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ABSTRACT

We introduce fast algorithms for solving ℓp regression problems using the iteratively
reweighted least squares (IRLS) method. Our approach achieves state-of-the-art
iteration complexity, outperforming the IRLS algorithm by Adil-Peng-Sachdeva
(NeurIPS 2019) and matching the theoretical bounds established by the complex
algorithm of Adil-Kyng-Peng-Sachdeva (SODA 2019, J. ACM 2024) via a simpler
lightweight iterative scheme. This bridges the existing gap between theoretical and
practical algorithms for ℓp regression. Our algorithms depart from prior approaches,
using a primal-dual framework, in which the update rule can be naturally derived
from an invariant maintained for the dual objective. Empirically, we show that
our algorithms significantly outperform both the IRLS algorithm by Adil-Peng-
Sachdeva and MATLAB/CVX implementations.

1 INTRODUCTION

In this paper, we study the ℓp regression problem defined as follows. The input to the problem is a
matrix A ∈ Rd×n, a vector b ∈ Rd that lies in the column span of A, and an accuracy parameter ϵ.
The goal is to approximately solve the problem minx∈Rn : Ax=b ∥x∥p, i.e., find a solution x ∈ Rn

such that Ax = b and ∥x∥p ≤ (1 + ϵ)∥x∗∥p, where x∗ is an optimal solution to the problem, and
∥·∥p denotes the ℓp norm. Solving ℓp regression for all values of p is a fundamental problem in
machine learning with numerous applications and has been studied in a long line of research beyond
the classical least squares regression with p = 2. Lp-norm regression problems with general p arise
in several areas, including supervised learning, graph clustering, and wireless networks. Examples of
applications include ℓp-norm based algorithms in semi-supervised learning (Alaoui, 2016; Liu and
Gleich, 2020), k-clustering with ℓp-norm (Huang and Vishnoi, 2020), robust regression and robust
clustering (Meng and Mahoney, 2013; Huang et al., 2023).

For this general class of convex optimization problems, designing provably fast iterative algorithms
to obtain high accuracy solutions with empirical efficiency is an important question. General convex
programming methods such as interior point methods are usually slow in practice. In theory, Bubeck
et al. (2018) show that algorithms based on interior point methods cannot improve beyond O(

√
n)

iterations1 for any p /∈ {1, 2,∞}. Breaking this barrier and finding iterative algorithms that are faster
than interior point methods both in theory and practice is the goal of this line of work.

Recent developments have led to new algorithmic approaches such as a homotopy method (Bubeck
et al., 2018), and an iterative refinement approach (Adil et al., 2019a;b; 2024) for ℓp regression
with p /∈ {1,∞}. We highlight the notable works by Adil et al. (2019a;b; 2024). On the one hand,
the algorithm with the best known theoretical runtime is given by Adil et al. (2019a; 2024) with
O
(
p2n

p−2
3p−2 log

(
n
ϵ

))
calls2 to a linear system solver. This algorithm, however, relies on complex

subroutines and includes theoretical choices for several hyperparameters. In practice, to obtain an

1For simplicity in the introduction, we assume that d = Θ(n). In the regime when n ≫ d, the IPM iteration
complexity improves to Õ(

√
d).

2The original result is O
(
pn

p−2
3p−2 log

(∥x(0)∥p

p
−∥x∗∥p

p

ϵ

))
for finding x̂ such that ∥x̂∥pp ≤ minx:Ax=b ∥x∥pp+

ϵ. This translates to O
(
pn

p−2
3p−2 log

(∥x(0)∥p

p
−∥x∗∥p

p

pϵ∥x∗∥pp

))
= O

(
p2n

p−2
3p−2 log

(
n
ϵ

))
for finding x̂ such that ∥x̂∥p ≤

(1 + ϵ)minx:Ax=b ∥x∥p for x(0) initialized to minx:Ax=b ∥x∥2.
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efficient implementation, hyperparameters require tuning. Due to these reasons, this theoretical
algorithm by Adil et al. (2019a; 2024) does not provide a practical implementation. On the other hand,
an algorithm known as p-IRLS by Adil et al. (2019b) has been shown to have significant speed up over
standard solvers such as CVX. This algorithm is implemented based on an Iteratively Reweighted
Least Squares (IRLS) method, which is a general iterative framework for solving regression problems.
The key element of an IRLS method is solving a weighted least squares regression problem in each
iteration. This is equivalent to solving a linear system of the form minx∈Rn:Ax=b x

⊤Rx, where R is
a diagonal matrix, which can be computed very efficiently in practice with the advance of numerical
solvers. IRLS algorithms are favored in practice (Burrus, 2012), but designing IRLS algorithms with
strong convergence guarantees is challenging. In particular, to obtain the efficiency, the algorithm by
Adil et al. (2019b) sacrifices the theoretical guarantee, requiring O

(
p3n

p−2
2p−2 log

(
n
ϵ

))
linear system

solves. This brings forth the question:

Can we design an algorithm that retains the empirical efficiency of an IRLS approach while
achieving the state-of-the-art theoretical runtime?

In this work, we give a positive answer to this question. We provide a new algorithmic framework for
ℓp regression based on an IRLS approach for all values of p ∈ (1,∞). We propose an algorithm that
uses O

(
p2n

p−2
3p−2 log

(
n
ϵ

) )
linear system solves, matching the state-of-the-art theoretical algorithm

by Adil et al. (2019a), and improving upon the guarantee of O
(
p3n

p−2
2p−2 log

(
n
ϵ

) )
for the p-IRLS

algorithm by Adil et al. (2019b). We experimentally compare our algorithm with the p-IRLS algorithm
(Adil et al., 2019b) and CVX solvers, and we observe significant improvements in all instances.

1.1 OUR CONTRIBUTIONS

For the simplicity of the exposition, we study the ℓp regression problem in both low and high precision
regimes for p ≥ 2.
Remark 1.1. In Appendix B, we show a simple reduction for the more general problem
minx : Ax=b ∥Nx − v∥p to the form minx : Ãx=b̃ ∥x∥p with the dependence of the runtime on the
number of rows of N instead of the dimension of x. We also show in Appendix C a reduction for the
case 1 < p < 2 to the case p ≥ 2.

In the low precision regime when the runtime dependence on ϵ is poly
(
1
ϵ

)
, we have the following

theorem.
Theorem 1.1. For any p ≥ 2, there is an iterative algorithm for the ℓp regression problem
minx∈Rn : Ax=b ∥x∥p that solves O (log log n+ log (1/ϵ)) subproblems, each of which makes

O
((

( 1ϵ )
2p−3
p−2 + n

p−2
3p−2 ( 1ϵ )

3p2−4p

3p2−8p+4

)
log
(

n

ϵ
p

p−2

))
calls to solve a linear system of the form

ADA⊤ϕ = b, where D is an arbitrary non-negative diagonal matrix.

Remark 1.2. When p = ∞, each subproblem makes O
(

1
ϵ2 + n

1
3

ϵ log(nϵ )
)

calls to a linear system
solver.

Prior approaches for solving ℓp regression problem in the low precision regime commonly use the
Taylor expansion of ∥x∥pp, which then allows for deriving and bounding the updates. In contrast
to this, our algorithm relies on a primal-dual approach using the dual formulation of the squared
objective minx : Ax=b ∥x∥2p = minx : Ax=b ∥x2∥p/2 = maxr

E(r)
∥r∥q

where ℓq is the dual norm of ℓp/2
and E(r) = minx:Ax=b⟨r, x2⟩. The term E(r) is often referred to as the energy. The high level idea
of our approach is as follows. Starting with an initial solution r for the dual problem, we will increase
the coordinates of r as much as possible so that the increase in the energy E(r) relative to the increase
of ∥r∥q is also sufficiently large, until we can obtain a (1 − ϵ) optimal dual solution and whereby
recover an approximately optimal primal solution. This template is close to the approach for ℓ∞
regression by Ene and Vladu (2019). However, ℓp regression does not have the readily decomposable
structure along the coordinates as ℓ∞ regression and novel technique is required in the design of
the algorithm. Our approach is also a reminiscence of the width-independent multiplicative weights
update method for solving mixed packing covering linear program, where in each step the algorithm
updates the coordinates the maximize the bang-for-buck ratio (Quanrud, 2020). In contrast to MWU,
we do not use a mirror map or regularize ℓp norms to make them smooth as in standard approaches.
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Our scheme allows our method to take much longer steps, where in each step, the coordinates of the
dual solution are allowed to change by large polynomial factors and thereby achieve faster running
time.

To obtain faster algorithms in the high accuracy regime with a logarithmic dependence on the accuracy,
we adapt the iterative refinement approach of Adil et al. (2019a) and obtain improved running times.
Theorem 1.2. For any p ≥ 2, there is an iterative algorithm for the ℓp regression problem
minx∈Rn : Ax=b ∥x∥p that solves O

(
p2 log n log

(
n
ϵ

))
subproblems, each of which makes O

(
n

p−2
3p−2

)
calls to solve a linear system of the form ÃDÃ⊤ϕ = z, where D is an arbitrary non-negative
diagonal matrix, Ã is a matrix obtained from A by appending a single row, and z is a vector obtained
from the all-zero vector by appending a single non-zero coordinate.

Using the iterative refinement template by (Adil et al., 2019a;b; 2024), we instead use an IRLS solver
for the residual problems with improved runtime. The residual solver solves a mixed ℓp + ℓ2 problem
in the form minx : Ax=b ∥x∥2p +

〈
θ, x2

〉
, only to a constant approximation. Here the challenge lies

in the fact that the ℓ2 term makes the dual problem no longer scale-free and thus our low precision
solver is not immediately usable. However, by an appropriate initialization of the dual solution and
careful adjustments to the step size, our algorithm achieves the desired O

(
n

p−2
3p−2

)
bound. Since

regularized ℓp + ℓ2 regression problems arise in many applications in machine learning and beyond,
our algorithm for the mixed ℓp + ℓ2 objective is of independent interest.

Finally, we experimentally evaluate our high-precision algorithm. Our algorithm significantly
outperforms the p-IRLS algorithm (Adil et al., 2019a) both in the number of linear system solves as
well as the overall running time. Our algorithm is significantly faster than CVX solvers and is able to
run on large instances, which is not possible for CVX solvers within a time constraint.

1.2 RELATED WORK

ℓp regression problems have received significant attention. Here we summarize the results that are
closest to our work. The surveyed algorithms are iterative algorithms where the running time of each
iteration is dominated by a single linear system solve.

Algorithms based on interior point methods use Õ (
√
n) iterations for any p ∈ [1,∞] (Nesterov

and Nemirovskii, 1994), which was improved to Õ
(√

d
)

iterations for p ∈ {1,∞} (Lee and
Sidford, 2014). Bubeck-Cohen-Lee-Li (Bubeck et al., 2018) show that this iteration bound is
generally necessary for interior point methods and propose a homotopy-based algorithm that uses
Õ
(
poly

(
p2

p−1

)
· n|1/2−1/p|) iterations for any p /∈ {1,∞}. Adil et al. (2019a; 2024) introduced

an iterative refinement framework that uses O
(
p2 · n

p−2
3p−2 log(nϵ )

)
iterations for any p > 2. Using

Lewis weight sampling, Jambulapati-Liu-Sidford (Jambulapati et al., 2022) improve the method
by Adil et al. (2019a; 2024) to O

(
pp · d

p−2
3p−2 polylog(nϵ )

)
, for overconstrained regression problems

minx∈Rd ∥Ax− b∥p where A ∈ Rn×d and n is much larger than d (the iteration complexity of
the prior algorithms will still depend on the larger dimension n in this case). Bullins (2018) gives
a faster algorithm for minimizing structured convex quartics, which implies an algorithm for ℓ4
regression with Õ(n

1
5 ) iterations. Building on the work of Christiano et al. (2011); Chin et al.

(2013) for maximum flows and regression, Ene and Vladu (2019) give an algorithm for ℓ1 and ℓ∞

regression using O
(n1/3 log(1/ϵ)

ϵ2/3
+ logn

ϵ2

)
iterations. This work also uses a primal-dual framework

but the algorithm and analysis are specific to the special structure of the ℓ1 and ℓ∞ norm and work
only in the low precision regime with poly( 1ϵ ) convergence.

2 OUR ALGORITHM WITH poly
(
1
ϵ

)
CONVERGENCE

In this section, we present our algorithm with guarantee provided in Theorem 1.1.

Before describing the algorithm, we first introduce some basic notations. For a constant a ∈ R, we
abuse the notation and use a ∈ Rn to denote the vector with all entries equal to a (the dimension will
be clear from context). When it is clear from the context, we apply scalar operations to vectors with

3
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Algorithm 1 ℓ2p-minimization(A, b, ϵ)

Input: Matrix A ∈ Rd×n, vector b ∈ Rd, accuracy ϵ
Output: Vector x such that Ax = b and ∥x∥2p ≤ (1 + ϵ)minx:Ax=b ∥x∥2p
Initialize x(0) = minx:Ax=b ∥x∥2
L = max

{
i : (1 + ϵ)i ≤ ∥

x(0)∥
2

n
1
2
− 1

2p

}
; U = min

{
i : (1 + ϵ)i ≥

∥∥x(0)
∥∥
2

}
while L < U :

P = ⌊L+U
2 ⌋, M = (1 + ϵ)P

if SubSolver(A, b, ϵ,M) is infeasible then
L = P + 1

else
Let x(t+1) be the output of SubSolver(A, b, ϵ,M)
U = P ; t← t+ 1

end if
end while
return x(t)

Algorithm 2 SubSolver(A, b, ϵ,M)

Input: Matrix A ∈ Rd×n, vector b ∈ Rd, accuracy ϵ, target value M
Output: Vector x such that Ax = b and ∥x∥2p ≤ (1 + ϵ)M ,

or approximate infeasibility certificate r, ∥r∥q = 1.
t = 0, r(0) = 1

n1/q , t′ = 0, s(t
′) = 0

while
∥∥(r(t))∥∥

q
≤ 1

ϵ

x(t) = argminx:Ax=b⟨r(t), x2⟩

γ
(t)
i =

{
x2
i ∥r∥

q−1
q

M2rq−1
i

if
x2
i ∥r∥

q−1
q

rq−1
i

≥ (1 + ϵ)M2

1 otherwise
, for all i

if γ(t) = 1 then return x(t) end if ▷ Case 1

α(t) =
(
γ(t)
) 1

q ; r(t+1) = r(t) · α(t)

if α(t) ≤ n
2

2q+1
(
1
ϵ

) q−1
2q+1 then s(t

′+1) = s(t
′) + x(t); t′ = t′ + 1 end if

if t′ > 0 and
∥∥∥s(t′)/t′∥∥∥

2p
≤ (1 + ϵ)M then return s(t

′)/t′ end if ▷ Case 2

t = t+ 1
end while
return r(t) ▷ Case 3

the interpretation that they are applied coordinate-wise. For p ≥ 1, we let q be such that 1
p + 1

q = 1

and ℓq is the dual norm of the ℓp norm.

2.1 OUR ALGORITHM

For ease of notation, it is convenient to consider the following equivalent formulation of the problem:
For p ≥ 1, we solve minx:Ax=b ∥x∥22p = minx:Ax=b

∥∥x2
∥∥
p

to (1 + ϵ) multiplicative error. We
provide our algorithm in Algorithms 1 and 2. We give an overview of our approach and explain the
intuition in the following section.

2.2 OVERVIEW OF OUR APPROACH

Our algorithm is based on a primal-dual approach, starting with the following dual formulation of the
problem. Using q as the dual norm of p and by duality, we write

min
x:Ax=b

∥x∥2p = min
x:Ax=b

∥∥x2
∥∥
p
= min

x:Ax=b
max

r:∥r∥q≤1
⟨r, x2⟩ max

r≥0:∥r∥q≤1
min

x:Ax=b
⟨r, x2⟩ = max

r≥0

E(r)
∥r∥q

,

4
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where we defined E(r) := minx:Ax=b⟨r, x2⟩. The main part of our algorithm is the subroutine
shown in Algorithm 2, which takes as input a guess M for the optimum value ∥x∗∥2p. To find an
(1 + ϵ) approximation of the optimum value, the main Algorithm 1 performs a binary search as
follows. Since x(0) is initialized to minx:Ax=b ∥x∥2, we can show that ∥x∗∥p is contained in the

range
[
∥x(0)∥

2

n
1
2
− 1

2p
,
∥∥x(0)

∥∥
2

]
. The algorithm performs binary search over the indices i such that (1 + ϵ)

i

is in that range. Note that the main algorithm only needs to perform at most log
(

logn
ϵ

)
iterations,

each of which makes one call to the subproblem solver.

We now focus on the subproblem when we are given a guess M and a target precision ϵ. The goal is to
find a primal solution x that satisfies ∥x∥2p ≤M(1 + ϵ) or a dual solution r (infeasibility certificate)

which can certify that minx:Ax=b ∥x∥22p ≥
E(r)
∥r∥q

≥ ( M
1+ϵ )

2. This lower bound on the optimal value
of the problem tells us that we can increase the guess M .

The objective function E(r) has a very useful monotonicity property: it increases when r increases.
The overall strategy of our algorithm is to start with an initial dual solution r(0) (which we initialize
uniformly to 1

n1/q ) and increase it while maintaining the following invariant

E(r(t+1))− E(r(t)) ≥M2(
∥∥∥r(t+1)

∥∥∥
q
−
∥∥∥r(t)∥∥∥

q
), (1)

or equivalently,

E(r(t+1))− E(r(t))∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥M2.

The telescoping property of both sides of (1) will guarantee that, if the algorithm outputs a dual

solution r with sufficiently large ∥r∥q, this solution will satisfy E(r) ≥
(

M
1+ϵ

)2
∥r∥q, i.e, E(r)

∥r∥q
≥(

M
1+ϵ

)2
. To maintain the invariant 1, we have two useful bounds for the change in the objective and

dual solution:

E(r(t+1))− E(r(t)) ≥
∑
i

r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

)
, (2)

1∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q
∥∥r(t)∥∥q−1

q∑
i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q . (3)

Both inequalities allow us to decompose the invariant along the coordinates. That is, we can maintain
the invariant by ensuring for each coordinate i that we increase that

q
∥∥r(t)∥∥q−1

q
r
(t)
i

(
x
(t)
i

)2
(
r
(t+1)
i

)q
−
(
r
(t)
i

)q
(
1− r

(t)
i

r
(t+1)
i

)
≥M2.

In order to do this, we update each r
(t)
i multiplicatively, via the term γ

(t)
i =

∥r(t)∥q−1

q(
r
(t)
i

)q−1 ·
(
x
(t)
i

)2

M2 .

To guarantee fast convergence, we want to increase r
(t)
i as much as possible, by setting a target

threshold on γ
(t)
i : if γ(t)

i exceeds the threshold, we update r
(t+1)
i = r

(t)
i

(
γ
(t)
i

)1/q
; otherwise, r(t)i

remains unchanged. When we can no longer increase r while preserving the invariant, we can be
sure that we have found the corresponding primal solution x with small norm. During the course of
the algorithm, we also keep track of iterations with small increases in r and use the uniform average
over the corresponding primal solutions to obtain an approximately feasible primal solution, in case
the algorithm fails to return an infeasibility certificate quickly enough.

We note that our update approach is derived in a completely different way from standard iterative
frameworks such as multiplicatives weights updates and, generally, mirror descent. In contrast to

5
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Algorithm 3 Iteratively Reweighted Least Squares
Input: Matrix A ∈ Rd×n, vector b ∈ Rd, ϵ
Output: Vector x such that Ax = b that minimizes ∥x∥pp
Initialize x(0) = argminx:Ax=b ∥x∥22

M (0) :=
∥x(0)∥p

p

16p , t← 0; κ =

{
1 if p ≤ 2 logn

logn−1
p

p−2 otherwise

while M (t) ≥ ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p

g(t) =
∣∣x(t)

∣∣p−2
x(t); R(t) = 2

∣∣x(t)
∣∣p−2

∆̃← ResidualSolver

(
p
2 ,

[
A

(g(t))⊤

]
,
[
0, M(t)

2

]
, (M (t))

2−p
p R(t), 2

√
κ(M (t))

1
p

)
if ∆̃ is an infeasibility certificate or

〈
R(t), ∆̃2

〉
≥ 2M (t) then

M (t+1) ←M (t)/2, x(t+1) = x(t)

else
M (t+1) ←M (t), x(t+1) = x(t) − ∆̃

64pκ

end if
t← t+ 1

end while
return x(t)

these standard approaches, we do not use a mirror map or regularize ℓp norms to make them smooth.
Our update scheme allows our algorithm to take much longer steps, and the coordinates of the dual
solution are allowed to change by large polynomial factors in each step. This allows us to obtain a
fast convergence rate.

We provide the complete analysis and proof of Theorem 1.1 in Appendix D.

3 OUR ALGORITHM WITH log
(
1
ϵ

)
CONVERGENCE

3.1 ALGORITHM

In this section, we present our algorithm with guarantee provided in Theorem 1.2. For the ease of the
exposition, we consider a slight variation of the problem: for p ≥ 2, we solve minx:Ax=b ∥x∥pp to
(1 + ϵ) multiplicative error. We show our algorithm in Algorithms 3 and 4.

3.2 OVERVIEW OF OUR APPROACH

At the highest level, the main algorithm relies on a simple yet powerful observation by Adil et al.
(2019a), which is that the ℓp minimization problem we are attempting to solve supports iterative
refinement. Adil et al. (2019a) show that having access to a weak solver which gives a constant
factor multiplicative approximation to a mixed objective of ℓp and ℓ2 norms suffices to boost the
multiplicative error to 1 + ϵ while only making Õp(log 1/ϵ) calls to the solver. This reduces the
entire difficulty of the problem to implementing the weak solver.

More precisely, starting with an initial solution (set to argminx:Ax=b ∥x∥2), we maintain M (t) as an
upper bound for the function value gap, ie.

∥∥x(t)
∥∥p
p
− ∥x∗∥pp ≤ 16pM (t). We show this invariant in

Lemma E.2. In each iteration, the algorithm makes a call to a solver for the residual problem which
approximates the function value progress ∥x∥pp−∥x−∆∥pp if we update the solution x← x−∆. The
residual solution tells us either the progress is too small, in which case we can improve the upperbound
on the suboptimality gap by reducing M (t), or the progress is at least Ω

(
M (t)

)
, in which case we

can perform the update and obtain a new solution. This new solution improves the function value gap

by at least a factor 1− Ω
(

1
p

)
, and thus the algorithm requires only O

(
p log

∥x(0)∥p
p
−∥x∗∥p

p

ϵ∥x∗∥p
p

)
calls

to the residual solver. We show this guarantee in Lemma E.2.
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Algorithm 4 ResidualSolver(p,A, b, θ,M)

Input: Matrix A ∈ Rd×n, vector b ∈ Rd, target value M , weight θ
Output: Vector x such that Ax = b, ∥x∥2p ≤ 2M and

〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
or approximate infeasibility certificate r, ∥r∥q = 1.

if p ≤ logn
logn−1 then

r = 1

n
1
q

; x̂ = argminx:Ax=b⟨r + θ, x2⟩
if ∥x̂∥2p ≤ 2M then return x̂ else return r end if

else
t = 0, r(0) = 2q−1

2qn
1
q

, t′ = 0, s(t
′) = 0

while
∥∥∥(r(t))q∥∥∥

1
≤ 1

x(t) = argminx:Ax=b⟨r(t) + θ, x2⟩

γ
(t)
i =

{
x2
i ∥r∥

q−1
q

M2rq−1
i

if
x2
i ∥r∥

q−1
q

rq−1
i

≥ 2M2

1 otherwise
, for all i

α
(t)
i =

(
γ
(t)
i

)1/q
if α(t) = 1 then return x(t) end if ▷ Case 1
r(t+1) = α(t) · r(t)
if α(t) ≤ n

2
2q+1 then s(t

′+1) = s(t
′) + x(t); t′ = t′ + 1 end if

if t′ > 0 and
∥∥∥s(t′)/t′∥∥∥

2p
≤ 2M then return s(t

′)/t′ end if ▷ Case 2

t = t+ 1
end while

end if
return r(t) ▷ Case 3

We give the pseudocode for the residual solver in Algorithm 43. Prior works by Adil et al. (2019a;b;
2024) give algorithms for this solver either via a width-reduced multiplicative weights update method
which achieves the state-of-the-art theoretical runtime but does not support a practical implementation
or via a practical IRLS method with suboptimal theoretical guarantee. In contrast, we build on ideas
from the low precision IRLS solver we have shown in the previous section and design a new IRLS
algorithm that attains the best of both worlds.

Our residual solver outputs an approximate solution to a constant factor to the objective of the form

min
x:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
(4)

for p ≥ 1 and a positive weight vector θ ∈ Rn. We also start with the dual formulation of the problem

(4) = min
x:Ax=b

max
r:∥r∥q=1

〈
r, x2

〉
+
〈
θ, x2

〉
= max

r≥0:∥r∥q=1
min

x:Ax=b

〈
r + θ, x2

〉
=max

r≥0
E

(
r

∥r∥q
+ θ

)
,

where q is the dual norm to p and E(r + θ) = minx:Ax=b⟨r + θ, x2⟩. Given a target M , our goal
is to find a primal solution x that satisfies ∥x∥2p ≤ 2M and

〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
or a dual solution r ∈ Rn (infeasibility certificate) which can certify that minx:Ax=b ∥x∥22p ≥
E
(

r
∥r∥q

+ θ
)
≥ M2

2κ , where κ is a value set as shown in Algorithm 3.

We distinguish between two regimes: when p is sufficiently small, 1 ≤ p ≤ logn
logn−1 for which we

will show that we can obtain a solution by O(1) calls to the linear solver, and when p > logn
logn−1 , to

3Note that while the residual solver takes as input the original matrix A augmented with an extra row, the
least squares problems required by the residual solver reduce to least squares problems involving only A, using
the Sherman-Morrison formula. This guarantees that we only require a linear system solver for structured
matrices of the form A⊤DA, for non-negative diagonal D.
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Figure 1: Performance on random matrices: min ∥Ax− b∥pp with ϵ = 10−10. We compare our
algorithm with CVX using SDPT3 and SeDuMi solvers and p-IRLS by Adil et al. (2019b). Figures
(a),(b),(e),(f) plot the average and standard deviation of number of iterations and time taken by the
solvers to find a solution over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

which we need to pay more attention. In the latter case, similarly to Algorithm 2, we want to maintain
the invariant

E(r(t+1) + θ)− E(r(t) + θ)∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥M2.

Notice the differences between this objective and the problem minx:Ax=b

∥∥x2
∥∥
p

which we solve in
the previous section. The ℓ2 term

〈
θ, x2

〉
makes this objective no longer scale-free. However, this ℓ2

term does not affect the lower bound
∑

i r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

)
in the change in the objective

(eq. (2)); thus it suffices to maintain

∑
i r

(t)
i

(
x
(t)
i

)2

(
1−

r
(t)
i

r
(t+1)
i

)
∥r(t+1)∥

q
−∥r(t)∥

q

≥ M2 in order to guarantee the

invariant E(r(t+1)+θ)−E(r(t)+θ)

∥r(t+1)∥
q
−∥r(t)∥

q

≥ M2. At the same time, if we maintain ∥r∥q ≤ 1, we can show

that if the algorithm outputs a primal solution x, the ℓ2 term
〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
.

This requires us to initialize r with sufficiently small ∥r∥q. Algorithm 4 then follows similarly to
Algorithm 2, with the note that it suffices to obtain only a constant approximation. We give the
correctness and convergence of Algorithm 4 in Lemma E.1 whose proof is based on the same idea as
the analysis for Algorithm 2.

The complete analysis of our algorithm is provided in Appendix E.

4 EXPERIMENTAL EVALUATION

On synthetic data. We follow the experimental setup in Adil et al. (2019b), and build on the
provided code4. We evaluate the performance of our high-precision Algorithm 3 on the problem
min ∥Ax− b∥pp on two types of instances: (1) Random matrices: the entries of A and b are generated
uniformly at randomly between 0 and 1, and (2) Random graphs: We use the procedure in Adil et al.
(2019b) to generate random graphs and the corresponding A and b (the details are provided in the
appendix).

We vary p and the size of the matrices and graphs, while keeping the error ϵ = 10−10. All imple-
mentations were done on MATLAB 2024a on a MacBook Pro M2 with 16GB RAM. We measure

4The code is available at https://github.com/fast-algos/pIRLS
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Figure 2: Performance on random graph instances: min ∥Ax− b∥pp with ϵ = 10−10. We compare our
algorithm with CVX using SDPT3 and SeDuMi solvers and p-IRLS by Adil et al. (2019b). Figures
(a),(b),(e),(f) measure over 10 runs. Figures (c),(d),(g),(h) measure over 5 runs.

Table 1: Performance of our algorithm against p-IRLS on six real-world datasets for p = 8, ϵ =
10−10.

CT slices
Graf et al.

(2011)

KEGG
Metabolic

Naeem
and

Asghar
(2011)

Power
Consump-

tion
Hebrail

and
Berard
(2006)

Buzz in
Social
Media
Kawala

et al.
(2013)

Protein
Property

Rana
(2013)

Song
Year Pre-
diction
Bertin-

Mahieux
(2011)

Size 48150
×385

57248
×27

1844352
×11

524925
×77 41157×9 463811

×90
no.
iters

p-IRLS 48 50 45 50 44 45
Ours 36 42 36 42 36 36

time
(s)

p-IRLS 14.3 2.5 32. 28. 1.6 22.5
Ours 9.2 1.7 15.7 18.1 1.1 13.3

the number of iterations and running time for each algorithm and report them in Figures 1-2. In the
appendix, we provide additional experimental results when 1 < p < 2 and when ϵ varies.

On real-world datasets. We test our algorithm against p-IRLS on six regression datasets from the
UCI repository. CVX has excessive runtime and hence is excluded from the comparison. Results are
provided in Table 1.

Remark 4.1. Regarding the correctness of the algorithm, we use the output by CVX as the baseline.
In all experiments, our algorithm has error within the ϵ margin compared with the objective value of
the CVX solution (see appendix).

On smaller instances, we compare our algorithm with CVX using SDPT3 and Sedumi solvers and the
p-IRLS algorithm by Adil et al. (2019b). While CVX solvers generally need fewer iterations to find a
solution, they are significantly slower on all instances than our algorithm and p-IRLS. Our algorithm
also significantly outperforms p-IRLS in both the number of iterations (calls to a linear system solver)
and running time. When the size of the problem and the value of p increases, the gap between our
algorithm and p-IRLS also increases. On average, our algorithm is 1-2.6 times faster than p-IRLS.
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REPRODUCIBILITY STATEMENT

For the reproducibility purpose, we submitted the source code in the supplementary material. We
included the MATLAB implementation by Adil et al. (2019b).
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A PROPERTY OF THE ENERGY FUNCTION

We recall the definition of energy function and its properties used in the algorithms.

Definition A.1. (Energy function). Given a vector r ∈ Rn
+, we let the electrical energy be E(r) =

minx:Ax=b⟨r, x2⟩.
Lemma A.1. (Computing the energy minimizer) Given b ∈ Rd and r ∈ Rn

+, the least squares
problem minx:Ax=b⟨r, x2⟩ can be solved by evaluating x = D(r)−1A⊤ (AD(r)−1A⊤)+ b, where
D(r) is the diagonal matrix whose entries are given by r.

The following lemma gives us a lower bound on the increase in electrical energy when we increase r.

Lemma A.2. Given r′ ≥ r and letting x = argminx:Ax=b⟨r, x2⟩, one has that

E(r′)− E(r) ≥
∑
i

rix
2
i

(
1− ri

r′i

)
.

Proof. This inequality follows from the standard lower bound for E(r′)−E(r), which the reader can
find in Ene and Vladu (2019).

B REDUCING GENERAL REGRESSION PROBLEMS TO THE
AFFINE-CONSTRAINED VERSION

In this section we show that the affine constrained version of the problem we consider is in full
generality. Formally, we show that any ℓp regression problem of the form minAx=b ∥Nx− v∥p can
be reduced to the form we consider.
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Lemma B.1. Let A ∈ Rs×n, b ∈ Rs, N ∈ Rm×n, v ∈ Rm and consider the optimization objec-

tive minAx=b ∥Nx− v∥p. Let
[

x
z

]
be a (1 + ε) approximate solution to the affine-constrained

regression problem
min[

N −Im×m

A 0s×m

][
x
z

]
=

[
v
b

] ∥z∥p .

Then x is a (1 + ε) approximate solution to the original objective. Furthermore, each least squares
subproblem can be solved using two calls to a linear system solver for N⊤RN , and one call to a
linear system solver for A

(
N⊤RN

)+
A⊤.

Proof. We augment the dimension of the iterate by introducing m additional variables encoded in a
vector z ∈ Rm. Hence one can equivalently enforce the constraints

Nx− z = v

Ax = b

and simply seek to minimize ∥z∥p instead of ∥Ax− b∥p, which is the suitable formulation required
by our solver. Note that while we do not have any weights on the x iterate, the analysis goes through
normally, since in fact it tolerates solving a more general weighted ℓp regression problem.

To solve the corresponding least squares problem, we need to compute

min
Ax=b

1

2

〈
r, (Nx− v)

2
〉
= min

Ax=b

1

2
x⊤N⊤RNx−

〈
N⊤Rv, x

〉
+

1

2
v⊤Rv

= max
y

min
x

1

2
x⊤N⊤RNx−

〈
N⊤Rv, x

〉
+

1

2
v⊤Rv + ⟨b−Ax, y⟩

= max
y

(
⟨b, y⟩+min

x

1

2
x⊤N⊤RNx−

〈
N⊤Rv +A⊤y, x

〉)
− 1

2
v⊤Rv .

where R is the diagonal matrix whose entries are given by r. The inner problem is minimized at

x =
(
N⊤RN

)+ (
N⊤Rv +A⊤y

)
,

which simplifies the problem to

max
y
⟨b, y⟩ − 1

2

(
N⊤Rv +A⊤y

)⊤ (
N⊤RN

)+ (
N⊤Rv +A⊤y

)
− 1

2
v⊤Rv

= max
y

〈
b−A

(
N⊤RN

)+
N⊤Rv, y

〉
− 1

2
y⊤A

(
N⊤RN

)+
A⊤y

− 1

2
v⊤RN

(
N⊤RN

)+
N⊤Rv − 1

2
v⊤Rv ,

which is maximized at

y =
(
A
(
N⊤RN

)+
A⊤
)+ (

b−A
(
N⊤RN

)+
N⊤Rv

)
,

so

x =
(
N⊤RN

)+
N⊤Rv +

(
N⊤RN

)+
A⊤

(
A
(
N⊤RN

)+
A⊤
)+ (

b−N
(
N⊤RN

)+
N⊤Rv

)
=
(
N⊤RN

)+(
N⊤Rv +A⊤

(
A
(
N⊤RN

)+
A⊤
)+ (

b−A
(
N⊤RN

)+
N⊤Rv

))
.

We observer that to execute this step we require two calls to a solver for N⊤RN , and one call to a
solver for A

(
N⊤RN

)+
A⊤.

12
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C SOLVING ℓp REGRESSION FOR 1 ≤ p < 2

In this section we show that while our solvers are defined for ℓp regression when p ≥ 2, they also
provide solutions ℓq regression for 1 ≤ q < 2. This follows directly from exploiting duality. See Adil
et al. (2019a), section 7.2 for a proof detailed. Here we briefly explain why this is the case. Let p, q
such that 1

p + 1
q = 1, 1 ≤ q < 2, and consider the ℓq regression problem, along with its dual

min
x:Ax=b

∥x∥q = max
∥A⊤y∥p≤1

⟨b, y⟩ .

We can use our solver to provide a high precision solution to the dual maximization problem, which
we then show can be used to read off a primal nearly optimal solution. Indeed, we can equivalently
solve

min
⟨b,y⟩=1

∥∥A⊤y
∥∥
p

to high precision ε = 1
nO(1) , based on which we construct the nearly-feasible primal solution

x =
⟨b, y⟩
∥A⊤y∥pp

·
(
A⊤y

)p−1
.

To see why this is a good solution, let us assume that we achieve exact gradient optimality for y,
which means that for some scalar λ,

A
(
A⊤y

)p−1
= b · λ . (5)

First let us verify that x is feasible. Using (5) we see that:

Ax = A

(
⟨b, y⟩
∥A⊤y∥pp

·
(
A⊤y

)p−1

)
=
⟨b, y⟩
∥A⊤y∥pp

·A
(
A⊤y

)p−1
=

(
⟨b, y⟩
∥A⊤y∥pp

· λ

)
· b .

Additionally we can also use (5) again to obtain that∥∥A⊤y
∥∥p
p
=
〈
y,A

(
A⊤y

)p−1
〉
= ⟨y, b⟩ · λ ,

which allows us to conclude that
Ax = b ,

so x is feasible. Finally, we can measure the duality gap by calculating

∥x∥q =
1

λ

∥∥∥(A⊤y
)p−1

∥∥∥
q
=

1

λ
·
(∑(

A⊤y
)(p−1) p

p−1

) p−1
p

=
1

λ

∥∥A⊤y
∥∥p−1

p

=
⟨y, b⟩
∥A⊤y∥pp

·
∥∥A⊤y

∥∥p−1

p
=
⟨y, b⟩
∥A⊤y∥p

,

which certifies optimality for b. While in general we do not solve the dual problem exactly, which
yields a slight violation in the demand for the primal iterate x, this can be fixed by adding to x a
flow x̃ = A⊤ (AA⊤)+ (b−Ax) that routes the residual demand. This affects the ℓq norm only
slightly since the residual demand is guaranteed to be very small due to the near-optimality of the
dual problem. Then we can proceed to bounding the duality gap by following the argument sketched
above, while also carrying the polynomially small error through the calculation. We refer the reader
to Adil et al. (2019a) for the detailed error analysis.

D PROOF OF THEOREM 1.1

In this section, we first outline the necessary lemmas needed to prove Theorem 1.1 before providing
their proofs below.

13
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Correctness of Algorithm 2. There are two possible outcomes of Algorithm 2. Either it returns a
primal solution (Case 1 and Case 2) or a dual certificate (Case 3). In the former two cases, Case 2
immediately gives us an approximate solution. We show in Lemma D.2 that the returned vector in
Case 1 achieves the target approximation guarantee. In Case 3, we use the invariant shown in Lemma
D.1 to show that the returned dual solution is an infeasibility certificate.

We formalize these statements in the lemmas below.

Lemma D.1 (Invariant). For all t, we have that if γ(t) ̸= 1 then E(r(t+1))−E(r(t))
∥r(t+1)∥

q
−∥r(t)∥

q

≥M2.

Lemma D.2 (Case 1). Let r be a dual solution and x = argminx̂:Ax̂=b⟨r, x̂2⟩. If∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥
∞
≤ (1 + ϵ)M2 then ∥x∥2p ≤M(1 + ϵ).

Lemma D.3 (Case 3). If the algorithm returns r(T ), then
E(r(T ))
∥r(T )∥

q

≥ M2

(1+ϵ)2 .

Convergence of Algorithm 2. We run the algorithm for T iterations. The algorithm terminates
if at any point it finds a solution x that satisfies the desired bound (otherwise it is unable to further
increase the dual solution). Otherwise, we show that it must finish very fast. Suppose we run it
for T = Thi + Tlo iterations. Let the iterations in Thi correspond to those where at least a single

coordinate of r was scaled by ≥ S := n
2

2q+1
(
1
ϵ

) q−1
2q+1 . Let Tlo be the remaining iterations. The

following lemmas give an upperbound on Thi and Tlo.
Lemma D.4. We have Thi ≤ n

Sqϵq .

Lemma D.5. We have Tlo ≤ O
((

1
ϵ +

S1/2

q lnS

)
1

ϵ
q+1
2

log
(
n
ϵq

))
.

Since S = n
2

2q+1
(
1
ϵ

) q−1
2q+1 , we obtain the following convergence guarantee:

Lemma D.6. Algorithm 2 terminates in O

(((
1
ϵ

) q+3
2 + n

1
2q+1

(
1
ϵ

) q2+2q
2q+1

)
log
(
n
ϵq

))
iterations.

Equipped with these lemmas, we give the proof for Theorem 1.1.

Proof of Theorem 1.1. Returning to the problem minx∈Rn : Ax=b ∥x∥p, we have the main algorithm

executes a binary search over the power of (1 + ϵ) in the range
[
∥x(0)∥

2

n
1
2
− 1

p
,
∥∥x(0)

∥∥
2

]
, so the total

number of calls to the subroutine solver is O
(
log log n+ log 1

ϵ

)
. By Lemma D.6, the subroutine

solver requires O
(((

1
ϵ

) q+3
2 + n

1
2q+1

(
1
ϵ

) q2+2q
2q+1

)
log
(
n
ϵq

))
linear system solves, where q = p

p−2 is

the dual norm of p/2. Substituting the value of q, we obtain the conclusion.

D.1 PROOFS OF LEMMAS D.1 - D.5

Proof of Lemma D.1. First we show (3).

1∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q
∥∥r(t)∥∥q−1

q∥∥r(t+1)
∥∥q
q
−
∥∥r(t)∥∥q

q

.

This is equivalent to show∥∥∥r(t+1)
∥∥∥q
q
+ (q − 1)

∥∥∥r(t)∥∥∥q
q
≥ q

∥∥∥r(t+1)
∥∥∥
q

∥∥∥r(t)∥∥∥q−1

q

which can easily be obtained from AM-GM inequality.

Using (3) and Lemma A.2 we have

E(r(t+1))− E(r(t))∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q
∥∥r(t)∥∥q−1

q

(∑
i r

(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q
14
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=

q
∥∥r(t)∥∥q−1

q

(∑
i,α

(t)
i >1

r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

))
∑

i,α
(t)
i >1

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q .

For i such that α(t)
i > 1, we have r

(t+1)
i = α

(t)
i r

(t)
i , thus

q
∥∥r(t)∥∥q−1

q
r
(t)
i

(
x
(t)
i

)2(
1− r

(t)
i

r
(t+1)
i

)
(
r
(t+1)
i

)q
−
(
r
(t)
i

)q =

∥∥r(t)∥∥q−1

q

(
x
(t)
i

)2
(
r
(t)
i

)q−1 ·
q

(
1− 1

α
(t)
i

)
(
α
(t)
i

)q
− 1

≥ γ
(t)
i M2 · 1(

α
(t)
i

)q
= M2,

where the first inequality is due to q(α−1)
α(αq−1) ≥

1
αq , for α > 1. We can then obtain the desired

conclusion from here.

Proof of Lemma D.2. If ∥∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥∥
∞
≤ (1 + ϵ)M2,

for all i we have

x2
i ≤ (1 + ϵ)

2
M2 rq−1

i

∥r∥q−1
q

,

which gives

x2p
i ≤ (1 + ϵ)

2p
M2p rqi

∥r∥qq
,

We obtain

∥x∥2p2p ≤ (1 + ϵ)
2p

M2p,

as needed.

Proof of Lemma D.3. We have that

E(r(T ))∥∥r(T )
∥∥
q

=
E(r(0)) +

∑T−1
t=0

(
E(r(t+1))− E(r(t))

)∥∥r(T )
∥∥
q

≥
E(r(0)) +

∑T−1
t=0

(∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

)
·M2∥∥r(T )

∥∥
q

(due to the invariant)

≥

(∥∥r(T )
∥∥
q
− 1
)
·M2∥∥r(T )

∥∥
q

= M2 ·

(
1− 1∥∥r(T )

∥∥
q

)

≥M2 · (1− ϵ) (since
∥∥∥r(T )

∥∥∥
q
≥ 1

ϵ
)

≥ M2

(1 + ϵ)
2 .
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Proof of Lemma D.4. Suppose the contrary. Then we claim that the perturbations that scale the dual
solution by≥ S will have increased it a lot to the point where ∥r∥qq ≥

1
ϵq . Indeed, since r is initialized

to 1
n1/q , in the worst case each perturbation in Thi touches a different coordinate i. Therefore this

establishes a lower bound of Thi · S
q

n on ∥r∥qq. As this must be at most 1
ϵq , since otherwise we

obtained a good solution per Lemma D.3, we obtain the conclusion.

Before showing the proof of Lemma D.5, we claim that we can either look at the history produced in
Tlo and obtain an approximately feasible solution, or a single coordinate of r must have increased a
lot.
Lemma D.7. Consider the set of iterates (r(t), x(t)) used for the iterates in Tlo. If∥∥∥∥∥ 1

Tlo

∑
t∈Tlo

x(t)

∥∥∥∥∥
2p

> M(1 + ϵ)

then there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i ≥

Tloϵ
q+1
2

2
.

Proof. Suppose that ∥∥∥∥∥ 1

Tlo

∑
t∈Tlo

x(t)

∥∥∥∥∥
2p

> M(1 + ϵ)

Note that by the update rule,

x
(t)
i

M
≤ (1 + ϵ)

1
2

√√√√√
(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

+ 1αi>1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

≤
(
1 +

ϵ

2

)√√√√√
(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

+ 1αi>1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

Hence we can write∥∥∥∥∥∑
t∈Tlo

x(t)

M

∥∥∥∥∥
2p

≤

∥∥∥∥∥∥∥∥∥
(
1 +

ϵ

2

) ∑
t∈Tlo

√√√√(
r(t)
)q−1∥∥r(t)∥∥q−1

q

+

−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

≤
(
1 +

ϵ

2

) ∑
t∈Tlo

∥∥∥∥∥∥
√√√√(

r(t)
)q−1∥∥r(t)∥∥q−1

q

∥∥∥∥∥∥
2p

+

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

(by triangle inequality)

=
(
1 +

ϵ

2

)
Tlo +

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

.

We obtain ∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

≥ ϵ

2
Tlo
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On the other hand, we have

∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

=
∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)
i

(
r
(t+1)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

≤
∑
i

(
r
(T )
i

)q ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤
∥∥∥r(T )

∥∥∥q
q
max

i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤ 1

ϵq
max

i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

Therefore there exists i such that ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≥
(
ϵT

2

)2p

ϵq,

which gives us ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i ≥

Tloϵ
q+1
2

2
.

Now we show the proof of Lemma D.5.

Proof of Lemma D.5. From Lemma D.7 we know that there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i >

Tloϵ
q+1
2

2
. (6)

Furthermore by definition for all iterates in Tlo we have that pointwise (1 + ϵ) ≤
(
α
(t)
i

)q
≤ Sq.

This enables us to lower bound the final value of
(
r
(T )
i

)q
which is a lower bound on

∥∥r(T )
∥∥q
q
. More

precisely, we have(
r
(T )
i

)q
≥
(
r
(0)
i

)q
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
=

1

n
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
. (7)

Now we can proceed to lower bound this coodinate i.e. we lower bound the product in (7) using the
lower bound we have in (6).

Intuitively, the worst case behavior i.e. slowest possible increase in
(
r
(T )
i

)q
is achieved in one of the

two extreme cases:

(i) the α
(t)
i are all minimized i.e.

(
α
(t)
i

)q
= (1 + ϵ) in which case Θ

(
1
ϵ log

(
n
ϵq

))
such terms are

sufficient to make their product ≥ n
ϵq , which means that we are done, since then we have

∥∥r(T )
∥∥q
q
≥(

r
(T )
i

)q
≥ 1

ϵq ; so setting Tloϵ
q+1
2

2 ≥ Θ
(
(1 + ϵ)

1
2q 1

ϵ log
(
n
ϵq

))
i.e Tlo ≥ Θ

(
1

ϵ
q+3
2

log
(
n
ϵq

))
is

sufficient to make this happen;

(ii) all the entries are maximized, i.e. α(t)
i = S in which case we have that their product to power q is

at least S
qTlo

S1/2
ϵ
q+1
2
2 ≥ n

ϵq , so if we set qTlo

S1/2
ϵ
q+1
2

2 lnS ≥ log
(
n
ϵq

)
, ie., Tlo = Θ

(
S1/2

q lnS
1

ϵ
q+1
2

log
(
n
ϵq

))
,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

we guarantee that the corresponding ri increases to a value larger than 1
ϵq . The fact that these two

cases capture the slowest possible increase is shown in Lemma F.1.

Therefore we can set

Tlo = O

((
1

ϵ
+

S1/2

q lnS

)
1

ϵ
q+1
2

log
( n

ϵq

))
.

E PROOF OF THEOREM 1.2

First, we give guarantee for the subproblem solver (Algorithm 4, proof follows subsequently) .

Lemma E.1. For p ≥ 1, κ =

{
1 if p ≤ logn

logn−1

q otherwise
, Algorithm 4 either returns x such that Ax = b,

∥x∥2p ≤ 2M and
〈
θ, x2

〉
≤ minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
or certifies that minx:Ax=b

∥∥x2
∥∥
p
+〈

θ, x2
〉
≥ M2

2κ in O
(
n

1
2q+1

)
calls to solve a linear system of the form ADA⊤ϕ = b, where D is an

arbitrary non-negative diagonal matrix.

The next lemma provides guarantees on the iterate progress in the main algorithm (Algorithm 3).

Lemma E.2. For p ≥ 2 κ =

{
1 if p ≤ 2 logn

logn−1
p

p−2 otherwise
, Algorithm 3 maintains that

∥∥x(t)
∥∥p
p
−∥x∗∥pp ≤

16pM (t) and that if x(t+1) ̸= x(t) then∥∥∥x(t+1)
∥∥∥p
p
− ∥x∗∥pp ≤

(
1− 1

213pκ

)(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
.

Finally, we show the proof of Theorem 1.2.

Proof. Algorithm 3 terminates when M (t) ≤ ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p
. This gives

∥∥x(t)
∥∥p
p
− ∥x∗∥pp ≤

ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p
, which implies

∥∥x(t)
∥∥p
p
≤ (1+ ϵ) ∥x∗∥pp and thus

∥∥x(t)
∥∥
p
≤ (1+ ϵ) ∥x∗∥p. Hence,

x(t) is a (1+ϵ) approximate solution. Since ϵ
16p(1+ϵ)

∥∥x(t)
∥∥p
p
≥ ϵ

16p(1+ϵ) ∥x
∗∥pp, the number of times

M (t) can be reduced is O
(
log
∥x(0)∥p

p

ϵ∥x∗∥p
p

)
= O

(
p log n

ϵ

)
. By Lemma E.2, the number of times the

iterate makes progress is O
(
213pκ log

∥x(0)∥p
p
−∥x∗∥p

p

ϵ∥x∗∥p
p

)
= O

(
p2 log n log n

ϵ

)
where κ = O(log n).

Therefore the total number of calls to the subroutine solver is O
(
p2 log n log n

ϵ

)
. By lemma E.1, the

subroutine solver makes O
(
n

1
2q+1

)
= O

(
n

p−2
3p−2

)
calls to a linear system solver. This concludes

the proof.

E.1 PROOF OF LEMMA E.1

We letOPT = minx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
and x∗ = argminx:Ax=b

∥∥x2
∥∥
p
+
〈
θ, x2

〉
. We consider

two cases: when p ≤ logn
logn−1 and when p > logn

logn−1 . We will prove for each case using the following
lemmas:

Lemma E.3. For 1 ≤ p ≤ logn
logn−1 , Algorithm 4 either returns x such that Ax = b, ∥x∥2p ≤ 2M

and
〈
θ, x2

〉
≤ OPT or certifies that OPT ≥ M2

2 in O(1) call to solve a linear system.

Lemma E.4. For p > logn
logn−1 , Algorithm 4 either returns x such that Ax = b, ∥x∥2p ≤ 2M and〈

θ, x2
〉
≤ OPT or certifies that OPT ≥ M2

2q in O
(
n

1
2q+1

)
calls to solve a linear system.

To start, we have the following lemma that controls the ℓ2 term in the objective

18
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Lemma E.5. For r such that ∥r∥q ≤ 1, suppose x = argminx:Ax=b⟨r + θ, x2⟩. Then we have〈
θ, x2

〉
≤ OPT .

Proof. For r with ∥r∥q ≤ 1, we have〈
θ, x2

〉
≤ ⟨r + θ, x2⟩ ≤ ⟨r + θ, (x∗)2⟩ (by definition of x)

≤
∥∥(x∗)2

∥∥
p
+
〈
θ, (x∗)2

〉
≤ OPT .

Now, let us turn to the first case when 1 ≤ p ≤ logn
logn−1 . We give the proof for Lemma E.3.

Proof of Lemma E.3. When 1 ≤ p ≤ logn
logn−1 , we have q = p

p−1 ≥ log n. Algorithm 4 computes

x̂ = min
x:Ax=b

〈
r + θ, x2

〉
where ri = n− 1

q for all i.

Since ∥r∥q = 1, if ∥x̂∥2p ≤ 2M , by Lemma E.5, we immediately have ∥x̂∥2p ≤ 2M and
〈
θ, x2

〉
≤

OPT .

Assume that ∥x̂∥2p > 2M . We have

OPT =
∥∥∥(x∗)

2
∥∥∥
p
+
〈
θ, (x∗)

2
〉
≥
〈
r, (x∗)

2
〉
+
〈
θ, (x∗)

2
〉

=
〈
θ + r, (x∗)

2
〉
≥
〈
θ + r, (x̂)

2
〉

≥ 1

n
1
q

∥∥x̂2
∥∥
1
≥ 1

n
1
q

∥∥x̂2
∥∥
p

(since
∥∥x̂2
∥∥
1
≥
∥∥x̂2
∥∥
p
)

≥ 1

2
∥x̂∥22p (since q ≥ log n)

≥ 2M2 ≥ M2

2
.

For the case when p > logn
logn−1 , the proof for Lemma E.4 follows similarly to the analysis of

Algorithm 2. We proceed by showing the following invariant.

Lemma E.6 (Invariant). For all t, we have that if γ(t) ̸= 1 then E(r(t+1)+θ)−E(r(t)+θ)

∥r(t+1)∥
q
−∥r(t)∥

q

≥M2.

Proof. Using Lemma A.2 we have

E(r(t+1) + θ)− E(r(t) + θ)∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

≥
q ·
∥∥r(t)∥∥q−1

q

(∑
i

(
r
(t)
i + θi

)(
x
(t)
i

)2(
1− r

(t)
i +θi

r
(t+1)
i +θi

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q

=

q ·
∥∥r(t)∥∥q−1

q

(∑
i

(
x
(t)
i

)2
r
(t)
i +θi

r
(t+1)
i +θi

(
r
(t+1)
i − r

(t)
i

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q

≥
q ·
∥∥r(t)∥∥q−1

q

(∑
i

(
x
(t)
i

)2
r
(t)
i

r
(t+1)
i

(
r
(t+1)
i − r

(t)
i

))
∑

i

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q
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=

q ·
∥∥r(t)∥∥q−1

q

(∑
i,α

(t)
i >1

(
x
(t)
i

)2
r
(t)
i

r
(t+1)
i

(
r
(t+1)
i − r

(t)
i

))
∑

i,α
(t)
i >

(
r
(t+1)
i

)q
−
(
r
(t)
i

)q ,

where in the second inequality we use r
(t)
i +θi

r
(t+1)
i +θi

≥ r
(t)
i

r
(t+1)
i

for r(t+1)
i ≥ r

(t)
i , θ ≥ 0. For i such that

α
(t)
i > 1, we have r

(t+1)
i = α

(t)
i r

(t)
i , thus

q ·
∥∥r(t)∥∥q−1

q

(
x
(t)
i

)2
r
(t)
i

r
(t+1)
i

(
r
(t+1)
i − r

(t)
i

)
(
r
(t+1)
i

)q
−
(
r
(t)
i

)q = γ
(t)
i M2 ·

q

(
1− 1

α
(t)
i

)
(
α
(t)
i

)q
− 1

≥ γ
(t)
i M2 · 1(

α
(t)
i

)q
= M2,

where the first inequality is due to q(α−1)
α(αq−1) ≥

1
αq , for α > 1. We can then obtain the desired

conclusion from here.

Lemma E.7 (Case 1). Let r be a dual solution and x = argminx̂:Ax̂=b⟨r + θ, x̂2⟩. If∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥
∞
≤ 2M then ∥x∥2p ≤ 2M and

〈
θ, x2

〉
≤ OPT .

Proof. If ∥∥∥∥∥r∥q−1
q · x2

rq−1

∥∥∥∥
∞
≤ 2M2,

for all i we have

x2
i ≤ 4M2 rq−1

i

∥r∥q−1
q

,

which gives

x2p
i ≤ 22pM2p rqi

∥r∥qq
,

We obtain

∥x∥2p2p ≤ 22pM2p,

as needed. The second claim comes directly from Lemma E.5.

Lemma E.8 (Case 3). If the algorithm returns r(T ), then E
(

r(T )

∥r(T )∥
q

+ θ

)
≥ M2

2q .

Proof. We have that

E(r(T ) + θ)∥∥r(T )
∥∥
q

=
E(r(0) + θ) +

∑T−1
t=0

(
E(r(t+1) + θ)− E(r(t) + θ)

)∥∥r(T )
∥∥
q

≥

∑T−1
t=0

(∥∥r(t+1)
∥∥
q
−
∥∥r(t)∥∥

q

)
·M2∥∥r(T )

∥∥
q

(due to the invariant)

≥

(∥∥r(T )
∥∥
q
−
∥∥r(0)∥∥

q

)
·M2∥∥r(T )

∥∥
q
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= M2 ·

(
1−

2q−1
2q∥∥r(T )
∥∥
q

)
(since

∥∥∥r(0)∥∥∥
q
=

2q − 1

2q
)

=
M2

2q
(since

∥∥∥r(T )
∥∥∥
q
≥ 1).

Finally since
∥∥r(T )

∥∥
q
≥ 1

E

(
r(T )∥∥r(T )
∥∥
q

+ θ

)
≥ E(r

(T ) + θ)∥∥r(T )
∥∥
q

≥ M2

2q
.

Convergence Analysis We run the algorithm for T iterations. The algorithm terminates if at any
point it finds a solution x that satisfies the desired bound (otherwise it is unable to further perturb the
dual solution). Otherwise, we show that it must finish very fast.

Suppose we run it for T = Thi + Tlo iterations. Let the iterations in Thi correspond to those where at
least a single ri was scaled by ≥ S = n

2
2q+1 . Let Tlo be the remaining iterations.

Lemma E.9. We have Thi ≤ 2n
Sq .

Proof. Suppose the contrary. Then we claim that these perturbations alone will have increased r
a lot to the point where ∥r∥qq ≥ 1. Indeed, let ri be the current value of coordinate i and r′i be

its value after being increased, and assume that r′i
ri
≥ S. Since r is initialized to 2q−1

2q
1

n1/q , in the
worst case each perturbation in Thi touches a different i. Therefore this establishes a lower bound

of Thi · S
q

n

(
2q−1
2q

)q
≥ Thi · S

q

2n on ∥r∥qq. As this must be at most 1, since otherwise we obtained a
good solution per Lemma E.8, we obtain the conclusion.

Now we claim that we can either look at the history produced in Tlo and obtain an approximately
feasible solution, or a single coordinate ri must have increased a lot.

Lemma E.10. Consider the set of iterates (r(t), x(t)) used for the iterates in Tlo. If∥∥∥∥∥ 1

Tlo

∑
t∈Tlo

x(t)

∥∥∥∥∥
2p

> 2M

then there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i ≥

Tlo

4
.

Proof. Suppose
∥∥∥ 1
Tlo

∑
t∈Tlo

x(t)
∥∥∥
2p

> 2M . Note that by the update rule,

x
(t)
i

M
≤
√
2

√√√√√
(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

+ 1αi>1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q

Hence we can write

∥∥∥∥∥∑
t∈Tlo

x(t)

M

∥∥∥∥∥
2p

≤

∥∥∥∥∥∥∥∥∥
√
2
∑
t∈Tlo

√√√√(
r(t)
)q−1∥∥r(t)∥∥q−1

q

+

−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p
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≤
√
2
∑
t∈Tlo

∥∥∥∥∥∥
√√√√(

r(t)
)q−1∥∥r(t)∥∥q−1

q

∥∥∥∥∥∥
2p

+

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

(by triangle inequality)

=
√
2Tlo +

∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

.

We obtain ∥∥∥∥∥∥∥∥∥
−−−−−−−−−−−−−−−−−−−−−−−−−→ ∑

t∈Tlo,α
(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


i

∥∥∥∥∥∥∥∥∥
2p

≥
(
2−
√
2
)
Tlo ≥

Tlo

2

On the other hand, we have

∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)q
i

(
r
(t)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

=
∑
i

 ∑
t∈Tlo,α

(t)
i >1

√√√√√α
(t)
i

(
r
(t+1)
i

)q−1

∥∥r(t)∥∥q−1

q


2p

≤
∑
i

(
r
(T )
i

)q
∥∥r(0)∥∥q

q

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤

∥∥r(T )
∥∥q
q∥∥r(0)∥∥q
q

max
i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≤
(

2q

2q − 1

)q

max
i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

(since
∥∥∥r(0)∥∥∥

q
=

2q

2q − 1
)

≤ 2max
i

 ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

, (since q ≥ 1)

Therefore there exists i such that ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i


2p

≥ 1

2

(
Tlo

2

)2p

,

which gives us ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i ≥

Tlo

2

1

2
1
2p

≥ Tlo

4
, since p ≥ 1.

This lemma enables us to upper bound Tlo.

Lemma E.11. We have Tlo ≤ Θ
(

S1/2

lnS lnn+ lnn
)

.

Proof. From Lemma E.10 we know that there exists a coordinate i for which∑
t∈Tlo:α

(t)
i >1

√
α
(t)
i >

Tlo

4
. (8)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Furthermore by definition for all iterates in Tlo we have that pointwise α
(t)
i =

r
(t+1)
i

r
(t)
i

≤ S and

α
(t)
i =

(
γ
(t)
i

)1/q
≥ 2

1
q . This enables us to lower bound the final value of

(
r
(T )
i

)q
which is a lower

bound on
∥∥r(T )

∥∥q
q
. More precisely, we have r

(t+1)
i

r
(t)
i

≥ α
(t)
i thus(

r
(T )
i

)q
≥
(
r
(0)
i

)q
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
=

2q − 1

2q
· 1
n
·

∏
t∈Tlo:α

(t)
i >1

(
α
(t)
i

)q
. (9)

Now we can proceed to lower bound this ri i.e. we lower bound the product in (9) using the lower
bound we have in (8).

Similarly to the previous section, the worst case behavior i.e. slowest possible increase in
(
r
(T )
i

)q
is

achieved in one of the two extreme cases:

(i) the α
(t)
i are all minimized i.e. α

(t)
i = 2

1
q in which case Θ(lnn) such terms are sufficient to

make their product ≥ 2n ≥ 2qn
2q−1 , which means that we are done, since then we have

∥∥r(T )
∥∥q
q
≥(

r
(T )
i

)q
≥ 1; so setting Tlo ≥ Θ(lnn) is sufficient to make this happen;

(ii) all the entries are maximized, i.e. α(t)
i = S in which case we have that their product to power q is

at least S
Tloq

4S1/2 ≥ 2n ≥ 2qn
2q−1 , so if we set Tloq

4S1/2 lnS ≥ ln 2n, ie, Tlo ≥ 8S1/2 ln(n)
q lnS , we guarantee

that the corresponding ri increases to a value larger than 2. The fact that these two cases capture the
slowest possible increase is shown in Lemma F.1.

Therefore we can set

Tlo = O

(
S1/2

lnS
lnn+ lnn

)
.

Finally, by the choice S = n
2

2q+1 , we obtain the runtime guarantee.

Lemma E.12. Algorithm 4 terminates in O
(
n

1
2q+1

)
iterations.

Proof of Lemma E.4. The proof of Lemma E.1 immediately follows from Lemmas E.7, E.8 and
E.12.

E.2 PROOF OF LEMMA E.2

Proof of Lemma E.2. We define the function resx as follows

resx (∆) = ⟨g,∆⟩ −
〈
R,∆2

〉
− ∥∆∥pp

where g = |x|p−2
x, R = 2 |x|p−2. We use the following property of this function from Adil et al.

(2019a; 2024): For λ = 16p and for all ∆

∥x∥pp −
∥∥∥∥x− ∆

p

∥∥∥∥p
p

≥ resx (∆) ; (10)

∥x∥pp −
∥∥∥∥x− λ

∆

p

∥∥∥∥p
p

≤ λresx (∆) . (11)

We prove the claim by induction.

For t = 0, we have M (0) :=
∥x(0)∥p

p

16p ≥
∥x(t)∥p

p
−∥x∗∥p

p

16p .

Now assume that we have
∥∥x(t)

∥∥p
p
− ∥x∗∥pp ≤ 16pM (t). We have two cases.
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Case 1. ResidualSolver returns an infeasibility certificate or ResidualSolver returns a primal solution
∆̃ such that

〈
R(t), ∆̃2

〉
≥ 2M (t). In both scenarios, using Lemma E.1 we have

min
A∆=0

⟨g(t),∆⟩=M(t)

2

∥∥∆2
∥∥

p
2

+ (M (t))
2−p
p

〈
R(t),∆2

〉
≥ 2(M (t))

2
p .

Hence for all ∆ such that A∆ = 0,
〈
g(t),∆

〉
= M(t)

2 , either
∥∥∆2

∥∥
p
2

≥ (M (t))
2
p ⇔ ∥∆∥pp ≥M (t)

or (M (t))
2−p
p
〈
R(t),∆2

〉
≥ (M (t))

2
p ⇔

〈
R(t),∆2

〉
≥ M (t). For all ∆ such that A∆ = 0, we

can write
〈
g(t),∆

〉
= aM(t)

2 , for some constant a ∈ R. We obtain either ∥∆∥pp ≥ apM (t) or〈
R(t),∆2

〉
≥ a2M (t), and thus for all ∆

resx(t) (∆) ≤M (t)

(
1

2
a−min

{
a2, ap

})
≤ M (t)

2
= M (t+1).

We write ∆ = x(t)−x∗

λ/p , for λ = 16p. Using property (11) of the resx, we have∥∥∥x(t+1)
∥∥∥p
p
− ∥x∗∥pp =

∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

=
∥∥∥x(t)

∥∥∥p
p
−
∥∥∥∥x(t) − λ

∆

p

∥∥∥∥
p

≤ λresx(t)

(
∆
)

≤ 16pM (t+1).

Case 2. We have
〈
R, ∆̃2

〉
< 2M (t) and

∥∥∥∆̃∥∥∥
p
≤ 4
√
κ(M (t))

1
p and

〈
g, ∆̃

〉
= M(t)

2

∥∥∥x(t)
∥∥∥p
p
−
∥∥∥x(t+1)

∥∥∥p
p
=
∥∥∥x(t)

∥∥∥p
p
−

∥∥∥∥∥x(t) − ∆̃

64pκ

∥∥∥∥∥
p

p

≥ resx(t)

(
∆̃

64κ

)

=

〈
g,

∆̃

64κ

〉
−

〈
R,

(
∆̃

64κ

)2〉
−

∥∥∥∥∥ ∆̃

64κ

∥∥∥∥∥
p

p

≥ M (t)

27κ
− M (t)

211κ2
− M (t)

24pκ
p
2

≥ M (t)

27κ
− M (t)

211κ
− M (t)

28κ
, (since p ≥ 2, κ ≥ 1)

≥ M (t)

29κ
≥ 1

213pκ

(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
,

from which we obtain∥∥∥x(t+1)
∥∥∥p
p
− ∥x∗∥pp ≤

∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp −

1

213pκ

(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
≤
(
1− 1

213pκ

)(∥∥∥x(t)
∥∥∥p
p
− ∥x∗∥pp

)
as needed.
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F LOWER BOUND LEMMA

Lemma F.1. Let a set of nonnegative reals β1, . . . , βk such that 1+ ϵ ≤ βi ≤ S, and
∑k

i=1 β
1
r
i ≥ K,

where r ≥ 2. Then for any k one has that

k∏
i=1

βi ≥ min

{
S

K

S1/r , (1 + ϵ)
K

(1+ϵ)1/r

}
.

Proof. Consider a fixed k, and let us attempt to minimize the product of βi’s subject to the constraints.
W.l.o.g. we have

∑k
i=1 β

1
r
i = K. Equivalently we want to minimize

∑k
i=1 log(βi), which is a

concave function. Therefore its minimizer is attained on the boundary of the feasible domain. This
means that for some 0 ≤ k′ ≤ k−1, there are k′ elements equal to 1+ϵ, k−1−k′ equal to S, and one
which is exactly equal to the remaining budget, i.e.

(
K − k′(1 + ϵ)1/r − (k − 1− k′)S1/r

)
, which

yields the product (1 + ϵ)k
′
Sk−k′−1 ·

(
K − k′(1 + ϵ)1/r − (k − 1− k′)S1/r

)
. This can be relaxed

by allowing k and k′ to be non-integral. Hence we aim to minimize the product (1 + ϵ)k
′
Sk−k′−1

subject to k′(1 + ϵ)1/r − (k − 1− k′)S1/r = K.

Finally, we observe that we can always obtain a better solution by placing all the available mass on a

single one of the factors, i.e. we lower bound either by S
K

S1/r or (1 + ϵ)
K

(1+ϵ)1/r , whichever is lowest.

G ITERATIVE REFINEMENT

In this section we provide a general technique for solving optimization problems to high-precision,
by reducing then to an adaptive sequence of easier optimization problems, which only require
approximate solutions. This formalizes the minimal requirements for the iterative refinement scheme
employed in Adil et al. (2019a;b) to go through. We state the main lemma below.

Lemma G.1. Let D ⊆ Rn be a convex set, and let f : D → R be a convex function. Let η ≥ 0 be a
scalar, and suppose that for any x ∈ D there exists a function hx that approximates the Bregman
divergence at x in the sense that

1

η
hx (ηδ) ≤ f (x+ δ)− f (x)− ⟨∇f (x) , δ⟩ ≤ hx (δ) .

Given access to an oracle that for any direction v can provide κ-approximate minimizers to ⟨v, δ⟩+
hx (δ) in the sense that it returns δ♯ such that v + δ♯ ∈ D and〈

v, δ♯
〉
+ hx

(
δ♯
)
≤ 1

κ

(
min

v+δ∈D
⟨v, δ⟩+ hx (δ)

)
,

along with an initial point x0 ∈ D, in O
(

κ
η ln f(x0)−f(x∗)

ε

)
calls to the oracle one can obtain a

point x such that f (x) ≤ f (x∗) + ε, where x∗ ∈ argminx∈D f (x).

Proof. Let δ♯ be the a κ-approximate minimizer of
〈
∇f (x) , δ♯

〉
+ hx

(
δ♯
)
, which by definition

satisfies: 〈
∇f (x) , δ♯

〉
+ hx

(
δ♯
)
≤ 1

κ

(
min

v+δ∈D
⟨∇f (x) , δ⟩+ hx (δ)

)
. (12)

Updating our iterate to x′ = x+ δ♯ we can bound the new function value as

f
(
x+ δ♯

)
= f (x) +

〈
∇f (x) , δ♯

〉
+ hx

(
δ♯
)

(Bregman divergence upper bound)

≤ f (x) +
η

κ

(
⟨∇f (x) , x∗ − x⟩+ 1

η
hx (η (x

∗ − x))

)
(using (12))

= f (x) +
η

κ
(⟨∇f (x) , x∗ − x⟩+ (f (x∗)− f (x)− ⟨∇f (x) , x− x∗⟩))

(Bregman divergence lower bound)
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= f (x) +
η

κ
(f (x∗)− f (x)) ,

from where we equivalently obtain that

f
(
x+ δ♯

)
− f (x∗) ≤

(
1− η

κ

)
(f (x)− f (x∗)) .

Therefore to reduce the initial error f (x0)− f (x∗) to ε it suffices to iterate O
(

κ
η ln f(x0)−f(x∗)

ε

)
times.

The following lemma provides a sandwiching inequality for the Bregman divergence of ∥x∥pp.

Lemma G.2 (Adil et al. (2019b), Lemma B.1). For any x, δ and p ≥ 2, we have for r = xp−2 and
g = pxp−1,

p

8

〈
r, δ2

〉
+

1

2p+1
∥δ∥pp ≤ ∥x+ δ∥pp − ∥x∥

p
p − ⟨g, δ⟩ ≤ 2p2

〈
r, δ2

〉
+ pp ∥δ∥pp .

As a corollary we see that the function hx (δ) = 2p2
〈
xp−2, δ2

〉
+ pp ∥δ∥pp satisfies the inequality

required by Lemma G.1 for η = 1
4p . We can thus conclude that given access to an oracle that

approximately minimizes mixed ℓ2 + ℓp regression objectives, one can efficiently generate a high
precision solution.

Corollary G.1. Consider the ℓp regression problem minf :B⊤f=d ∥f∥
p
p. Given access to an oracle

that can compute κ-approximate minimizers to the optimization problem

V ∗ := min
f :B⊤∆f=0

〈
pfp−1,∆f

〉
+ 2p2

〈
fp−2,∆f2

〉
+ pp ∥∆f∥pp

in the sense that it returns ∆f satisfying B⊤∆f = 0 and〈
pfp−1,∆f

〉
+ 2p2

〈
fp−2,∆f2

〉
+ pp ∥∆f∥pp ≤

1

κ
V ∗ ,

along with an initial point f0, satisfying B⊤f = d, in O
(
κp ln

∥f0∥p
p−∥f∗∥p

p

ε

)
calls to the oracle one

can obtain a point f such that ∥f∥pp ≤ ∥f∗∥pp + ε, where f∗ ∈ argminB⊤f=d ∥f∥
p
p.

Proof. Using Lemma G.2 we verify that the function hf (∆f) = 2p2
〈
fp−2,∆f2

〉
+ pp ∥∆f∥pp

satisfies
1

η
hf (η∆f) ≤ ∥f +∆f∥pp − ∥f∥

p
p +

〈
pfp−1,∆f

〉
≤ hf (∆f)

for η = 1
4p . Therefore by Lemma G.1 we can need O

(
κp ln

∥f0∥p
p−∥f∗∥p

p

ε

)
iterations to obtain an

ε-additive error to the regression problem.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 DATA GENERATION

Random matrices. The entries of A and b are generated uniformly at randomly between 0 and 1.

Random graphs. We use the procedure in Adil et al. (2019b) to generate random graphs and the
corresponding A and b. The generated graph is a weighted graph, where the vertices are generated by
choosing a point in [0, 1]10 uniformly at random, each vertex is connected to the 10 nearest neighbors.
The edge weights are generated by a gaussian type function (by Flores-Calder-Lerman). k (around
10) nodes are labeled in [0, 1] and let g be the label vector. Let B be the edge-vertex adjacency matrix,
W be the diagonal matrix with edge weights. We generate A = W 1/pB, b = −B[:, n : n+ k]g.
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(a) matrix size=n × (n −
50), p = 8
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(c) Graph of n nodes, p = 8
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(d) Graph of n = 500 nodes

Figure 3: Error of the solution against CVX/SDPT3 solution in log10 scale.
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Figure 4: Performance when varying ϵ on random matrices and random graphs instances.

H.2 CORRECTNESS OF SOLUTION

In Figure 3, we plot the error of the solutions outputted by our algorithm and p-IRLS against CVX in
the random matrices and random graphs instances for ϵ = 10−10. In all cases, the error is below ϵ.

H.3 WHEN VARYING ϵ

In Figure 4, we plot iteration complexity and runtime in seconds of our algorithm, p-IRLS and CVX
when varying ϵ. Note that, CVX does not allow varying this parameter. In all experiment, we fix
p = 8. For large instances, we only consider our solution against p-IRLS.

H.4 FOR 1 < p < 2

In Figure 5, we plot iteration complexity and runtime in seconds of our algorithm, p-IRLS and CVX
on random matrices of size n× (n− 100). In all experiment, we fix ϵ = 10−10. We test with p = 1.1
and p = 1.9.
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(a) p = 1.1
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(b) p = 1.1

500 750 1000 1250 1500 1750 2000 2250 2500
n

26

28

30

32

34

36

38

40

42

Ite
ra

tio
ns

p-IRLS
Ours
cvx SDPT3

(c) p = 1.9
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(d) p = 1.9

Figure 5: Performance when p = 1.1 and p = 1.9 on random matrices of size n× (n− 100).
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