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ABSTRACT

Content creators compete for user attention. Their reach crucially depends on
algorithmic choices made by developers on online platforms. To maximize
exposure, many creators adapt strategically, as evidenced by examples like the
sprawling search engine optimization industry. This begets competition for the
finite user attention pool. We formalize these dynamics in what we call an exposure
game, a model of incentives induced by algorithms, including modern factorization
and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic
choices—e.g., non-negative vs. unconstrained factorization—significantly affect
the existence and character of (Nash) equilibria in exposure games. We proffer
use of creator behavior models, like exposure games, for an (ex-ante) pre-
deployment audit. Such an audit can identify misalignment between desirable and
incentivized content, and thus complement post-hoc measures like content filtering
and moderation. To this end, we propose tools for numerically finding equilibria
in exposure games, and illustrate results of an audit on the MovieLens and LastFM
datasets. Among else, we find that the strategically produced content exhibits strong
dependence between algorithmic exploration and content diversity, and between
model expressivity and bias towards gender-based user and creator groups.

1 INTRODUCTION

n producers

s1

s2

...
sn

fixed
demand distribution

c ∼ Pc

utility of si

Ec∼Pc

[
softmax

(
1
τ

[
⟨c, sj⟩

]n
j=1

)]
i

Figure 1: Exposure game. Items si ∈ Sd−1

placed to maximize exposure to consumers c ∼ Pc.

In 2018, Jonah Peretti (CEO, Buzzfeed) raised
alarm when a Facebook main feed update started
boosting junk and divisive content (Hagey &
Horwitz, 2021). In Poland, the same update
caused an uptick in negative political messaging
(Hagey & Horwitz, 2021). Tailoring content
to algorithms is not unique to social media.
For example, some search engine optimization
(SEO) professionals specialize on managing
impacts of Google Search updates (Marentis,
2014; Dennis, 2016; Shahzad et al., 2020; Patil
et al., 2021; Goodwin, 2021). While motivations
for adapting content range from economic to
socio-political, they often translate into the same
operative goal: exposure maximization.

We study how algorithms affect exposure-
maximizing content creators. We propose a novel incentive-based behavior model called an exposure
game, where producers compete for a finite user attention pool by crafting content ranked highly by
a given algorithm (Section 1.1). When producers act strategically, a steady state—Nash equilibrium
(NE)—may be reached, with no one able to unilaterally improve their exposure (utility). The content
produced in a NE can thus be interpreted as what the algorithm implicitly incentivizes.

We focus on algorithms which model user preferences as an inner product of d-dimensional user
and item embeddings, and rank items by the estimated preference. Section 2 presents theoretical
results on the NE induced by these algorithms. We identify cases where algorithmic changes
seemingly unconnected to producer incentives—e.g., switching from non-negative to unconstrained
embeddings—determine whether there are zero, one, or multiple NE. The character of NE is also
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affected by the level of algorithmic exploration. Perhaps counter-intuitively, we show that high levels
of exploration incentivize broadly appealing content, whereas low levels lead to specialization.

In Section 3, we explore how creator behavior models can facilitate a pre-deployment audit. Such
an audit could be particularly useful for assessing the producer impact of algorithmic changes,
which is hard to measure by A/B testing for two important reasons: (1) producers cannot be easily
randomized to distinct treatment groups, and (2) there is often a delay between deployment and
content adaptation. Our hope is that this new style of auditing will enable detection of misalignment
between the induced and desired incentives, and thus flag issues to either immediately address,
or monitor in content filtering and moderation. For demonstration, we execute a pre-deployment
audit on the MovieLens and LastFM datasets using the exposure game behavior model, and matrix
factorization based recommenders. We find a strong dependence between algorithmic choices like
embedding dimension and level of exploration, and properties of the incetivized content such as
diversity (confirming our theory), and targeting of gender-based user and creator groups.

1.1 SETTING AND THE EXPOSURE GAME INCENTIVE MODEL

We assume there is a fixed recommender system trained on past data, and a fixed population of users
(consumers). Together, these induce a demand distribution Pc which represents typical traffic on
the platform over a predefined period of time. Content is created by n ∈ N producers who try to
maximize their expected exposure (utility). Denoting consumers by c ∼ Pc, an item created by the
ith producer by si (strategy), s := (si)i∈[n], and s\i := (sj)j ̸=i, we define (expected) exposure as the
proportion of the “user attention pool” captured by the ith producer

ui(s) = ui(si, s\i) := Ec∼Pc [1{c is exposed to si}] ⋆
= Ec∼Pc [pi(c)] , (1)

with pi(c) ≥ 0 the probability that the algorithm exposes c to si rather than any s\i. As common in
game theory, we can extend from deterministic single item strategies to stochastic multi-item strategies
si ∼ Pi for some distribution Pi. This extension is discussed in more detail in Section 2.

The assumption that E[1{c is exposed to si}] ⋆
= E[pi(c)] does not explicitly model interactions not

mediated by the algorithm (e.g., YouTube videos linked to by an external website). This may be
a reasonable approximation for infinite feed platforms (e.g., Twitter, Facebook, TikTok) where most
consumers scroll through items in the algorithm-defined order, and search engines (e.g., Google,
Bing) where first-page bias is well documented (Craswell et al., 2008). While similar assumptions
are common in the literature (e.g., Li et al., 2010; Chen et al., 2019; Ben-Porat et al., 2020; Curmei
et al., 2021), alternative interaction models are an important future research direction.

Unlike previous work (Section 1.2), we focus on the popular class of factorization-based algorithms.
These models rank items by a score estimated by the inner product of user and item embeddings
c, si ∈ Rd. The larger this score, the higher the probability of exposure, which we model as

pi(c) =
exp(τ−1⟨c, si⟩)∑n

i′=1 exp(τ
−1⟨c, si′⟩)

= softmax
([
τ−1⟨c, si′⟩

]n
i′=1

)
i
, (2)

where τ ≥ 0 is a temperature parameter which controls the spread of exposure probabilities
over the top scoring items. When τ = 0 (i.e., hardmax), these probabilities correspond to top-
1 recommendation or absolute first-position bias. Taking τ > 0 models the effects of ranked position,
injected randomness for exploration, and can partially adjust for user randomness and other factors
which make top-ranked items receive more but not all of the traffic. While an approximation in some
settings, Equation (2) has been directly used, e.g., by YouTube (Chen et al., 2019). We emphasize that
we make no assumption on how the embeddings are obtained. Our conclusions thus apply equally to
classical matrix factorization and deep learning-based systems.

We are now ready to formalize exposure games, an incentive-based model of creator behavior.

Definition 1. An exposure game consists of an embedding dimension d ∈ N, a demand distribution
Pc ∈ P(Rd), and n ∈ N producers, each of whom chooses a strategy si ∈ Sd−1 = {v ∈ Rd : ∥v∥ =
1}, to maximize their utility ui(s) = Ec∼Pc [pi(c)] with pi(c) as in Equation (2) for a given τ ≥ 0.

We restrict items si to the unit sphere Sd−1. A norm constraint is necessary as otherwise exposure
could be maximized by inflating ∥si∥ → ∞, which is not observed in practice.1 We distinguish

1Possibly due to the often finite rating scale, use of gradient clipping, and various forms of regularization.
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non-negative games where all embeddings lie in the positive orthant; this includes algorithms ranging
from TF-IDF, bag-of-words, to non-negative matrix factorization (Lee & Seung, 1999), topic models
(Blei et al., 2003), and constrained neural networks (Ayinde & Zurada, 2017).

Definition 2. A non-negative exposure game is an exposure game where the support of Pc is restricted
to the positive orthant, i.e., Pc({c ∈ Rd : cj ≥ 0 ,∀j ∈ [d]}) = 1.

We assume all producers are rational, omniscient, and fully control placement of si in Sd−1. These
assumptions are standard in both machine learning and economics literature, including in the related
facility location games (see Section 1.2). They often provide a good first order approximation, and
an important basis for studying the subtleties of real-world behavior. Full control is perhaps the least
realistic, since producers can modify content features, but they often do not know how these changes
affect the content embedding. This assumption has a significant advantage though: it abstracts away an
explicit model of producer actions (cf. the variety of SEO techniques). Appropriateness of rationality
and complete information are then context-dependent; they may be respectively reasonable in
environments where strong profit motives or user profiling tools are common. However, investigating
alternatives to each of the above assumptions is an important direction of future work.
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Figure 2: YouTube revenue streams
incentivizing exposure maximization
(Ørmen & Gregersen, 2022).

Box 1: How our assumptions map onto YouTube
(YT) as an illustrative example. On YT, a strategy
si is an embedding of a video, with creators able to
produce multiple videos (mixed strategy si ∼ Pi).
Rational behavior: YT creators receive income
proportional to their view numbers (Figure 2), which
motivates exposure maximization. Most creators do
not earn significant income, but the majority of traffic
is driven by only a few popular and high-earning
creators (Cheng et al., 2008). This motivates focus
on these few producers and their strategic behavior.
Complete information and full-control. YT
creators cannot directly manipulate the embeddings of their videos si, or observe the user
embeddings. However, popular creators have a myriad of analytic tools at their hand, with
information about views, demographics (e.g., gender, age, region), acquisition channels,
drivers of engagement, competition and more. They can also observe and adopt behaviors
of other creators. Taking the strong monetary incentives into account, motivated creators
will actively optimize their exposure using trial-and-error, making complete information and
full-control an imperfect yet not unreasonable model of their behavior.

1.2 RELATED WORK

Most relevant to our setup are works on the incentives of exposure-maximizing creators induced by
recommender and retrieval systems (Ben-Porat et al., 2020; Raifer et al., 2017; Ben-Basat et al., 2017;
Ben-Porat & Tennenholtz, 2018; Ben-Porat et al., 2019b;a). Interesting aspects of these works which
we omit include (i) repeated interactions (Ben-Porat et al., 2020; Raifer et al., 2017; Ben-Porat et al.,
2019b), (ii) user welfare (Ben-Porat et al., 2020; Ben-Basat et al., 2017; Ben-Porat & Tennenholtz,
2018; Ben-Porat et al., 2019a), and (iii) incomplete information (Raifer et al., 2017).

The most important distinction of our approach is that the above works constrain creators to a
predefined finite item catalog. This excludes the popular factorization-based algorithms—ranging
from standard matrix factorization (Koren et al., 2009) to (deep) two-tower architectures (Huang
et al., 2013; Yi et al., 2019)—whose continuous embedding space translates into an infinite number of
possible items. The only exception is (Ben-Porat et al., 2019a) where items are represented by [0, 1]
scalars, which is equivalent to the special case of two-dimensional non-negative exposure games.
Continuous embedding spaces were recently studied in (Mladenov et al., 2020; Zhan et al., 2021),
but neither studies producer incentives or competition. Mladenov et al. (2020) consider producers
who decide whether to stay or leave the platform if their exposure is too low. Zhan et al. (2021) study
design of recommender systems which optimize for both user and producer utility.

Concurrently but independently, Jagadeesan et al. (2022) study a model equivalent to hardmax non-
negative exposure games, except the ∥si∥ = 1 constraint is replaced by a production cost, yielding
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ui(s) = E[pi(c)]− ∥si∥β for some norm ∥ · ∥ and β ≥ 1 (higher norm interpreted as higher quality).
The authors investigate how the cost function influences the economic phenomena exhibited by NE,
from formation of “genres” (multiple directions with non-zero probability), to the possibility of
realizing positive profits (utility). In contrast, we investigate how NE depend on algorithmic and
environmental factors (non-negativity, exploration, dependence of exposure on ranking), and propose
an algorithmic audit which leverages the creator model. While taking β → ∞ in the Jagadeesan et al.’s
cost recovers our unit norm constraint, understanding the NE behavior at the limit remains a subject of
future work (e.g., pure NE exist only in our setup). Our works are thus largely complementary.

Literature on adaptive behavior in the presence of a prediction algorithm is also relevant (Hardt et al.,
2016; Kleinberg & Raghavan, 2020; Perdomo et al., 2020; Jagadeesan et al., 2021). The social impact
and potential disparate effects of strategic adaptation have been analyzed in (Milli et al., 2019; Hu
et al., 2019; Liu et al., 2020). Most relevant for us is a recent paper by Liu et al. (2022) which studies
strategic adaptation in the context of finite resources (e.g., number of accepted college applicants).
Unlike us, the authors assume a single score for each competitor, who can pay cost to improve it. A
principal then designs a reward function which allocates the finite resource based on the scores, and the
authors study how different choices affect various notions of welfare. The preliminary results on multi-
dimensional scores (appendix B) assume the scores and individual improvements are independent,
whereas our scores—⟨c, si⟩ for each c—imply complex dependence and trade-offs.

Finally, our proposed methods for auditing recommender and information retrieval systems belong to
a rapidly growing algorithm auditing toolbox. We focus on understanding producer incentives caused
by a known algorithm. Thus, we complement prior work that aims to audit these systems based
upon: the degree of consumer control (Curmei et al., 2021), fairness (Do et al., 2021), compliance
with regulations (Cen & Shah, 2021), and dynamical behavior in simulations (Krauth et al., 2020;
Lucherini et al., 2021) or deployed systems Haroon et al. (2022).

2 EQUILIBRIA IN EXPOSURE GAMES

This section presents theoretical results on incentives in exposure games. We focus on the impact of
the recommender/information retrieval model on the competitive equilibria. Throughout, we find that
one of the most important factors determining existence and character of equilibria is the temperature
τ (see Equation (2)). We thus distinguish the softmax (τ > 0) and the hardmax (τ = 0) case.

In competitive settings, a key question is whether there are equilibria in which players are satisfied with
their strategies, as otherwise there may be never-ending oscillation in search for better outcomes. We
thus consider several solution concepts (i.e., definitions of equilibria) related to NE. A pure NE (PNE)
is a point in strategy space sNE ∈ (Sd−1)n where no player i can increase their utility by unilaterally
deviating from sNEi ∈ Sd−1. In other words, no content producer can increase their exposure by
modifying their content. Mixed NE (MNE) refer to the setting where players are allowed to choose
randomized (mixed) strategies Pi ∈ P(Sd−1). Rather than selecting a single piece of content, a
creator following a mixed strategy samples si ∼ Pi. Alternative interpretation is that producers create
multiple items, splitting their time/budget proportionally to the Pi-probabilities.

In later sections, we explore the weaker solution concepts of ϵ-NE, local NE (LNE), and their
combination ϵ-LNE. An ϵ-NE is an approximate NE where no producer can unilaterally increase
their utility by more than ϵ (NE are “0-NE”). LNE are analogous to local optima: points where no
player benefits from small deviations from their strategy. The approximate and local perspectives
are relevant when deploying local search algorithms to find NE numerically (Section 3).

Exposure games are symmetric, meaning that any permutation of strategies forming an equilibrium
produces another equilibrium. Our statements on the existence and uniqueness of equilibria hold up
to player permutation. All proofs for the results in this section are presented in the appendix.

2.1 PURE AND MIXED NASH EQUILIBRIA

We begin by characterizing the existence of pure and mixed NE in general exposure games.

Theorem 1. Every exposure game has at least one mixed Nash equilibrium.

A key property of softmax games is that the utilities ui are continuous in s. This, and the compactness
of the strategy space Sd−1, guarantees existence of MNE (Glicksberg, 1952, section 2). In the
hardmax case (τ = 0), we can show that MNE are guaranteed to exist through a direct application
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Figure 3: A) A game with no PNE (see the proof of Theorem 2). A PNE would exist if the strategy
space was convex, and utility quasi-concave (Fan, 1952). B) and C) demonstrate lack of quasi-
concavity even if we allow ∥si∥ ≤ 1: B) n−1 producers at midpoint, s1 along slice λc1+(1−λ)c2
(dashed line); C) Change in utility along the slice in B) demonstrates lack of quasi-concavity. D) A
non-negative game with very different PNE depending on τ . E) PNE with “protective positioning.”

of proposition 4 due to Simon (1987). The producer utilities ui are not differentiable in the hardmax
case though, which means we cannot use gradient information to find NE as in the softmax case. The
only procedure we know for finding NE in hardmax games requires solving the hitting set problem
which is NP-complete (Dasgupta et al., 2008). See Appendix B for further discussion.

We now turn to existence of pure NE, which is the setting where creators strategically design a single
piece of content. Unlike MNE, PNE are not guaranteed to exist even in the softmax case.

Theorem 2. PNE need not exist in either the hardmax (τ = 0) or softmax (τ > 0) exposure games.

Figure 3A illustrates the non-existence result. The counter-example holds even for n = 2 players and
planar (d = 2) strategies. A reader familiar with classic PNE results may ask if PNE would appear if
we relaxed the Sd−1 strategy space to the convex Bd = {v : ∥v∥ ≤ 1} (Glicksberg, 1952; Debreu,
1952; Fan, 1952). This is not true as the exposure utility is not quasi-concave (Figure 3B&C).

We now move to non-negative exposure games (Definition 2). For n = d = 2, non-negative
hardmax exposure games are equivalent to Hotelling games (Hotelling, 1929), and more generally to
facility location games on a line (Ben-Porat et al., 2019a; Procaccia & Tennenholtz, 2013). The next
proposition lists several special cases in which we understand existence and character of PNE.

Proposition 1. A PNE always exists in n = d = 2 non-negative hardmax games, but may not without
non-negativity or when d > 2. For n = 2 non-negative softmax games with ĉ := 1

n (1− 1
n )E[c] ̸= 0,

the only possible PNE is s1 = s2 = c̄ with c̄ := ĉ/∥ĉ∥ (independently of d), but a PNE may not exist.
When n > 2, non-negative softmax games can have a PNE other than s1 = · · · = sn = c̄.

Figure 3D illustrates a 4-player non-negative exposure game. Depending on the temperature, we
observe either the collapsed si = c̄ (large τ ), or what we term “protective positioning” (small τ ). In
Figure 3D, players place their strategies between a consumer and the next closest producer. Figure 3E
illustrates protective positioning for a higher number of consumers and n = 3. Here, consumers are
roughly clustered around three centers (blue dots). The producer strategies are close to these centers,
but again offset towards the most contested consumers.

2.2 ϵ-NASH EQUILIBRIA

While existence of NE is not guaranteed, the situation changes when we adopt the weaker solution
concept of ϵ-NE, in which no producer can unilaterally increase their utility by more than ϵ.

The existence and character of such equilibria strongly depends on the temperature τ . When τ = ∞,
exposure is equally likely pi(c) =

1
n for all i and c regardless of the adopted strategies. Thus, every

strategy profile is an NE. Considering a sequence of increasing (τi)i≥1, we can therefore argue that
the limit of any convergent sequence of NE indexed by τ is a NE at τ = ∞. Interestingly, Theorem 3
shows that a sufficiently large but finite τ > 0 is sufficient for existence of ϵ-(P)NE. The result is
constructive, showing that the ϵ-PNE is parallel to the average consumer embedding.

Theorem 3. For any ϵ > 0 and Pc ∈ P(Rd) with compact support and E[c] ̸= 0, ∃τ0 > 0 s.t.
s1 = . . . = sn = c̄ is an ϵ-PNE for all τ ≥ τ0. Moreover, for all τ ≥ τ0, the smallest ϵτ for which c̄
is an ϵτ -PNE satisfies ϵτ ≤ ϵ

τ . If also ϵ < ∥ĉ∥, then the set of better-responses to c̄

Ψ(c̄) := {v ∈ Sd−1 :u1(v, c̄, . . . , c̄) ≥ u1(c̄, c̄, . . . , c̄)} , (3)

is a subset of Bd
δ (c̄) = {v : ∥v − c̄∥ ≤ δ} with δ = 2ϵ/(∥ĉ∥ − ϵ), and δ → 0 as τ → ∞.
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This result shows that all ϵ-improvements concentrate near the consumer average ϵ-PNE as τ → ∞.
Additionally, the “consumer symmetry” ∥ĉ∥ = 1

n (1 − 1
n ) ∥E[c]∥ determines how quickly δ → 0.

When consumers are spread approximately symmetrically w.r.t. the origin, the degenerate equilibrium
appears only for large τ . However, smaller τ are sufficient for more directionally concentrated Pc.
A high number of producers also slows the concentration as the appeal of ui(c̄, . . . , c̄) =

1
n decreases

with n. We conclude with a corollary based on our development so far.

Corollary 1. There is a fixed ϵ0 > 0 and a demand distribution Pc which—depending on the chosen
τ—induce zero, one, multiple, or infinitely many ϵ-NE for all ϵ ≤ ϵ0.

Corollary 1 underscores the sensitivity of exposure games to the temperature parameter τ , with
uniformly homogeneous content at one end (high τ ), and potentially persistent oscillation behavior
in competition when no NE exist (low τ ). A higher τ > 0 can be a result of algorithmic exploration
(Chen et al., 2019; Cesa-Bianchi et al., 2017; Lattimore & Szepesvári, 2020), which is provably
necessary for optimal performance in static environments (Lattimore & Szepesvári, 2020). In
contrast, our results show that in environments with strategic actors, exploration may incentivize
content which is uniform and broadly appealing rather than diverse.

This may contradict the intuition that more exploration should lead to greater content diversity due
to the higher exposure of niche content. One way to understand this result is the tension between
randomization and the ability of niche creators to reach their audience: producers may be discouraged
from creating niche content when the algorithm is exploring too much (τ high), and encouraged to
mercilessly seek and protect their own niche when the algorithm performs little exploration (τ low).
When the algorithm captures user preferences well, exploration is typically thought of as having
negative impact on user experience through immediate reduction in quality of service as a result of
suboptimal recommendations. However, the above results show secondary long-term effects.

2.3 LOCAL NASH EQUILIBRIA

In a local NE, each si is optimal on some of its neighborhood within the embedding space. Sometimes
motivated as a form of bounded rationality, LNE can often be found by local search algorithms (e.g.,
Mazumdar et al., 2019). Since our motivation in studying exposure games is ultimately better system
understanding and audits, we are particularly interested in these algorithmic benefits.

Practical first-order algorithms for identifying LNE operate analogously to gradient descent, implying
they may terminate in critical points that are not LNE. Unlike NE, critical points always exist.

Proposition 2. Every τ > 0 exposure game with E[c] ̸= 0 has a critical point at s1 = . . . = sn = c̄.

As we have seen, s1 = . . . = sn = c̄ may be an equilibrium (Proposition 1). To distinguish LNE from
mere critical points, we use the Riemannian second derivative test, treating Sd−1 as a Riemannian
submanifold of Rd as usual. For background, see (Boumal, 2022, sections 3 & 5).

Definition 3 (Boumal, 2022, lemma 5.41). A point s in strategy space satisfies the second derivative
test if ∀i (1) the Riemannian gradient (I − sis

⊤
i )∇siui(s) is zero, and (2) the Riemannian Hessian

(I − sis
⊤
i )

[
∇2

siui(s)
]
(I − sis

⊤
i )− ⟨si,∇siui(s)⟩(I − sis

⊤
i ) ,

is strictly negative definite in the subspace perpendicular to si.

This condition is sufficient but not necessary for a critical point to be an LNE. LNE which satisfy
Definition 3 are termed differentiable NE (Ratliff et al., 2016; Balduzzi et al., 2018). The distinction
is similar to that between the flat minimum of x4 at zero the more well-behaved x2.

3 PRE-DEPLOYMENT AUDIT OF STRATEGIC CREATOR INCENTIVES

Beyond regularly retraining on new data, online platforms continuously roll out algorithm updates.
While A/B testing can detect changes in user metrics, like satisfaction or churn, prior to the full-scale
deployment (Tang et al., 2010; Hohnhold et al., 2015; Xu et al., 2015; Gordon et al., 2019), assessing
the impact on content producers is comparatively harder due to the longer delay between the roll-out
and corresponding content adaptation. Furthermore, since producers cannot be easily assigned to
distinct treatment groups without limiting their content to only a subset of consumers, modern A/B
testing methods must eschew making causal statements about producer impact (Nandy et al., 2021; Ha-
Thuc et al., 2020; Huszár et al., 2022). Undesirable results including promulgation of junk and abusive
content then have to be addressed via post-hoc measures like content filtration and moderation.
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√
d. As Theorem 3

predicts, large τ (e.g., more exploration) leads to higher concentration, i.e., creating content which
appeals to more users. Left: MovieLens. Right: LastFM. See Section 3.2 for more discussion.

A tool for ex-ante (pre-deployment) assessment of producer impact could thus limit the harm
experienced by users, moderators, and other affected parties. We demonstrate how to utilize a creator
behavior model for this purpose, using the exposure game as a concrete example. The incorporation
of factorization-based algorithms in exposure games allows us to use real-world datasets and rating
models. While exposure games have limitations as a behavior model, we believe our experiments
provide a useful illustration of the insights the proposed audit can offer to platform developers.

3.1 SETUP

We use the MovieLens-100K and LastFM-360K datasets (Harper & Konstan, 2015; Bertin-
Mahieux et al., 2011; Shakespeare et al., 2020), implement our code in Python (van Rossum &
Drake, 2009) and rely on numpy (Harris et al., 2020), scikit-surprise (Hug, 2020), pandas
(pandas development team, 2020), matplotlib (Hunter, 2007), jupyter (Kluyver et al., 2016),
reclab (Krauth et al., 2020), and JAX (Bradbury et al., 2018) packages to fit probabilistic (PMF;
Mnih & Salakhutdinov, 2007) and non-negative (NMF; Lee & Seung, 1999) matrix factorization.
The models are trained to predict the user ratings (centered in the PMF case). To select regularization
and learning rate, we performed a two-fold 90/10 split cross-validation separately on each dataset.
The tuned recommenders were then fit on the full dataset, and the resulting user embeddings,
{cj}j∈[m] ⊂ Rd, were used to construct the demand distribution Pc =

1
m

∑
j δcj , and evaluate the

recommendation probabilities pi(c). Details in Appendix C.1.

The only algorithm for finding NE in hardmax exposure games we know has exponential worst-case
complexity. We thus focus on the softmax case. While search for general mixed NE is possible in
special cases (Fudenberg & Kreps, 1993; Kaniovski & Young, 1995; Benaïm & Hirsch, 1997), we
are not aware of any technique applicable to n-player exposure games. We therefore focus on pure
ϵ-LNE (Section 2.3), where each producer creates a single new item. We employ simple gradient
ascent (Singh et al., 2000; Balduzzi et al., 2018, see Appendix C.2 for comparison with gradient
descent) combined with reparametrization si = θi/∥θi∥ for each producer, where we iteratively
update θi,t = θi,t−1 + α∇θi,t−1

ui(si,t−1, s\i,t−1) for shared step size α > 0, and

∇θiui(s) =
1

τ∥θi∥2
(I − sis

⊤
i )E[pi(c)(1− pi(c))c] =

1
∥θi∥2

(I − sis
⊤
i )∇siui(s) . (4)

Equation (4) shows the update direction is parallel to the Riemannian gradient of ui(s) w.r.t. si ∈ Sd−1

(Section 2.3). We also experimented with the related Riemannian gradient ascent optimizer (Boumal,
2022), but abandoned it after (predictably) observing little qualitative difference. We note that the
local updates themselves define better-response dynamics linked to iterative minor content changes;
investigation of their relation to real-world producer behavior is an interesting future direction.

We investigate the sensitivity of the incentivized content to the: (i) rating model ∈ {PMF, NMF},
(ii) embedding dimension d ∈ {3, 50}, and (iii) temperature log10 τ ∈ {−2,−1, 0}. We further vary
the number of producers n ∈ {10, 100} to examine scenarios with different producer to consumer
ratios (user count is fixed to the full 943 for MovieLens, and 13,698 for LastFM). The above values
were selected in a preliminary sweep as representative of the effects presented below. For every
setting, we used five random seeds for initialization of the recommender (affects Pc), and for each
ran the gradient ascent algorithm 10x to identify possible ϵ-LNE. We applied early stopping when
ℓ2-change in parameters between iterations dipped below 10−8 ·

√
d; the number of iterations was

set to 50K so convergence was achieved for every run. We only report runs where the second-order
Riemannian test from Section 2.3 did not rule out an ϵ-LNE. Additional results, including those
where the Riemannian test was conclusive, are in Appendix C.3.
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Figure 5: Targeting of incentivized content by gender on MovieLens. Left: Difference between
medianc∈G{maxi∈[n] r̄i(c)} for men and women (group G), with r̄i(c) the normalized rating (cosine
similarity between c and the strategic si). Positive values imply bias towards men (higher median).
Note the higher bias when d = 50 (more expressive algorithm); especially NMF incentivizes more
biased content relative to the pre-adaptation baseline ‘b’. Right: Difference in proportions of si
with best (normalized) rating by women/men. Positive values imply bias towards men (more items
best-rated by men). Bias again more pronounced at d = 50. See Section 3.2 for more discussion.

3.2 RESULTS

Emergence of clusters with growing τ . Theorem 3 shows that producers concentrate around
c̄ = E[c]/∥E[c]∥ for sufficiently high τ . Figure 4 corroborates the result on both MovieLens and
LastFM, with the concentration happening already at τ = 1 regardless of the embedding dimension
d and producer count n. We also see that lower τ can lead to “local clustering” where only few
producers converge onto the same strategy. We hypothesize that the simultaneous local updates of
the consumers create “attractor zones” where close-by producers collapse onto each other; they will
remain collapsed henceforth due to equality of their gradients (by symmetry). Theorem 3 does tell us
collapse is to be expected for high τ , and it is possible that a local version of the result with more
than one clusters is true for intermediate values of τ . This highlights how crucial the algorithmic
choice of τ is for the induced incentives within our model.

Targeting of incentivized content by gender. The MovieLens dataset contains binarized user gender
information. In Figure 5, we examine targeting of incentivized content on women and men. To do so,
we employ aggregate statistics of predicted ratings. While predicted ratings may differ from actual
user preferences, they do determine recommendations and thus user experience. To help disentangle
effect of exposure maximization, we also include statistics based on the original item locations (labeled
by ‘b’), i.e., the content created before producers adapt to the recommender. Since the baseline
embeddings need not satisfy the unit norm constraint (see Definition 1), we measure normalized
ratings r̄i(c) := ⟨c,si⟩/∥c∥∥si∥ to facilitate comparison. The normalization also alleviates the known
issue of varying interpretation of ranking scales between users (Lynch Jr et al., 1991).

In Figure 5 (left), medianc∈men{maxi r̄i(c)} − medianc∈women{maxi r̄i(c)} measures if the
incentivised content is predicted to appeal to women/men; Figure 5 (right) shows the fraction of
creators incentivised to target women/men: 1

n

∑n
i=1 1{argmaxc r̄i(c) ∈ men}−1{argmaxc r̄i(c) ∈

women}. Positive values signify content crafted for male audience (users are 71% male). Higher
embedding dimension results in more bias, presumably due to the larger model expressivity, and
thus enables more fine-grained targeting. NMF consistently incentivizes more biased content.

Association between incentivized content and creator gender. Platform developers may want
to know if some creators are being disadvantaged (Chokshi, 2017; Farokhmanesh, 2018; Rodriguez,
2022). While solutions were proposed in the static case (e.g, Beutel et al., 2019; Wang et al.,
2021), understanding if the algorithm (de)incentivizes content by particular creator groups may
limit future harm. In Figure 6, we measure the difference between the proportion of (left) and
the median distance to (right) baseline creator embeddings (learned by the recommender before
strategic adaptation), within increasingly large neighborhoods of each strategic si. Since the baseline
embeddings need not be unit norm, we use the cosine distance to define the neighborhoods.

Starting with the proportion (left), higher embedding dimension (more flexible model) incentivizes
content more typical of male artists. This may be related to the higher prevalence of men in LastFM,
combined with training by average loss minimization. The gender imbalance also explains why the
proportion (left) stabilizes at a positive value, whereas the median distance (right) reverts to zero,
as the number of considered neighbors grows. The bias is also related to the choice of rating model,
where especially PMF at high temperatures results in significant advantage for male artists.
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Figure 6: Incentivized content and creator gender on LastFM. Quantifying relative difficulty
of strategic adaptation for female and male content creators, Uses baseline creator embeddings
(and associated gender), and their cosine distance from strategic embeddings. Left: Difference
between fractions of male and female creators in increasingly large neighborhood of each strategic
item. Values above zero imply bias towards male producers. Higher embedding dimension (model
expressivity) again results in larger bias. The bias also seems to be larger for higher τ and for the PMF
rating model. Right: Difference between median cosine distance to female and male creators within
increasingly large neighborhood of each strategic item. Values above zero imply bias towards male
producers. Higher bias is again associated with higher embedding dimension and the PMF rating
model, but the impact of temperature τ is less pronounced. See Section 3.2 for more discussion.

4 DISCUSSION

From social media and streaming to Google Search, many of us interact with recommender and
information retrieval systems every day. While the core algorithms have been developed and analyzed
years ago, the socio-economic context in which they operate received comparatively little attention in
the academic literature. We make two main contributions: (a) we define exposure games, an incentive-
based model of content creators’ interactions with real-world algorithms including the popular matrix
factorization and two-tower systems, and (b) we formulate a a pre-deployment audit which employs a
model of creator behavior to identify misalignment between incentivized and desirable content.

Our main theoretical contributions focus on the properties of Nash equilibria in exposure games.
We found that seemingly innocuous algorithmic choices like temperature τ , embedding dimension d,
or a non-negativity constraint on embeddings can have serious impact on the induced incentives. For
example, high τ incentivizes uniform broadly appealing content, whereas low τ motivates targeting
smaller consumer groups. Since higher τ is often linked to exploration, which is necessary for
optimal performance in static settings (e.g., Lattimore & Szepesvári, 2020), this result highlights
the importance of considering the socio-economic context in algorithm development.

Our producer model has several limitations from assuming rationality, complete information, and full
control, to taking the skill set of each producer to be the same, their utility to be linear in total exposure,
and ignoring algorithmic diversification of recommendations. We also consider the attention pool as
fixed and finite, neglecting the problematic reality of the modern attention economy, where online
platforms constantly struggle to increase their user numbers and daily usage (Covington et al., 2016;
Williams, 2018; Bhargava & Velasquez, 2021). Our theoretical understanding is incomplete as, e.g.,
our understanding of the influence of constraining embeddings to be non-negative is limited to the
two-dimensional case. The empirical evaluation of our behavior model is hindered by the lack of
academic access to the almost exclusively privately owned platforms (Greene et al., 2022).

Due to their sizable influence on individuals, societies, and economy (Milano et al., 2020),
information and recommender systems are of critical importance from an ethical and societal
perspective. While we hope that a better understanding of the incentives these algorithms create
will mitigate their negative social consequences, this also entails risks. Perhaps the most important is
the possibility of employing an optimizer such as the one in Section 3 to game a real-world algorithm.
This is especially relevant to the current debate about transparency (e.g., Sonboli et al., 2021; Rieder
& Hofmann, 2020; Sinha & Swearingen, 2002), and the proposal to (partially) open-source the Twitter
code base (Knight, 2022). Due to the aforementioned limitations, we also caution against treating
the predictions of our incentive-based behavior model as definitive, especially given the significant
complexity of many real-world algorithms and the environments in which they operate.

Going forward, we want to deepen our understanding of exposure games, and make pre-deployment
audits a practical addition to the algorithm auditing toolbox. We hope this research enriches the
debate about online platforms by a useful perspective for thinking about harms, (over)amplification,
and design of algorithms with regard to the relevant incentives of the involved actors.
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A PROOFS

List of abbreviations:

• s.t. = such that

• a.s. = almost surely

• l.h.s. = left-hand side

• r.h.s. = right-hand side

• w.l.o.g. = without loss of generality

A.1 STAND-ALONE STATEMENTS

Theorem 2. PNE need not exist in either the hardmax (τ = 0) or softmax (τ > 0) exposure games.

Proof of Theorem 2. (I) Hardmax: Take n = d = 2 and Pc =
1
3

∑3
j=1 δcj where the angle between

any cj ̸= ck is 2π
3 . Assume s = (s1, s2) is a PNE. W.l.o.g. c1 = argmaxj⟨s1, cj⟩. Then there is

s2 on the geodesic connecting c2 and c3 which has higher dot product with both c2 and c3 than s1.
Hence u2(s) ≥ 2/3 by the assumption that s is a PNE. The same argument implies u1(s) ≥ 2/3. This
is a contradiction since

∑
i ui(s) = 1 by definition of the exposure utility.

(II) Softmax: Let n = d = 2, and Pc = 1
3 (2δe1 + δe2) where e1 = [1, 0]⊤ and e2 = [0, 1]⊤. By

Proposition 1, we know that the only possible PNE is s1 = s2 = c̄ ∝ E[c] = [2, 1]/3, where both
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players enjoy u1(s) = u2(s) = 1
2 . Let s′1 = (c̄ + ϵe1)/∥c̄ + ϵe1∥ for some ϵ > 0. As τ → 0,

u1(s
′
1, c̄) → 2

3 by continuity. Hence ∃τ0 > 0 s.t. s1 = s2 = c̄ is not a PNE for all τ < τ0.

Theorem 3. For any ϵ > 0 and Pc ∈ P(Rd) with compact support and E[c] ̸= 0, ∃τ0 > 0 s.t.
s1 = . . . = sn = c̄ is an ϵ-PNE for all τ ≥ τ0. Moreover, for all τ ≥ τ0, the smallest ϵτ for which c̄
is an ϵτ -PNE satisfies ϵτ ≤ ϵ

τ . If also ϵ < ∥ĉ∥, then the set of better-responses to c̄

Ψ(c̄) := {v ∈ Sd−1 :u1(v, c̄, . . . , c̄) ≥ u1(c̄, c̄, . . . , c̄)} , (3)

is a subset of Bd
δ (c̄) = {v : ∥v − c̄∥ ≤ δ} with δ = 2ϵ/(∥ĉ∥ − ϵ), and δ → 0 as τ → ∞.

Proof of Theorem 3. We w.l.o.g. focus on the defection strategies for s1. By the mean-value theorem

∆ := u1(s1, c̄, . . . , c̄)− u1(c̄, . . . , c̄) = ⟨g′1, s1 − c̄⟩ ,
where g′1 = ∇s′1

u1(s
′
1, c̄, . . . , c̄) for some s′1 on the line connecting s1 and c̄. While the rigorous

argument below relies on a few technicalities, the main idea is simple: as τ → ∞, τ · g′1 → ĉ =
1
n (1− 1

n )E[c] uniformly over s1 ∈ Sd−1 (Lemma 1), and thus τ ·∆ ≈ ⟨ĉ, s1− c̄⟩ ≤ ∥ĉ∥(1− 1) = 0.

Lemma 1. limτ→∞ sups1∈Sd−1 ∥τ · g′1 − ĉ∥ → 0 .

Proof of Lemma 1. Since supp(Pc) is compact by assumption, and τ · g′1 = E[p1(c)(1 − p1(c))c],
all we need is p1(c)(1− p1(c)) → 1

n (1− 1
n ) pointwise in c (dominated convergence), and uniform

over s′1 ∈ Bd = {v : ∥v∥ ≤ 1} (mean-value theorem yields s′1 on the line connecting s1 with c̄). As

p1(c) =
exp(τ−1⟨c,s′1⟩)

exp(τ−1⟨c,s′1⟩)+(n−1) exp(τ−1⟨c,c̄⟩) ,

is monotonic in τ−1⟨c, s′1⟩, and sups′1∈Bd⟨c, s′1⟩ = ∥c∥ < ∞ by compactness, p1(c)(1− p1(c)) will
converge to 1

n (1− 1
n ) uniformly over Bd by continuity of the exponential function at zero.

For any given ϵ > 0, Lemma 1 can be combined with

τ ·∆ ≤ ⟨ĉ, s1 − c̄⟩+ ∥τ · g′1 − ĉ∥∥s1 − c̄∥ ,

where ⟨ĉ, s1 − c̄⟩ ≤ 0 for all s1 ∈ Sd−1 by c̄ = ĉ/∥ĉ∥, to obtain ∆ < ε for a sufficiently large τ . In
particular, Lemma 1 yields a τ0 such that ∥τ0 · g′1 − ĉ∥ ≤ ϵ/2, which ensures

∥τ · g′1 − ĉ∥∥s1 − c̄∥ ≤ 2∥τ · g′1 − ĉ∥ ≤ ϵ ,

for all τ ≥ τ0. Hence c̄ is at least an ϵ
τ -PNE for all τ ≥ τ0 (w.l.o.g. τ0 ≥ 1).

The above can be used to obtain a bound on δ := ∥s1 − c̄∥ for s1 ∈ Ψ(c̄). Using orthogonality

∆ = ⟨(I − c̄c̄⊤)g′1, s1 − c̄⟩+ ⟨c̄, g′1⟩⟨c̄, s1 − c̄⟩
≤ τ−1∥s1 − c̄∥

[∥∥(I − c̄c̄⊤)τ · g′1
∥∥− 1

2 ⟨c̄, τ · g′1⟩ ∥s1 − c̄∥
]
,

by the triangle inequality, and ⟨c̄, s1 − c̄⟩ = 1
2 (2⟨c̄, s1⟩ − 2) = − 1

2∥s1 − c̄∥2 by s1, c̄ ∈ Sd−1. The
terms in the square bracket on the r.h.s. can be bounded using the Pythagoras’ theorem

∥τ · g′1 − ĉ∥2 = ∥(I − c̄c̄⊤)(τ · g′1 − ĉ)∥2 + ∥c̄c̄⊤(τ · g′1 − ĉ)∥2

= ∥(I − c̄c̄⊤)τ · g′1∥2 + |⟨c̄, τ · g′1⟩ − ∥ĉ∥|2

where we used (I− c̄c̄⊤)ĉ = 0 and ∥c̄∥ = 1. Because ∥τ ·g′1− ĉ∥ < ϵ, the same is true for (the square
roots of) both terms on the r.h.s. above. By a simple algebraic manipulation of these inequalities

τ ·∆ < δ
[
ϵ− δ

2 (∥ĉ∥ − ϵ)
]
. (5)

The r.h.s. is positive only when 0 < δ < 2ϵ/(∥ĉ∥ − ϵ). Since ϵ in Equation (5) is only used as an
upper bound on ∥τ ·g′1− ĉ∥, and Lemma 1 tells us this norm converges to zero, δ → 0 as τ → ∞.
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Proposition 1. A PNE always exists in n = d = 2 non-negative hardmax games, but may not without
non-negativity or when d > 2. For n = 2 non-negative softmax games with ĉ := 1

n (1− 1
n )E[c] ̸= 0,

the only possible PNE is s1 = s2 = c̄ with c̄ := ĉ/∥ĉ∥ (independently of d), but a PNE may not exist.
When n > 2, non-negative softmax games can have a PNE other than s1 = · · · = sn = c̄.

Proof of Proposition 1. (I) Hardmax: For existence when n = d = 2, let θc be the angle of c from
(w.l.o.g.) [1, 0], and let A ⊂ C denote the set of angles such that for every θm ∈ A, P(θc ≤ θm) ≥ 1

2

and P(θc ≥ θm) ≥ 1
2 , with P implied by the underlying Pc. Then any (s1, s2) ∈ A×A is a PNE.

For non-existence when d > 2, consider d = 3 and Pc = 1
3

∑3
j=1 δcj where cj are the three

canonical basis vectors. Assume s = (s1, s2) is a PNE. Disregards of s1 location, there will be a
point s2 on the great circle connecting the two most distant points from s1 (break ties arbitrarily)
which is closer to both of the two. Hence u2(s) ≥ 2/3 by the assumption that s is a PNE. The same
argument implies u1(s) ≥ 2/3. This is a contradiction since

∑
i ui(s) = 1 by definition.

For non-existence without non-negativity in d = 2, see the hardmax part of the Theorem 2 proof.

(II) Softmax: In the n = 2 case, a necessary condition for s = (s1, s2) to be a PNE is that the
Riemannian gradients of the utility, (I − sis

⊤
i )gi with gi = ∇siui(s), are zero. Since ∇siui(s) =

τ−1 E[pi(c)(1− pi(c))c], gi belongs to the first orthant by the definition of a non-negative game, and
it is not zero (for τ > 0, all probabilities lie in (0, 1), and c is not a.s. zero since we assumed E[c] ̸= 0).
Hence the Riemannian gradients can only be zero if si ∝ gi, and in particular si = gi/∥gi∥2 because
this is the direction which makes dot products with all vectors in the first orthant positive.

Crucially, g1 = g2 in 2-player games due to the symmetry of p1(c)(1 − p1(c)) = p1(c)p2(c) =
p2(c)(1 − p2(c)). Therefore at a PNE, s1 = s2 in which case pi(c) = 1

2 for all c. Thus gi(s) ∝
E[c], implying s1 = s2 = c̄ is the only possible PNE. To show it may not be a PNE, consider
Pc = 1

3 (2δc1 + δc2) for arbitrary non-zero c1 ̸= c2 in the first orthant. Then c̄ ∝ 2c1 + c2 with
u1(c̄, c̄) = u2(c̄, c̄) = 1/2. Fixing s1 = c1/∥c1∥2 and taking τ ↓ 0, we get u1(s1, c̄) → 2/3, which
means there exists a τ > 0 for which s1 = c1/∥c1∥2 is a strict improvement over s1 = c̄ when s2 = c̄.

For the n > 2 case, we focus on a two-dimensional n = 4 game with Pc = 1
2 (δc1 + δc2) with

c1 = [1, 0]⊤ and and c2 = [0, 1]⊤ (the two canonical basis vectors). In particular, we investigate
existence of NE of the form s1 = s2 and s3 = s4. Since d = 2, the strategies are restricted to S1,
which means we can use polar coordinates to parameterize si = φ(θi) := [cos(θi), sin(θi)]

⊤. We
will further restrict our attention to the symmetric case θ1 = θ2 = θ and θ3 = θ4 = π

2 − θ for some
θ ∈ [0, π

4 ] =: K. This allows us to define

Q :=

(
0 −1
1 0

)
,

and look for values of θ ∈ K where (w.l.o.g.) f(θ) := ∂u1(s)
∂s1

∂s1
∂θ1

|θ1=θ = ⟨g1, Qs1⟩ is equal zero.
Note that in the definition of f , all si and gi vary with θ according to the relationship si = φ(θi)
with θ1 = θ2 = θ and θ3 = θ4 = π

2 − θ. However, f(θ) is only the derivative of u1(s) w.r.t. θ1,
ignoring the dependence of s2, s3 and s4 on θ. This definition of f means that only the roots of
f can possibly be NE. The next lemma will help us locate these roots.

Lemma 2. For a sufficiently small τ > 0, f : θ 7→ ⟨g1, Qs1⟩ is strictly convex on K.

Proof of Lemma 2. It is sufficient to prove that f ′′ > 0 on K. For this, observe f ′(θ) =
∥Qs1∥2H1

− ⟨g1, s1⟩ where H1 := ∇2
s1u1(s), and f ′′(θ) = ∥Qs1∥2∇θ1

H1
− ⟨Qs1, 3H1s1 + g1⟩ ≥

∥Qs1∥2∇θ1
H1

− 3∥H1∥2 − ∥g1∥2, where by construction

g1 = 1
2τ

(
p1(c1)(1 − p1(c1))
p1(c2)(1 − p1(c2))

)
,

H1 = 1
2τ2

(
(1 − 2p1(c1))p1(c1)(1 − p1(c1)) 0

0 (1 − 2p1(c2))p1(c2)(1 − p1(c2))

)
∇θ1H1 = 1

2τ3

(
(1 − 6p1(c1)(1 − p1(c1))p1(c1)(1 − p1(c1)) 0

0 (1 − 6p1(c2)(1 − p1(c2))p1(c2)(1 − p1(c2))

)
,
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Figure 7: n > 2 softmax case from the proof of Proposition 1. Left: Symmetric PNE location (here
for τ = 1

4 ). Middle left: Plot of f(θ) = ⟨g1(s), Qs1⟩ with s1 = s2 = φ(θ) and s3 = s4 = φ(π2 −θ).
Right: Plot of utility and its gradient for all possible defection strategies s1 = φ(θ1) with s2, s3, s4
kept put in the positions defined by θ⋆τ from the left plots. Vertical line shows π

4 (right end of K).

Hence ∥Qs1∥2∇θ1
H1

∼ τ−3, ∥H1∥2 ∼ τ−2, and ∥g1∥2 ∼ τ−1, implying that for τ low enough, the
positive term ∥Qs1∥2∇θ1

H1
dominates (using that all expressions share the term p1(c)(1 − p1(c)),

and thus after dividing and observing τ → 0 gives p1(c) close to either one or zero, we get that all
the terms scale as p1(c)(1− p1(c))/τ

k for the appropriate k ∈ {1, 2, 3}).

Lemma 2 implies there are at most two NE (f is strictly convex, and f(θ) = 0 is a necessary
condition). At θ = π

4 , s1 = s2 = s3 = s4 = c̄ by definition, which we know is a critical point,
so f(π4 ) = 0. Since g1 ∝ E[p1(c)(1 − p1(c))c] ̸= 0 for any τ > 0 (c cannot be a.s. 0 by E[c] ̸= 0

and the non-negativity assumption), f(0) = ⟨g1, Qs1⟩ > 0 (s1 = φ(0) = e1 = [1, 0]⊤). The other
possible root of f thus could only be in the interior (0, π

4 ) of K. For small enough τ , moving from
θ = π

8 towards e1 = [1, 0]⊤ will increase utility, implying f(π8 ) < 0. Hence there exists τ > 0 and
θ⋆τ ∈ (0, π

8 ) s.t. f(θ⋆τ ) = 0 by the mean value theorem.

So far we have established that s1 = s2 = φ(θ⋆τ ), s3 = s4 = φ(π2 − θ⋆τ ) is a local NE for the
corresponding small τ . By symmetry, it is sufficient to check if there is a defection strategy for
s1. Any defection to θ1 ∈ (θ⋆τ ,

π
2 − θ⋆τ ] will result in p1(c) < 1

4 for both c = c1, c2, and thus
worse utility. Defection to (π2 − θ⋆τ ,

π
2 ] will not yield utility greater than defection to [0, θ⋆τ ) since

s3 = s4 = φ(π2 − θ⋆τ ), so it is sufficient to focus on θ1 ∈ [0, θ⋆τ ). Here

∇θ1u1(s) = ⟨g1, Qs1⟩
∝ p1(c2)(1− p1(c2)) cos(θ1)− p1(c1)(1− p1(c1)) sin(θ1)

≥ p1(c1)(1− p1(c1))[cos(θ1)− sin(θ1)] ,

since p1(c1) grows quicker than p1(c2) decays. By construction, θ⋆τ < π
4 , and we know

cos(θ) − sin(θ) > 0 for θ ∈ [0, π
4 ). In other words, the utility of s1 is strictly increasing on

θ1 ∈ [0, θ⋆τ ), i.e., none of the corresponding s1 = φ(θ1) is an improvement. Hence s1 = s2 = φ(θ⋆τ ),
s3 = s4 = φ(π2 − θ⋆τ ) is a NE. (The construction is illustrated in Figure 7.)

Proposition 2. Every τ > 0 exposure game with E[c] ̸= 0 has a critical point at s1 = . . . = sn = c̄.

Proof of Proposition 2. When s1 = · · · = sn = c̄, the gradient from Equation (4) is the same for all
producers, and it is proportional to (I − c̄c̄⊤)ĉ. This is equal to zero by c̄ = ĉ/∥ĉ∥.

A.2 INLINE STATEMENTS

Lemma 3. The distribution from the part (I) of the proof of Theorem 2—d = 2, Pc =
1
3

∑3
j=1 δcj

with cj ̸= ck
2π
3 apart—admits a mixed NE P1 = P2 = Pc at τ = 0.

Proof of Lemma 3. By symmetry, ui(Pc, Pc) =
1
2 , ∀i. Since for any s1 ∈ supp(Pc) = {c1, c2, c3}

Ec,s2 [u1(s1, s2) | s1] = 1
3 [u1(s1, c1) + u1(s1, c2) + u1(s1, c3)] =

1
3 [1 · 1

2 + 2 · 1
3 (1 +

1
2 + 0)] = 1

2 ,
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all we need is to show that Ec,s2 [u1(s1, s2) | s1] ≤ 1
2 for any s1 /∈ supp(Pc). W.l.o.g. assume s1 lies

on the geodesic connecting c1 and c3 (i.e., on the arc opposite of c2). Such an s1 is closer to c1 and
c3 than c2 (u1(s1, c2) =

2
3 ), but is further from c1 and c2 (resp. c3 and c2) than c3 (resp. c1). Hence

Ec,s2 [u1(s1, s2) | s1] = 1
3 [u1(s1, c1) + u1(s1, c2) + u1(s1, c3)] =

1
3 [1 · 2

3 + 2 · 1
3 ] =

4
9 .

Since 4
9 < 1

2 , s1 has no incentive to move any of its mass away from supp(Pc).

B HARDMAX GAMES

In this section we present two different algorithms for finding mixed Nash equilibria in two-player
hardmax games. We note that the set of allowable mixed strategies must be restricted in some way
since certain distributions with support on the unit-sphere Sd−1 require infinite storage. Hence,
our first algorithm finds a mixed NE for a discretized strategy space, while our second algorithm
considers settings where Pc is discrete and finds a mixed NE with support over a finite number of
pure strategies in the original non-discretized space, assuming such a mixed NE exists.

We caution that both of these algorithms can only find mixed NE for small exposure games due
to their poor scaling properties. We list them here to highlight the difficulty of solving hardmax
games when compared to the softmax setting and to serve as inspiration for future research into more
efficient algorithms.

B.1 DISCRETIZED GAMES

We first consider the setting where both players may only choose mixed strategies with support
over a finite subset A = {s(1), s(2), . . . , s(m)} ⊂ Sd−1 of pure strategies. This setting includes
embeddings that are represented using floating point numbers although A will be very large. In this
case the mixed strategy of the players can be expressed as an m-dimensional probability vector πi

with πij = Pi

(
s(j)

)
. Since there are a finite set of pure strategies a mixed NE is guaranteed to exist

(Nash Jr, 1950). Furthermore since this is a two-player constant-sum game we can find a mixed NE
by solving the following linear program (Dorfman, 1951)

maximize
α

α

subject to Ux ≥ α1

1⊤x = 1

xi ≥ 0, i = 1, . . . ,m,

where Uij = u1

(
s(i), s(j))

)
. The strategies where π1 = π2 = x correspond to a mixed NE. While

such a problem is simple to formulate and solve, the number of possible strategies grows rapidly with
d for most discretization schemes. For example, we might create a uniform grid of k points over each
spherical coordinate, in which case we will have m = kd−1 pure strategies to consider.

B.2 FINITE SUPPORT

Next, we consider the setting where both players choose mixed strategies with support over at
most m pure strategies, and the support of Pc is over l points, supp(Pc) = {c1, c2, . . . , cl}. Unlike
in the discretized case, the players may choose any pure strategy that lies on Sd−1. We begin by
outlining a method that, given a mixed strategy P , finds all pure strategies D that dominate it:
Es1∼P [u1(s1, s2) − u2(s1, s2)] < 0 for all s2 ∈ D. By symmetry, we w.l.o.g. assume Player 1
provides the mixed strategy. We will then use this method as a subroutine to find a mixed NE.

Lemma 4. (P1, P2) is a mixed NE if and only if Es1∼P1
[u1(s1, s)] ≥ 1

2 and Es2∼P2
[u2(s, s2)] ≥ 1

2

for all pure strategies s ∈ Sd−1.

Proof of Lemma 4. Assume (P1, P2) is a mixed NE, then by definition E(s1,s2)∼(P1,P )[u1(s1, s2)] ≥
1
2 for all mixed strategies P ∈ P(Sd−1), since each pure strategy is also a mixed strategy it follows
that Es1∼(P1,s)[u1(s1, s)] ≥ 1

2 for all s ∈ Sd−1. Similarly for Player 2.
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Now assume we have two mixed strategies (P1, P2) such that Es1∼P1
[u1(s1, s)] ≥ 1

2 and
Es2∼P2

[u2(s, s2)] ≥ 1
2 for all s ∈ Sd−1. Given a mixed strategy P ∈ P(Sd−1) it follows that

E(s1,s2)∼(P1,P )[u1(s1, s2)] = Es2∼P [Es1∼P1
[u1(s1, s2)]]

=

∫
Sd−1

Es1∼P1
[u1(s1, s2)]dP (s2)

≥
∫
Sd−1

1

2
dP (s2) =

1

2
.

Similarly for Player 2.

Lemma 4 allows us to only consider pure strategies when checking if strategies are mixed NE.

Now given a mixed strategy P with finite support supp(P ) = {s(1), s(2), . . . , s(m)} we can find
every subset of Sd−1 that does not satisfy the condition in Lemma 4. By noting that any arbitrary
strategy s can be either closer, farther, or at the same distance from a consumer as a given s(i); we
see that each s(i) partitions Sd−1 into 3l disjoint partitions based upon the distance of the strategies
to each consumer ck. That is, X (i) = {X(i)

1 , X
(i)
2 , . . . , X

(i)

3l
}, with X

(i)
j satisfying

jk =


2 if ⟨s(i), ck⟩ > ⟨s, ck⟩
1 if ⟨s(i), ck⟩ = ⟨s, ck⟩
0 if ⟨s(i), ck⟩ < ⟨s, ck⟩,

for all pure strategies s ∈ X
(i)
j , where jk is the k-th digit in the ternary representation of j. By

considering all m partitions created by the strategies in supp(P ), we can further partition the space
into 3lm disjoint partitions Y = {Y1, Y2, . . . , Y3lm} with Yi =

⋂m
j=1 X

(j)
ij

where ij is the j-th digit
of the 3l-ary representation of i.

For every Y ∈ Y we have Es1∼P [u1(s1, s)] = Es1∼P [u1(s1, s
′)] for all s, s′ ∈ Y by construction.

Thus, we can find the set of all pure strategies D that dominate P by iterating over Y , testing a single
point in each partition, and taking unions:

Z =

{
Y ∈ Y : s ∈ Y =⇒ Es1∼P [u1(s1, s)] <

1

2

}
, D =

⋃
Y ∈Z

Y.

It follows from Lemma 4 that (P, P ) is a mixed NE if and only if D is empty.

Finally, we outline a method to find mixed NE. We first note that for every positive integer m, every
pure strategy s ∈ Sd−1 defines a feasible set Fs of all mixed strategies with support over at most m
pure strategies that are not dominated by s, that is:

Fs =

{
P =

m∑
i=1

πiδs(i) :

m∑
i=1

πiu1(s
(i), s) ≥ 1

2

}
,

where π is an m-dimensional probability vector. It follows from Lemma 4 that if P is mixed strategy
with support over at most m points then (P, P ) is a mixed NE if and only if P ∈ ⋂

s∈Sd−1 Fs. We
can frame finding such a strategy P as an optimization problem

minimize
P⊂P

|P|

subject to P ∩ Fs ̸= ∅, s ∈ Sd−1,

where P is the set of all mixed strategies with support over at most m pure strategies. An optimal
solution with more than one element in P indicates that there does not exist a mixed strategy with
support over m points or fewer, whereas if |P| = 1 then (P, P ) is a mixed strategy where P is the
singleton element in P.

This is an instance of the implicit hitting set problem. Hence, we can use the algorithm proposed
in Section 2.1 of Chandrasekaran et al. (2011) to solve the above optimization problem. Their
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algorithm assumes an oracle that, given a proposed subset P ⊆ P will return a subset Fs that is
not hit P ∩ Fs = ∅ or will certify P as a feasible solution to the above optimization problem. We
can easily achieve this by finding all dominating pure NE using our proposed method above for
each P ∈ P and taking the intersection of the resulting sets. If the intersection is empty then P is a
feasible solution, otherwise every element in the intersection represents a subset Fs that has not been
hit by P.

C EXPERIMENTS

C.1 SETUP

The LastFM dataset was preprocessed by Shakespeare et al. (2020). Original larger scale sweep was
executed with n ∈ {10, 25, 100, 500, 1500}, d ∈ {3, 10, 50, 100}, stepsize in {10−3, 10−2, 10−1},
and τ ∈ {10−2, 10−1, 0.25, 0.5, 1.0}. We only used 2 random seeds for the recommender, and 3
random seeds for our LNE-finding algorithm (i.e., 6 runs in total per configuration). For the reported
results, stepsize sweep was restricted to {10−2, 10−1}; the number of steps was upper bounded by
50,000 (all runs have successfully converged to a fixed point as mentioned). While our code contains
an option to scale_lr_by_temperature (see the config.py file in the provided code),
which multiplies the stepsize by τ before its use, we did not use this option in the experiments.

The second-order Riemannian test (Definition 3) is implemented in manifold.py. Defining the
tangent space projection Πi := (I − sis

⊤
i ), we consider a candidate strategy profile s ∈ (Sd−1)n as

violating the second order test if any of the Riemannian gradients Πi∇siui(s) had ℓ2-norm higher
than 10−5 ·

√
d, or the Riemannian Hessian Πi[∇2

siui(s)]Πi−⟨si,∇siui(s)⟩Πi had a strictly positive
eigenvalue (no tolerance used here).

The final MovieLens and LastFM experiments were run on 72 AWS machines, each with 4 CPU
cores, for 5 hours. Including preliminary and failed runs, we used over 50K CPU hours.

C.2 OPTIMIZER

The gradient ascent optimization technique (Singh et al., 2000; Balduzzi et al., 2018) we employ
is very similar to standard gradient descent algorithm from machine learning literature. Here we
provide a short description of the similarities and differences between the two.

The optimizer we use simultaneously runs n independent gradient descent optimizers, each following
the gradient of the utility ui(s) w.r.t. θi, i ∈ [n], as described around Equation (4) (recall si = θi/∥θi∥).
θi,t+1 is obtained using θj,t for all j ̸= i, i.e., the locations of the other producers from the last
step. All n optimizers execute these steps at the same time, iterating until all of them converge. See
optimisation.py, particularly the optax_minimisation method, for more details.

C.3 ADDITIONAL PLOTS

Appendix C.3.1 contains plots where the second-order test confirmed and LNE. Appendix C.3.2
then offers comparison to a third ranking algorithm: standard matrix factorization (MF; Koren et al.,
2009), i.e., PMF with additional bias terms. The bias terms effect interpretation of τ values, and we
also ignore them when running the LNE-finding algorithm. This makes the comparison with PMF
and NMF difficult, which is why we excluded MF from the main text. Results in Appendix C.3.2
again contain runs where the second-order test did not rule out a LNE.

C.3.1 LNE CONFIRMED BY THE SECOND-ORDER TEST

As mentioned, the plots shown in the main body of the paper are for runs where the second-order
Riemannian test did not rule out that the found pure strategy profile is a LNE. Here we show exactly
the same plots with only the runs where the test confirmed a LNE. The difference is that here we
exclude the runs where the Riemannian Hessian had at least one zero eigenvalue associated with a
direction perpendicular to si, for at least one i ∈ [n]. As you see below, this had little effect on the
LastFM results, but has non-negligibly reduced the number of admitted runs for MovieLens.

C.3.2 MATRIX FACTORIZATION (PMF WITH BIASES) RESULTS
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Figure 8: A counterpart to Figure 4 with runs where LNE test was inconclusive excluded.
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Figure 9: A counterpart to Figure 5 with runs where LNE test was inconclusive excluded.
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Figure 10: A counterpart to Figure 6 with runs where LNE test was inconclusive excluded.
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Figure 11: A counterpart to Figure 4 with added MF results.
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Figure 12: A counterpart to Figure 5 with added MF results. Baselines omitted to reduce clutter.
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Figure 13: A counterpart to Figure 6 with added MF results.
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