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Abstract
Pareto front profiling in multi-objective optimiza-
tion (MOO), i.e. finding a diverse set of Pareto
optimal solutions, is challenging, especially with
expensive objectives like neural network train-
ing. Typically, in MOO neural architecture search
(NAS), we aim to balance performance and hard-
ware metrics across devices. Prior NAS ap-
proaches simplify this task by incorporating hard-
ware constraints into the objective function, but
profiling the Pareto front necessitates a computa-
tionally expensive search for each constraint. In
this work, we propose a novel NAS algorithm
that encodes user preferences for the trade-off be-
tween performance and hardware metrics, and
yields representative and diverse architectures
across multiple devices in just one search run. To
this end, we parameterize the joint architectural
distribution across devices and multiple objec-
tives via a hypernetwork that can be conditioned
on hardware features and preference vectors, en-
abling zero-shot transferability to new devices.
Extensive experiments with up to 19 hardware
devices and 3 objectives showcase the effective-
ness and scalability of our method. Finally, we
show that, without extra costs, our method outper-
forms existing MOO NAS methods across a broad
range of qualitatively different search spaces and
datasets, including MobileNetV3 on ImageNet-
1k, an encoder-decoder transformer space for ma-
chine translation and a decoder-only transformer
space for language modelling.

1. Introduction
The ability to make good tradeoffs between predictive
accuracy and efficiency (in terms of latency and/or energy
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consumption) has become crucial in an age of ever
increasing neural networks complexity and size (Kaplan
et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022;
Alabdulmohsin et al., 2023) and a plethora of embedded
devices. However, finding the right trade-off remains a
challenging task that typically requires human intervention
and a lot of trial-and-error across devices. With multiple
conflicting objectives, it becomes infeasible to optimize all
of them simultaneously and return a single solution. Ideally,
NAS should empower users to choose from a set of diverse
Pareto optimal solutions that represent their preferences
regarding the trade-off between objectives.

Neural Architecture Search (NAS) (White et al., 2023) pro-
vides a principled framework to search for network architec-
tures in an automated fashion. Significant research (Elsken
et al., 2019b; Cai et al., 2020; Wang et al., 2020; Chen et al.,
2021a) has extended NAS for multi-objective optimization
(MOO), considering performance and hardware efficiency
metrics like latency and energy consumption. However,
to the best of our knowledge, no existing gradient-based
method returns the full Pareto front for the MOO problem at
hand without repeating their search routine multiple times
with different hardware constraints.

In this work, we propose a scalable and hardware-aware
Multi-Objective Differentiable Neural Architecture Search
(MODNAS) algorithm that efficiently trains a single super-
net which can be used to read off Pareto-optimal solutions
for different user preferences and different target devices,
without any extra search steps. To search across devices, we
frame the problem at hand as a multi-task multi-objective
optimization problem, where each task (device) has multi-
ple (conflicting) objectives, e.g., classification accuracy and
latency. The user’s preferences are modelled by a preference
vector that defines a scalarization of the different objectives.
This preference vector, along with features of the hardware
of interest, is fed to a hypernetwork (Ha et al., 2017) that
outputs continuous architectural parameters α. To search
in the space of architectures, we employ a one-shot model
and a bi-level optimization scheme, as is typically done in
gradient-based NAS. In our case, however, the upper-level
parameters are the hypernetwork weights, optimized in ex-
pectation across different preference vectors and hardware
devices via multiple gradient descent (Désidéri, 2012).
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Figure 1. MODNAS overview. Given a set of T devices, MODNAS seeks to optimize M (potentially conflicting) objectives across these
devices. To this end, it employs a MetaHypernetworkHΦ(r, dt), that takes as input a scalarization r, representing the user preferences,
and a device embedding dt, to yield an un-normalized architectural distribution α̃. The Architect uses α̃ to sample differentiable discrete
architectures, used in the Supernetwork to estimate accuracy and in the MetaPredictor to estimate the other M − 1 loss functions (e.g.
latency, energy consumption) for every device. By iterating over devices and sampling scalarizations uniformly from the M -dimensional
simplex, at each iteration we update the MetaHypernetwork using multiple gradient descent (MGD).

To evaluate our method, we conduct experiments on mul-
tiple NAS search spaces, including CNN and Transformer
architectures, and up to 3 objectives across 19 hardware de-
vices. While other NAS methods that utilize hardware con-
straints in their search objectives require substantial search
costs both for each new constraint and each new hardware,
MODNAS addresses both in a zero-shot manner, without
extra search cost, while nevertheless yielding higher quality
solutions. Our contributions can be summarized as follows:

1. We present a principled and robust approach for Multi-
objective Differentiable NAS, that leverages hypernet-
works and multiple gradient descent to simultaneously
find Pareto-optimal architectures across devices.

2. This work is the first to provide a global view of the
Pareto solutions with just a single model, without the
need to repeat search or fine-tune on new target devices.

3. Extensive evaluation of our method across 4 differ-
ent search spaces (NAS-Bench-201, MobileNetV3, an
encoder-decoder and a decoder-only Transformer space),
3 tasks (image classification, machine translation and
language modeling), and up to 19 hardware devices
and 3 objectives, show both improved efficiency and
performance in comparison to previous approaches that
use a constrained objective in their search.

To facilitate reproducibility, we provide our code via the
following link.

2. Background and Related Work
In this section, before describing our algorithm, we intro-
duce some basic concepts, definitions and related work.
Refer to Appendix B for an extended related work.

Multi-objective optimization (MOO) for Multi-Task
Learning. Consider a multi-task dataset D consisting
of N instances, where the feature vector of the i−th in-
stance is denoted as xi ∈ X , and the M -many associ-
ated target variables as y1i ∈ Y1, . . . , yMi ∈ YM . More-
over, consider there exists a family of parametric models
f(x;w) : X → {Y1 × · · · × YM}, parameterized by
w, that maps the input x to the joint space of the mul-
tiple tasks. To simplify the notation, we denote the pre-
diction of the m-th task as fm(x;w) : X → Ym, and
the respective loss Lm(w) ≜ 1

N

∑N
i ℓm(ymi , fm(xi;w)).

The vector of the values of all loss functions is denoted as
L(w) ≜ (L1(w), . . . ,LM (w)). MOO then seeks to find a
set of Pareto-optimal solutions w∗ that minimize L(w)1:

w∗ ∈ argmin
w

L(w) (1)

Definition 2.1. (Pareto Optimality): A solution w2 domi-
nates w1 iff Lm(w2) ≤ Lm(w1), ∀m ∈ {1, . . . ,M}, and
L(w1) ̸= L(w2). In other words, a dominating solution
has a lower loss value on at least one task and no higher loss
value on any task. A solution w∗ is called Pareto optimal
iff there exists no other solution dominating w∗.
Definition 2.2. (Pareto front): The sets of Pareto optimal
points and their function values are called Pareto set (Pw)
and Pareto front (PL = {L(w)w∈Pw}), respectively.

Linear Scalarization. In MOO, a standard technique
to solve the M -dimensional problem is using a prefer-
ence vector r ∈ S ≜ {RM |

∑M
m=1 rm = 1, rm ≥

0,∀m ∈ {1, . . . ,M}} in the M -dimensional probabil-
ity simplex (Lin et al., 2019; Mahapatra & Rajan, 2020;
Ruchte & Grabocka, 2021). Every r ∈ S yields a con-
vex combination of the loss functions in Equation 1 as

1w can be replaced with any other parameter here, also archi-
tectural ones (see Section 3).
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Lr(w) = rTL(w). Given a preference vector r, one can
apply standard, single-objective optimization algorithms to
find a minimizer w∗

r = argminw Lr(w). By sampling mul-
tiple r vectors, one can compute Pareto-optimal solutions
w∗

r that profile the Pareto front. Several methods (Lin et al.,
2020; Navon et al., 2021; Hoang et al., 2023; Phan et al.,
2022) employ a hypernetwork (Ha et al., 2017) to generate
Pareto-optimal solutions given different preference vectors
as input. Similarly, in this work, we utilize a hypernetwork
conditioned on scalarizations, to generate architectures.

Multiple Gradient Descent (MGD). MOO can be solved
to local optimality via MGD (Désidéri, 2012), as a natural
extension of single-objective gradient descent, which iter-
atively updates w towards a direction that ensures that all
tasks improve simultaneously (called Pareto improvement):
w′ ← w − ξg∗w, where g∗w is a vector field that needs to be
determined. If we denote by gmw = ∇wLm(w) the gradient
of the m-th scalar loss function, via Taylor approximation,
the decreasing direction of Lm when we update w towards
g∗w is given by ⟨gmw , g∗w⟩ ≈ −(Lm(w′) − Lm(w))/ξ. In
MGD g∗w is chosen to maximize the slowest update rate
among all objectives:

g∗w ∝ argmax
gw∈Rd,||gw||≤1

{
min

m∈[M ]
⟨gw, gmw ⟩

}
. (2)

The early work of Désidéri (2012) has been extended in
various settings, particularly multi-task learning, with great
promise (Sener & Koltun, 2018; Lin et al., 2019; Mahapatra
& Rajan, 2020; Liu & Vicente, 2021), but these approaches
are applied to mainly a fixed architecture and extending
them to a search space of architectures is non-trivial.

One-shot NAS and Bi-Level optimization. With the archi-
tecture space being intrinsically discrete, large and hence
expensive to search on, most existing differentiable NAS
approaches leverage the weight sharing paradigm and con-
tinuous relaxation to enable gradient descent (Liu et al.,
2019; Pham et al., 2018; Bender et al., 2018; Xie et al.,
2019; Xu et al., 2020a; Dong & Yang, 2019; Chen et al.,
2021b; Liu et al., 2023; Movahedi et al., 2022; Zhang et al.,
2021). Typically, in these approaches, architectures are
stacks of cells, where the cell structure is represented as a
directed acyclic graph (DAG) with N nodes and E edges.
Every transition from node i to j, i.e. edge (i, j), is associ-
ated with an operation o(i,j) ∈ O, where O is a predefined
candidate operation set. Liu et al. (2019) proposed a contin-
uous relaxation of the search space by parameterizing the
discrete operation choices in the DAG edges via a learnable
vector α. This allows to frame the NAS problem as a bi-
level optimization one, with differentiable objectives w.r.t.
all variables:

argmin
α
Lval(w∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain(w, α),
(3)

where Ltrain and Lval are the empirical losses on the train-
ing and validation data, respectively, w are the supernetwork
parameters, α ∈ A are the continuous architectural parame-
ters, and w∗(α) : A → Rd is a best response function that
maps architectures to their optimal weights.

Comparison to single-objective constrained NAS. Early
NAS methods predominantly targeted high accuracy,
whereas contemporary hardware-aware differentiable NAS
approaches (Wu et al., 2019; Wan et al., 2020; Cai et al.,
2018; Wu et al., 2021; Fu et al., 2020; Xu et al., 2020b; Jiang
et al., 2021; Wang et al., 2021) are designed to identify archi-
tectures optimized for target hardware efficiency. Typically,
these methods integrate hardware constraints within their
objectives, yielding a single optimal solution and neces-
sitating multiple search iterations to construct the Pareto
front. Our proposed algorithm addresses this by profiling
the entire Pareto front in a single search iteration. While
single-objective constrained optimization is advantageous
in scenarios demanding optimization of one objective under
a specific constraint, practical applications often require a
suite of models adaptable to varying user preferences even
on a single device. For example, meeting stringent hard-
ware or task requirements (e.g., memory usage, real-time
inference) while elucidating the trade-offs (i.e., Pareto front)
between precision and performance is critical, as substantial
runtime reductions with minimal performance degradation
may be acceptable or mitigated by other components.

3. Hardware-aware Multi-objective
Differentiable Neural Architecture Search

We first formalize the multi-objective bi-level optimization
NAS problem across multiple hardware devices, and then
introduce a scalable and differentiable method that com-
bines MGD with linear scalarizations to efficiently solve
this problem.

3.1. Problem Definition & Sketch of Solution Approach

In multi-objective NAS, the bi-level problem described in
Equation 1 becomes more difficult, since we are not only
concerned with finding w∗ given a fixed architecture, but
we want to optimize in the space of architectures A as well.
Assuming we have T hardware devices (target functions)
and M objectives (e.g. accuracy, latency, etc.), similar to (3),
for every t ∈ {1 . . . T}, the Pareto set of the multi-objective
NAS problem is obtained by solving the following bi-level
optimization problem:

argmin
α

Lvalid
t (w∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain
t (w, α),

(4)

where the M -dimensional loss vector Lt(w
∗(α), α) ≜(

L1
t (w

∗(α), α), . . . ,LM
t (w∗(α), α)

)
is evaluated ∀t ∈
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Figure 2. Architecture overview of the MetaHypernetwork,
which gets as input a device embedding dt (input to an embed-
ding layer E) and a scalarization r (input to K hypernetworks) and
yields an architecture encoding α̃.

{1, . . . , T}. Ltrain
t and Lvalid

t are the vectors with all M
loss functions evaluated on the train and validation splits
of D, used in the lower- and upper-level problems of (4),
respectively.

Our goal is to find Pareto-optimal architectures for each
target device, covering diverse and representative prefer-
ences for different objectives. However, naively solving (4)
for each device t requires T independent bi-level searches.
To address this, we integrate a single MetaHypernetwork
within the one-shot model (supernetwork) used in conven-
tional NAS (Bender et al., 2018; Pham et al., 2018; Liu et al.,
2019), generating architectures based on device embeddings
and preference vectors in a single search run.

3.2. Algorithm Design and Components

Our search model is composed of four modular components
shown in Figure 1: (1) a MetaHypernetwork that gener-
ates the architectural distribution; (2) an Architect that
samples discrete architectures from this distribution; (3) a
Supernetwork that exploits the weight sharing paradigm
for search efficiency and provides a proxy for the network
accuracy; and (4) a MetaPredictor that predicts hardware
metrics and enables gradient propagation. We now discuss
each of these in turn.

MetaHypernetwork. In order to generate architectures
across multiple devices, inspired by Wang et al. (2022)
and Lin et al. (2020), we propose a MetaHypernetwork
that can meta-learn across different hardware devices (see
Figure 2). Hypernetworks are a class of neural networks
that generate the parameters of another model. They were
initially proposed for model compression (Ha et al., 2017)
and were later adopted for NAS (Brock et al., 2018) and
MOO (Navon et al., 2021; Lin et al., 2020). Here, given
a preference vector r = (r1, . . . , rM ) and a hardware de-

vice feature vector dt, for device t ∈ {1, . . . , T}, we use
the MetaHypernetworkHΦ(r, dt), parameterized by Φ, to
generate an un-normalized architecture distribution α̃Φ that
is later used to compute the upper-level updates in (4). Sim-
ilar to Lee et al. (2021b), dt is a fixed-size feature vector
that is obtained by evaluating a fixed set of reference archi-
tectures on device t. The MetaHypernetwork is composed
of 2 main components (see Figure 2):

1. A bank hpn1,. . . ,hpnK of K independent hypernet-
works, that parse the preference vector r and generate
the architectural parameters α̃1, . . . , α̃K , respectively.

2. An embedding layer E, that learns a similarity map from
device feature vectors to the bank of hpns. E takes as
input the device feature vector dt and outputs an attention
vector of size K.

The final output, α̃Φ, of the MetaHypernetwork is com-
puted as a weighted sum of the outputs of the K hyper-
networks, where the vector of weights is the output of the
embedding layer E. For a more detailed description of the
MetaHypernetwork we refer the reader to Appendix F.2.

In all experiments, we initialize the MetaHypernetwork to
yield a uniform probability mass over all architectural pa-
rameters for all scalarizations and device embeddings. By
using the preference vector r to create a linear scalarization
of Lt and the MetaHypernetwork to model the architec-
tural distribution across T devices, the bi-level problem in
(4) reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
,

(5)

where αΦ are the normalized architectural parameters ob-
tained from the Architect Λ(α̃Φ) and rTLt(·, αΦ) =∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t. Con-

ditioning the MetaHypernetwork on the hardware embed-
dings allows us to generate architectures on new test devices
without extra finetuning or meta-learning steps. We use the
Dirichlet distribution Dir(β), β = (β1, . . . , βM ), to sam-
ple the preference vectors and approximate the expectation
over the scalarizations using Monte Carlo sampling. In our
experiments we set β1 = · · · = βM = 1, for a uniform
sampling over the (M − 1)-simplex, however, one can set
these differently based on user priors or make it a learnable
parameter (Chen et al., 2021b).

MetaPredictor. For the cheap-to-evaluate hardware ob-
jectives, such as latency, energy consumption, we employ
a regression model pmθ (α, dmt ) that predicts the target la-
bels ymt for objective m and device t, given an archi-
tecture α and device embedding dmt . We use the same
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Algorithm 1: MODNAS
Data: Dtrain; Dvalid; Supernetwork; device

features {dt}Tt=1; MetaHypernetwork HΦ;
nr. of objectives M ; Architect Λ; learning
rates ξ1, ξ2.

1 while not converged do
2 for t ∈ {1, . . . , T} do
3 Sample scalarization r ∼ Dir(β)
4 Set arch params α̃Φ ← HΦ(r, dt)
5 Sample αΦ ∼ Λ(α̃Φ) from Architect

6 gtΦ ←
∑M

m=1 rm∇ΦLm
t (Dvalid;w, αΦ)

7 γ ← FrankWolfeSolver(g1Φ, . . . , g
T
Φ) ;

// see Alg.4

8 g∗Φ ←
∑T

t=1 γt · gtΦ
9 Φ← Φ− ξ1 · g∗Φ ; // update

MetaHypernetwork
10 for t ∈ {1, . . . , T} do
11 Sample scalarization r ∼ Dir(β)
12 Set arch params α̃Φ ← HΦ(r, dt)
13 Sample αΦ ∼ Λ(α̃Φ) from Architect

14 gtw ←
∑M

m=1 rm∇wLm
t (Dtrain;w, αΦ)

15 g∗w ← 1
T

∑T
t=1 g

t
w

16 w ← w − ξ2 · g∗w ; // update
Supernetwork

17 return HΦ

predictors as Lee et al. (2021b) and optimize the MSE
loss: minθ Eα∼A,t∼[T ]

(
ymt − pmθ (α, dmt )

)2
, as done in

Lee et al. (2021a) for meta-learning performance metrics
across datasets. In our experiments, we pretrain a separate
MetaPredictor for every hardware objective m (e.g. la-
tency, energy, etc.) on a subset of (α, ymt ) pairs, and use its
predicted value directly in (5) as Lm

t (·, αΦ) = pmθ (αΦ, d
m
t ).

During search, we freeze and do not update further the
MetaPredictor parameters θ.

Supernetwork. For expensive objectives like neural net-
work classification accuracy, we use a Supernetwork that
encodes the architecture space and shares parameters be-
tween architectures, providing a best response function
w∗(αΦ) for the scalarized loss in (5). While any parametric
model could estimate this function, such as performance
predictors (Lee et al., 2021a), this requires an expensive
prior step of creating the training dataset for the predictor.
To reduce memory costs of Supernetwork training, we: (1)
use a one-hot encoding of αΦ for differentiable architecture
sampling (Dong & Yang, 2019; Cai et al., 2018; Xie et al.,
2019), activating only one architecture per step, and (2) en-
tangle operation choice parameters in the Supernetwork,
further increasing memory efficiency beyond weight shar-
ing (Sukthanker et al., 2023).

Architect. The Architect Λ(α̃) samples discrete ar-
chitectural configurations from the un-normalized distri-
bution α̃Φ = HΦ(r, dt) and enables gradient estimation
through discrete variables for∇ΦLt(·, αΦ). Methods such
as GDAS (Dong & Yang, 2019) utilize the Straight-Through
Gumbel-Softmax (STGS) estimator (Jang et al., 2017), that
integrates the Gumbel reparameterization trick to approxi-
mate the gradient. Here we employ the recently proposed
ReinMax estimator (Liu et al., 2023), that yields second-
order accuracy without the need to compute second-order
derivatives. See Appendix C.1 for more details on these dis-
crete samplers. Similar to the findings in Liu et al. (2023), in
our initial experiments, ReinMax outperformed the GDAS
STGS estimator (see Figure 11 in the Appendix), therefore,
we use ReinMax in all following experiments.

3.3. Optimizing the MetaHypernetwork via MGD

We denote the gradient of the scalarized loss in (5)
with respect to the MetaHypernetwork parameters Φ,
shared across all devices t ∈ 1, . . . , T , as: gtΦ =

rT∇ΦLt(·, αΦ) =
∑M

m=1 rm∇ΦLm
t (·, αΦ), where αΦ

is the discrete architectural sample from the Architect
Λ(α̃Φ). Multiple Gradient Descent (MGD) (Désidéri, 2012;
Sener & Koltun, 2018) provides a plausible approach to
estimate the update directions for every task simultaneously
by maximizing (2). Via the Lagrangian duality, the optimal
solution to equation 2 is g∗Φ ∝

∑T
t=1 γ

∗
t g

t
Φ, where {γ∗

t }Tt=1

is the solution of the following minimization problem:

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0,∀t
}

The solution to this problem is either 0 or, given a small
step size ξ, a descent direction that monotonically de-
creases all objectives at the same time and terminates when
it finds a Pareto stationary point, i.e. gtΦ = 0,∀t ∈
{1, . . . , T}. When T = 2, the problem above simplifies
to minγ∈[0,1]

∥∥γg1Φ + (1− γ)g2Φ
∥∥2
2
, which is a quadratic

function of γ with a closed form solution:

γ∗ = max

(
min

( (g2Φ − g1Φ)
Tg2Φ

∥g1Φ − g2Φ∥
2

2

, 1
)
, 0

)
.

When T > 2, we utilize the Frank-Wolfe solver (Jaggi,
2013) as in Sener & Koltun (2018), where the analytical
solution in for T = 2 is used inside the line search. We
provide the full algorithm for computing γ∗ in Algorithm 4
in Appendix C.2.

In Algorithm 1 and Figure 1 we provide the pseudocode
and an illustration of the overall search phase of MODNAS.
For every mini-batch sample from Dvalid, we iterate over
the device features dt (line 2), sample one scalarization r
and condition the MetaHypernetwork on both r and dt to
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Figure 3. Hypervolume (HV) of MODNAS and baselines across
19 devices on NAS-Bench-201. For every device, we optimize for
2 objectives, namely latency (ms) and test accuracy on CIFAR-
10. For each method, metric and device we report the mean of 3
independent search runs. Higher area in the radar plot indicates
better HV. Test devices are colored in red around the plot.

generate the un-normalized architectural distribution α̃Φ

(lines 3-4). We then compute the device-specific gradient
in line 6 which is used to estimate the γ coefficients (line
7) used from MGD to update Φ (lines 8-9). Similarly to
Liu et al. (2019), we use the first-order approximation to
obtain the best response function in the lower level (lines
10-14) and repeat the same procedure for the upper-level
(lines 2-6), except now the Supernetwork weights w are
updated with the mean gradient (line 15), over devices.

4. Experiments
In this section, we firstly demonstrate the scalability and gen-
eralizability of our MODNAS approach on a NAS tabular
benchmark (Section 4.1). Then, we validate MODNAS on
larger search spaces for Machine Translation (Section 4.2),
Image Classification and Language Modeling (Section 4.3).

Search Spaces and Datasets. We evaluate MODNAS on 4
search spaces: (1) NAS-Bench-201 (Dong & Yang, 2020; Li
et al., 2021) with 19 devices and CIFAR-10 dataset; (2) Mo-
bileNetV3 from Once-for-All (OFA) (Cai et al., 2020) with
12 devices and ImageNet-1k dataset; (3) Hardware-Aware-
Transformer (HAT) (Wang et al., 2020) on the machine
translation benchmark WMT’14 En-De across 3 different
hardware devices; (4) HW-GPT-Bench (Sukthanker et al.,
2024) – a GPT-2 based space used for language modeling
on the OpenWebText (Gokaslan & Cohen, 2019) across 8
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Figure 4. (left) HV over number of evaluated architectures on NAS-
Bench-201 of MODNAS and the blackbox MOO baselines on a
test device. Note that for MODNAS we only do 24 full evaluations.
(right) HV over search epochs of different gradient schemes.

devices. Refer to Appendices G and H for details.

Evaluation. At test time, in order to profile the Pareto
front with MODNAS on unseen devices, we sample 24
equidistant preference vectors r from the M -dimensional
probability simplex and pass them through the pretrained
MetaHypernetwork HΦ(r, dt) to get 24 architectures.
Here the test device feature dt is obtained similarly as for
the train devices.

Baselines. We compare MODNAS against several base-
lines2, such as Random Search (RS), Local Search (LS) and
various Evolutionary Strategy and Bayesian Optimization
MOO methods. Please refer to Appendix D for a more
comprehensive description of each of them. Furthermore,
we also evaluate the MetaHypernetwork with randomly
initialized weights (RHPN).

Metrics. To assess the quality of the Pareto set solu-
tions, we use the hypervolume (HV) indicator, which is
a standard metric in MOO. Given a reference point ρ =
[ρ1, . . . , ρm] ∈ RM

+ that is an upper bound for all ob-
jectives {fm(·;w, α)}Mm=1, i.e. supαf

m(·;w, α) ≤ ρm,
∀m ∈ [M ], and a Pareto set Pα ⊂ A, HV(Pα) measures
the region of non-dominated points bounded above from ρ:

λ
({

q ∈ RM
+ | ∃α ∈ Pα : q ∈

M∏
m=1

[fm(·;w, α), ρm]
})

,

where λ(·) is the Euclidean volume. HV can be interpreted
as the total volume of the union of the boxes created by the
Pareto front.

4.1. Simultaneous Pareto Set Learning across 19 devices

We firstly validate the scalability and learning capability of
MODNAS by evaluating on the NAS-Bench-201 cell-based
convolutional space. Here we want to optimize both latency
and classification accuracy on all devices. We utilize the
same set of 19 heterogeneous devices as Lee et al. (2021b),
from which we use 13 for search and 6 at test time. For
the latency predictor, we use the one from HELP, namely a

2We use the implementations from SyneTune (Salinas et al.,
2022): https://github.com/awslabs/syne-tune
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graph convolutional network (GCN), which we pretrain for
3 GPU hours on the ground truth latencies on the 13 search
devices as described in Section 3. We run the MODNAS
search (see Appendix F for more details on the search hy-
perparameters), as described in Algorithm 1, for 100 epochs
(22 GPU hours on a single NVidia RTX2080Ti) and show
the HV in Figure 3 of the evaluated Pareto front in compari-
son to the baselines, for which we allocated the same search
time budget across all devices equivalent to the MODNAS
search + evaluation.

Most notably, MODNAS consistently outperforms all
other baselines across every device. For the baselines,
we conducted 19 separate search runs (one for each
device), whereas MODNAS leverages meta-learning to
generate the Pareto set on each device using the same
MetaHypernetwork in a single search run. Interestingly,
the trained MODNAS attention-based MetaHypernetwork
significantly outperforms the RHPN baseline in profiling the
Pareto front, demonstrating its effectiveness in optimizing
across multiple devices and conflicting objectives simul-
taneously. In Figure 14a in the Appendix, we compare
MODNAS with additional baselines, running them at dou-
ble the budget used for the experiments in Figure 3. Figure 4
(left) (see Figure 17 in the appendix for all devices) shows
that most baselines require more than twice the number of
architecture evaluations to reach the same HV as MODNAS.
Results show that MODNAS remains the top performer
across hardware devices on average. Furthermore, Figure 14
presents radar plots for four additional metrics.

MetaHypernetwork update schemes: robustness of
MGD. We now compare the MGD update scheme for
the MetaHypernetwork Φ (line 9 in Alg. 1) against (1)
the mean gradient over tasks: Φ ← Φ − ξ 1

T

∑T
t=1 g

t
Φ;

(2) sequential updates with all single tasks’ gradients:
Φ ← Φ − ξgtΦ, ∀t; (3) single updates using gradients of
MC samples over tasks: Φ ← Φ − ξgtΦ, t ∼ {1, . . . T}.
Figure 4 (right) (see Figure 18 in Appendix J for more re-
sults) shows the HV over search epochs for these schemes.
MGD, by accounting for inter-task dependencies, achieves
higher final HV, better anytime performance, and faster con-
vergence than the other schemes.

Scalability to three objectives. We now demonstrate the
scalability of MODNAS to 3 objectives, namely, accuracy,
latency and energy consumption. For this experiment we
use the FPGA and Eyeriss tabular energy usage values
from HW-NAS-Bench (Li et al., 2021). In addition to the
MetaPredictor for latency, we pretrain a second predictor
on the energy usage objective. We then run MODNAS and
the MOO baselines with the same exact settings as for 2
objectives. Results shown in Figure 6 indicate that MOD-
NAS can scale to M > 2 without additional search costs
or hyperparameter tuning and yet achieves HV close to the
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global optimum front of the NAS-Bench-201 space.

MODNAS vs. constrained single-objective optimization.
To compare against single-objective NAS with hardware
constraints in the objective, we run MetaD2A+HELP (Lee
et al., 2021b). Since MetaD2A + HELP is not able to profile
the Pareto front directly, we run the NAS search 24 times
with different constraints, which we compute by denormal-
izing the same 24 equidistant preference vectors we use to
evaluate MODNAS. We also extend MODNAS to incor-
porate user prior constraints over the multiple objectives
being optimized during search Namely, we add a normal-
ized constraint cm, such that if the predicted value from the
MetaPredictor during search satisfies this constraint, i.e.
pmθ (αΦ, d

m
t ) ≤ cm, we remove the gradient w.r.t. to that

objective in lines 6 and 14 of Algorithm 1. In Figure 5 (other
devices in Figure 15) we can see that when increasing the la-
tency constraint to 1 (only cross-entropy optimized), though
the HV decreases, MODNAS returns Pareto sets with more
performant architectures. MetaD2A+HELP, though con-
ducting multiple search runs per constraint, focuses more
on highly performant architectures, and is not able to return
a diverse solution set.

4.2. Pareto Front Profiling on Transformer Space

To demonstrate its effectiveness beyond image classification
and CNN spaces, we apply MODNAS to the hardware-
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Figure 7. HV and Pareto fronts of MODNAS and baselines across
devices on the HAT space.

aware Transformer (HAT) search space from Wang et al.
(2020) on the WMT’14 En-De (Jean et al., 2015; Macháček
& Bojar, 2014) machine translation task. We pretrained
the MetaPredictor (details in Appendix F.1) for 5 GPU
hours on 2000 architecture samples from the search space
and then conducted the search for 110 epochs (6 days on
8 NVIDIA RTX A6000 GPUs) using 2 search devices, ad-
hering to the same hyperparameters as Wang et al. (2020)
to optimize for latency and validation cross entropy loss.
Each baseline was allocated 2.5× more runtime budget than
MODNAS, resulting in 1300 (RS-BO) to 6000 (MO-ASHA)
total architecture evaluations, whereas MODNAS evaluated
only 24 generated architectures. Details on the HAT search
space and search hyperparameters are in Appendix G. We
evaluated MODNAS on all 3 devices (2 search and 1 test)
using the BLEU score, and results in Figure 7 show that
MODNAS outperforms all baselines, achieving a higher
hypervolume (left plot) of the generated Pareto fronts (right
plot). For HAT, we evaluated the architectures provided in
their paper. Additional results on other training devices and
evaluation metrics are presented in Figures 20, 21 and 22 in
the Appendix.

4.3. Efficient Differentiable MOO starting from
Pretrained Supernetworks

Image Classification on ImageNet-1k. We now validate
MODNAS on ImageNet-1k using the MovileNetV3 search
space from Once-for-All (OFA) (Cai et al., 2020). For this
experiment, we run MODNAS using 11 search (and 1 test)
devices starting with the pretrained OFA supernetwork and
run the search further for 1 day on 8 RTX2080Ti GPUs.
During the search, we only update the MetaHypernetwork
weights and keep the pretrained Supernetwork weights
frozen. Details on the search space and hyperparameters
are in Appendices G and F.3. We use the simple MLP from
Lee et al. (2021b) as our MetaPredictor, pretraining it
for 6 hours on 5000 sampled architecture-latency pairs. To
evaluate the 24 points generated by our MetaHypernetwork
and baselines, we use the OFA pretrained Supernetwork.
Results in Figure 8 (left) show that MODNAS achieves a
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Figure 8. (left) Average HV of MODNAS and baselines across
12 devices on OFA space. For every device we optimize for 2
objectives, namely latency (ms) and test accuracy on ImageNet-1k.
(right) Pareto front of MODNAS and baselines on the HW-GPT-
Bench, A100 GPU.

higher average HV across all devices compared to baselines,
which we ran for 192 hours using the OFA pretrained accu-
racy predictor (see Figure 25 for all results and Figure 24
for the Pareto fronts).

Language Modeling with GPT-2. With the rapid growth
of language model sizes, it is crucial to identify transformer
variants that are efficient during inference (latency) while
maintaining competitive performance. We applied MOD-
NAS to the GPT-S space from HW-GPT-Bench (Sukthanker
et al., 2024), which features a non-convex Pareto front be-
tween perplexity and hardware metric objectives. Using pre-
trained Supernetwork weights from HW-GPT-Bench, we
conducted a single 6-hour search on 4 Nvidia A100 GPUs,
optimizing for energy consumption (Wh) and perplexity
across 8 different GPU devices. See Appendix F for details
on the MetaHypernetwork architecture and other search
hyperparameters. The Supernetwork weights were kept
frozen while updating the MetaHypernetwork. Figure 8
(right) shows that, within the same time budget, MODNAS
matches or surpasses other MOO baselines, demonstrating
its effectiveness in optimizing beyond convex Pareto fronts.

5. Conclusion
In this paper, we propose a novel hardware-aware differen-
tiable NAS algorithm for profiling the Pareto front in multi-
objective problems. In contrast to constraint-based NAS
methods, ours can generate Pareto optimal architectures
across multiple devices with a single hypernetwork that is
conditioned on preference vectors encoding the trade-off
between objectives. Experiments across various hardware
devices (up to 19), objectives (accuracy, latency and en-
ergy usage), search spaces (CNNs and Transformers), and
applications (classification, machine translation, language
modeling) demonstrate the effectiveness and efficiency of
our method.
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A. Broader Impact and Implications
This work focuses on an area, neural architecture search (NAS), which has, rightfully, received criticism for its energy
consumption. NAS techniques, particularly black-box techniques, require significant computational resources to train the
sampled neural network architectures. Speeding up the search and training cost for different neural architectures is an
important aspect of responsible research in NAS. The main goal of this work is to improve the search time in NAS, as well
as the efficiency of the found architectures in terms of various hardware metrics, such as latency, energy usage, therefore
reducing the energy consumption and CO2 footprint.

Specifically, this paper presents a more efficient optimization procedure than previously proposed methods and achieves
comparable or better solutions. Additionally, the more hardware-efficient architectures we find, correspond to more efficient
neural networks, e.g. in terms of energy consumption. The energy savings of these architectures will be amplified as they
might be deployed on a large number of devices. Ultimately, our method leads to decreased energy consumption during
product development, as well as during the usage of the product.

B. Extended Related Work
Multi-objective optimization. Multi-objective optimization (MOO) (Gunantara, 2018) is a crucial field in optimization
theory, tackling decision-making scenarios with multiple conflicting objectives. MOO techniques can be categorized
into gradient-based and gradient-free approaches. Gradient-free MOO approaches, such as evolutionary algorithms and
dominance-based methods like NSGA-II (Deb et al., 2000), often suffer from sample inefficiency and are typically unsuitable
for deep learning applications. On the other hand, gradient-based MOO methods leverage gradients. The foundational work
by Désidéri (2012) has been significantly extended in multi-task learning contexts, demonstrating considerable potential
(Sener & Koltun, 2018; Lin et al., 2019; Mahapatra & Rajan, 2020; Liu & Vicente, 2021). However, these methods are
primarily applied to fixed architectures, and adapting them to architecture search spaces is complex. This adaptation would
require retraining each architecture with multiple objectives, which is impractically expensive for large search spaces.
Another major challenge in MOO is balancing the different objectives. To address this, preference vectors have been
proposed to guide the prioritization of objectives on the Pareto Front (Ye & Liu, 2022; Momma et al., 2022). An emerging
approach to mitigate the retraining issue involves hypernetworks, which determine the weights of the main network in MOO
scenarios (Lin et al., 2020), often incorporating preference vector (Navon et al., 2021; Hoang et al., 2023; Phan et al., 2022).

Neural Architecture Search. A major challenge in the automated design of neural network architectures is the efficient
exploration of vast search spaces. Early NAS methods relied on Reinforcement Learning (Zoph & Le, 2017), evolutionary
algorithms (Deb et al., 2002; Lu et al., 2020; Elsken et al., 2019b), and other black-box optimization techniques (Daulton
et al., 2022) to train and evaluate numerous architectures from scratch. The advent of one-shot NAS introduced weight
sharing among architectures by training an over-parameterized network, known as a supernet, to expedite the evaluation of
individual networks within the search space (Saxena & Verbeek, 2016; Bender et al., 2018; Pham et al., 2018; Liu et al.,
2019). Differentiable one-shot NAS methods (Wu et al., 2019; Cai et al., 2018; Wu et al., 2021; Fu et al., 2020) further
improved efficiency by applying a continuous relaxation to the search space, enabling the use of gradient descent to identify
optimal sub-models within the supernet. In contrast, two-stage NAS methods initially train a supernet, often through random
sampling of subnetworks, and subsequently employ black-box optimization to identify optimal subnetworks (Bender et al.,
2018; Li & Talwalkar, 2020; Guo et al., 2020).

Hardware-aware and Multi-objective Neural Architecture Search. Early NAS methods primarily focused on maximizing
accuracy for a given task. In contrast, hardware-aware NAS aims to optimize architectures for efficient performance on
specific hardware devices (Benmeziane et al., 2021; Zhang et al., 2020; Lee et al., 2020; Shaw et al., 2019), naturally leading
to multi-objective NAS (Hsu et al., 2018; Kim et al., 2021; Tan et al., 2019). Two-stage NAS methods can be adapted
to this context by incorporating a multi-objective search in the second stage (Cai et al., 2018; Ito & Von Zuben, 2023).
However, most two-stage methods depend on random sampling during supernet training, which doesn’t prioritize promising
architectures. Differentiable NAS methods, such as those in Wu et al. (2019); Cai et al. (2018); Wu et al. (2021); Fu et al.
(2020); Xu et al. (2020b); Jiang et al. (2021); Wang et al. (2021), use latency proxies like layer-wise latencies and FLOPS
(Dudziak et al., 2020) to evaluate hardware performance, combining task and hardware objectives with fixed weighting
to find a single optimal solution. However, changing the objective weighting requires a complete search rerun, which is
computationally demanding.

In contrast, our proposed search algorithm offers the entire Pareto Front of objectives in a single run, making it more efficient.
While our focus is on multi-objective NAS for hardware constraints, our technique is applicable to other objectives such as
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fairness (Martinez et al., 2020; Dooley et al., 2023; Das & Dooley, 2023), suggesting promising avenues for future research.

C. Algorithmic components
In this section, we provide the pseudocodes for some of the algorithmic components we use in MODNAS.

C.1. Discrete Samplers

Given the architecture parameters α̃Φ from the MetaHypernetwork, we obtain a differentiable discrete architecture sample
from the Architect as αΦ ← π − stop_g(π) + αΦ, where αΦ ∼ Cat

(
softmax1(~αΦ)

)
and

π ← 2 · softmax1
(
stop_g

(
ln(

αΦ + softmaxτ (~αΦ)

2
)− ~αΦ

)
+ ~αΦ

)
− softmax1(~αΦ)

2
.

Here, Cat is the categorical distribution, τ is the temperature in the tempered softmax softmaxτ (α)i =
exp(αi/τ)∑|O|

j=1 exp(αj/τ)
,

and stop_g(·) duplicates its input and detaches it from backpropagation. Refer to the ReinMax paper (Liu et al., 2023) for
more details. The algorithm pseudocode on how a one-hot encoded (discrete) architecture is sampled given an architectural
unnormalized distribution α̃ is given in Algorithm 2 and Algorithm 3, for the Straight-Through (Jang et al., 2017) and
ReinMax (Liu et al., 2023) gradient estimators, respectively.

Algorithm 2: Straight− Through (Jang et al.,
2017)

Data: α̃: softmax input, τ : temperature
Result: α: one-hot samples

1 π0 ← softmax1(α̃)
2 α ∼ Cat(π0)
3 π1 ← softmaxτ (α̃)
4 α← π1 − stop_g(π1) + α
5 return α

Algorithm 3: ReinMax (Liu et al., 2023)
Data: α̃: softmax input, τ : temperature
Result: α: one-hot samples

1 π0 ← softmax1(α̃)
2 α ∼ Cat(π0)

3 π1 ← α+softmaxτ (α̃)
2

4 π1 ← softmax1
(
stop_g

(
ln(π1)− α̃

)
+ α̃

)
5 π2 = 2 · π1 − 1

2 · π0

6 α← π2 − stop_g(π2) + α
7 return α

C.2. Frank-Wolfe Solver

In this section, we provide the pseudocode of the Frank-Wolfe solver (Jaggi, 2013) used to compute the gradient coefficients
used for the MGD updates. To solve the constrained optimization problem, the Frank-Wolfe solver uses analytical solution
for the line search with T = 2 (Algorithm 5).

Algorithm 4: FrankWolfeSolver (Jaggi, 2013)

Data: g1Φ, . . . , gTΦ
Result: γ = (γ1, . . . , γT )

1 Initialize γ ← ( 1
T , . . . , 1

T )
2 PrecomputeM s.t.Mi,j = (giΦ)

T(gjΦ)
3 repeat
4 t̂← argminr

∑T
t=1 γtMrt

5 et̂ ←Mt̂,· ; // t̂-th row of M
6 δ̂ ← argminδ

(
(1− δ)γ + δet̂

)TM((1− δ)γ + δet̂
)

; // using Algorithm 5

7 γ ← (1− δ̂)γ + δ̂et̂
8 until δ̂ ∼ 0 or Number of Iterations Limit;
9 return γ
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Algorithm 5: Solver minδ∈[0,1] ||δθ + (1− δ)θ̄||22
1 if θTθ̄ ≥ θTθ then
2 δ ← 1

3 else if θTθ̄ ≥ θ̄Tθ̄ then
4 δ ← 0
5 else
6 δ ← (θ̄−θ)Tθ̄

||θ−θ̄||22

7 return δ

D. Multi-objective NAS algorithms
This section elaborates on the multi-objective NAS methods we utilize as baselines in Section 4.

• Random Search (RS) is a robust baseline for both single-objective (Bergstra & Bengio, 2012; Li & Talwalkar, 2020) and
multi-objective (Cai et al., 2020; Chen et al., 2021a) architecture searches. This baseline involves randomly sampling
architectures from the search space and computing the Pareto front from these samples. While RS is computationally
efficient and often effective, it may not always find the optimal architectures, especially in larger search spaces.

• Local Search (LS) is adapted to refine solutions near Pareto-optimal points in multi-objective optimization, iteratively
improving solutions within defined neighborhoods.

• Multi-objective Asynchronous Successive Halving (MO-ASHA) (Schmucker et al., 2021) is a multi-fidelity method that
utilizes an asynchronous successive halving scheduler (Li et al., 2018) and non-dominating sorting for budget allocation.
MO-ASHA uses the NSGA-II selection mechanism and the ϵ-net (Salinas et al., 2021) exploration strategy that ranks
candidates in the same Pareto set by iteratively selecting the one with the largest Euclidian distance from the previous set
of candidates.

• Multi-Objective Regularized Evolution (MO-RE) builds on Regularized Evolution (RE) (Real et al., 2019), which
evolves a population of candidates through mutation and periodically removes the oldest individuals, thus regularizing the
population. MO-RE adapts this by using multi-objective non-dominated sorting to score candidates, with parents sampled
based on these scores.

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) is a multi-objective evolutionary algorithm
designed to find a Pareto set of architectures. It ranks architectures using non-dominated sorting and maintains diversity
with crowding distance. Through selection, crossover, and mutation, NSGA-II evolves populations towards the Pareto
front, although it is known for being sample inefficient.

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Igel et al., 2007) is an evolutionary algorithm particu-
larly effective in continuous optimization problems. In a multi-objective context, it adapts its covariance matrix to the
shape of the search space, iteratively updating its sampling distribution to favor promising regions. This method efficiently
handles complex, non-linear optimization landscapes and can be adapted to multi-objective scenarios by using techniques
such as Pareto-based selection to maintain a diverse set of solutions.

• Latent Action MOO (LaMOO) (Zhao et al., 2022) uses a parametric model and Monte Carlo Tree Search (MCTS)
to learn to partition the objective space based on the dominance number, which indicates the vicinity of a point to the
Pareto front relative to the other samples. qEHVI+LaMOO and CMA-ES+LaMOO use the original qEHVI and CMA-ES,
respectively, as an inner routine in the learned subspaces.

• Bayesian Optimization with Random Scalarizations (RS-BO) (Paria et al., 2020) uses an acquisition function based on
random linear scalarizations of objectives across multiple points to find the Pareto-optimal set that minimizes Bayesian
regret.

• Bayesian Optimization with Linear Scalarizations (LS-BO) is similar to RS-BO but optimizes a single objective
derived from a fixed linear combination of two objectives instead of using randomized linear scalarizations.
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• Expected Hypervolume Improvement (qEHVI) (Daulton et al., 2020) is a Bayesian optimization acquisition function
that explores the Pareto front by quantifying potential hypervolume improvement. This approach measures the volume
dominated by Pareto-optimal solutions and guides the search towards regions likely to offer better trade-offs, aiding in the
discovery of diverse Pareto-optimal solutions.

E. Evaluation Details
E.1. Other Metrics

For NAS-Bench-201, in addition, we evaluate the generational distance (GD) and inverse generational distance (IGD) (see
Appendix E). See Figure 14 for the results complementary to the hypervolume radar plot in Figure 3 of the main paper.

Generational Distance (GD) and Inverse Generational Distance (IGD). Given a reference set S ⊂ A and a Pareto set
Pα ⊂ A with dim(A) = K, the GD indicator is defined as the distance between every point α ∈ Pα and the closest point
in s ∈ S, averaged over the size of Pα:

GD(Pα,S) =
1

|Pα|

( ∑
α∈Pα

min
s∈S

d(α, s)2
)1/2

,

where d(α, s) =
√∑K

k=1(αk − sk)2 is the Euclidean distance from α to its nearest reference point in S.

The inverted generational distance (IGD) is computed as IGD(Pα,S) = GD(S,Pα).

Generational Distance Plus (GD+) and Inverse Generational Distance Plus (IGD+). GD+(Pα,S) = IGD+(S,Pα)
replaces the euclidean distance d(α, s) in GD with:

d+(α, s) =

√√√√ K∑
k=1

(max{αk − sk, 0})2

E.2. MODNAS-SoTL

On the NAS-Bench-201 search space, since the architectures evaluated with the supernetwork weights are not highly
correlated to the ones trained independently from scratch, we employ the Sum of Training Losses (SoTL) proxy from Ru
et al. (2021). To profile the Pareto front with SoTL, we firstly evaluate the 24 architectures using the exponential moving
average of the sum of training losses for the initial 12 epochs of training as

∑12
e=1 0.9

12−eLtrain(w, α), and then train
from scratch only the subset of architectures in the Pareto set built using the SoTL evaluations. We present the results of
MODNAS-SoTL in Figure 14, where we compare to the other baselines as well. As we see, we can further decrease the
evaluation cost via MODNAS-SoTL, by trading off the number of solutions in the Pareto set with HV.

F. Experimental Details
F.1. MetaPredictor Architectures

For all search spaces we set the dimensionality of the hardware embedding to 10. This corresponds to latency evaluations on
a set of 10 reference architectures, which are the same used by Lee et al. (2021b).

NAS-Bench-201. For the NAS-Bench-201 (Dong & Yang, 2020) search space we use a Graph Convolutional Network
(GCN) as proposed in Dudziak et al. (2020). Furthermore, in addition to the one-hot operation encoding and adjacency
matrix corresponding to the architecture cells, we also input the hardware embedding to this predictor, as done by Lee et al.
(2021b). The number of nodes in the GCN is 8 and the dimensionality of the layers is set to 100 following HELP (Lee et al.,
2021b).

MobileNetV3 (OFA). Following HELP (Lee et al., 2021b), we employ a simple feedforward neural network in the
MobileNetV3 search space. The input dimension of the MetaPredictor is set to 160, matching the concatenated architecture
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encoding dimension. We set the size of the hidden layers to 100. Specifically, the MetaPredictor comprises 2 linear layers
with ReLU activation for processing the 160-dimensional one-hot architecture encoding and 2 linear layers for processing
the hardware embedding. The outputs from these two paths are concatenated and passed through a final linear layer to
predict the latency.

*

Figure 9. MetaHypernetwork architecture overview in the case of
M objectives. Note that m = 1 is reserved for the accuracy objective,
which we model through the cross-entropy loss in the Supernetwork.
The initial embedding layer eϕ0 gets the dt hardware embedding and
outputs a weight that scales each of the K hypernetworks’ (orange
boxes) outputs from the hypernetwork bank. The scaled architec-
tural parameters are then summed up element-wise. All individual
hypernetwork hϕk get as input the same scalarization r. Each of
them has M − 1 embedding layers with dimensions nm × dim(A)

M−1
,

∀m ∈ {2, . . . ,M} that gets as input the scalarizations for objectives
m = 2, . . . ,m = M , and yields a vector of size dim(A)

M−1
. The out-

put from the M − 1 embedding layers are concatenated to give the
architecture encoding α̃.

Seq-Seq Transformer (HAT). HELP 3 does not release
the architecture or the meta-learned pretrained predictor
for HAT(Wang et al., 2020). However, HAT 4 releases
code and pretrained models for each of the devices and
tasks trained independently. Hence, we build our sin-
gle per-task MetaPredictor based on the architecture
of the HAT predictor, i.e. a simple feedforward neural
network. The input dimension corresponds to the one-
hot architecture encoding of the candidate Transformer
architecture. Additionally, to condition on the hardware
embedding, we include 2 extra linear layers for process-
ing the hardware embedding, which is then concatenated
with the processed architecture encoding to produce the
final latency prediction. The hidden dimension of the
MetaHypernetwork is set to 400, with 6 hidden layers.
The predictor’s input feature dimension is 130.

HW-GPT-Bench We utilize the raw energy observa-
tions released in (Sukthanker et al., 2024) to train a single
hardware-aware meta-predictor across energy observa-
tions from eight GPU types. Our meta-predictor is a
simple MLP, similar to the one in HAT, with 4 hidden
layers, 2 layers for processing the hardware embedding
(which the network is conditioned on). The MLP’s hid-
den dimension is 256, and the input feature dimension
matches the one-hot encoded architecture feature map for
this space, i.e., 80.

F.2. MetaHypernetwork Architecture

Given a preference vector r ∈ RM , we use the hypernet-
work hϕ(r) : RM → A, parameterized by ϕ ∈ Rn, to
generate an un-normalized architecture distribution α̃ that
is later used to compute the upper-level updates in (4). In
our experiments, hϕ is composed of M − 1 5 embedding
layers em, m ∈ {2, . . . ,M} with nm possible learnable
vectors of size dim(A)

M−1 . The output of hϕ is the concatena-
tion of all M −1 outputs of em, such that its size matches
dim(A). See Figure 2 for details.

In order to enable the hypernetwork to generate ar-
chitectures across multiple devices, inspired by Wang
et al. (2022) and Lin et al. (2020), we propose a
MetaHypernetwork HΦ(r, dt) : RM × HM−1 → A
that can meta-learn across T different hardware devices (see Figure 1). The input to HΦ is a concatenation of device
feature vectors across all metrics, i.e. dt = ⊕M

m=2d
m
t . Similar to Lee et al. (2021b), dmt ∈ H is a fixed-size feature

3https://github.com/HayeonLee/HELP
4https://github.com/mit-han-lab/hardware-aware-transformers
5m = 1 (CE loss) does not have an hardware embedding.
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vector representative of device t ∈ {1, . . . , T} and objective m ∈ {2, . . . ,M}, that is obtained by evaluating a fixed set
of reference architectures for a given metric. The MetaHypernetwork, with Φ = ∪Kk=0ϕk parameters, contains a bank of
K > T hypernetworks {hϕk

(r)}Kk=1 and an additional embedding layer eϕ0(dt) : HM−1 → RK at the beginning, that
learns a similarity map for every device feature to the hypernetworks’ bank. If we denote by hϕ1:k

= (hϕ1
· · ·hϕk

)T the
vector of all hypernetworks in the bank, then, given a preference vector r, to obtain α̃ for device t, we compute a weighted
mixture of predictions of all hϕ in the hypernetwork bank as follows:

α̃Φ = HΦ(r, dt) =

K∑
k=1

eϕ0
(dt)[k] · hϕk

(r) = eϕ0
(dt) · hϕ1:k

(r).

We keep the MetaHypernetwork architecture similar across search spaces. The only thing we adapt is the output dimen-
sionality of the hypernetwork (in the hypernetwork bank of MetaHypernetwork), which corresponds to the dimensionality
of the architecture parameters of the respective search space. We set the size of the initial hardware embedding layer and the
hypernetwork bank to 50 for all search spaces. Furthermore, each hypernetwork has 100 possible learnable embeddings em,
for every objective m ∈ {2, . . . ,M}, to map the scalarization vector to an architecture. See Figure 2 for an illustration of
the MetaHypernetwork architecture.

For the NAS-Bench-201 search space, we use a single embedding layer of dimensionality 30, i.e. corresponding to the
dimensionality of the architecture space: 6×5 (6 edges and 5 operation choices on each edge). For the 3-objective experiment,
we include an additional embedding for the energy usage objective, concatenated with the latency embedding before passing
it to the MetaHypernetwork. The individual hypernetworks in the MetaHypernetwork bank have 2 embedding layers with
dimensionality 15, whose outputs are concatenated to match the architecture space dimensions.

In the MobileNetV3 space, we use 4 embedding layers – for depth, expansion ratio, kernel size, and resolution. The space
comprises 5 blocks, each with 3 depth choices, making the depth embedding layer dimensionality 5× 3. The kernel and
expansion embedding layers have dimensions 5 × 4 × 3, corresponding to 5 blocks with a maximum depth of 4 and 3
possible kernel size or expansion ratio choices. The resolution embedding layer has a dimension of 25, representing 25
possible resolution choices.

In the Seq-Seq Transformer (HAT) space, the individual hypernetworks of the MetaHypernetwork utilize 9 embedding
layers (the encoder layer count is fixed; see Table 1):

• 2 embedding layers of size 2 for the encoder and decoder blocks to map the scalarization to the embedding dimension
architecture parameter, held constant throughout the encoder or decoder block.

• 2 embedding layers with dimensions 6 × 3 (6 encoder/decoder layers, 3 choices) for the linear layer size in every
attention block for both encoder and decoder.

• 2 embedding layers with dimensions 6× 2 for the number of heads in each attention block.

• 1 embedding layer of size 6 to encode the 6 possible choices for the number of layers in the decoder.

• 1 embedding layer of size 6× 3 (6 encoder layers, 3 choices) for the arbitrary encoder layer choice for attention.

• 1 embedding layer of size 6× 2 (6 encoder layers, 2 choices) for the number of heads in the encoder-decoder attention.

For the HW-GPT-Bench space, the individual hypernetworks of the MetaHypernetwork contain 5 embedding layers:

• 1 embedding layer of dimension 1× 3 for mapping the scalarization to the embedding dimension architecture parameter
of the language model, with 3 choices.

• 1 embedding layer of dimension 1 × 3 for mapping the scalarization to the layer number dimension architecture
parameter of the language model, with 3 choices.

• 1 embedding layer of dimension 12× 3 for mapping the scalarization to the mlp_ratio dimension architecture parameter
of the language model, with 12 layers and 3 mlp_ratio choices per layer.
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• 1 embedding layer of dimension 12×3 for mapping the scalarization to the num_heads dimension architecture parameter
of the language model, with 12 layers and 3 choices per layer.

• 1 embedding layer of dimension 2 for toggling the bias in linear layers on or off.

F.3. MODNAS Hyperparameter Configurations

In Table 4, we show the search hyperparameters and their corresponding values we use to conduct our experiments with
MODNAS. For the convolutional spaces we subtract a cosine similarity penalty from the scalarized loss following (Ruchte
& Grabocka, 2021):

gtΦ ← rT∇ΦLt(Dvalid,w, αΦ)− λ∇Φ
rTLt(Dvalid,w, αΦ)

||r|| ||Lt(Dvalid,w, αΦ)||
, (6)

where || · || is the l2 norm. We set λ to 0.001. Empirically we did not observe significant differences on disabling the cosine
penalty term.

F.4. Normalization of objectives

Since our method relies on a scalarization of different objectives, it is important that the objectives being optimized are
on the same scale. For simplicity, lets consider the scenario where the two objectives of interest are the cross-entropy loss
and latency. Since we pretrain and freeze our MetaPredictor, the latency-scale remains constant throughout the search,
while the cross-entropy loss of the Supernetwork (likely) decreases over time. To this end, we use the following max-min
normalization to normalize the objectives:

Lm
t (·, αΦ) =

Lm
t (·, αΦ)−min(L̄)

max(L̄)−min(L̄)
, (7)

where L̄ =
⋃N

i=1 stop_g
(
Lm
t (·, αi)

i
)

is the set of losses evaluated on N architectures and potentially N previous steps.
For the latency objective, we precompute these sample-statistics using N samples (ground-truth for NAS-Bench-201 and
predicted for OFA and HAT spaces) from the search space, whilst for the cross-entropy loss we compute them throughout
the search. Furthermore, to take into account the decreasing cross-entropy, we reset the cross-entropy loss statistics after
every epoch.

G. Details on Search Spaces

Table 1. Encoder-Decoder Search Space for HAT.
Module Searchable Dim Choices

Encoder No. of Layers [6] (fixed)
Embedding dim [640, 512]
No. of heads [8, 4]
FFN dim [3072, 2048, 1024]

Decoder No. of layers [6, 5, 4, 3, 2, 1]
Embedding dim [640, 512]
No. of heads [8, 4]
FFN dim [3072, 2048, 1024]
Arbitrary-Encoder-Layer [-1, 1, 2]
Enc-Dec attention num heads [8, 4]

NAS-Bench-201 (Dong & Yang, 2020) is a convolutional, cell-based
search space. The search space consists of 3 stages, each with number
of channels 16, 32 and 64, respectively. Each stage contains a con-
volutional cell repeated 5 times. Here, every cell is represented as a
directed acyclic graph (DAG) which has 4 nodes, densely connected
with 6 edges. Each edge has 5 possible operation choices: a skip con-
nection, a zero operation, a 3×3 convolution, a 5×5 convolution or an
average pooling operation. NAS-Bench-201 is a tabular benchmark
exhaustively constructed, where the objective is finding the optimal
cell for the given macro skeleton.

MobileNetV3 proposed in OFA (Cai et al., 2020) is a macro convolu-
tional search space. The different searchable dimensions in the search space are the depth (per block), the kernel size (for
every layer in every block) and the channel expansion ratio (for every layer in every block). There are a total of 5 blocks,
each with 3 possible depth choices and every layer in this block has 3 possible kernel sizes and channel expansion ratio
choices. This amounts to a total search space size of ((3× 3)2 + (3× 3)3 + (3× 3)4)5 ≈ 2× 1019. Additionally, every
architecture has 25 possible choices for the size of the input resolution. The 3 possible choices for depth, kernel size and
expansion ratio are {2, 3, 4}, {3, 5, 7} and {3, 4, 6}, respectively. The input resolution choices are {128, 132, 136, 140, 144,
148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224}. We use a width factor
of 1.2 similar to OFA (Cai et al., 2020).

Seq-Seq Encoder-Decoder Transformer (HAT) (Wang et al., 2020) for the En-De machine translation task has a searchable
number of layers, embedding dimension, feedforward expansion layer dim per-layer, number of heads per-layer for both
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the encoder and the decoder sub-modules. In addition to this, the number of encoder layers the decoder attends to, and the
number of attention heads in the encoder-decoder attention is also searchable. We present the details of the search space in
Table 1.

HW-GPT-Bench (Sukthanker et al., 2024) is a decoder-only transformer space designed for autoregressive language
modeling. The search space includes choices for embedding dimensions {768, 384, 192}, the number of layers from {10,
11, 12}, the MLP expansion ratio per layer from {2,3,4}, the number of heads per layer from {12,8,4}, and the option to
toggle the bias parameter on or off in the layers.

H. Datasets and Devices
This section describes the hardware devices and tasks used to evaluate MODNAS and the MOO baselines throughout
the paper. We assess our methods across small- and large-scale image classification datasets, including CIFAR-10 and
ImageNet-1K. For the machine translation task, we evaluate our method on the WMT’14 En-De dataset (Macháček & Bojar,
2014), and we use the OpenWebText (Gokaslan & Cohen, 2019) dataset for language modeling. Furthermore, we evaluate
MODNAS across 19 devices on NAS-Bench-201, 12 devices on MobileNetV3, three devices on Seq-Seq Transformer, and
eight devices from HW-GPT-Bench (Sukthanker et al., 2024), with zero-shot generalization to test devices. Table 2 lists the
devices used. For more details on the devices, we refer readers to Lee et al. (2021b), Cai et al. (2020), Wang et al. (2020), Li
et al. (2021), and Sukthanker et al. (2024).

Table 2. Search-test split for hardware devices and datasets for different search spaces.
Search Space Train-devices Test devices Dataset

NAS-Bench-201
1080ti_1, 1080ti_32, 1080ti_256, silver_4114, titan_rtx_256, gold_6226,

CIFAR10silver_4210r, samsung_a50, pixel3, essential_ph_1, fpga, pixel2,
samsung_s7, titanx_1, titanx_32, titanx_256, gold_6240 raspi4, eyeriss

MobileNetV3 (OFA)
2080ti_1, 2080ti_32, 2080ti_64, titan_xp_1, titan_rtx_64

ImageNet-1ktitan_xp_32, titan_xp_64, v100_1, v100_32,
v100_64, titan_rtx_1, titan_rtx_32

Seq-Seq Transformer (HAT) titanxp gpu, cpu xeon cpu raspberrypi WMT14.en-de

HW-GPT-Bench a40, v100, rtx2080, rtx3080 a100, h100, P100, a6000 OpenWebText

I. Runtime Comparison
In Table 3 we provide the number of GPU hours we ran MODNAS and baselines on every search space. We ran the search
on NAS-Bench-201, OFA, together with the evaluations on Nvidia RTX2080Ti, while for HAT we used NVidia A6000. For
both OFA and HAT, we used 8 GPUs in parallel. Similar as in Sukthanker et al. (2024), on the HW-GPT-Bench space we
ran the MODNAS search and evaluations on 4 Nvidia A100 GPUs.

Table 3. Total amount of GPU hours required to run MODNAS’ and baselines’ search on every search space.
Search Spaces Method Lat/En/Mem Pred. Supernet Acc./Ppl Pred. Search Total Time

NASBench201
MetaD2A+HELP 25 - 8629 0.3 8654.3

MOO Baselines - - - 370.5 370.5

MODNAS 3 22 - 0.05 25.25

Once-For-All
OFA+HELP 6 1200 356 10 1572

MOO Baselines 6 1200 356 192 1754

MODNAS 6 1392 - 0.05 1398.25

HAT

HAT 15 346.7 - 210.9 572.6

MOO Baselines 15 346.7 - 576 937.7

MODNAS 5 576 - 0.05 581.25

HW-GPT-Bench MOO Baselines 1 192 - 48 241

MODNAS 1 216 - 0.05 217.25
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I.1. Computational Complexity.

Table 5. Cost of MODNAS compared to other methods. N is the
number of trained architectures during search, T is the number of
devices and C is the number of constraints.

Method Search Cost Pareto Set Build Cost

LEMONADE (Elsken et al., 2019a) O(NT) O(1)
Blackbox MOO (Deb et al., 2002; Daulton et al., 2020; Zhao et al., 2022) O(NT) O(1)
ProxylessNAS (Cai et al., 2018) O(CT) O(1)
MetaD2A + HELP (Lee et al., 2021a;b) O(N) O(CT)
OFA (Cai et al., 2020) + HELP (Lee et al., 2021b) O(1) O(CT)
MODNAS (Ours) O(1) O(1)

Ignoring the cost to train final architectures in the Pareto
set, methods like MetaD2A + HELP (Lee et al., 2021a;b)
have a worst-case time complexity of O(CT) to build the
Pareto set, where T is the number of devices and C is the
number of constraints. MODNAS reduces this to O(1) by
conditioning a single MetaHypernetwork on both device
types and constraints. Methods like LEMONADE (Elsken
et al., 2019a) and ProxylessNAS (Cai et al., 2018) apply
constraints during the search phase, requiring an independent search per device. Black-box methods such as LEMONADE,
NSGA-II (Deb et al., 2002), or qEHVI (Daulton et al., 2020) train O(NT) architectures or a surrogate based on O(N)
architectures in the case of MetaD2A + HELP. In contrast, MODNAS and OFA have a cost of O(1) as they train a single
supernetwork. Although MODNAS iterates over T devices to compute g∗Φ and g∗w, Figure 19 in Appendix J.2 shows that
MODNAS generalizes well on 17 test devices with only 2 search devices due to its meta-learning capabilities. See Tables 5
and 3 in the Appendix for more details.

J. Additional Experiments
J.1. Predicted v/s Ground-Truth Latencies

In Figure 8, we present the scatter plots of the predictions of our hardware-aware MetaPredictor vs. the ground-truth
latencies of different architectures. In the figure title we also report the kendall-tau correlation coefficient for every device.
As observed, our predictor achieves high kendall-τ correlation coefficient across all devices.

J.2. Additional Results on NAS-Bench-201

In Figure 13, we present the Pareto fronts obtained by our method in comparison to different baselines on the NAS-Bench-201
search space. In Figure 14, we present different additional metrics, such as GD and IGD (see Section E), to evaluate
the quality of the Pareto fronts obtained on NAS-Bench-201. Figure 15 presents the Pareto front MODNAS yields when
applying different latency constraints during the search phase. Figure 11a compares our method using the ReinMax gradient
estimator to the GDAS estimator (Dong & Yang, 2019). As we can see, ReinMax obtains a qualitatively better hypervolume
coverage compared to GDAS. Figure 12 presents the 3D Pareto front and hypervolume obtained by MODNAS compared
to other baselines when optimizing for accuracy, latency and energy usage on NAS-Bench-201. Figure 18 presents the
comparison of MODNAS with MGD to other gradient aggregation schemes, such as mean, sequential and MC sampling
(see Section 4.1), across multiple hardware devices. Finally, in Figure 19 we present the robustness of MODNAS to the
fraction of devices used for the predictor training and the search phase.

J.3. Additional Results on Hardware-aware Transformers (En-De)

We show the Pareto fronts of MODNAS compared to baselines for the Transformer space in Figure 20, as well as their
comparison with respect to hypervolume for the SacreBLEU metric in Figure 22. These results demonstrate the superior
performance of our method compared to the other baselines on this benchmark. All evaluations are done by inheriting the
weights of a pretrained supernet.

J.4. Additional Results on the HW-GPT space

In figure 23, we present the Pareto fronts on all the 8 GPU types for MODNAS and different baselines. The Pareto fronts
are obtained using the perplexity and energy predictors trained on data collected in the HW-GPT-Bench (Sukthanker et al.,
2024).

J.5. Additional Results on MobileNetV3

In Figure 24, we present the Pareto fronts of our method compared to different baselines for 12 different hardware devices on
the MobileNetV3 space. We show as well the Pareto front of OFA+HELP (Lee et al., 2021b), ran with the original setting.
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Figure 10. Scatter plots of predicted latencies from our pretrained MetaPredictor vs. ground-truth latencies (test devices in red).
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Table 4. Hyperparameters used on different search spaces.
Search Space Hyperparameter Type Value

NAS-Bench-201

MetaHypernetwork

learning rate 3e-4
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 0.025
momentum 0.9
weight decay 0.0027
learning rate scheduler cosine
epochs 100
batch size 256
gradient clipping 5
cutout true
cutout length 16
initial channels 16
optimizer SGD
train portion 0.5

MobileNetV3 (OFA)

MetaHypernetwork

learning rate 1e-5
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 1e-3
momentum 0.9
weight decay 3e-5
learning rate scheduler cosine
epochs 50
batch size 32
bn_momentum 0.1
bn_eps 1e-5
dropout 0.1
width 1.2
optimizer SGD
train portion 1.0

Seq-Seq Transformer (HAT)

MetaHypernetwork

learning rate 3e-4
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 1e-7
momentum 0.9
weight decay 0.0
learning rate scheduler cosine
epochs 110
batch size/max-tokens 4096
criterion label_smoothed_cross_entropy
attention-dropout 0.1
dropout 0.3
precision float32
optimizer Adam
train portion 1.0

HW-GPT-Bench

MetaHypernetwork

learning rate 1e-5
weight decay 1e-3
embedding layer size 100
hypernetwork bank size 50
optimizer Adam
ReinMax temperature 1

Supernetwork

learning rate 0.000316
momentum -
weight decay 0.1
learning rate scheduler cosine
steps 800k
batch size/max-tokens 32768
criterion cross_entropy
attention-dropout 0.0
dropout 0.0
precision bfloat16
optimizer AdamW
train portion 1.0
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Figure 11. Hypervolume, GD+ and IGD+ of MODNAS with Reinmax as gradient estimator in the Architect vs. the one from
GDAS (Dong & Yang, 2019) across 19 devices on NAS-Bench-201. Higher area in the radar indicates better performance for every metric.
Test devices are colored in red around the radar plot.
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Figure 13. Pareto fronts of MODNAS and baselines on NAS-Bench-201. MODNAS-SoTL is not shown for better visibility.
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Figure 14. HV, GD, GD+, IGD and IGD+ of MODNAS and baselines across 19 devices on NAS-Bench-201. For every device we optimize
for 2 objectives, namely latency (ms) and test accuracy on CIFAR-10. For method, metric and device we report the mean of 3 independent
search runs. Higher area in the radar indicates better performance for every metric. Test devices are colored in red around the radar plot.
Here we allocate double the budget to baselines, i.e. we run all baselines for 50 function evaluations.
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Figure 15. Pareto fronts of MODNAS ran with different latency constraints during search.
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Figure 16. GD, GD+, IGD and IGD+ of MODNAS with different latency constraints during search across 19 devices on NAS-Bench-201.
Higher area in the radar indicates better performance for every metric. Test devices are colored in red around the radar plot.
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Figure 17. HV over number of evaluated architectures on NAS-Bench-201 of MODNAS and the blackbox MOO baselines. Note that for
MODNAS we only have 24 evaluations in the end.
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Figure 18. HV over time on NAS-Bench-201 of MODNAS with different gradient update schemes.
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Figure 19. HV over time on NAS-Bench-201 of MODNAS with different number of devices during search. For number of devices less
than 13 (default one) we randomly select a subset from these 13 devices.
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Figure 20. Pareto fronts of MODNAS and baselines on the HAT space for the WMT’ En-De task. All performance metrics are obtained
from the inherited supernet weights.
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Figure 21. Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The objectives used to compute the HV are
latency and BLEU score. Leftmost plot is for the test device.
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Figure 22. Hypervolume (HV) of MODNAS and baselines across devices on the HAT space. The objectives used to compute the HV are
latency and SacreBLEU score. Leftmost plot is for the test device. MODNAS is the best or on par to the baselines across all three devices.
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Figure 23. Pareto fronts of MODNAS and baselines optimizing for GPU energy consumption (Wh) and perplexity on the HW-GPT-Bench
space.
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Figure 24. Pareto fronts of MODNAS and baselines on the MobileNetV3 space.
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Figure 25. Hypervolume across devices on the MobileNetV3 search space of MODNAS and baselines. Here the Nvidia Titan RTX is the
test device.

35


