ∥x̂∥p ≤

(1 + ϵ)minx:Ax=b ∥x∥p for x(0) initialized to minx:Ax=b ∥x∥2.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

efficient implementation, hyperparameters require tuning. Due to these reasons, this theoretical
algorithm by Adil et al. (2019a; 2024) does not provide a practical implementation. On the other hand,
an algorithm known as p-IRLS by Adil et al. (2019b) has been shown to have significant speed up over
standard solvers such as CVX. This algorithm is implemented based on an Iteratively Reweighted
Least Squares (IRLS) method, which is a general iterative framework for solving regression problems.
The key element of an IRLS method is solving a weighted least squares regression problem in each
iteration. This is equivalent to solving a linear system of the form minx∈Rn:Ax=b x

⊤Rx, where R is
a diagonal matrix, which can be computed very efficiently in practice with the advance of numerical
solvers. IRLS algorithms are favored in practice (Burrus, 2012), but designing IRLS algorithms with
strong convergence guarantees is challenging. In particular, to obtain the efficiency, the algorithm by
Adil et al. (2019b) sacrifices the theoretical guarantee, requiring O

(
p3n

p−2
2p−2 log

(
n
ϵ

))
linear system

solves. This brings forth the question:

Can we design an algorithm that retains the empirical efficiency of an IRLS approach while
achieving the state-of-the-art theoretical runtime?

In this work, we give a positive answer to this question. We provide a new algorithmic framework for
ℓp regression based on an IRLS approach for all values of p ∈ (1,∞). We propose an algorithm that
uses O

(
p2n

p−2
3p−2 log

(
n
ϵ

))
linear system solves, matching the state-of-the-art theoretical algorithm

by Adil et al. (2019a), and improving upon the guarantee of O
(
p3n

p−2
2p−2 log

(
n
ϵ

))
for the p-IRLS

algorithm by Adil et al. (2019b). We experimentally compare our algorithm with the p-IRLS algorithm
(Adil et al., 2019b) and CVX solvers, and we observe significant improvements in all instances.

1.1 OUR CONTRIBUTIONS

For the simplicity of the exposition, we study the ℓp regression problem in both low and high precision
regimes for p ≥ 2.
Remark 1.1. In Appendix B, we show a simple reduction for the more general problem
minx : Ax=b ∥Nx − v∥p to the form minx : Ãx=b̃ ∥x∥p with the dependence of the runtime on the
number of rows of N instead of the dimension of x. We also show in Appendix C a reduction for the
case 1 < p < 2 to the case p ≥ 2.

In the low precision regime when the runtime dependence on ϵ is poly
(
1
ϵ

)
, we have the following

theorem.
Theorem 1.1. For any p ≥ 2, there is an iterative algorithm for the ℓp regression problem
minx∈Rn : Ax=b ∥x∥p that solves O (log log n+ log (1/ϵ)) subproblems, each of which makes

O
((

(1ϵ)
2p−3
p−2 + n

p−2
3p−2 (1ϵ)

3p2−4p

3p2−8p+4

)
log
(

n

ϵ
p

p−2

))
calls to solve a linear system of the form

ADA⊤ϕ = b, where D is an arbitrary non-negative diagonal matrix.

Remark 1.2. When p = ∞, each subproblem makes O
(

1
ϵ2 + n

1
3

ϵ log(nϵ)
)

calls to a linear system
solver.

Prior approaches for solving ℓp regression problem in the low precision regime commonly use the
Taylor expansion of ∥x∥pp, which then allows for deriving and bounding the updates. In contrast
to this, our algorithm relies on a primal-dual approach using the dual formulation of the squared
objective minx : Ax=b ∥x∥2p = minx : Ax=b ∥x2∥p/2 = maxr

E(r)
∥r∥q

where ℓq is the dual norm of ℓp/2
and E(r) = minx:Ax=b⟨r, x2⟩. The term E(r) is often referred to as the energy. The high level idea
of our approach is as follows. Starting with an initial solution r for the dual problem, we will increase
the coordinates of r as much as possible so that the increase in the energy E(r) relative to the increase
of ∥r∥q is also sufficiently large, until we can obtain a (1 − ϵ) optimal dual solution and whereby
recover an approximately optimal primal solution. This template is close to the approach for ℓ∞
regression by Ene and Vladu (2019). However, ℓp regression does not have the readily decomposable
structure along the coordinates as ℓ∞ regression and novel technique is required in the design of
the algorithm. Our approach is also a reminiscence of the width-independent multiplicative weights
update method for solving mixed packing covering linear program, where in each step the algorithm
updates the coordinates the maximize the bang-for-buck ratio (Quanrud, 2020). In contrast to MWU,
we do not use a mirror map or regularize ℓp norms to make them smooth as in standard approaches.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our scheme allows our method to take much longer steps, where in each step, the coordinates of the
dual solution are allowed to change by large polynomial factors and thereby achieve faster running
time.

To obtain faster algorithms in the high accuracy regime with a logarithmic dependence on the accuracy,
we adapt the iterative refinement approach of Adil et al. (2019a) and obtain improved running times.
Theorem 1.2. For any p ≥ 2, there is an iterative algorithm for the ℓp regression problem
minx∈Rn : Ax=b ∥x∥p that solves O

(
p2 log n log

(
n
ϵ

))
subproblems, each of which makes O

(
n

p−2
3p−2

)
calls to solve a linear system of the form ÃDÃ⊤ϕ = z, where D is an arbitrary non-negative
diagonal matrix, Ã is a matrix obtained from A by appending a single row, and z is a vector obtained
from the all-zero vector by appending a single non-zero coordinate.

Using the iterative refinement template by (Adil et al., 2019a;b; 2024), we instead use an IRLS solver
for the residual problems with improved runtime. The residual solver solves a mixed ℓp + ℓ2 problem
in the form minx : Ax=b ∥x∥2p +

〈
θ, x2

〉
, only to a constant approximation. Here the challenge lies

in the fact that the ℓ2 term makes the dual problem no longer scale-free and thus our low precision
solver is not immediately usable. However, by an appropriate initialization of the dual solution and
careful adjustments to the step size, our algorithm achieves the desired O

(
n

p−2
3p−2

)
bound. Since

regularized ℓp + ℓ2 regression problems arise in many applications in machine learning and beyond,
our algorithm for the mixed ℓp + ℓ2 objective is of independent interest.

Finally, we experimentally evaluate our high-precision algorithm. Our algorithm significantly
outperforms the p-IRLS algorithm (Adil et al., 2019a) both in the number of linear system solves as
well as the overall running time. Our algorithm is significantly faster than CVX solvers and is able to
run on large instances, which is not possible for CVX solvers within a time constraint.

1.2 RELATED WORK

ℓp regression problems have received significant attention. Here we summarize the results that are
closest to our work. The surveyed algorithms are iterative algorithms where the running time of each
iteration is dominated by a single linear system solve.

Algorithms based on interior point methods use Õ (
√
n) iterations for any p ∈ [1,∞] (Nesterov

and Nemirovskii, 1994), which was improved to Õ
(√

d
)

iterations for p ∈ {1,∞} (Lee and
Sidford, 2014). Bubeck-Cohen-Lee-Li (Bubeck et al., 2018) show that this iteration bound is
generally necessary for interior point methods and propose a homotopy-based algorithm that uses
Õ
(
poly

(
p2

p−1

)
· n|1/2−1/p|) iterations for any p /∈ {1,∞}. Adil et al. (2019a; 2024) introduced

an iterative refinement framework that uses O
(
p2 · n

p−2
3p−2 log(nϵ)

)
iterations for any p > 2. Using

Lewis weight sampling, Jambulapati-Liu-Sidford (Jambulapati et al., 2022) improve the method
by Adil et al. (2019a; 2024) to O

(
pp · d

p−2
3p−2 polylog(nϵ)

)
, for overconstrained regression problems

minx∈Rd ∥Ax− b∥p where A ∈ Rn×d and n is much larger than d (the iteration complexity of
the prior algorithms will still depend on the larger dimension n in this case). Bullins (2018) gives
a faster algorithm for minimizing structured convex quartics, which implies an algorithm for ℓ4
regression with Õ(n

1
5) iterations. Building on the work of Christiano et al. (2011); Chin et al.

(2013) for maximum flows and regression, Ene and Vladu (2019) give an algorithm for ℓ1 and ℓ∞

regression using O
(n1/3 log(1/ϵ)

ϵ2/3
+ logn

ϵ2

)
iterations. This work also uses a primal-dual framework

but the algorithm and analysis are specific to the special structure of the ℓ1 and ℓ∞ norm and work
only in the low precision regime with poly(1ϵ) convergence.

2 OUR ALGORITHM WITH poly
(
1
ϵ

)
CONVERGENCE

In this section, we present our algorithm with guarantee provided in Theorem 1.1.

Before describing the algorithm, we first introduce some basic notations. For a constant a ∈ R, we
abuse the notation and use a ∈ Rn to denote the vector with all entries equal to a (the dimension will
be clear from context). When it is clear from the context, we apply scalar operations to vectors with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 ℓ2p-minimization(A, b, ϵ)

Input: Matrix A ∈ Rd×n, vector b ∈ Rd, accuracy ϵ
Output: Vector x such that Ax = b and ∥x∥2p ≤ (1 + ϵ)minx:Ax=b ∥x∥2p
Initialize x(0) = minx:Ax=b ∥x∥2
L = max

{
i : (1 + ϵ)i ≤ ∥

x(0)∥
2

n
1
2
− 1

2p

}
; U = min

{
i : (1 + ϵ)i ≥

∥∥x(0)
∥∥
2

}
while L < U :

P = ⌊L+U
2 ⌋, M = (1 + ϵ)P

if SubSolver(A, b, ϵ,M) is infeasible then
L = P + 1

else
Let x(t+1) be the output of SubSolver(A, b, ϵ,M)
U = P ; t← t+ 1

end if
end while
return x(t)

Algorithm 2 SubSolver(A, b, ϵ,M)

Input: Matrix A ∈ Rd×n, vector b ∈ Rd, accuracy ϵ, target value M
Output: Vector x such that Ax = b and ∥x∥2p ≤ (1 + ϵ)M ,

or approximate infeasibility certificate r, ∥r∥q = 1.
t = 0, r(0) = 1

n1/q , t′ = 0, s(t
′) = 0

while
∥∥(r(t))∥∥

q
≤ 1

ϵ

x(t) = argminx:Ax=b⟨r(t), x2⟩

γ
(t)
i =

{
x2
i ∥r∥

q−1
q

M2rq−1
i

if
x2
i ∥r∥

q−1
q

rq−1
i

≥ (1 + ϵ)M2

1 otherwise
, for all i

if γ(t) = 1 then return x(t) end if ▷ Case 1

α(t) =
(
γ(t)
) 1

q ; r(t+1) = r(t) · α(t)

if α(t) ≤ n
2

2q+1
(
1
ϵ

) q−1
2q+1 then s(t

′+1) = s(t
′) + x(t); t′ = t′ + 1 end if

if t′ > 0 and
∥∥∥s(t′)/t′∥∥∥

2p
≤ (1 + ϵ)M then return s(t

′)/t′ end if ▷ Case 2

t = t+ 1
end while
return r(t) ▷ Case 3

the interpretation that they are applied coordinate-wise. For p ≥ 1, we let q be such that 1
p + 1

q = 1

and ℓq is the dual norm of the ℓp norm.

2.1 OUR ALGORITHM

For ease of notation, it is convenient to consider the following equivalent formulation of the problem:
For p ≥ 1, we solve minx:Ax=b ∥x∥22p = minx:Ax=b

∥∥x2
∥∥
p

to (1 + ϵ) multiplicative error. We
provide our algorithm in Algorithms 1 and 2. We give an overview of our approach and explain the
intuition in the following section.

2.2 OVERVIEW OF OUR APPROACH

Our algorithm is based on a primal-dual approach, starting with the following dual formulation of the
problem. Using q as the dual norm of p and by duality, we write

min
x:Ax=b

∥x∥2p = min
x:Ax=b

∥∥x2
∥∥
p
= min

x:Ax=b
max

r:∥r∥q≤1
⟨r, x2⟩ max

r≥0:∥r∥q≤1
min

x:Ax=b
⟨r, x2⟩ = max

r≥0

E(r)
∥r∥q

,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where we defined E(r) := minx:Ax=b⟨r, x2⟩. The main part of our algorithm is the subroutine
shown in Algorithm 2, which takes as input a guess M for the optimum value ∥x∗∥2p. To find an
(1 + ϵ) approximation of the optimum value, the main Algorithm 1 performs a binary search as
follows. Since x(0) is initialized to minx:Ax=b ∥x∥2, we can show that ∥x∗∥p is contained in the

range
[
∥x(0)∥

2

n
1
2
− 1

2p
,
∥∥x(0)

∥∥
2

]
. The algorithm performs binary search over the indices i such that (1 + ϵ)

i

is in that range. Note that the main algorithm only needs to perform at most log
(

logn
ϵ

)
iterations,

each of which makes one call to the subproblem solver.

We now focus on the subproblem when we are given a guess M and a target precision ϵ. The goal is to
find a primal solution x that satisfies ∥x∥2p ≤M(1 + ϵ) or a dual solution r (infeasibility certificate)

which can certify that minx:Ax=b ∥x∥22p ≥
E(r)
∥r∥q

≥ (M
1+ϵ)

2. This lower bound on the optimal value
of the problem tells us that we can increase the guess M .

The objective function E(r) has a very useful monotonicity property: it increases when r increases.
The overall strategy of our algorithm is to start with an initial dual solution r(0) (which we initialize
uniformly to 1

n1/q) and increase it while maintaining the following invariant

E(r(t+1))− E(r(t)) ≥M2(
∥∥∥r(t+1)

∥∥∥
q
−
∥∥∥r(t)∥∥∥

q
), (1)

or equivalently,

E(r(t+1))− E(r(t))∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥M2.

The telescoping property of both sides of (1) will guarantee that, if the algorithm outputs a dual

solution r with sufficiently large ∥r∥q, this solution will satisfy E(r) ≥
(

M
1+ϵ

)2
∥r∥q, i.e, E(r)

∥r∥q
≥(

M
1+ϵ

)2
. To maintain the invariant 1, we have two useful bounds for the change in the objective and

dual solution:

E(r(t+1))− E(r(t)) ≥
∑
i

r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

)
, (2)

1∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q
∥∥r(t)∥∥q−1

q∑
i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q . (3)

Both inequalities allow us to decompose the invariant along the coordinates. That is, we can maintain
the invariant by ensuring for each coordinate i that we increase that

q
∥∥r(t)∥∥q−1

q
r
(t)
i

(
x
(t)
i

)2
(
r
(t+1)
i

)q
−
(
r
(t)
i

)q
(
1− r

(t)
i

r
(t+1)
i

)
≥M2.

In order to do this, we update each r
(t)
i multiplicatively, via the term γ

(t)
i =

∥r(t)∥q−1

q(
r
(t)
i

)q−1 ·
(
x
(t)
i

)2

M2 .

To guarantee fast convergence, we want to increase r
(t)
i as much as possible, by setting a target

threshold on γ
(t)
i : if γ(t)

i exceeds the threshold, we update r
(t+1)
i = r

(t)
i

(
γ
(t)
i

)1/q
; otherwise, r(t)i

remains unchanged. When we can no longer increase r while preserving the invariant, we can be
sure that we have found the corresponding primal solution x with small norm. During the course of
the algorithm, we also keep track of iterations with small increases in r and use the uniform average
over the corresponding primal solutions to obtain an approximately feasible primal solution, in case
the algorithm fails to return an infeasibility certificate quickly enough.

We note that our update approach is derived in a completely different way from standard iterative
frameworks such as multiplicatives weights updates and, generally, mirror descent. In contrast to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 3 Iteratively Reweighted Least Squares
Input: Matrix A ∈ Rd×n, vector b ∈ Rd, ϵ
Output: Vector x such that Ax = b that minimizes ∥x∥pp
Initialize x(0) = argminx:Ax=b ∥x∥22

M (0) :=
∥x(0)∥p

p

16p , t← 0; κ =

{
1 if p ≤ 2 logn

logn−1
p

p−2 otherwise

while M (t) ≥ ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p

g(t) =
∣∣x(t)

∣∣p−2
x(t); R(t) = 2

∣∣x(t)
∣∣p−2

∆̃← ResidualSolver

(
p
2 ,

[
A

(g(t))⊤

]
,
[
0, M(t)

2

]
, (M (t))

2−p
p R(t), 2

√
κ(M (t))

1
p

)
if ∆̃ is an infeasibility certificate or

〈
R(t), ∆̃2

〉
≥ 2M (t) then

M (t+1) ←M (t)/2, x(t+1) = x(t)

else
M (t+1) ←M (t), x(t+1) = x(t) − ∆̃

64pκ

end if
t← t+ 1

end while
return x(t)

these standard approaches, we do not use a mirror map or regularize ℓp norms to make them smooth.
Our update scheme allows our algorithm to take much longer steps, and the coordinates of the dual
solution are allowed to change by large polynomial factors in each step. This allows us to obtain a
fast convergence rate.

We provide the complete analysis and proof of Theorem 1.1 in Appendix D.

3 OUR ALGORITHM WITH log
(
1
ϵ

)
CONVERGENCE

3.1 ALGORITHM

In this section, we present our algorithm with guarantee provided in Theorem 1.2. For the ease of the
exposition, we consider a slight variation of the problem: for p ≥ 2, we solve minx:Ax=b ∥x∥pp to
(1 + ϵ) multiplicative error. We show our algorithm in Algorithms 3 and 4.

3.2 OVERVIEW OF OUR APPROACH

At the highest level, the main algorithm relies on a simple yet powerful observation by Adil et al.
(2019a), which is that the ℓp minimization problem we are attempting to solve supports iterative
refinement. Adil et al. (2019a) show that having access to a weak solver which gives a constant
factor multiplicative approximation to a mixed objective of ℓp and ℓ2 norms suffices to boost the
multiplicative error to 1 + ϵ while only making Õp(log 1/ϵ) calls to the solver. This reduces the
entire difficulty of the problem to implementing the weak solver.

More precisely, starting with an initial solution (set to argminx:Ax=b ∥x∥2), we maintain M (t) as an
upper bound for the function value gap, ie.

∥∥x(t)
∥∥p
p
− ∥x∗∥pp ≤ 16pM (t). We show this invariant in

Lemma E.2. In each iteration, the algorithm makes a call to a solver for the residual problem which
approximates the function value progress ∥x∥pp−∥x−∆∥pp if we update the solution x← x−∆. The
residual solution tells us either the progress is too small, in which case we can improve the upperbound
on the suboptimality gap by reducing M (t), or the progress is at least Ω

(
M (t)

)
, in which case we

can perform the update and obtain a new solution. This new solution improves the function value gap

by at least a factor 1− Ω
(

1
p

)
, and thus the algorithm requires only O

(
p log

∥x(0)∥p
p
−∥x∗∥p

p

ϵ∥x∗∥p
p

)
calls

to the residual solver. We show this guarantee in Lemma E.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 4 ResidualSolver(p,A, b, θ,M)

Input: Matrix A ∈ Rd×n, vector b ∈ Rd, target value M , weight θ
Output: Vector x such that Ax = b, ∥x∥2p ≤ 2M and

〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
or approximate infeasibility certificate r, ∥r∥q = 1.

if p ≤ logn
logn−1 then

r = 1

n
1
q

; x̂ = argminx:Ax=b⟨r + θ, x2⟩
if ∥x̂∥2p ≤ 2M then return x̂ else return r end if

else
t = 0, r(0) = 2q−1

2qn
1
q

, t′ = 0, s(t
′) = 0

while
∥∥∥(r(t))q∥∥∥

1
≤ 1

x(t) = argminx:Ax=b⟨r(t) + θ, x2⟩

γ
(t)
i =

{
x2
i ∥r∥

q−1
q

M2rq−1
i

if
x2
i ∥r∥

q−1
q

rq−1
i

≥ 2M2

1 otherwise
, for all i

α
(t)
i =

(
γ
(t)
i

)1/q
if α(t) = 1 then return x(t) end if ▷ Case 1
r(t+1) = α(t) · r(t)
if α(t) ≤ n

2
2q+1 then s(t

′+1) = s(t
′) + x(t); t′ = t′ + 1 end if

if t′ > 0 and
∥∥∥s(t′)/t′∥∥∥

2p
≤ 2M then return s(t

′)/t′ end if ▷ Case 2

t = t+ 1
end while

end if
return r(t) ▷ Case 3

We give the pseudocode for the residual solver in Algorithm 43. Prior works by Adil et al. (2019a;b;
2024) give algorithms for this solver either via a width-reduced multiplicative weights update method
which achieves the state-of-the-art theoretical runtime but does not support a practical implementation
or via a practical IRLS method with suboptimal theoretical guarantee. In contrast, we build on ideas
from the low precision IRLS solver we have shown in the previous section and design a new IRLS
algorithm that attains the best of both worlds.

Our residual solver outputs an approximate solution to a constant factor to the objective of the form

min
x:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
(4)

for p ≥ 1 and a positive weight vector θ ∈ Rn. We also start with the dual formulation of the problem

(4) = min
x:Ax=b

max
r:∥r∥q=1

〈
r, x2

〉
+
〈
θ, x2

〉
= max

r≥0:∥r∥q=1
min

x:Ax=b

〈
r + θ, x2

〉
=max

r≥0
E

(
r

∥r∥q
+ θ

)
,

where q is the dual norm to p and E(r + θ) = minx:Ax=b⟨r + θ, x2⟩. Given a target M , our goal
is to find a primal solution x that satisfies ∥x∥2p ≤ 2M and

〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
or a dual solution r ∈ Rn (infeasibility certificate) which can certify that minx:Ax=b ∥x∥22p ≥
E
(

r
∥r∥q

+ θ
)
≥ M2

2κ , where κ is a value set as shown in Algorithm 3.

We distinguish between two regimes: when p is sufficiently small, 1 ≤ p ≤ logn
logn−1 for which we

will show that we can obtain a solution by O(1) calls to the linear solver, and when p > logn
logn−1 , to

3Note that while the residual solver takes as input the original matrix A augmented with an extra row, the
least squares problems required by the residual solver reduce to least squares problems involving only A, using
the Sherman-Morrison formula. This guarantees that we only require a linear system solver for structured
matrices of the form A⊤DA, for non-negative diagonal D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
n

20

25

30

35

40

45

50

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(a) size=n×(n−50), p = 8

3 4 5 6 7 8 9 10
p

20

25

30

35

40

45

50

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(b) size=500× 400

500 750 1000 1250 1500 1750 2000 2250 2500
n

35

40

45

50

55

60

65

70

75

Ite
ra

tio
ns

p-IRLS p=4
Ours p=4
p-IRLS p=30
Ours p=30
p-IRLS p=50
Ours p=50

(c) size=n× (n− 100)

10 20 30 40 50
p

35

40

45

50

55

60

65

70

75

Ite
ra

tio
ns

p-IRLS n=500
Ours n=500
p-IRLS n=1500
Ours n=1500
p-IRLS n=2500
Ours n=2500

(d) size=n× (n− 100)

0 500 1000 1500 2000 2500 3000
n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(e) size=n×(n−50), p = 8

3 4 5 6 7 8 9 10
p

0

5

10

15

20

25

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(f) size=500× 400

500 750 1000 1250 1500 1750 2000 2250 2500
n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e(
s)

p-IRLS p=4
Ours p=4
p-IRLS p=30
Ours p=30
p-IRLS p=50
Ours p=50

(g) size=n× (n− 100)

10 20 30 40 50
p

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e(
s)

p-IRLS n=500
Ours n=500
p-IRLS n=1500
Ours n=1500
p-IRLS n=2500
Ours n=2500

(h) size=n× (n− 100)

Figure 1: Performance on random matrices: min ∥Ax− b∥pp with ϵ = 10−10. We compare our
algorithm with CVX using SDPT3 and SeDuMi solvers and p-IRLS by Adil et al. (2019b). Figures
(a),(b),(e),(f) plot the average and standard deviation of number of iterations and time taken by the
solvers to find a solution over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

which we need to pay more attention. In the latter case, similarly to Algorithm 2, we want to maintain
the invariant

E(r(t+1) + θ)− E(r(t) + θ)∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥M2.

Notice the differences between this objective and the problem minx:Ax=b

∥∥x2
∥∥
p

which we solve in
the previous section. The ℓ2 term

〈
θ, x2

〉
makes this objective no longer scale-free. However, this ℓ2

term does not affect the lower bound
∑

i r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

)
in the change in the objective

(eq. (2)); thus it suffices to maintain

∑
i r

(t)
i

(
x
(t)
i

)2

(
1−

r
(t)
i

r
(t+1)
i

)
∥r(t+1)∥

q
−∥r(t)∥

q

≥ M2 in order to guarantee the

invariant E(r(t+1)+θ)−E(r(t)+θ)

∥r(t+1)∥
q
−∥r(t)∥

q

≥ M2. At the same time, if we maintain ∥r∥q ≤ 1, we can show

that if the algorithm outputs a primal solution x, the ℓ2 term
〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
.

This requires us to initialize r with sufficiently small ∥r∥q. Algorithm 4 then follows similarly to
Algorithm 2, with the note that it suffices to obtain only a constant approximation. We give the
correctness and convergence of Algorithm 4 in Lemma E.1 whose proof is based on the same idea as
the analysis for Algorithm 2.

The complete analysis of our algorithm is provided in Appendix E.

4 EXPERIMENTAL EVALUATION

On synthetic data. We follow the experimental setup in Adil et al. (2019b), and build on the
provided code4. We evaluate the performance of our high-precision Algorithm 3 on the problem
min ∥Ax− b∥pp on two types of instances: (1) Random matrices: the entries of A and b are generated
uniformly at randomly between 0 and 1, and (2) Random graphs: We use the procedure in Adil et al.
(2019b) to generate random graphs and the corresponding A and b (the details are provided in the
appendix).

We vary p and the size of the matrices and graphs, while keeping the error ϵ = 10−10. All imple-
mentations were done on MATLAB 2024a on a MacBook Pro M2 with 16GB RAM. We measure

4The code is available at https://github.com/fast-algos/pIRLS

8

https://github.com/fast-algos/pIRLS

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Number of nodes in graph

20

25

30

35

40

45

50

55

60

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(a) p = 8

3 4 5 6 7 8 9 10
p

20

30

40

50

60

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(b) Number of nodes=500

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes in graph

40

50

60

70

80

90

100

110

Ite
ra

tio
ns

p-IRLS p=4
Ours p=4
p-IRLS p=30
Ours p=30
p-IRLS p=50
Ours p=50

(c) n nodes

10 20 30 40 50
p

40

50

60

70

80

90

100

110

Ite
ra

tio
ns

p-IRLS n=2000
Ours n=2000
p-IRLS n=6000
Ours n=6000
p-IRLS n=10000
Ours n=10000

(d) n nodes

0 2000 4000 6000 8000 10000
Number of nodes in graph

0

5

10

15

20

25

30

35

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(e) p = 8

3 4 5 6 7 8 9 10
p

0

5

10

15

20

25

30

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(f) Number of nodes=500

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes in graph

0

10

20

30

40

50

Ti
m

e(
s)

p-IRLS p=4
Ours p=4
p-IRLS p=30
Ours p=30
p-IRLS p=50
Ours p=50

(g) n nodes

10 20 30 40 50
p

0

10

20

30

40

50

Ti
m

e(
s)

p-IRLS n=2000
Ours n=2000
p-IRLS n=6000
Ours n=6000
p-IRLS n=10000
Ours n=10000

(h) n nodes

Figure 2: Performance on random graph instances: min ∥Ax− b∥pp with ϵ = 10−10. We compare our
algorithm with CVX using SDPT3 and SeDuMi solvers and p-IRLS by Adil et al. (2019b). Figures
(a),(b),(e),(f) measure over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

Table 1: Performance of our algorithm against p-IRLS on six real-world datasets for p = 8, ϵ =
10−10.

CT slices
Graf et al.

(2011)

KEGG
Metabolic

Naeem
and

Asghar
(2011)

Power
Consump-

tion
Hebrail

and
Berard
(2006)

Buzz in
Social
Media
Kawala

et al.
(2013)

Protein
Property

Rana
(2013)

Song
Year Pre-
diction
Bertin-

Mahieux
(2011)

Size 48150
×385

57248
×27

1844352
×11

524925
×77 41157×9 463811

×90
no.
iters

p-IRLS 48 50 45 50 44 45
Ours 36 42 36 42 36 36

time
(s)

p-IRLS 14.3 2.5 32. 28. 1.6 22.5
Ours 9.2 1.7 15.7 18.1 1.1 13.3

the number of iterations and running time for each algorithm and report them in Figures 1-2. In the
appendix, we provide additional experimental results when 1 < p < 2 and when ϵ varies.

On real-world datasets. We test our algorithm against p-IRLS on six regression datasets from the
UCI repository. CVX has excessive runtime and hence is excluded from the comparison. Results are
provided in Table 1.

Remark 4.1. Regarding the correctness of the algorithm, we use the output by CVX as the baseline.
In all experiments, our algorithm has error within the ϵ margin compared with the objective value of
the CVX solution (see appendix).

On smaller instances, we compare our algorithm with CVX using SDPT3 and Sedumi solvers and the
p-IRLS algorithm by Adil et al. (2019b). While CVX solvers generally need fewer iterations to find a
solution, they are significantly slower on all instances than our algorithm and p-IRLS. Our algorithm
also significantly outperforms p-IRLS in both the number of iterations (calls to a linear system solver)
and running time. When the size of the problem and the value of p increases, the gap between our
algorithm and p-IRLS also increases. On average, our algorithm is 1-2.6 times faster than p-IRLS.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For the reproducibility purpose, we submitted the source code in the supplementary material. We
included the MATLAB implementation by Adil et al. (2019b).

REFERENCES

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for ℓp-norm
regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1405–1424. SIAM, 2019a.

Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent irls algorithm for
p-norm linear regression. Advances in Neural Information Processing Systems, 32, 2019b.

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for ℓp-regression.
J. ACM, 71(5):34:1–34:45, 2024. URL https://doi.org/10.1145/3686794.

Ahmed El Alaoui. Asymptotic behavior of \(\ell_p\)-based laplacian regularization in semi-supervised
learning. In COLT, volume 49 of JMLR Workshop and Conference Proceedings, pages 879–906.
JMLR.org, 2016.

T. Bertin-Mahieux. Year Prediction MSD. UCI Machine Learning Repository, 2011. DOI:
https://doi.org/10.24432/C50K61.

Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for ℓp
regression provably beyond self-concordance and in input-sparsity time. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1130–1137. ACM, 2018.

Brian Bullins. Fast minimization of structured convex quartics. arXiv preprint arXiv:1812.10349,
2018.

C Sidney Burrus. Iterative reweighted least squares. OpenStax CNX. Available online: http://cnx.
org/contents/92b90377-2b34-49e4-b26f-7fe572db78a1, 12(2012):6, 2012.

Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees for
regression problems. In Robert D. Kleinberg, editor, Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 269–282. ACM, 2013. ISBN 978-1-4503-
1859-4. doi: 10.1145/2422436.2422469. URL https://doi.org/10.1145/2422436.
2422469.

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng.
Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected
graphs. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 273–282. ACM,
2011. ISBN 978-1-4503-0691-1. doi: 10.1145/1993636.1993674. URL https://doi.org/
10.1145/1993636.1993674.

Alina Ene and Adrian Vladu. Improved convergence for ℓ1 and ℓ∞ regression via iteratively
reweighted least squares. In International Conference on Machine Learning, pages 1794–1801,
2019.

F. Graf, H.-P. Kriegel, M. Schubert, S. Poelsterl, and A. Cavallaro. Relative location of CT slices on
axial axis. UCI Machine Learning Repository, 2011. DOI: https://doi.org/10.24432/C5CP6G.

Georges Hebrail and Alice Berard. Individual Household Electric Power Consumption. UCI Machine
Learning Repository, 2006. DOI: https://doi.org/10.24432/C58K54.

Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance
sampling is nearly optimal. In STOC, pages 1416–1429. ACM, 2020.

Lingxiao Huang, Shaofeng H.-C. Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for robust
clustering. In ICLR. OpenReview.net, 2023.

10

https://doi.org/10.1145/3686794
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/1993636.1993674
https://doi.org/10.1145/1993636.1993674

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration complexities for overcon-
strained p-norm regression. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 529–542, 2022.

Franois Kawala, Ahlame Douzal, Eric Gaussier, and Eustache Diemert. Buzz in social media . UCI
Machine Learning Repository, 2013. DOI: https://doi.org/10.24432/C56G6V.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.

Meng Liu and David F. Gleich. Strongly local p-norm-cut algorithms for semi-supervised learning
and local graph clustering. In NeurIPS, 2020.

Xiangrui Meng and Michael Mahoney. Robust regression on mapreduce. In International Conference
on Machine Learning, pages 888–896. PMLR, 2013.

Muhammad Naeem and Sohail Asghar. KEGG Metabolic Relation Network (Directed). UCI Machine
Learning Repository, 2011. DOI: https://doi.org/10.24432/C5CK52.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Kent Quanrud. Nearly linear time approximations for mixed packing and covering problems without
data structures or randomization. In Symposium on Simplicity in Algorithms, pages 69–80. SIAM,
2020.

Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository, 2013. DOI: https://doi.org/10.24432/C5QW3H.

A PROPERTY OF THE ENERGY FUNCTION

We recall the definition of energy function and its properties used in the algorithms.

Definition A.1. (Energy function). Given a vector r ∈ Rn
+, we let the electrical energy be E(r) =

minx:Ax=b⟨r, x2⟩.
Lemma A.1. (Computing the energy minimizer) Given b ∈ Rd and r ∈ Rn

+, the least squares
problem minx:Ax=b⟨r, x2⟩ can be solved by evaluating x = D(r)−1A⊤ (AD(r)−1A⊤)+ b, where
D(r) is the diagonal matrix whose entries are given by r.

The following lemma gives us a lower bound on the increase in electrical energy when we increase r.

Lemma A.2. Given r′ ≥ r and letting x = argminx:Ax=b⟨r, x2⟩, one has that

E(r′)− E(r) ≥
∑
i

rix
2
i

(
1− ri

r′i

)
.

Proof. This inequality follows from the standard lower bound for E(r′)−E(r), which the reader can
find in Ene and Vladu (2019).

B REDUCING GENERAL REGRESSION PROBLEMS TO THE
AFFINE-CONSTRAINED VERSION

In this section we show that the affine constrained version of the problem we consider is in full
generality. Formally, we show that any ℓp regression problem of the form minAx=b ∥Nx− v∥p can
be reduced to the form we consider.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lemma B.1. Let A ∈ Rs×n, b ∈ Rs, N ∈ Rm×n, v ∈ Rm and consider the optimization objec-

tive minAx=b ∥Nx− v∥p. Let
[

x
z

]
be a (1 + ε) approximate solution to the affine-constrained

regression problem
min[

N −Im×m

A 0s×m

][
x
z

]
=

[
v
b

] ∥z∥p .

Then x is a (1 + ε) approximate solution to the original objective. Furthermore, each least squares
subproblem can be solved using two calls to a linear system solver for N⊤RN , and one call to a
linear system solver for A

(
N⊤RN

)+
A⊤.

Proof. We augment the dimension of the iterate by introducing m additional variables encoded in a
vector z ∈ Rm. Hence one can equivalently enforce the constraints

Nx− z = v

Ax = b

and simply seek to minimize ∥z∥p instead of ∥Ax− b∥p, which is the suitable formulation required
by our solver. Note that while we do not have any weights on the x iterate, the analysis goes through
normally, since in fact it tolerates solving a more general weighted ℓp regression problem.

To solve the corresponding least squares problem, we need to compute

min
Ax=b

1

2

〈
r, (Nx− v)

2
〉
= min

Ax=b

1

2
x⊤N⊤RNx−

〈
N⊤Rv, x

〉
+

1

2
v⊤Rv

= max
y

min
x

1

2
x⊤N⊤RNx−

〈
N⊤Rv, x

〉
+

1

2
v⊤Rv + ⟨b−Ax, y⟩

= max
y

(
⟨b, y⟩+min

x

1

2
x⊤N⊤RNx−

〈
N⊤Rv +A⊤y, x

〉)
− 1

2
v⊤Rv .

where R is the diagonal matrix whose entries are given by r. The inner problem is minimized at

x =
(
N⊤RN

)+ (
N⊤Rv +A⊤y

)
,

which simplifies the problem to

max
y
⟨b, y⟩ − 1

2

(
N⊤Rv +A⊤y

)⊤ (
N⊤RN

)+ (
N⊤Rv +A⊤y

)
− 1

2
v⊤Rv

= max
y

〈
b−A

(
N⊤RN

)+
N⊤Rv, y

〉
− 1

2
y⊤A

(
N⊤RN

)+
A⊤y

− 1

2
v⊤RN

(
N⊤RN

)+
N⊤Rv − 1

2
v⊤Rv ,

which is maximized at

y =
(
A
(
N⊤RN

)+
A⊤
)+ (

b−A
(
N⊤RN

)+
N⊤Rv

)
,

so

x =
(
N⊤RN

)+
N⊤Rv +

(
N⊤RN

)+
A⊤

(
A
(
N⊤RN

)+
A⊤
)+ (

b−N
(
N⊤RN

)+
N⊤Rv

)
=
(
N⊤RN

)+(
N⊤Rv +A⊤

(
A
(
N⊤RN

)+
A⊤
)+ (

b−A
(
N⊤RN

)+
N⊤Rv

))
.

We observer that to execute this step we require two calls to a solver for N⊤RN , and one call to a
solver for A

(
N⊤RN

)+
A⊤.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C SOLVING ℓp REGRESSION FOR 1 ≤ p < 2

In this section we show that while our solvers are defined for ℓp regression when p ≥ 2, they also
provide solutions ℓq regression for 1 ≤ q < 2. This follows directly from exploiting duality. See Adil
et al. (2019a), section 7.2 for a proof detailed. Here we briefly explain why this is the case. Let p, q
such that 1

p + 1
q = 1, 1 ≤ q < 2, and consider the ℓq regression problem, along with its dual

min
x:Ax=b

∥x∥q = max
∥A⊤y∥p≤1

⟨b, y⟩ .

We can use our solver to provide a high precision solution to the dual maximization problem, which
we then show can be used to read off a primal nearly optimal solution. Indeed, we can equivalently
solve

min
⟨b,y⟩=1

∥∥A⊤y
∥∥
p

to high precision ε = 1
nO(1) , based on which we construct the nearly-feasible primal solution

x =
⟨b, y⟩
∥A⊤y∥pp

·
(
A⊤y

)p−1
.

To see why this is a good solution, let us assume that we achieve exact gradient optimality for y,
which means that for some scalar λ,

A
(
A⊤y

)p−1
= b · λ . (5)

First let us verify that x is feasible. Using (5) we see that:

Ax = A

(
⟨b, y⟩
∥A⊤y∥pp

·
(
A⊤y

)p−1

)
=
⟨b, y⟩
∥A⊤y∥pp

·A
(
A⊤y

)p−1
=

(
⟨b, y⟩
∥A⊤y∥pp

· λ

)
· b .

Additionally we can also use (5) again to obtain that∥∥A⊤y
∥∥p
p
=
〈
y,A

(
A⊤y

)p−1
〉
= ⟨y, b⟩ · λ ,

which allows us to conclude that
Ax = b ,

so x is feasible. Finally, we can measure the duality gap by calculating

∥x∥q =
1

λ

∥∥∥(A⊤y
)p−1

∥∥∥
q
=

1

λ
·
(∑(

A⊤y
)(p−1) p

p−1

) p−1
p

=
1

λ

∥∥A⊤y
∥∥p−1

p

=
⟨y, b⟩
∥A⊤y∥pp

·
∥∥A⊤y

∥∥p−1

p
=
⟨y, b⟩
∥A⊤y∥p

,

which certifies optimality for b. While in general we do not solve the dual problem exactly, which
yields a slight violation in the demand for the primal iterate x, this can be fixed by adding to x a
flow x̃ = A⊤ (AA⊤)+ (b−Ax) that routes the residual demand. This affects the ℓq norm only
slightly since the residual demand is guaranteed to be very small due to the near-optimality of the
dual problem. Then we can proceed to bounding the duality gap by following the argument sketched
above, while also carrying the polynomially small error through the calculation. We refer the reader
to Adil et al. (2019a) for the detailed error analysis.

D PROOF OF THEOREM 1.1

In this section, we first outline the necessary lemmas needed to prove Theorem 1.1 before providing
their proofs below.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Correctness of Algorithm 2. There are two possible outcomes of Algorithm 2. Either it returns a
primal solution (Case 1 and Case 2) or a dual certificate (Case 3). In the former two cases, Case 2
immediately gives us an approximate solution. We show in Lemma D.2 that the returned vector in
Case 1 achieves the target approximation guarantee. In Case 3, we use the invariant shown in Lemma
D.1 to show that the returned dual solution is an infeasibility certificate.

We formalize these statements in the lemmas below.

Lemma D.1 (Invariant). For all t, we have that if γ(t) ̸= 1 then E(r(t+1))−E(r(t))
∥r(t+1)∥

q
−∥r(t)∥

q

≥M2.

Lemma D.2 (Case 1). Let r be a dual solution and x = argminx̂:Ax̂=b⟨r, x̂2⟩. If∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥
∞
≤ (1 + ϵ)M2 then ∥x∥2p ≤M(1 + ϵ).

Lemma D.3 (Case 3). If the algorithm returns r(T), then
E(r(T))
∥r(T)∥

q

≥ M2

(1+ϵ)2 .

Convergence of Algorithm 2. We run the algorithm for T iterations. The algorithm terminates
if at any point it finds a solution x that satisfies the desired bound (otherwise it is unable to further
increase the dual solution). Otherwise, we show that it must finish very fast. Suppose we run it
for T = Thi + Tlo iterations. Let the iterations in Thi correspond to those where at least a single

coordinate of r was scaled by ≥ S := n
2

2q+1
(
1
ϵ

) q−1
2q+1 . Let Tlo be the remaining iterations. The

following lemmas give an upperbound on Thi and Tlo.
Lemma D.4. We have Thi ≤ n

Sqϵq .

Lemma D.5. We have Tlo ≤ O
((

1
ϵ +

S1/2

q lnS

)
1

ϵ
q+1
2

log
(
n
ϵq

))
.

Since S = n
2

2q+1
(
1
ϵ

) q−1
2q+1 , we obtain the following convergence guarantee:

Lemma D.6. Algorithm 2 terminates in O

(((
1
ϵ

) q+3
2 + n

1
2q+1

(
1
ϵ

) q2+2q
2q+1

)
log
(
n
ϵq

))
iterations.

Equipped with these lemmas, we give the proof for Theorem 1.1.

Proof of Theorem 1.1. Returning to the problem minx∈Rn : Ax=b ∥x∥p, we have the main algorithm

executes a binary search over the power of (1 + ϵ) in the range
[
∥x(0)∥

2

n
1
2
− 1

p
,
∥∥x(0)

∥∥
2

]
, so the total

number of calls to the subroutine solver is O
(
log log n+ log 1

ϵ

)
. By Lemma D.6, the subroutine

solver requires O
(((

1
ϵ

) q+3
2 + n

1
2q+1

(
1
ϵ

) q2+2q
2q+1

)
log
(
n
ϵq

))
linear system solves, where q = p

p−2 is

the dual norm of p/2. Substituting the value of q, we obtain the conclusion.

D.1 PROOFS OF LEMMAS D.1 - D.5

Proof of Lemma D.1. First we show (3).

1∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q
∥∥r(t)∥∥q−1

q∥∥r(t+1)
∥∥q
q
−
∥∥r(t)∥∥q

q

.

This is equivalent to show∥∥∥r(t+1)
∥∥∥q
q
+ (q − 1)

∥∥∥r(t)∥∥∥q
q
≥ q

∥∥∥r(t+1)
∥∥∥
q

∥∥∥r(t)∥∥∥q−1

q

which can easily be obtained from AM-GM inequality.

Using (3) and Lemma A.2 we have

E(r(t+1))− E(r(t))∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q
∥∥r(t)∥∥q−1

q

(∑
i r

(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q
14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

=

q
∥∥r(t)∥∥q−1

q

(∑
i,α

(t)
i >1

r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

))
∑

i,α
(t)
i >1

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q .

For i such that α(t)
i > 1, we have r

(t+1)
i = α

(t)
i r

(t)
i , thus

q
∥∥r(t)∥∥q−1

q
r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

)
(
r
(t+1)
i

)q
−
(
r
(t)
i

)q =

∥∥r(t)∥∥q−1

q

(
x
(t)
i

)2
(
r
(t)
i

)q−1 ·
q

(
1− 1

α
(t)
i

)
(
α
(t)
i

)q
− 1

≥ γ
(t)
i M2 · 1(

α
(t)
i

)q
= M2,

where the first inequality is due to q(α−1)
α(αq−1) ≥

1
αq , for α > 1. We can then obtain the desired

conclusion from here.

Proof of Lemma D.2. If ∥∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥∥
∞
≤ (1 + ϵ)M2,

for all i we have

x2
i ≤ (1 + ϵ)

2
M2 rq−1

i

∥r∥q−1
q

,

which gives

x2p
i ≤ (1 + ϵ)

2p
M2p rqi

∥r∥qq
,

We obtain

∥x∥2p2p ≤ (1 + ϵ)
2p

M2p,

as needed.

Proof of Lemma D.3. We have that

E(r(T))∥∥r(T)
∥∥
q

=
E(r(0)) +

∑T−1
t=0

(
E(r(t+1))− E(r(t))

)∥∥r(T)
∥∥
q

≥
E(r(0)) +

∑T−1
t=0

(∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

)
·M2∥∥r(T)

∥∥
q

(due to the invariant)

≥

(∥∥r(T)
∥∥
q
− 1
)
·M2∥∥r(T)

∥∥
q

= M2 ·

(
1− 1∥∥r(T)

∥∥
q

)

≥M2 · (1− ϵ) (since
∥∥∥r(T)

∥∥∥
q
≥ 1

ϵ
)

≥ M2

(1 + ϵ)
2 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof of Lemma D.4. Suppose the contrary. Then we claim that the perturbations that scale the dual
solution by≥ S will have increased it a lot to the point where ∥r∥qq ≥

1
ϵq . Indeed, since r is initialized

to 1
n1/q , in the worst case each perturbation in Thi touches a different coordinate i. Therefore this

establishes a lower bound of Thi · S
q

n on ∥r∥qq. As this must be at most 1
ϵq , since otherwise we

obtained a good solution per Lemma D.3, we obtain the conclusion.

Before showing the proof of Lemma D.5, we claim that we can either look at the history produced in
Tlo and obtain an approximately feasible solution, or a single coordinate of r must have increased a
lot.
Lemma D.7. Consider the set of iterates (r(t), x(t)) used for the iterates in Tlo. If∥∥∥∥∥ 1

Tlo

∑
t∈Tlo

x(t)

∥∥∥∥∥
2p

> M(1 + ϵ)

then there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i ≥

Tloϵ
q+1
2

2
.

Proof. Suppose that ∥∥∥∥∥ 1

Tlo

∑
t∈Tlo

x(t)

∥∥∥∥∥
2p

> M(1 + ϵ)

Note that by the update rule,

x
(t)
i

M
≤ (1 + ϵ)

1
2

√√√√√
(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

+ 1αi>1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

≤
(
1 +

ϵ

2

)√√√√√
(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

+ 1αi>1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

Hence we can write∥∥∥∥∥∑
t∈Tlo

x(t)

M

∥∥∥∥∥
2p

≤

∥∥∥∥∥∥∥∥∥
(
1 +

ϵ

2

) ∑
t∈Tlo

√√√√(
r(t)
)q−1∥∥r(t)∥∥q−1

q

+

−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

≤
(
1 +

ϵ

2

) ∑
t∈Tlo

∥∥∥∥∥∥
√√√√(

r(t)
)q−1∥∥r(t)∥∥q−1

q

∥∥∥∥∥∥
2p

+

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

(by triangle inequality)

=
(
1 +

ϵ

2

)
Tlo +

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

.

We obtain ∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

≥ ϵ

2
Tlo

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

On the other hand, we have

∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

=
∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)
i

(
r
(t+1)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

≤
∑
i

(
r
(T)
i

)q ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤
∥∥∥r(T)

∥∥∥q
q
max

i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤ 1

ϵq
max

i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

Therefore there exists i such that ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≥
(
ϵT

2

)2p

ϵq,

which gives us ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i ≥

Tloϵ
q+1
2

2
.

Now we show the proof of Lemma D.5.

Proof of Lemma D.5. From Lemma D.7 we know that there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i >

Tloϵ
q+1
2

2
. (6)

Furthermore by definition for all iterates in Tlo we have that pointwise (1 + ϵ) ≤
(
α
(t)
i

)q
≤ Sq.

This enables us to lower bound the final value of
(
r
(T)
i

)q
which is a lower bound on

∥∥r(T)
∥∥q
q
. More

precisely, we have(
r
(T)
i

)q
≥
(
r
(0)
i

)q
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
=

1

n
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
. (7)

Now we can proceed to lower bound this coodinate i.e. we lower bound the product in (7) using the
lower bound we have in (6).

Intuitively, the worst case behavior i.e. slowest possible increase in
(
r
(T)
i

)q
is achieved in one of the

two extreme cases:

(i) the α
(t)
i are all minimized i.e.

(
α
(t)
i

)q
= (1 + ϵ) in which case Θ

(
1
ϵ log

(
n
ϵq

))
such terms are

sufficient to make their product ≥ n
ϵq , which means that we are done, since then we have

∥∥r(T)
∥∥q
q
≥(

r
(T)
i

)q
≥ 1

ϵq ; so setting Tloϵ
q+1
2

2 ≥ Θ
(
(1 + ϵ)

1
2q 1

ϵ log
(
n
ϵq

))
i.e Tlo ≥ Θ

(
1

ϵ
q+3
2

log
(
n
ϵq

))
is

sufficient to make this happen;

(ii) all the entries are maximized, i.e. α(t)
i = S in which case we have that their product to power q is

at least S
qTlo

S1/2
ϵ
q+1
2
2 ≥ n

ϵq , so if we set qTlo

S1/2
ϵ
q+1
2

2 lnS ≥ log
(
n
ϵq

)
, ie., Tlo = Θ

(
S1/2

q lnS
1

ϵ
q+1
2

log
(
n
ϵq

))
,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

we guarantee that the corresponding ri increases to a value larger than 1
ϵq . The fact that these two

cases capture the slowest possible increase is shown in Lemma F.1.

Therefore we can set

Tlo = O

((
1

ϵ
+

S1/2

q lnS

)
1

ϵ
q+1
2

log
(n

ϵq

))
.

E PROOF OF THEOREM 1.2

First, we give guarantee for the subproblem solver (Algorithm 4, proof follows subsequently) .

Lemma E.1. For p ≥ 1, κ =

{
1 if p ≤ logn

logn−1

q otherwise
, Algorithm 4 either returns x such that Ax = b,

∥x∥2p ≤ 2M and
〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
or certifies that minx:Ax=b

∥∥x2
∥∥
p
+〈

θ, x2
〉
≥ M2

2κ in O
(
n

1
2q+1

)
calls to solve a linear system of the form ADA⊤ϕ = b, where D is an

arbitrary non-negative diagonal matrix.

The next lemma provides guarantees on the iterate progress in the main algorithm (Algorithm 3).

Lemma E.2. For p ≥ 2 κ =

{
1 if p ≤ 2 logn

logn−1
p

p−2 otherwise
, Algorithm 3 maintains that

∥∥x(t)
∥∥p
p
−∥x∗∥pp ≤

16pM (t) and that if x(t+1) ̸= x(t) then∥∥∥x(t+1)
∥∥∥p
p
− ∥x∗∥pp ≤

(
1− 1

213pκ

)(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
.

Finally, we show the proof of Theorem 1.2.

Proof. Algorithm 3 terminates when M (t) ≤ ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p
. This gives

∥∥x(t)
∥∥p
p
− ∥x∗∥pp ≤

ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p
, which implies

∥∥x(t)
∥∥p
p
≤ (1+ ϵ) ∥x∗∥pp and thus

∥∥x(t)
∥∥
p
≤ (1+ ϵ) ∥x∗∥p. Hence,

x(t) is a (1+ϵ) approximate solution. Since ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p
≥ ϵ

16p(1+ϵ) ∥x
∗∥pp, the number of times

M (t) can be reduced is O
(
log
∥x(0)∥p

p

ϵ∥x∗∥p
p

)
= O

(
p log n

ϵ

)
. By Lemma E.2, the number of times the

iterate makes progress is O
(
213pκ log

∥x(0)∥p
p
−∥x∗∥p

p

ϵ∥x∗∥p
p

)
= O

(
p2 log n log n

ϵ

)
where κ = O(log n).

Therefore the total number of calls to the subroutine solver is O
(
p2 log n log n

ϵ

)
. By lemma E.1, the

subroutine solver makes O
(
n

1
2q+1

)
= O

(
n

p−2
3p−2

)
calls to a linear system solver. This concludes

the proof.

E.1 PROOF OF LEMMA E.1

We letOPT = minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
and x∗ = argminx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
. We consider

two cases: when p ≤ logn
logn−1 and when p > logn

logn−1 . We will prove for each case using the following
lemmas:

Lemma E.3. For 1 ≤ p ≤ logn
logn−1 , Algorithm 4 either returns x such that Ax = b, ∥x∥2p ≤ 2M

and
〈
θ, x2

〉
≤ OPT or certifies that OPT ≥ M2

2 in O(1) call to solve a linear system.

Lemma E.4. For p > logn
logn−1 , Algorithm 4 either returns x such that Ax = b, ∥x∥2p ≤ 2M and〈

θ, x2
〉
≤ OPT or certifies that OPT ≥ M2

2q in O
(
n

1
2q+1

)
calls to solve a linear system.

To start, we have the following lemma that controls the ℓ2 term in the objective

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma E.5. For r such that ∥r∥q ≤ 1, suppose x = argminx:Ax=b⟨r + θ, x2⟩. Then we have〈
θ, x2

〉
≤ OPT .

Proof. For r with ∥r∥q ≤ 1, we have〈
θ, x2

〉
≤ ⟨r + θ, x2⟩ ≤ ⟨r + θ, (x∗)2⟩ (by definition of x)

≤
∥∥(x∗)2

∥∥
p
+
〈
θ, (x∗)2

〉
≤ OPT .

Now, let us turn to the first case when 1 ≤ p ≤ logn
logn−1 . We give the proof for Lemma E.3.

Proof of Lemma E.3. When 1 ≤ p ≤ logn
logn−1 , we have q = p

p−1 ≥ log n. Algorithm 4 computes

x̂ = min
x:Ax=b

〈
r + θ, x2

〉
where ri = n− 1

q for all i.

Since ∥r∥q = 1, if ∥x̂∥2p ≤ 2M , by Lemma E.5, we immediately have ∥x̂∥2p ≤ 2M and
〈
θ, x2

〉
≤

OPT .

Assume that ∥x̂∥2p > 2M . We have

OPT =
∥∥∥(x∗)

2
∥∥∥
p
+
〈
θ, (x∗)

2
〉
≥
〈
r, (x∗)

2
〉
+
〈
θ, (x∗)

2
〉

=
〈
θ + r, (x∗)

2
〉
≥
〈
θ + r, (x̂)

2
〉

≥ 1

n
1
q

∥∥x̂2
∥∥
1
≥ 1

n
1
q

∥∥x̂2
∥∥
p

(since
∥∥x̂2
∥∥
1
≥
∥∥x̂2
∥∥
p
)

≥ 1

2
∥x̂∥22p (since q ≥ log n)

≥ 2M2 ≥ M2

2
.

For the case when p > logn
logn−1 , the proof for Lemma E.4 follows similarly to the analysis of

Algorithm 2. We proceed by showing the following invariant.

Lemma E.6 (Invariant). For all t, we have that if γ(t) ̸= 1 then E(r(t+1)+θ)−E(r(t)+θ)

∥r(t+1)∥
q
−∥r(t)∥

q

≥M2.

Proof. Using Lemma A.2 we have

E(r(t+1) + θ)− E(r(t) + θ)∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q ·
∥∥r(t)∥∥q−1

q

(∑
i

(
r
(t)
i + θi

)(
x
(t)
i

)2(
1− r

(t)
i +θi

r
(t+1)
i +θi

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q

=

q ·
∥∥r(t)∥∥q−1

q

(∑
i

(
x
(t)
i

)2
r
(t)
i +θi

r
(t+1)
i +θi

(
r
(t+1)
i − r

(t)
i

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q

≥
q ·
∥∥r(t)∥∥q−1

q

(∑
i

(
x
(t)
i

)2
r
(t)
i

r
(t+1)
i

(
r
(t+1)
i − r

(t)
i

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

=

q ·
∥∥r(t)∥∥q−1

q

(∑
i,α

(t)
i >1

(
x
(t)
i

)2
r
(t)
i

r
(t+1)
i

(
r
(t+1)
i − r

(t)
i

))
∑

i,α
(t)
i >

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q ,

where in the second inequality we use r
(t)
i +θi

r
(t+1)
i +θi

≥ r
(t)
i

r
(t+1)
i

for r(t+1)
i ≥ r

(t)
i , θ ≥ 0. For i such that

α
(t)
i > 1, we have r

(t+1)
i = α

(t)
i r

(t)
i , thus

q ·
∥∥r(t)∥∥q−1

q

(
x
(t)
i

)2
r
(t)
i

r
(t+1)
i

(
r
(t+1)
i − r

(t)
i

)
(
r
(t+1)
i

)q
−
(
r
(t)
i

)q = γ
(t)
i M2 ·

q

(
1− 1

α
(t)
i

)
(
α
(t)
i

)q
− 1

≥ γ
(t)
i M2 · 1(

α
(t)
i

)q
= M2,

where the first inequality is due to q(α−1)
α(αq−1) ≥

1
αq , for α > 1. We can then obtain the desired

conclusion from here.

Lemma E.7 (Case 1). Let r be a dual solution and x = argminx̂:Ax̂=b⟨r + θ, x̂2⟩. If∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥
∞
≤ 2M then ∥x∥2p ≤ 2M and

〈
θ, x2

〉
≤ OPT .

Proof. If ∥∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥∥
∞
≤ 2M2,

for all i we have

x2
i ≤ 4M2 rq−1

i

∥r∥q−1
q

,

which gives

x2p
i ≤ 22pM2p rqi

∥r∥qq
,

We obtain

∥x∥2p2p ≤ 22pM2p,

as needed. The second claim comes directly from Lemma E.5.

Lemma E.8 (Case 3). If the algorithm returns r(T), then E
(

r(T)

∥r(T)∥
q

+ θ

)
≥ M2

2q .

Proof. We have that

E(r(T) + θ)∥∥r(T)
∥∥
q

=
E(r(0) + θ) +

∑T−1
t=0

(
E(r(t+1) + θ)− E(r(t) + θ)

)∥∥r(T)
∥∥
q

≥

∑T−1
t=0

(∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

)
·M2∥∥r(T)

∥∥
q

(due to the invariant)

≥

(∥∥r(T)
∥∥
q
−
∥∥r(0)∥∥

q

)
·M2∥∥r(T)

∥∥
q

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

= M2 ·

(
1−

2q−1
2q∥∥r(T)
∥∥
q

)
(since

∥∥∥r(0)∥∥∥
q
=

2q − 1

2q
)

=
M2

2q
(since

∥∥∥r(T)
∥∥∥
q
≥ 1).

Finally since
∥∥r(T)

∥∥
q
≥ 1

E

(
r(T)∥∥r(T)
∥∥
q

+ θ

)
≥ E(r

(T) + θ)∥∥r(T)
∥∥
q

≥ M2

2q
.

Convergence Analysis We run the algorithm for T iterations. The algorithm terminates if at any
point it finds a solution x that satisfies the desired bound (otherwise it is unable to further perturb the
dual solution). Otherwise, we show that it must finish very fast.

Suppose we run it for T = Thi + Tlo iterations. Let the iterations in Thi correspond to those where at
least a single ri was scaled by ≥ S = n

2
2q+1 . Let Tlo be the remaining iterations.

Lemma E.9. We have Thi ≤ 2n
Sq .

Proof. Suppose the contrary. Then we claim that these perturbations alone will have increased r
a lot to the point where ∥r∥qq ≥ 1. Indeed, let ri be the current value of coordinate i and r′i be

its value after being increased, and assume that r′i
ri
≥ S. Since r is initialized to 2q−1

2q
1

n1/q , in the
worst case each perturbation in Thi touches a different i. Therefore this establishes a lower bound

of Thi · S
q

n

(
2q−1
2q

)q
≥ Thi · S

q

2n on ∥r∥qq. As this must be at most 1, since otherwise we obtained a
good solution per Lemma E.8, we obtain the conclusion.

Now we claim that we can either look at the history produced in Tlo and obtain an approximately
feasible solution, or a single coordinate ri must have increased a lot.

Lemma E.10. Consider the set of iterates (r(t), x(t)) used for the iterates in Tlo. If∥∥∥∥∥ 1

Tlo

∑
t∈Tlo

x(t)

∥∥∥∥∥
2p

> 2M

then there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i ≥

Tlo

4
.

Proof. Suppose
∥∥∥ 1
Tlo

∑
t∈Tlo

x(t)
∥∥∥
2p

> 2M . Note that by the update rule,

x
(t)
i

M
≤
√
2

√√√√√
(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

+ 1αi>1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

Hence we can write

∥∥∥∥∥∑
t∈Tlo

x(t)

M

∥∥∥∥∥
2p

≤

∥∥∥∥∥∥∥∥∥
√
2
∑
t∈Tlo

√√√√(
r(t)
)q−1∥∥r(t)∥∥q−1

q

+

−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

≤
√
2
∑
t∈Tlo

∥∥∥∥∥∥
√√√√(

r(t)
)q−1∥∥r(t)∥∥q−1

q

∥∥∥∥∥∥
2p

+

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

(by triangle inequality)

=
√
2Tlo +

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

.

We obtain ∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

≥
(
2−
√
2
)
Tlo ≥

Tlo

2

On the other hand, we have

∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

=
∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)
i

(
r
(t+1)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

≤
∑
i

(
r
(T)
i

)q
∥∥r(0)∥∥q

q

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤

∥∥r(T)
∥∥q
q∥∥r(0)∥∥q
q

max
i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤
(

2q

2q − 1

)q

max
i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

(since
∥∥∥r(0)∥∥∥

q
=

2q

2q − 1
)

≤ 2max
i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

, (since q ≥ 1)

Therefore there exists i such that ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≥ 1

2

(
Tlo

2

)2p

,

which gives us ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i ≥

Tlo

2

1

2
1
2p

≥ Tlo

4
, since p ≥ 1.

This lemma enables us to upper bound Tlo.

Lemma E.11. We have Tlo ≤ Θ
(

S1/2

lnS lnn+ lnn
)

.

Proof. From Lemma E.10 we know that there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i >

Tlo

4
. (8)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Furthermore by definition for all iterates in Tlo we have that pointwise α
(t)
i =

r
(t+1)
i

r
(t)
i

≤ S and

α
(t)
i =

(
γ
(t)
i

)1/q
≥ 2

1
q . This enables us to lower bound the final value of

(
r
(T)
i

)q
which is a lower

bound on
∥∥r(T)

∥∥q
q
. More precisely, we have r

(t+1)
i

r
(t)
i

≥ α
(t)
i thus(

r
(T)
i

)q
≥
(
r
(0)
i

)q
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
=

2q − 1

2q
· 1
n
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
. (9)

Now we can proceed to lower bound this ri i.e. we lower bound the product in (9) using the lower
bound we have in (8).

Similarly to the previous section, the worst case behavior i.e. slowest possible increase in
(
r
(T)
i

)q
is

achieved in one of the two extreme cases:

(i) the α
(t)
i are all minimized i.e. α

(t)
i = 2

1
q in which case Θ(lnn) such terms are sufficient to

make their product ≥ 2n ≥ 2qn
2q−1 , which means that we are done, since then we have

∥∥r(T)
∥∥q
q
≥(

r
(T)
i

)q
≥ 1; so setting Tlo ≥ Θ(lnn) is sufficient to make this happen;

(ii) all the entries are maximized, i.e. α(t)
i = S in which case we have that their product to power q is

at least S
Tloq

4S1/2 ≥ 2n ≥ 2qn
2q−1 , so if we set Tloq

4S1/2 lnS ≥ ln 2n, ie, Tlo ≥ 8S1/2 ln(n)
q lnS , we guarantee

that the corresponding ri increases to a value larger than 2. The fact that these two cases capture the
slowest possible increase is shown in Lemma F.1.

Therefore we can set

Tlo = O

(
S1/2

lnS
lnn+ lnn

)
.

Finally, by the choice S = n
2

2q+1 , we obtain the runtime guarantee.

Lemma E.12. Algorithm 4 terminates in O
(
n

1
2q+1

)
iterations.

Proof of Lemma E.4. The proof of Lemma E.1 immediately follows from Lemmas E.7, E.8 and
E.12.

E.2 PROOF OF LEMMA E.2

Proof of Lemma E.2. We define the function resx as follows

resx (∆) = ⟨g,∆⟩ −
〈
R,∆2

〉
− ∥∆∥pp

where g = |x|p−2
x, R = 2 |x|p−2. We use the following property of this function from Adil et al.

(2019a; 2024): For λ = 16p and for all ∆

∥x∥pp −
∥∥∥∥x− ∆

p

∥∥∥∥p
p

≥ resx (∆) ; (10)

∥x∥pp −
∥∥∥∥x− λ

∆

p

∥∥∥∥p
p

≤ λresx (∆) . (11)

We prove the claim by induction.

For t = 0, we have M (0) :=
∥x(0)∥p

p

16p ≥
∥x(t)∥p

p
−∥x∗∥p

p

16p .

Now assume that we have
∥∥x(t)

∥∥p
p
− ∥x∗∥pp ≤ 16pM (t). We have two cases.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Case 1. ResidualSolver returns an infeasibility certificate or ResidualSolver returns a primal solution
∆̃ such that

〈
R(t), ∆̃2

〉
≥ 2M (t). In both scenarios, using Lemma E.1 we have

min
A∆=0

⟨g(t),∆⟩=M(t)

2

∥∥∆2
∥∥

p
2

+ (M (t))
2−p
p

〈
R(t),∆2

〉
≥ 2(M (t))

2
p .

Hence for all ∆ such that A∆ = 0,
〈
g(t),∆

〉
= M(t)

2 , either
∥∥∆2

∥∥
p
2

≥ (M (t))
2
p ⇔ ∥∆∥pp ≥M (t)

or (M (t))
2−p
p
〈
R(t),∆2

〉
≥ (M (t))

2
p ⇔

〈
R(t),∆2

〉
≥ M (t). For all ∆ such that A∆ = 0, we

can write
〈
g(t),∆

〉
= aM(t)

2 , for some constant a ∈ R. We obtain either ∥∆∥pp ≥ apM (t) or〈
R(t),∆2

〉
≥ a2M (t), and thus for all ∆

resx(t) (∆) ≤M (t)

(
1

2
a−min

{
a2, ap

})
≤ M (t)

2
= M (t+1).

We write ∆ = x(t)−x∗

λ/p , for λ = 16p. Using property (11) of the resx, we have∥∥∥x(t+1)
∥∥∥p
p
− ∥x∗∥pp =

∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

=
∥∥∥x(t)

∥∥∥p
p
−
∥∥∥∥x(t) − λ

∆

p

∥∥∥∥
p

≤ λresx(t)

(
∆
)

≤ 16pM (t+1).

Case 2. We have
〈
R, ∆̃2

〉
< 2M (t) and

∥∥∥∆̃∥∥∥
p
≤ 4
√
κ(M (t))

1
p and

〈
g, ∆̃

〉
= M(t)

2

∥∥∥x(t)
∥∥∥p
p
−
∥∥∥x(t+1)

∥∥∥p
p
=
∥∥∥x(t)

∥∥∥p
p
−

∥∥∥∥∥x(t) − ∆̃

64pκ

∥∥∥∥∥
p

p

≥ resx(t)

(
∆̃

64κ

)

=

〈
g,

∆̃

64κ

〉
−

〈
R,

(
∆̃

64κ

)2〉
−

∥∥∥∥∥ ∆̃

64κ

∥∥∥∥∥
p

p

≥ M (t)

27κ
− M (t)

211κ2
− M (t)

24pκ
p
2

≥ M (t)

27κ
− M (t)

211κ
− M (t)

28κ
, (since p ≥ 2, κ ≥ 1)

≥ M (t)

29κ
≥ 1

213pκ

(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
,

from which we obtain∥∥∥x(t+1)
∥∥∥p
p
− ∥x∗∥pp ≤

∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp −

1

213pκ

(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
≤
(
1− 1

213pκ

)(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
as needed.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F LOWER BOUND LEMMA

Lemma F.1. Let a set of nonnegative reals β1, . . . , βk such that 1+ ϵ ≤ βi ≤ S, and
∑k

i=1 β
1
r
i ≥ K,

where r ≥ 2. Then for any k one has that

k∏
i=1

βi ≥ min

{
S

K

S1/r , (1 + ϵ)
K

(1+ϵ)1/r

}
.

Proof. Consider a fixed k, and let us attempt to minimize the product of βi’s subject to the constraints.
W.l.o.g. we have

∑k
i=1 β

1
r
i = K. Equivalently we want to minimize

∑k
i=1 log(βi), which is a

concave function. Therefore its minimizer is attained on the boundary of the feasible domain. This
means that for some 0 ≤ k′ ≤ k−1, there are k′ elements equal to 1+ϵ, k−1−k′ equal to S, and one
which is exactly equal to the remaining budget, i.e.

(
K − k′(1 + ϵ)1/r − (k − 1− k′)S1/r

)
, which

yields the product (1 + ϵ)k
′
Sk−k′−1 ·

(
K − k′(1 + ϵ)1/r − (k − 1− k′)S1/r

)
. This can be relaxed

by allowing k and k′ to be non-integral. Hence we aim to minimize the product (1 + ϵ)k
′
Sk−k′−1

subject to k′(1 + ϵ)1/r − (k − 1− k′)S1/r = K.

Finally, we observe that we can always obtain a better solution by placing all the available mass on a

single one of the factors, i.e. we lower bound either by S
K

S1/r or (1 + ϵ)
K

(1+ϵ)1/r , whichever is lowest.

G ITERATIVE REFINEMENT

In this section we provide a general technique for solving optimization problems to high-precision,
by reducing then to an adaptive sequence of easier optimization problems, which only require
approximate solutions. This formalizes the minimal requirements for the iterative refinement scheme
employed in Adil et al. (2019a;b) to go through. We state the main lemma below.

Lemma G.1. Let D ⊆ Rn be a convex set, and let f : D → R be a convex function. Let η ≥ 0 be a
scalar, and suppose that for any x ∈ D there exists a function hx that approximates the Bregman
divergence at x in the sense that

1

η
hx (ηδ) ≤ f (x+ δ)− f (x)− ⟨∇f (x) , δ⟩ ≤ hx (δ) .

Given access to an oracle that for any direction v can provide κ-approximate minimizers to ⟨v, δ⟩+
hx (δ) in the sense that it returns δ♯ such that v + δ♯ ∈ D and〈

v, δ♯
〉
+ hx

(
δ♯
)
≤ 1

κ

(
min

v+δ∈D
⟨v, δ⟩+ hx (δ)

)
,

along with an initial point x0 ∈ D, in O
(

κ
η ln f(x0)−f(x∗)

ε

)
calls to the oracle one can obtain a

point x such that f (x) ≤ f (x∗) + ε, where x∗ ∈ argminx∈D f (x).

Proof. Let δ♯ be the a κ-approximate minimizer of
〈
∇f (x) , δ♯

〉
+ hx

(
δ♯
)
, which by definition

satisfies: 〈
∇f (x) , δ♯

〉
+ hx

(
δ♯
)
≤ 1

κ

(
min

v+δ∈D
⟨∇f (x) , δ⟩+ hx (δ)

)
. (12)

Updating our iterate to x′ = x+ δ♯ we can bound the new function value as

f
(
x+ δ♯

)
= f (x) +

〈
∇f (x) , δ♯

〉
+ hx

(
δ♯
)

(Bregman divergence upper bound)

≤ f (x) +
η

κ

(
⟨∇f (x) , x∗ − x⟩+ 1

η
hx (η (x

∗ − x))

)
(using (12))

= f (x) +
η

κ
(⟨∇f (x) , x∗ − x⟩+ (f (x∗)− f (x)− ⟨∇f (x) , x− x∗⟩))

(Bregman divergence lower bound)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

= f (x) +
η

κ
(f (x∗)− f (x)) ,

from where we equivalently obtain that

f
(
x+ δ♯

)
− f (x∗) ≤

(
1− η

κ

)
(f (x)− f (x∗)) .

Therefore to reduce the initial error f (x0)− f (x∗) to ε it suffices to iterate O
(

κ
η ln f(x0)−f(x∗)

ε

)
times.

The following lemma provides a sandwiching inequality for the Bregman divergence of ∥x∥pp.

Lemma G.2 (Adil et al. (2019b), Lemma B.1). For any x, δ and p ≥ 2, we have for r = xp−2 and
g = pxp−1,

p

8

〈
r, δ2

〉
+

1

2p+1
∥δ∥pp ≤ ∥x+ δ∥pp − ∥x∥

p
p − ⟨g, δ⟩ ≤ 2p2

〈
r, δ2

〉
+ pp ∥δ∥pp .

As a corollary we see that the function hx (δ) = 2p2
〈
xp−2, δ2

〉
+ pp ∥δ∥pp satisfies the inequality

required by Lemma G.1 for η = 1
4p . We can thus conclude that given access to an oracle that

approximately minimizes mixed ℓ2 + ℓp regression objectives, one can efficiently generate a high
precision solution.

Corollary G.1. Consider the ℓp regression problem minf :B⊤f=d ∥f∥
p
p. Given access to an oracle

that can compute κ-approximate minimizers to the optimization problem

V ∗ := min
f :B⊤∆f=0

〈
pfp−1,∆f

〉
+ 2p2

〈
fp−2,∆f2

〉
+ pp ∥∆f∥pp

in the sense that it returns ∆f satisfying B⊤∆f = 0 and〈
pfp−1,∆f

〉
+ 2p2

〈
fp−2,∆f2

〉
+ pp ∥∆f∥pp ≤

1

κ
V ∗ ,

along with an initial point f0, satisfying B⊤f = d, in O
(
κp ln

∥f0∥p
p−∥f∗∥p

p

ε

)
calls to the oracle one

can obtain a point f such that ∥f∥pp ≤ ∥f∗∥pp + ε, where f∗ ∈ argminB⊤f=d ∥f∥
p
p.

Proof. Using Lemma G.2 we verify that the function hf (∆f) = 2p2
〈
fp−2,∆f2

〉
+ pp ∥∆f∥pp

satisfies
1

η
hf (η∆f) ≤ ∥f +∆f∥pp − ∥f∥

p
p +

〈
pfp−1,∆f

〉
≤ hf (∆f)

for η = 1
4p . Therefore by Lemma G.1 we can need O

(
κp ln

∥f0∥p
p−∥f∗∥p

p

ε

)
iterations to obtain an

ε-additive error to the regression problem.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 DATA GENERATION

Random matrices. The entries of A and b are generated uniformly at randomly between 0 and 1.

Random graphs. We use the procedure in Adil et al. (2019b) to generate random graphs and the
corresponding A and b. The generated graph is a weighted graph, where the vertices are generated by
choosing a point in [0, 1]10 uniformly at random, each vertex is connected to the 10 nearest neighbors.
The edge weights are generated by a gaussian type function (by Flores-Calder-Lerman). k (around
10) nodes are labeled in [0, 1] and let g be the label vector. Let B be the edge-vertex adjacency matrix,
W be the diagonal matrix with edge weights. We generate A = W 1/pB, b = −B[:, n : n+ k]g.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

200 400 600 800 1000
n

15.0

14.5

14.0

13.5

13.0

12.5

Lo
g

Er
ro

r

p-IRLS
Ours

(a) matrix size=n × (n −
50), p = 8

3 4 5 6 7 8 9 10
p

15.0

14.5

14.0

13.5

13.0

Lo
g

Er
ro

r

p-IRLS
Ours

(b) matrix size=500× 400

100 200 300 400 500
n

12.5

12.0

11.5

11.0

10.5

10.0

Lo
g

Er
ro

r

p-IRLS
Ours

(c) Graph of n nodes, p = 8

3 4 5 6 7 8 9 10
p

13.0

12.5

12.0

11.5

11.0

10.5

10.0

Lo
g

Er
ro

r

p-IRLS
Ours

(d) Graph of n = 500 nodes

Figure 3: Error of the solution against CVX/SDPT3 solution in log10 scale.

2 4 6 8 10

10

20

30

40

50

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(a) matrix size=500× 400

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(b) matrix size=500× 400

2 4 6 8 10

10

20

30

40

50

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(c) Graph of n = 500 nodes

2 4 6 8 10
0

5

10

15

20

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3
cvx sedumi

(d) Graph of n = 500 nodes

2 4 6 8 10

10

20

30

40

50

Ite
ra

tio
ns

p-IRLS
Ours

(e) matrix size=2500×2400

2 4 6 8 10
2

4

6

8

10

12

Ti
m

e(
s)

p-IRLS
Ours

(f) matrix size=2500×2400

2 4 6 8 10

10

20

30

40

50

60

Ite
ra

tio
ns

p-IRLS
Ours

(g) Graph of n = 10000
nodes

2 4 6 8 10

5

10

15

20

25

Ti
m

e(
s)

p-IRLS
Ours

(h) Graph of n = 10000
nodes

Figure 4: Performance when varying ϵ on random matrices and random graphs instances.

H.2 CORRECTNESS OF SOLUTION

In Figure 3, we plot the error of the solutions outputted by our algorithm and p-IRLS against CVX in
the random matrices and random graphs instances for ϵ = 10−10. In all cases, the error is below ϵ.

H.3 WHEN VARYING ϵ

In Figure 4, we plot iteration complexity and runtime in seconds of our algorithm, p-IRLS and CVX
when varying ϵ. Note that, CVX does not allow varying this parameter. In all experiment, we fix
p = 8. For large instances, we only consider our solution against p-IRLS.

H.4 FOR 1 < p < 2

In Figure 5, we plot iteration complexity and runtime in seconds of our algorithm, p-IRLS and CVX
on random matrices of size n× (n− 100). In all experiment, we fix ϵ = 10−10. We test with p = 1.1
and p = 1.9.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

500 750 1000 1250 1500 1750 2000 2250 2500
n

30

35

40

45

50

55

60

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3

(a) p = 1.1

500 750 1000 1250 1500 1750 2000 2250 2500
n

0

25

50

75

100

125

150

175

200

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3

(b) p = 1.1

500 750 1000 1250 1500 1750 2000 2250 2500
n

26

28

30

32

34

36

38

40

42

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3

(c) p = 1.9

500 750 1000 1250 1500 1750 2000 2250 2500
n

0

25

50

75

100

125

150

175

Ti
m

e(
s)

p-IRLS
Ours
cvx SDPT3

(d) p = 1.9

Figure 5: Performance when p = 1.1 and p = 1.9 on random matrices of size n× (n− 100).

28

