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Abstract001

Large Vision-Language Models (LVLMs) have002
shown exceptional performance in multimodal003
tasks, but their effectiveness in complex vi-004
sual reasoning is still constrained, especially005
when employing Chain-of-Thought prompt-006
ing techniques. In this paper, we propose007
VReST, a novel training-free approach that en-008
hances Reasoning in LVLMs through Monte009
Carlo Tree Search and Self-Reward mecha-010
nisms. VReST meticulously traverses the rea-011
soning landscape by establishing a search tree,012
where each node encapsulates a reasoning step,013
and each path delineates a comprehensive rea-014
soning sequence. Our innovative multimodal015
Self-Reward mechanism assesses the quality016
of reasoning steps by integrating the utility of017
sub-questions, answer correctness, and the rele-018
vance of vision-language clues, all without the019
need for additional models. VReST surpasses020
current prompting methods and secures state-021
of-the-art performance across three multimodal022
mathematical reasoning benchmarks. Further-023
more, it substantiates the efficacy of test-time024
scaling laws in multimodal tasks, offering a025
promising direction for future research.026

1 Introduction027

Chain-of-Thought (CoT) prompting (Wei et al.,028

2022; Kojima et al., 2022; Wang et al., 2023; Zhang029

et al., 2022) has been widely recognized as an ef-030

fective technique for enhancing the performance of031

Large Language Models (LLMs) on complex rea-032

soning tasks. Recently, OpenAI o1 (OpenAI, 2024)033

demonstrated the potential of generating ultra-long034

CoTs to achieve inference scaling laws.035

Building on this progress, many studies (Zhang036

et al., 2023; Mitra et al., 2024; Shao et al., 2024;037

Zheng et al., 2023; Gao et al., 2024; Liu et al., 2024;038

Wu et al., 2024) have extended CoT prompting to039

Large Vision-Language Models (LVLMs), aiming040

to enhance their reasoning capabilities in multi-041

modal tasks. While these methods show promise,042
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Figure 1: The difference between VReST and the previ-
ous multimodal CoT prompting methods. The methods
in (a)(b)(c) obtain suboptimal solutions by a greedy
algorithm, while VReST in (d) can fully explore the
reasoning space to obtain the optimal solution.

they often generate limited intermediate reason- 043

ing steps and lack the ability to evaluate and re- 044

fine the generated CoTs. Consequently, these ap- 045

proaches fail to fully unleash the reasoning poten- 046

tial of LVLMs, resulting in marginal improvements 047

on challenging multimodal reasoning tasks (Zhang 048

et al., 2025). As illustrated in Tables 1, 2, and 3, 049

multimodal CoT reasoning underperforms direct 050

question answering (Direct QA) on more complex 051

visual mathematical tasks. 052

To improve LVLM reasoning, a potential so- 053

lution is to construct large LVLM reasoning 054

datasets (Chen et al., 2024; Xu et al., 2023; Shao 055

et al., 2024) and train LVLMs (Cheng et al., 2024; 056

Guo et al., 2024; Zhang et al., 2024a). However, 057

this approach is expensive and difficult to scale. 058

Thus, we focus on developing training-free meth- 059

ods to enhance the reasoning ability of LVLMs. 060

Recent studies have shown that LLM with Monte 061
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Carlo Tree Search (MCTS) (Hao et al., 2023;062

Zhang et al., 2024b; Jiang et al., 2024; Long, 2023;063

Yao et al., 2024) can effectively expand the reason-064

ing space in a training-free manner, improving CoT065

generation. Based on these findings, we extend066

the MCTS algorithm to LVLM. A key component067

of any tree search algorithm is the reward func-068

tion, which guides the model’s exploration within069

the vast space of possible reasoning traces (Feng070

et al., 2023). To ensure a fair comparison with071

baseline methods, we avoid introducing additional072

models. Hence, we propose a multimodal Self-073

Reward mechanism that incorporates visual knowl-074

edge with textual clues.075

To tackle the intricacies of complex vision tasks076

within LVLMs, we introduce VReST, a pioneer-077

ing approach that Enhancing Reasoning in Large078

Vision-Language Models through Tree Search and079

Self-Reward mechanism. Figure 1 shows the dif-080

ference between VReST and existing multimodal081

CoT methods. VReST employs MCTS to system-082

atically navigate the reasoning space, where nodes083

symbolize individual reasoning steps, and paths084

constitute complete reasoning trajectories. By re-085

cursively identifying nodes with high confidence,086

VReST dynamically crafts reasoning steps and fos-087

ters diversity by modulating the temperature of088

LVLM generation, thus enriching the exploration089

of the reasoning space. Based on prior work (Hao090

et al., 2023), we present a multimodal Self-Reward091

mechanism that appraises the merit of reasoning092

steps. It considers sub-question utility, final answer093

correctness, and vision-language clues. Inspired094

by (Lightman et al., 2023), our mechanism assigns095

reward values to each node.096

Finally, VReST expands, evaluates, and back-097

propagates reasoning traces in each iteration,098

thereby refining the search tree by updating node099

statistics. The optimal reasoning trace is selected100

based on the aggregate reward, with the final an-101

swer being extracted from the terminal node. Ex-102

periments show that VReST outperforms exist-103

ing prompting methods on three visual reasoning104

datasets. Moreover, as shown in Section 4.7, the105

performance gain of our approach becomes more106

pronounced with increasing iterations of MCTS,107

surpassing other prompting methods, and demon-108

strating better multimodal test-time scaling. Our109

approach offers a promising direction for training-110

free methods to enhance LVLM reasoning.111

Our main contributions are as follows:112

• We introduce a training-free approach that113

uses MCTS to enhance the depth and qual- 114

ity of reasoning in LVLMs. 115

• We propose a Self-Reward mechanism incor- 116

porating visual information to evaluate reason- 117

ing traces. 118

• We achieve SOTA performance on three mul- 119

timodal mathematical reasoning datasets, out- 120

performing existing prompting methods. 121

• We demonstrate that VReST exhibits a better 122

test-time scaling law in multimodal tasks. 123

2 Related Work 124

2.1 CoT for Large Vision-Language Models 125

Large Vision-Language Models (LVLMs) demon- 126

strate remarkable abilities in integrating visual and 127

linguistic information (Li et al., 2024; Peng et al., 128

2024), but face challenges in tasks requiring com- 129

plex reasoning or multi-hop inferences (Lu et al., 130

2023; Wang et al., 2024a,c; Zhao et al., 2024; Chen 131

et al., 2024). Extending the Chain of Thought 132

(CoT) paradigm (Kojima et al., 2022; Zhang et al., 133

2022) to the multimodal domain offers a promis- 134

ing direction. While many approaches enhance the 135

CoT reasoning abilities of LVLMs through exten- 136

sive training (Xu et al., 2023; Shao et al., 2024; 137

Cheng et al., 2024; Guo et al., 2024), optimizing 138

reasoning traces provides a viable training-free al- 139

ternative. Initial effort adopts a two-stage reason- 140

ing method (Zhang et al., 2023) where rationales 141

precede the final answer to enable step-by-step in- 142

ference. Subsequent advancements augment rea- 143

soning steps with precise visual details, such as 144

scene graphs (Mitra et al., 2024) and related image 145

regions (Shao et al., 2024). To better understand 146

textual information, DDCoT (Zheng et al., 2023) 147

decomposes questions into sub-questions, and uti- 148

lize sub-answers to construct reasoning steps. Can- 149

tor (Gao et al., 2024) further improves this ap- 150

proach by framing LVLMs as multifaceted experts 151

for multi-step reasoning. 152

However, these methods struggle with complex 153

questions due to limited reasoning steps and lack of 154

feedback to refine traces. VReST addresses these 155

issues with a tree search for extended reasoning 156

and reward evaluation for optimal solutions. 157

2.2 Tree-based Reasoning with LLMs 158

Tree-based reasoning methods enhance perfor- 159

mance by increasing computational costs to explore 160

diverse solution spaces (Jiang et al., 2024). Self- 161

Consistency (Wang et al., 2022) improves accuracy 162
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Figure 2: The framework of VReST. (a) Illustrates the MCTS rollout iteration process, including Selection,
Expansion, Rewarding, and Backpropagation steps. (b) Depicts the generation of new reasoning steps using
LVLM based on the constructed prompt. (c) Shows the Self-Rewarding mechanism for calculating the reward of
new reasoning steps, considering both the usefulness of sub-questions and the correctness of the last answer. (d)
Describes the Best-Trace strategy of the final reasoning trace selection.

by sampling multiple reasoning traces, while Tree163

of Thoughts (ToT) (Long, 2023; Yao et al., 2024)164

use heuristic methods to select optimal steps but of-165

ten converges to locally optimal solutions. Breadth-166

First Search(BFS) (Yao et al., 2024) identifies glob-167

ally optimal reasoning traces by exploring the en-168

tire space. Monte Carlo Tree Search (MCTS) (Hao169

et al., 2023; Zhang et al., 2024b) further integrates170

rewarding and backpropagation mechanisms, quan-171

tifying each inference trace across multiple itera-172

tions to identify the globally optimal solution. De-173

spite their potential, tree-based reasoning methods174

have rarely been applied to multimodal reasoning175

tasks. Our framework incorporates visual informa-176

tion into reasoning steps and, to the best of our177

knowledge, is the first to employ MCTS for multi-178

modal CoT reasoning.179

3 Method180

As shown in Figure 2, our approach combines181

Monte Carlo Tree Search (MCTS) with Large182

Vision-Language Model (LVLM) to generate step-183

by-step reasoning traces and evaluate them using a184

Self-Rewarding mechanism. Below, we detail the 185

problem formulation (3.1), the MCTS framework 186

with a Self-Reward mechanism (3.2), as well as the 187

final reasoning trace selection method (3.3). 188

3.1 Problem Formulation 189

Given a question Q and an image I , our goal is to 190

find the optimal reasoning trace P∗ that leads to the 191

correct answer A. Each reasoning trace P consists 192

of an original question and a sequence of reason- 193

ing steps: {Q,S1, S2, ..., Sn}, where each step Si 194

contains a sub-question Qi and its corresponding 195

sub-answer Ai. 196

3.2 Monte Carlo Tree Search Framework 197

In Figure 2(a), we employ MCTS to explore the 198

reasoning space systematically. Each node in the 199

search tree represents a reasoning step Si, and 200

edges represent the transitions between steps. The 201

rollout iteration in MCTS involves four steps: Se- 202

lection, Expansion, Rewarding, and Backpropaga- 203

tion. These steps are iteratively performed K times 204

to explore the reasoning space and refine the search 205
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tree. The experiments in section 4.7 show that206

VReST efficiently utilizes additional iterations to207

refine its reasoning traces, and exhibits a test-time208

scaling law on multimodal reasoning tasks.209

3.2.1 Selection210

In Figure 2(a)(1), we select a path in the search211

tree. Starting from the root node (original question212

Q), we recursively select child nodes according213

to the Upper Confidence Bound applied to Trees214

(UCT) algorithm (Kocsis and Szepesvári, 2006),215

which selects a node v by balancing exploration216

and exploitation:217

UCT (v) = R(v) + c

√
lnN(p(v))

N(v)
, (1)218

where R(v) is the reward value of node v, N(v)219

is the visit count, p(v) is the parent node, and c is220

the exploration constant. The child node with the221

highest UCT value is recursively selected until a222

leaf node is reached.223

3.2.2 Expansion224

We generate new reasoning steps for the selected225

path St using LVLM. As shown in Figure 2(b), the226

prompt for generation is constructed as:227

Pt−1 = [Q,S1, . . . , St−1]. (2)228

Based on the promptPt−1, LVLMs are prompted to229

generate w distinct reasoning steps St by increasing230

the temperature parameter of LVLMs:231

{St,j |j = 1, . . . , w} = LVLM(Pt−1, I), (3)232

where w is the width of the tree.233

Subsequently, the initial reward value of each234

child node is obtained using the Self-Reward mech-235

anism described in Section 3.2.3. Then, we select236

the child node with the highest reward:237

St,selected = argmax
j

R(St,j), (4)238

where R(St,j) denotes the reward value for the239

j-th child node St,j . The selected node St,selected240

becomes the current node in the reasoning trace,241

and the generation process continues to generate242

St+1 according to Equations (2)(3)(4).243

As shown in Figure 2(a)(2), this process con-244

tinues iteratively until either a terminal node is245

reached or the maximum depth Dmax of the tree is246

achieved. As shown in the prompt in Section G.1,247

when the sub-question generated by LVLM con- 248

tains the span “Now we can answer the question”, 249

the node is considered to be a terminal node. In the 250

case that the terminal node is reached, we stop the 251

generation process and backpropagate the reward 252

values as described in Section 3.2.4. 253

3.2.3 Rewarding 254

We introduce a Self-Rewarding mechanism to cal- 255

culate the reward value of the new reasoning step 256

St using two criteria: (1) Usefulness of all the sub- 257

questions on the reasoning trace. (2) Correctness 258

of the last answer on the reasoning trace. 259

First, as shown in Figure 2(c), we concatenate 260

each reasoning step prior to St on the selected rea- 261

soning trace to construct the Rewarding prompt: 262

Pt = [Q,S1, . . . , St]. (5) 263

Then, we calculate the usefulness of all the sub- 264

questions R1 and the correctness of the last answer 265

R2, respectively, and then calculate their geometric 266

mean as the reward value R of reasoning step St: 267

R1 = P (“Yes”|[Pt,PQ], I),
R2 = P (“Yes”|[Pt,PA], I),

R =
√
R1R2,

(6) 268

where P (“Yes”|·) represents the probability that 269

the first token generated by LVLM is “Yes”. PQ is 270

“Are questions Q1, . . . , Qt useful?”. PA is “Is the 271

answer At correct?”. 272

3.2.4 Backpropagation 273

As shown in Figure 2(a)(4), when a terminal node 274

ST is reached, the reward values of each node are 275

backpropagated through all nodes in the selected 276

path, where the T is the number of reasoning steps 277

in the selected path. For each node St in the path, 278

where t = 1, . . . , T , we update its statistics by 279

aggregating the rewards in all future steps of St: 280

R(St) = Avg({R(Si)}Ti=t),

N(St) = N(St) + 1.
(7) 281

3.3 Final Reasoning Trace Selection 282

After completing K MCTS iterations, we select 283

the final reasoning trace P∗ based on the trace re- 284

wards. There are three ways for the reasoning trace 285

selection. 286

Greedy Trace. Starting from root node Q, we 287

select the reasoning trace P∗ by greedily choosing 288

the node with the highest reward at each step. 289
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Methods FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA ALL

QA 60.59 48.56 60.75 56.96 50.28 49.11 52.69 46.03 16.22 34.03 59.84 67.44 55.70
CoT 63.57 40.87 56.99 62.03 48.04 45.91 50.42 42.68 18.92 40.28 59.02 70.43 54.60
CoT-Vote 70.63 48.08 69.89 63.92 56.98 51.60 60.34 50.63 10.81 51.39 60.66 79.07 62.30
Best-of-N 67.66 44.71 59.68 58.86 54.75 48.75 54.96 46.03 13.51 43.06 56.56 75.42 57.70
Cantor 63.57 48.08 62.90 61.39 56.42 50.89 55.81 49.37 21.62 45.83 60.66 70.43 58.60
ToT 66.54 53.37 63.44 61.39 54.19 54.80 55.24 54.39 13.51 43.75 57.38 74.09 60.20
VReST 68.03 56.73 72.04 67.09 58.10 59.43 62.61 58.16 29.73 50.69 67.21 75.75 64.50
VReST-Vote 69.14 51.44 75.81 66.46 64.25 54.45 67.42 53.56 27.03 60.42 68.03 77.74 65.40

Table 1: Accuracy (%) on the testmini set of MathVista, where bold indicates the best results, underlines indicate
the second-best. Task types: FQA: figure question answering, GPS: geometry problem solving, MWP: math word
problem, TQA: textbook question answering, VQA: visual question answering. Mathematical reasoning types:
ALG: algebraic reasoning, ARI: arithmetic reasoning, GEO: geometry reasoning, LOG: logical reasoning, NUM:
numeric commonsense, SCI: scientific reasoning, STA: statistical reasoning. ALL: overall accuracy.

Best Trace. As shown in Figure 2(d), we calcu-290

late the reward value for each trace in the tree:291

R(P) = Avg({R(St)|St ∈ P, t = 1, . . . , T}).
(8)292

And then select the trace with the highest value:293

P∗ = argmax
P

R(P), (9)294

where R(P) denotes the reward value for the trace295

P . Best-Trace is written VReST in Tables 1, 2, 3.296

Trace Vote. Similar to CoT-Vote, after calculat-297

ing the reward of all the reasoning traces by Equa-298

tion (8), we select the n with the highest reward299

value. Trace-Vote is written VReST-Vote in Ta-300

bles 1, 2, 3.301

For the Greedy Trace and Best Trace, the final302

answer A∗
T is extracted from the terminal node303

S∗
T of the selected trace P∗. For the Trace Vote,304

the final answer A∗
T is obtained by extracting the305

majority of the answers from the n selected traces.306

In practice, we observe that the Best Trace and307

Trace Vote strategies usually yield the best results.308

4 Experiments309

4.1 Datasets310

We evaluate our approach on three visual reason-311

ing datasets: MathVista (Lu et al., 2023), Math-312

Vision (Wang et al., 2024a) and CharXiv (Wang313

et al., 2024c). All datasets are evaluated using an-314

swer accuracy. See Appendix B for more details315

on the datasets.316

4.2 Models317

The LVLM used in this paper is Qwen2-VL-7B-318

Instruct (Wang et al., 2024b). The LVLM is uti-319

lized in three components: (1) Generating reason-320

ing steps during expansion. (2) Calculation of R1321

in Rewarding method. (3) Calculation of R2 in 322

Rewarding method. The temperature of LVLM is 323

0.7, the top_p is 0.95. 324

The text-only LLM used in this paper is 325

Qwen2.5-7B-Instruct (Yang et al., 2024). The text- 326

only LLM is utilized in two components: (1) Evalu- 327

ating whether the final answers and golden answers 328

are consistent. (2) Replacing LVLM in the VReST 329

in ablation experiments in Section 4.6. The temper- 330

ature of text-only LLM is 0.7, the top_p is 0.95. 331

4.3 Baselines 332

We compare VReST with six baselines: Question 333

Answering (QA), Chain of Thought (CoT) (Ko- 334

jima et al., 2022), CoT-Vote (Wang et al., 2022), 335

Best-of-N (Lightman et al., 2023), Cantor (Gao 336

et al., 2024), Tree of Thought (ToT) (Yao et al., 337

2024). We control the parameters of the baseline 338

methods to be consistent with VREST, doing our 339

best to maintain a fair comparison. See Appendix C 340

for more details on baselines. 341

4.4 Implementation Details of VReST 342

For each MCTS iteration, we maintain a maximum 343

depth of Dmax = 8 steps and perform K = 10 344

total iterations to ensure adequate exploration of the 345

reasoning space. The exploration constant c = 1 346

in the UCT formula is set to balance exploration 347

and exploitation during the search process. The 348

width of the tree is w = 5. In the VReST-Vote, the 349

selected number of reasoning traces is n = K. The 350

prompts are shown in Appendix G. 351

4.5 Main Results 352

MathVista. The results presented in Table 1 353

clearly highlight the superior performance of 354

VReST and VReST-Vote across various mathemat- 355

ical and visual reasoning tasks on the testmini sub- 356
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Methods ALG AnaG Ari CombG Comb Cnt DescG GrphT Log Angle Area Len SolG Stat Topo TransG ALL

QA 15.79 15.79 10.53 21.05 0.00 5.26 5.26 21.05 15.79 57.89 15.79 36.84 15.79 15.79 15.79 26.32 18.42
CoT 15.79 10.53 15.79 10.53 15.79 10.53 26.32 15.79 15.79 10.53 0.00 10.53 15.79 26.32 21.05 10.53 14.47
CoT-Vote 0.00 26.32 21.05 15.79 42.11 26.32 5.26 26.32 15.79 21.05 31.58 10.53 21.05 31.58 31.58 21.05 21.71
Best-of-N 5.26 31.58 0.00 21.05 21.05 26.32 26.32 15.79 15.79 36.84 26.32 21.05 10.53 21.05 15.79 10.53 19.08
Cantor 5.26 21.05 10.53 15.79 15.79 10.53 0.00 10.53 21.05 15.79 10.53 0.00 5.26 15.79 5.26 15.79 11.18
ToT 21.05 26.32 15.79 21.05 21.05 15.79 15.79 15.79 5.26 31.58 36.84 21.05 15.79 42.11 10.53 10.53 20.39
VReST 21.05 31.58 21.05 21.05 15.79 10.53 10.53 42.11 42.11 15.79 36.84 10.53 26.32 31.58 52.63 36.84 26.64
VReST-Vote 10.53 42.11 15.79 31.58 21.05 21.05 36.84 36.84 26.32 42.11 26.32 31.58 15.79 31.58 36.84 26.32 28.29

Table 2: Accuracy scores (%) on the testmini subset of MATH-Vision. Alg: algebra, AnaG: analytic geometry, Ari:
arithmetic, CombG: combinatorial geometry, Comb: combinatorics, Cnt: counting, DescG: descriptive geometry,
GrphT: graph theory, Log: logic, Angle: metric geometry - angle, Area: metric geometry - area, Len: metric
geometry-length, SolG: solid geometry, Stat: statistics, Topo: topology, TransG: transformation geometry.

set of MathVista. VReST achieves notable suc-357

cess, outperforming other methods in tasks such358

as MWP with 72.04%, SCI with 67.21%, and359

STA with 75.75%. Additionally, the VReST-Vote360

method further elevates accuracy, particularly in361

tasks such as MWP (75.81%), VQA (64.25%), and362

NUM (60.42%), by aggregating multiple reasoning363

traces through a voting mechanism. This reflects364

VReST’s robust ability to handle complex reason-365

ing challenges that require logical, numerical, and366

scientific understanding. Its strength lies in the367

combination of MCTS for systematic exploration368

of reasoning traces and the Self-Reward mecha-369

nism, which dynamically evaluates reasoning steps370

based on sub-question utility, answer correctness371

and visual information. This allows VReST to372

refine its reasoning traces over time, enhancing373

performance in a diverse set of tasks374

MathVision. In Table 2, we evaluate various375

methods on the testmini subset of the MATH-376

Vision dataset, which includes a range of mathemat-377

ical and visual reasoning tasks. VReST achieves an378

overall accuracy of 26.64%, outperforming base-379

line and competitive methods, with notable re-380

sults in GrphT (42.11%), Log (42.11%), and Topo381

(52.63%), outperforming other methods such as382

QA, CoT, and ToT in these tasks, showcasing383

its ability to handle complex geometric reasoning.384

The VReST-Vote method further improves this to385

28.29%, excelling in tasks like AnaG (42.11%), De-386

scG (36.84%), and Angle (42.11%). This demon-387

strates the effectiveness of the voting mechanism388

in aggregating diverse reasoning traces, leading to389

more reliable and accurate solutions. The integra-390

tion of MCTS and the Self-Reward mechanism in391

VReST allows it to effectively explore reasoning392

traces and dynamically adjust to improve perfor-393

mance, particularly in challenging areas like com-394

binatorics and graph theory.395

CharXiv. The results presented in Table 3 on 396

the validation set of the CharXiv dataset clearly 397

highlight the superiority of VReST and VReST- 398

Vote across various domains, particularly in tasks 399

involving complex visual reasoning and interpre- 400

tation of charts and graphs. VReST achieves an 401

overall accuracy of 33.10%, outperforming base- 402

line methods, with notable results in Text in Gen- 403

eral (54.55%), Num in Chart (33.62%), and Math- 404

ematics (40.74%). VReST-Vote improves this to 405

38.10%, with strong performances in Text in Gen- 406

eral (61.62%), Num in Chart (39.22%), and Elec- 407

trical Engineering and Systems Science (45.38%), 408

demonstrating the effectiveness of the voting mech- 409

anism in aggregating diverse reasoning traces. The 410

results indicate that VReST-Vote not only achieves 411

superior performance in individual tasks but also 412

significantly outperforms other methods across a 413

wide range of subjects, highlighting its robustness 414

in addressing the challenges of complex visual rea- 415

soning in the CharXiv dataset. 416

4.6 Ablation Results 417

The importance of visual information. To il- 418

lustrate the importance of visual information, we 419

conducted ablation experiments shown in Figure 420

3a. As described in Section 4.2, the LVLM is uti- 421

lized in three components. We performed ablation 422

experiments by replacing LVLM with text-only 423

LLM in each component separately. The study 424

evaluates different configurations of visual and 425

text-only components across three datasets: Math- 426

Vista, MathVision, and CharXiv. The configuration 427

where all components (reasoning generation, R1, 428

and R2 reward computation) use LVLM achieves 429

the highest performance across all datasets. When 430

visual components are partially replaced with text- 431

only components, the performance drops signifi- 432

cantly. The ablation study clearly demonstrates that 433

6



Methods
Text in
Chart

Text in
General

Num in
Chart

Num in
General

CS EC EESS MATH PHY QB QF STA ALL

QA 31.82 38.38 28.45 22.27 33.33 30.43 31.93 29.63 35.43 25.40 21.55 27.43 29.50
CoT 29.09 40.40 26.72 18.78 21.43 27.54 32.77 29.63 26.77 23.81 23.28 33.63 27.30
CoT-Vote 32.95 45.45 28.88 22.71 26.98 28.99 33.61 30.37 39.37 29.37 25.86 32.74 30.90
Best-of-N 34.09 48.48 28.02 24.02 33.33 30.43 30.25 35.56 38.58 31.75 24.14 29.20 31.80
Cantor 27.73 43.43 30.60 23.58 26.19 27.54 27.73 31.11 37.01 24.60 30.17 27.43 29.00
ToT 34.09 45.45 33.62 20.96 30.95 26.81 36.97 31.85 35.43 29.37 26.72 39.82 32.10
VReST 33.64 54.55 33.62 22.27 30.95 31.16 41.18 40.74 33.86 26.98 30.17 29.20 33.10
VReST-Vote 37.95 61.62 39.22 27.07 37.30 38.41 45.38 43.70 38.58 31.75 36.21 32.74 38.10

Table 3: Accuracy scores (%) on the Validation set of CharXiv. CS: Computer Science, EC: Economics, EESS:
Electrical Engineering and Systems Science, MATH: Mathematics, PHY: Physics, QB: Quantitative Biology, QF:
Quantitative Finance, STA: Statistics.
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Figure 3: (a) Ablation results of different configurations of visual and text-only components. (V, V, V) represents
using LVLM for all components (reasoning generation, R1, and R2 rewarding), while T denotes using text-only LLM.
(b) Ablation results from different reward methods. w/o R1 and w/o R2 denote R1 or R2 is omitted, respectively.
w/o PRM indicates that the Process Reward Model is no longer employed.

visual information is indispensable for LVLM to434

solve complex visual reasoning tasks. Our method,435

VReST, leverages Large Vision-Language Models436

(LVLM) to integrate visual and textual information437

seamlessly, enabling the generation of accurate and438

reliable reasoning traces. Specifically, the Self-439

Rewarding mechanism in VReST relies on both440

visual and textual information to evaluate reason-441

ing traces effectively. Without visual input, the442

model loses the ability to make informed decisions,443

especially in tasks that involve interpreting visual444

elements such as charts, graphs, and geometric fig-445

ures. This is particularly evident in datasets like446

MathVision and CharXiv, where visual reasoning447

plays a central role.448

The importance of reward method. To demon-449

strate the effectiveness of our Self-Rewarding450

mechanism, we conducted ablation experiments451

as shown in Figure 3b. Specifically, w/o R1 and452

w/o R2 denote the scenarios where R1 or R2 is453

omitted during the calculation of the reward value,454

respectively. w/o PRM indicates that the Process455

Reward Model is no longer employed; instead, only456

the reward value of the terminal node is computed,457

while the reward value of non-terminal nodes is458

uniformly set to 0.5. In this case, the reward of non- 459

terminal nodes is updated solely through the back- 460

propagation mechanism. The ablation study clearly 461

demonstrates that the Self-Rewarding mechanism 462

in VReST-Vote is indispensable for achieving high 463

accuracy in complex reasoning tasks. The R1 re- 464

ward ensures that each reasoning step is evaluated 465

and guided toward correctness, while the R2 reward 466

evaluates the final answer to ensure the overall trace 467

is accurate. The Process Reward Method (PRM) 468

plays a crucial role in assigning intermediate re- 469

wards to non-terminal nodes, guiding the reasoning 470

process effectively. Omitting any of these com- 471

ponents leads to a significant performance drop, 472

highlighting the importance of a comprehensive 473

reward mechanism. 474

The importance of selection method. We an- 475

alyze the results of different selection methods 476

for final trace evaluation, as presented in Table 477

4. As described in Section 3.3, there are three 478

methods for the selection of the final trace and 479

evaluation of the final answer: Greedy-Trace, Best- 480

Trace, and Trace-Vote. The study evaluates three 481

methods across three datasets: MathVista, Math- 482

Vision, and CharXiv. The results of the ablation 483

7



2 4 6 8 10
Number of samples or iterations

56

58

60

62

64

Ac
cu

ra
cy

MathVista

2 4 6 8 10
Number of samples or iterations

14

16

18

20

22

24

26

28

Ac
cu

ra
cy

MathVision

2 4 6 8 10
Number of samples or iterations

28

30

32

34

36

38

Ac
cu

ra
cy

CharXiv
CoT-Vote Best-of-N ToT VReST-Vote (our)

Figure 4: The impact of the number of samples or iterations. It shows that our VReST exhibits a better test-time
scaling law than other SOTA methods in multimodal reasoning tasks.

Methods MathVista MathVision CharXiv

Trace-Vote 65.40 28.29 38.10
Best-Trace 64.50 26.64 33.10
Greedy-Trace 60.00 23.03 31.30

Table 4: Results of different selection methods.

study on selection methods demonstrate that the484

Trace-Vote method is the most effective for final485

trace evaluation. By leveraging a voting mecha-486

nism to aggregate multiple high-reward reasoning487

traces, Trace-Vote achieves superior performance488

across all datasets. It effectively mitigates the risk489

of selecting a suboptimal trace by considering a490

broader range of potential solutions. In contrast,491

the Greedy-Trace method relies on a single trace se-492

lection strategy, suffering from a significant perfor-493

mance drop. This indicates that a greedy approach494

may not fully capture the complexity of the reason-495

ing process, especially in tasks that require deep vi-496

sual and logical reasoning. The Best-Trace method,497

while performing better than Greedy-Trace, is still498

outperformed by Trace-Vote. This suggests that499

selecting the single best trace, although effective,500

does not fully exploit the potential of multiple high-501

reward traces. The voting mechanism in Trace-Vote502

provides a more robust and reliable way to deter-503

mine the final answer, especially in complex tasks504

that involve multiple reasoning steps.505

4.7 Multimodal Test-Time Scaling Law506

To investigate the impact of different methods507

on the number of samples or iterations, we con-508

ducted hyperparameter experiments as shown in509

Figure 4 by controlling the number of samples510

in each method. The study evaluates the perfor-511

mance of CoT-Vote, Best-of-N, ToT, and VReST-512

Vote across three datasets: MathVista, MathVision, 513

and CharXiv. The x-axis of Figure 4 corresponds 514

to different hyperparameters across various base- 515

line methods. Specifically, in CoT-Vote, the x-axis 516

represents the number of votes n. In Best-of-N, the 517

x-axis denotes the number of sampled reasoning 518

traces n. In ToT, the x-axis represents the width of 519

the tree w. In VReST-Vote, the x-axis corresponds 520

to the number of iterations for MCTS K. 521

It can be observed that VReST-Vote consistently 522

outperforms the baselines across all numbers of 523

samples or iterations. The superior performance of 524

VReST-Vote can be attributed to its Monte Carlo 525

Tree Search (MCTS) algorithm, which efficiently 526

explores the search space and converges to optimal 527

solutions with relatively fewer iterations. More- 528

over, VReST-Vote shows a more significant per- 529

formance improvement than the baselines as the 530

number of iterations increases, indicating that it 531

efficiently utilizes additional iterations to refine its 532

reasoning traces. This proves that our method ex- 533

hibits a better test-time scaling law on multimodal 534

reasoning tasks. 535

5 Conclusion 536

In this paper, we presented VReST, a novel training- 537

free approach that enhances reasoning capabilities 538

in Large Vision-Language Models through Monte 539

Carlo Tree Search and Self-Reward mechanism. 540

Through extensive experiments on three challeng- 541

ing multimodal mathematical reasoning datasets, 542

VReST significantly outperformed existing prompt- 543

ing methods and achieved state-of-the-art perfor- 544

mance. Furthermore, we validate test-time scaling 545

laws’ applicability to multimodal tasks, offering 546

a promising direction to improving LVLM perfor- 547

mance for future research. 548
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Limitations549

Although our results already outperform baselines550

overall, our work still suffers from the following551

limitations.552

Self-Reward Mechanism To ensure a fair com-553

parison with baseline methods, we designed the554

self-reward mechanism to use the LVLM itself555

for reward scoring, without introducing additional556

models. This approach aligns with the training-557

free nature of our method, enabling quick deploy-558

ment without the need for training a separate re-559

ward model. However, this mechanism heavily560

relies on the LVLM’s own judgments to evaluate561

the quality of reasoning traces. As a result, there is562

a risk that model biases or errors could propagate563

through the reward process, potentially affecting564

the accuracy and reliability of the reasoning pro-565

cess. Future work could involve training an addi-566

tional reward model to assist the LVLM’s reasoning567

process, helping to mitigate potential biases and568

improve the accuracy of the reward signal.569

Computational Cost The MCTS approach re-570

lies on multiple iterations and extensive tree explo-571

ration, resulting in significant computational over-572

head compared to current prompting methods. This573

increased cost may limit the scalability of VReST574

for large-scale applications. In future work, we575

aim to address this by incorporating pruning strate-576

gies or early stopping techniques within the tree577

search process, which could help reduce the com-578

putational burden while maintaining performance.579

Model Dependency Currently, we have only580

evaluated the effectiveness of VReST on the581

Qwen2-VL-7B-Instruct model. Although this582

model demonstrates the benefits of our approach,583

the effectiveness of VReST may vary across dif-584

ferent LVLMs, especially models with different585

architectures, scales, or training regimens. In fu-586

ture work, further experimentation on a wider range587

of LVLMs will be essential to determine the gener-588

alizability of our approach.589

Dataset Dependency Our experiments primarily590

focus on a limited set of visual reasoning datasets.591

While VReST shows promising results on these592

datasets, its performance on other datasets with593

different characteristics, such as those involving594

diverse types of reasoning or tasks outside visual595

reasoning, remains unexplored. Expanding our596

evaluation to a broader set of datasets will help as-597

sess the robustness and versatility of VReST across 598

different multimodal tasks. 599
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A Discussion769

In this section, we will address the following Dis-770

cussion Questions (DQ) to elucidate our contribu-771

tions more clearly.772

DQ1: Why do we not need any additional base-773

lines?774

See Appendix C, where we list all the baselines775

used to compare with our proposed method. How-776

ever, we did not compare with other methods using777

MCTS.778

At present, many MCTS-based methods require779

training the LLM itself or a reward model, such as780

ReST-MCTS* (Zhang et al., 2024a) and LLaMA-781

Berry (Zhang et al., 2024b), among others. Our782

work, as an initial endeavor to introduce MCTS into783

multimodal reasoning tasks, primarily focuses on784

training-free methods. To ensure a fair comparison,785

we have opted not to incorporate additional reward786

models, thereby maintaining the comparability of787

our experiments with baseline methods.788

Consequently, under the training-free setting, we789

have taken into account as many methods as pos-790

sible, and we believe that the current baselines are791

sufficiently comprehensive.792

DQ2: Why the datasets we have chosen are793

sufficient to demonstrate the effectiveness of794

VReST?795

See Appendix B, where we list all the datasets796

used in this paper. While our primary evaluation797

focuses on mathematical reasoning, the datasets798

we selected (MathVista, MathVision, and CharXiv)799

actually cover a broad spectrum of multimodal rea-800

soning tasks. For example:801

MathVista includes various task types like figure802

question answering (FQA), geometry problem solv-803

ing (GPS), and visual question answering (VQA).804

CharXiv contains diverse chart understanding805

tasks involving both descriptive and complex rea-806

soning questions.807

MathVision covers 16 distinct mathematical dis-808

ciplines including topology, graph theory, and geo-809

metric reasoning.810

Therefore, these three datasets can largely prove811

the effectiveness of our method.812

B Datasets813

We evaluate our approach on three visual reasoning814

datasets. The details are given below:815

MathVista (Lu et al., 2023) is a comprehensive816

benchmark dataset designed to evaluate the mathe-817

matical reasoning capabilities of foundation models 818

in visual contexts. It consists of 6,141 examples 819

derived from 28 existing multimodal datasets and 820

3 newly created datasets: IQTest, FunctionQA, and 821

PaperQA. These datasets address the need for eval- 822

uating logical reasoning on puzzle test figures, alge- 823

braic reasoning over functional plots, and scientific 824

reasoning with academic paper figures, respectively. 825

In this paper, we used Mathvista testmini, which 826

includes 1000 samples. 827

MathVision (Wang et al., 2024a) is a metic- 828

ulously curated collection of 3,040 high-quality 829

mathematical problems with visual contexts, 830

sourced from real math competitions such as Math 831

Kangaroo, AMC, and AIME. Spanning 16 distinct 832

mathematical disciplines and graded across 5 levels 833

of difficulty, it provides a comprehensive bench- 834

mark for evaluating the multimodal mathematical 835

reasoning capabilities of large multimodal mod- 836

els (LMMs). The dataset emphasizes both visual 837

perception and mathematical reasoning, covering 838

topics like algebra, topology, and graph theory, and 839

includes both multiple-choice and free-form ques- 840

tions. In this paper, we used MathVision testmini, 841

which includes 304 samples. 842

CharXiv (Wang et al., 2024c) is a comprehen- 843

sive evaluation suite designed to rigorously as- 844

sess the chart understanding capabilities of Multi- 845

modal Large Language Models. Comprising 2,323 846

natural, diverse, and challenging charts sourced 847

from arXiv scientific papers, CharXiv addresses the 848

limitations of existing datasets that often rely on 849

oversimplified, homogeneous charts and template- 850

based questions, leading to an over-optimistic as- 851

sessment of model performance. The dataset in- 852

cludes two types of questions: descriptive ques- 853

tions that focus on extracting basic chart elements 854

and reasoning questions that require synthesizing 855

complex visual and numerical information across 856

charts. To better evaluate the model’s ability to 857

solve complex problems, we use all reasoning ques- 858

tions from the validation set of CharXiv, which 859

includes 1,000 samples. 860

C Baselines 861

We compare VReST with six baseline methods. We 862

control the parameters of the baseline method to be 863

consistent with VREST, doing our best to maintain 864

a fair comparison. 865

Question Answering (QA). It is a straightfor- 866

ward prompting method where the model is given 867
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a question and image and expected to generate a868

direct answer without any intermediate reasoning869

steps.870

Chain of Thought (CoT) (Kojima et al., 2022).871

It is a prompting technique that guides the model872

to break down complex questions into a series of873

simpler sub-questions and solve them sequentially.874

In this paper, we implement zero-shot CoT by ex-875

plicitly asking the model to decompose the original876

question into sub-questions. To ensure a fair com-877

parison, for the generation of sub-questions and878

answers in CoT, we use the same prompt as shown879

in Appendix G.1.880

CoT-Vote (Wang et al., 2022). It extends the881

CoT approach by generating multiple reasoning882

chains and selecting the most frequent answer from883

among them. This method is also known as Self-884

Consistency. In this paper, the number of votes in885

CoT-Vote is n = 10.886

Best-of-N (Lightman et al., 2023). It is an alter-887

native to CoT-Vote, where the reasoning trace with888

the highest reward value is selected from multiple889

reasoning traces as the final answer. We calculate890

the reward value for the last step of each reason-891

ing trace in CoT-Vote using the rewarding method892

described in Section 3.2.3, and then select the one893

with the highest value. In this paper, the number of894

reasoning traces in Best-of-N is n = 10.895

Cantor (Gao et al., 2024). It uses an LVLM as896

a decision maker to break down the question into897

different parts, which are then assigned to different898

experts (also LVLMs) for processing, and finally899

the results of each expert are summarized to obtain900

the final answer.901

Tree of Thought (ToT) (Yao et al., 2024). We re-902

produce the same method as in ToT’s paper. When903

generating each reasoning step, we sample mul-904

tiple different child nodes, and then calculate the905

reward value of each child node through the re-906

warding method in Section 3.2.3. The node with907

the highest value is then iteratively selected in a908

greedy decoding-like manner until a terminating909

node is generated. To ensure a fair comparison, for910

the generation of sub-questions and answers in ToT,911

we use the same prompt as shown in Appendix G.1.912

The width of the tree in ToT is w = 10, and the913

maximum depth in ToT is Dmax = 8.914

D Algorithm915

Algorithm 1 below presents the algorithm used in916

our VReST framework.917

Methods MathVista MathVision CharXiv

QA 1.44 2.46 1.84
CoT 7.28 10.57 9.04
CoT-Vote 15.32 24.18 19.36
Best-of-N 18.56 28.50 21.07
Cantor 21.46 36.39 32.67
ToT 34.39 45.89 39.29
VReST 108.87 157.67 127.58

Table 5: The average time (in seconds) for the different
methods to complete a sample.

E Time efficiency analysis 918

Table 5 shows the average time (in seconds) for the 919

different methods to complete a sample. Note that 920

VReST and VReST-Vote only differ in the Final 921

Reasoning Trace Selection stage, so both take the 922

same time to complete a sample. 923

While VReST does require more computation 924

than standard CoT approaches, we believe the per- 925

formance gains justify the additional cost. 926

F More Experimental Results 927

As shown in Tables 6, 7, 8, we also provide experi- 928

mental results on the smaller model Qwen2.5-VL- 929

3B-Instruct. Experimental results show that our 930

method is still effective on smaller scale models. 931

G Prompt Templates 932

To ensure a fair comparison, for the generation 933

of reasoning steps in VReST, CoT, CoT-Vote, and 934

ToT, we use the same prompts as in the previous 935

work (Hao et al., 2023), as shown in Appendix G.1. 936

For the prompts in Appendix G.1, G.2, and G.3, 937

the samples in the prompts are only used to guide 938

the LVLM in generating content in the expected 939

format, and no multimodal samples are included in 940

the prompts. Therefore, we consider the method in 941

this paper to be a zero-shot prompting technique. 942

For all methods in this paper, we use the prompt 943

template in Appendix G.4 to judge whether the 944

final answer is correct or not. 945

G.1 Reasoning Step Generation 946

As shown in the Prompt Template of Reasoning 947

Step Generation, we input k − 1 sub-questions and 948

corresponding answers and let LVLM continue to 949

generate the k-th sub-question and corresponding 950

answer. Model-generated content is annotated in 951

blue. 952
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Algorithm 1 VReST
Require: Question Q, Image I , Max iterations K, Max depth Dmax, Tree width w
Ensure: Final reasoning trace P∗ and answer A∗

1: function VREST(Q, I,K,Dmax, w)
2: Initialize search tree T with root node Q
3: for k = 1 to K do
4: Pselected ← SELECTION(T ) ▷ UCT-based selection
5: Pexpanded ← EXPANSION(Pselected, w,Dmax)
6: R← SELFREWARDING(Pexpanded, I)
7: BACKPROPAGATION(Pexpanded, R)
8: end for
9: P∗ ← FINALTRACESELECTION(T )

10: return P∗, A∗

11: end function
12: function SELFREWARDING(P, I)
13: Pt ← [Q,S1, . . . , St]
14: R1 ← P (“Yes”|[Pt,PQ], I) ▷ Question usefulness
15: R2 ← P (“Yes”|[Pt,PA], I) ▷ Answer correctness
16: return

√
R1R2

17: end function
18: function EXPANSION(P, w,Dmax)
19: Pcurrent ← P
20: while not terminal and |Pcurrent| < Dmax do
21: {St,j}wj=1 ← LVLM(Pcurrent, I)
22: Rj ← SELFREWARDING([St,j ], I) for j = 1, . . . , w
23: St,selected ← argmaxj Rj

24: Pcurrent ← Pcurrent ∪ {St,selected}
25: end while
26: return Pcurrent
27: end function
28: function FINALTRACESELECTION(T )
29: for each trace P in T do
30: R(P)← AVG({R(St)|St ∈ P})
31: end for
32: P∗ ← argmaxP R(P) ▷ Best Trace strategy
33: A∗ ← extract answer from terminal node of P∗

34: return P∗, A∗

35: end function
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Question: Every box shows the result of the addition of the numbers on the very left and on the

very top (for example: 6+2=8). Which number is written behind the question mark?

Ground Truth Answer：15

Sub- 𝑸𝟏 : What is the pattern being applied in each box?

Sub-𝑨𝟏: The numbers in the boxes following this pattern 

are 17 (6+11), 8 (7+2), 21 (13+8), and ? (unknown). The 

answer is that the pattern is adding the bottom left and 

top right numbers.

Sub-𝑸𝟐: Which numbers from the pattern 

are relevant for solving the problem?

Sub-𝑨𝟐: The relevant numbers for solving 

the unknown box are 10 and 13. The 

answer is 10 and 13.

Sub-𝑸𝟑: What is the sum of the 

relevant numbers?

Sub-𝑨𝟑: The sum of the relevant 

numbers 10 and 13 is 23. The 

answer is 23.

CoT

Sub-𝑸𝟏: What is the rule for filling the boxes?

Sub-𝑨𝟏: The number in each box is the sum 

of the number from the top row and the 

number from the left column. The answer is: 

Box = Top Number + Left Number.

Sub-𝑸𝟐: Are the known boxes operations 

correct?

Sub-𝑨𝟐: Let's verify: 6 + 11 = 17, 6 + 7 = 

13, 6 + 2 = 8. All of them are correct. The 

answer is' verified '.

Sub-𝑸𝟑: What is the value of the number 

written behind the question mark?

Sub-𝑨𝟑: The number above the question 

mark should be 4, because 6+4=10. So 

4+7=11. The final answer is 11.

ToT

Sub-𝑸𝟏: What is the rule for filling the boxes?

Sub-𝑨𝟏: The number in each box is the sum 

of the number from the top row and the 

number from the left column. The answer is: 

Box = Top Number + Left Number.

Sub-𝑸𝟐: What is the missing number in 

the left column?

Sub-𝑨𝟐: From the bottom-right box, we 

know ?+2=10, so ?=10−2=8. The answer 

is: The missing number is 8.

Sub-𝑸𝟑: What number is in the missing 

box?

Sub-𝑨𝟑: Using the rule 8+7=15, the 

missing box contains 15.The answer is: 

15.

VReST

(a)

Question: How many different digits can you find in this picture?

Sub-𝑸𝟏: What digits are visible in the drawing?

Sub-𝑨𝟏: The digits visible in the drawing are 

0, 5, and 3. The answer is 0, 5, and 3.

Sub-𝑸𝟐: How many unique digits are 

present in the drawing?

Sub-𝑨𝟐: The unique digits are 0, 5, and 

3, which gives us 3 unique digits. The 

answer is 3.

Sub-𝑸𝟑: Now we can answer the question: 

How many different digits can you find in 

this picture?

Sub-𝑨𝟑: There are 3 different digits in 

the picture. The final answer is 3.

CoT

Sub-𝑸𝟏: What components of the drawing 

represent digits?

Sub-𝑨𝟏: The digits in the drawing appear in 

various parts, including the face (0 and 5) 

and the feet (3). The answer is 0, 5, and 3.

Sub-𝑸𝟐: Are there any repeated digits in 

the drawing?

Sub-𝑨𝟐: Yes, the digit 0 is repeated in the 

eyes, but it is still counted as a single 

unique digit. The answer is yes.

Sub-𝑸𝟑: How many unique digits are 

present in total?

Sub-𝑨𝟑: After removing duplicates, the 

digits are 0, 5, and 3, which gives us 3 

unique digits. The answer is 3.

ToT

Sub-𝑸𝟏: What digits can be 

identified in the drawing?

Sub-𝑨𝟏: The digits visible in 

the drawing are 0, 5, 3, and 2.

The answer is 0, 5, 3, and 2.

Sub-𝑸𝟐: Are there any other 

digits on the drawing?

Sub-𝑨𝟐: Yes, besides 0, 5, 3, 2, 

there are also 8 and 9. The 

answer is: The digits are 8 and 9.

Sub-𝑸𝟒: Now we can answer the 

question: How many different digits 

can you find in this picture?

Sub-𝑨𝟒: There are 6 different 

digits. The final answer is 6.

VReST

(b) Ground Truth Answer：6

Sub-𝑸𝟑: How many unique 

digits are present in total?

Sub-𝑨𝟑: The unique digits are 0, 

5, 3, 2, 8 and 9. which makes 6 

unique digits. The answer is 6.

(c)

Question: Every box shows the result of the addition of the numbers on the very left and on

the very top (for example: $6+2=8$ ). Which number is written behind the question mark?

Ground Truth Answer：6

Sub-𝑸𝟐: What is the first line equation? Sub-𝑸𝟑: Now we can answer the question: 

What number does the star represent?

Sub-𝑨𝟑: By solving the equation, we can 

conclude that the star represents 7. 

The final answer is 7.

CoT

Sub-𝑸𝟏: What equation can we write based on 

the rows?

Sub-𝑨𝟏: Circle + Star + Heart = 15, 2 ×
Circle + Star = 12, Star + 2 × Heart = 16.The 

answer is the three equations above.

Sub-𝑸𝟐: What is the value of the Circle 

and Heart?

Sub-𝑨𝟐: From the second equation: 2 ×
Circle + Star = 12, and substituting 

Circle = 3, we find Heart = Circle + 3 = 6

Sub-𝑸𝟑: What is the value of the Star?

Sub-𝑨𝟑: Substitute Circle = 3 and Heart = 6 

into the first equation: Circle + Star + Heart 

= 15, which becomes: 3 + Star + 6 = 15, 

so Star = 6.The answer is 6.

ToT

Sub-𝑸𝟐: What can we determine 

from row 1 using the circle value?

Sub-𝑨𝟐: Since circle=4, and 4 + 

s + h = 15, therefore s + h = 11.

The answer is 11.

Sub-𝑸𝟑: What can we 

determine from row 3?

Sub-𝑨𝟑: Since s + h + h = 

16, and we know s + h = 11, 

so h = 5. The answer is 5.

VReST

Sub-𝑸𝟏: What does the second line tell us?

Sub-𝑨𝟏: The sum of three circles is 12, so 

each circle represents 4. The answer is 4.

Sub-𝑸𝟏: What does the 

second line tell us?

Sub-𝑨𝟏: The sum of three 

circles is 12, so each circle 

represents 4. The answer is 4.

Sub-𝑨𝟐: 4+Star+Heart=15, so 

Star+Heart=11. The answer is 11.

Sub-𝑸𝟒: Now we can answer the question: 

What number does the star represent?

Sub-𝑨𝟒: Since s + h = 11 and h = 5, 

then s = 6. Therefore, the star 

represents 6. The answer is 6.

Figure 5: Case study comparing the reasoning results of CoT, ToT, and VReST frameworks. (a) involves determining
the missing value in a grid based on the summation rule. (b) involves identifying all unique digits in a drawing
based on visual patterns. (c) involves determining the missing value in a grid based on algebraic equations.

15



Methods FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA ALL

QA 66.91 64.42 58.60 53.16 51.40 56.23 52.12 61.92 21.62 39.58 62.30 71.10 59.90
CoT 65.43 63.46 56.99 51.90 50.84 55.52 50.99 60.67 18.92 39.58 60.66 69.44 58.70
CoT-Vote 69.89 67.79 65.05 58.86 55.31 60.50 57.51 65.27 29.73 43.75 68.85 74.42 64.20
Best-of-N 69.52 66.35 60.75 55.06 53.07 58.01 54.39 65.27 29.73 41.67 64.75 72.43 62.00
Cantor 69.14 68.75 61.29 58.86 54.19 61.21 55.24 66.53 24.32 43.75 66.39 73.75 63.30
ToT 69.14 70.19 67.74 60.13 57.54 63.35 58.64 67.36 24.32 47.22 68.03 74.42 65.60
VReST 74.35 71.15 67.20 58.86 55.31 64.41 59.21 67.78 37.84 45.14 66.39 77.08 66.50
VReST-Vote 72.12 72.12 67.20 63.92 58.10 65.48 60.34 69.04 40.54 48.61 72.13 74.75 67.40

Table 6: Accuracy scores (%) on the testmini subset of MathVista on the Qwen2.5-VL-3B-Instruct.

Methods ALG AnaG Ari CombG Comb Cnt DescG GrphT Log Angle Area Len SolG Stat Topo TransG ALL

QA 26.32 10.53 21.05 26.32 5.26 10.53 31.58 10.53 26.32 42.11 15.79 26.32 15.79 21.05 10.53 26.32 20.39
CoT 26.32 10.53 15.79 26.32 0.00 5.26 26.32 10.53 26.32 31.58 10.53 21.05 15.79 15.79 5.26 26.32 17.11
CoT-Vote 26.32 15.79 26.32 31.58 10.53 10.53 31.58 10.53 26.32 57.89 15.79 26.32 15.79 26.32 10.53 26.32 23.03
Best-of-N 31.58 10.53 21.05 26.32 5.26 10.53 36.84 10.53 26.32 42.11 15.79 26.32 15.79 26.32 10.53 26.32 21.38
Cantor 21.05 5.26 21.05 15.79 5.26 10.53 26.32 5.26 15.79 31.58 15.79 15.79 5.26 10.53 10.53 26.32 15.13
ToT 31.58 21.05 26.32 26.32 10.53 10.53 31.58 26.32 26.32 42.11 21.05 26.32 15.79 26.32 10.53 26.32 23.68
VReST 42.11 15.79 21.05 31.58 15.79 15.79 31.58 26.32 31.58 57.89 15.79 31.58 31.58 26.32 15.79 36.84 27.96
VReST-Vote 31.58 15.79 31.58 31.58 15.79 31.58 47.37 26.32 26.32 57.89 26.32 36.84 26.32 31.58 15.79 26.32 29.93

Table 7: Accuracy scores (%) on the testmini subset of MATH-Vision on the Qwen2.5-VL-3B-Instruct.

G.2 R1 Rewarding953

As shown in the Prompt Template of Calculating954

Usefulness of All the Sub-questions, we feed the955

current sub-questions and the latest sub-question956

into LVLM and let it judge whether the new sub-957

question is useful or not. Model-generated content958

is annotated in blue.959

G.3 R2 Rewarding960

As shown in the Prompt Template of Calculating961

Correctness of the last Answer, we feed all the cur-962

rent sub-questions and their corresponding answers963

into LVLM and let it judge whether the last an-964

swer is correct or not. Model-generated content is965

annotated in blue.966

G.4 Answer Evaluation967

As shown in the Prompt Template for answer eval-968

uation, we feed the predicted answer together with969

the ground truth into the text-only LLM and let it970

judge whether the predicted answer is correct or971

not.972

H Case Study973

Figure 5 evaluates the capability of VReST in solv-974

ing a series of multimodal reasoning problems in-975

volving numerical and visual patterns. The tasks976

test the ability of reasoning frameworks to interpret977

relationships, verify intermediate steps, and derive978

accurate conclusions across diverse scenarios.979

To address these problems, we compare three 980

frameworks: CoT, ToT, and our proposed VReST. 981

In Case 1, which involves summing corresponding 982

values from a grid to determine a missing num- 983

ber, CoT incorrectly calculates 10+13=23, failing 984

to verify intermediate results like 6+11=17. ToT 985

improves by adopting a tree structure but still mis- 986

judges node selection, concluding an incorrect an- 987

swer of 11. In contrast, VReST uses MCTS to 988

explore alternatives systematically, accurately de- 989

riving 8+7=15 as the solution. 990

In Case 2, which requires identifying unique dig- 991

its in a drawing, CoT lists visible digits as 0,5,3 but 992

overlooks others like 2,8,9, resulting in an incom- 993

plete answer of 3. ToT detects additional digits but 994

fails to verify their uniqueness, producing an erro- 995

neous total of 6. VReST, leveraging visual clues 996

such as digits on the face and feet, systematically 997

identifies all unique digits 0,5,3,2,8,9, arriving at 998

the correct answer of 6. 999

In Case 3, which involves solving a grid of alge- 1000

braic equations, CoT’s linear reasoning misses crit- 1001

ical steps, leading to an incorrect answer of 7. ToT 1002

applies tree-based reasoning but inadequately prop- 1003

agates constraints, yielding 11 as the result. VReST, 1004

however, integrates equations like 4+7+?=11 and 1005

verifies intermediate solutions, correctly determin- 1006

ing the missing value as 6. 1007

We demonstrate a bad case from Figure 6 where, 1008

despite the final output from VReST being incor- 1009

rect, the root cause of the error lies in the in- 1010

16



Methods
Text in
Chart

Text in
General

Num in
Chart

Num in
General

CS EC EESS MATH PHY QB QF STA ALL

QA 30.45 47.47 31.90 21.83 30.95 32.61 27.73 31.11 34.65 30.95 27.59 27.43 30.50
CoT 28.18 44.44 29.31 20.96 28.57 29.71 25.21 28.89 33.86 27.78 26.72 25.66 28.40
CoT-Vote 31.82 49.49 33.19 24.02 33.33 34.06 30.25 31.85 36.22 32.54 27.59 30.09 32.10
Best-of-N 32.73 48.48 34.05 25.33 31.75 34.06 29.41 34.07 35.43 33.33 33.62 30.97 32.90
Cantor 28.18 44.44 31.47 21.40 29.37 31.88 26.05 30.37 33.07 28.57 25.00 26.55 29.00
ToT 33.41 47.47 37.93 24.45 33.33 36.23 30.25 34.81 37.01 33.33 31.03 33.63 33.80
VReST 34.32 51.52 36.21 26.20 33.33 36.96 35.29 36.30 36.22 33.33 31.03 33.63 34.60
VReST-Vote 34.32 52.53 35.78 31.00 34.92 39.86 36.97 34.07 40.16 35.71 30.17 32.74 35.70

Table 8: Accuracy scores (%) on the Validation set of CharXiv on the Qwen2.5-VL-3B-Instruct.

Question: A square piece of paper has been

cut in three pieces. Two of them are in the

picture on the right.

Ground Truth Answer：A

Sub-𝑸𝟏: What was the original shape of the paper?

Sub-𝑨𝟏: The original shape of the paper was a square. The answer is a square.

Sub-𝑸𝟐: How many pieces is the square cut into?

Sub-𝑨𝟐: The square is cut into three pieces. The answer is three pieces.

Sub-𝑸𝟑: What are the two visible pieces shown in the image?

Sub-𝑨𝟑: The two visible pieces shown in the image are a small square and a more 

complex angular shape. The answer is a small square and a complex angular shape.

Sub-𝑸𝟒: Now we can answer the question: What is the third piece?

Sub-𝑨𝟒: The third piece is the shape that completes the square, and based on the 

analysis of the pieces, the answer is the shape that fits with the given cut. The third 

piece is likely option C from the provided choices. The final answer is option C.

Figure 6: Bad case of VReST frameworks.

sufficient granularity of problem decomposition.1011

While VReST is capable of breaking down the1012

problem into sub-questions, and each individual1013

sub-question does not provide incorrect answers,1014

the decomposition itself does not significantly con-1015

tribute to the final answer. Moreover, the difficulty1016

of the problem plays a critical role in this failure.1017

The question belongs to the Level 5 category in the1018

dataset, which is notably challenging and requires1019

a more sophisticated and nuanced breakdown. In1020

this case, the lack of depth in the decomposition1021

did not equip the LVLM with the necessary insights1022

to overcome the complexity of the task.1023

Compared to CoT and ToT, VReST demon-1024

strates superior performance by leveraging mul-1025

timodal fusion and systematic exploration. CoT1026

struggles with intermediate verification, while1027

ToT lacks effective feedback and global judgment.1028

VReST addresses these shortcomings by incorpo-1029

rating MCTS, effectively integrating visual and1030

textual information, and quantifying the reliabil-1031

ity of reasoning traces. Across all cases, VReST1032

not only achieves correct answers but also ensures1033

interpretability and robustness, highlighting its ef-1034

fectiveness in solving complex vision-language rea-1035

soning tasks.1036

1037
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D.1 Prompt Template of Reasoning Step Generation

Instruction

Given a question, please decompose it into sub−questions. For each sub−question, please answer
it in a complete sentence, ending with "The answer is". When the original question is
answerable, please start the sub−question with "Now we can answer the question:".

**Output Example:**

**Question:** Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently
twice as 30 years old, how old is Kody?

Sub−question 1: How old is Mohamed?
Answer 1: He is currently 30 * 2 = 60 years old. The answer is 60.

Sub−question 2: How old was Mohamed four years ago?
Answer 2: Four years ago, he must have been 60 − 4 = 56 years old. The answer is 56.

Sub−question 3: How old is Kody four years ago?
Answer 3: Four years ago, Kody was half as old as Mohamed. So Kody was 56 / 2 = 28 years
old. The answer is 28.

Sub−question 4: How old is Kody now?
Answer 4: Kody is 28 + 4 = 32 years old. The answer is 32.

Sub−question 5: Now we can answer the question: How old is Kody?
Answer 5: Kody is currently 32 years old. The final answer is 32.

Test example:

**Question:** [question]

Sub−question 1: [sub−question 1]
Answer 1: [answer 1]
...
Sub−question k−1: [sub−question k−1]
Answer k−1: [answer k−1]

Answer:

Sub-question k: [sub-question k]
Answer k: [answer k]

18



D.2 Prompt Template of Calculating Usefulness of All the Sub-questions. (R1 Rewarding)

Instruction

Given a question and some sub−questions, determine whether the last sub−question is useful to
answer the question. Output 'Yes' or 'No', and a reason.

**Output Example:**

**Question:** Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently
twice as 30 years old, how old is Kody?
Sub−question 1: How old is Mohamed?
Sub−question 2: How old was Mohamed four years ago?
New Sub−question 3: How old was Kody four years ago?
Is the new question useful? Yes. We need the answer to calculate how old is Kody now.

**Question:** Traci and Harris are baking cakes together. Traci has brought flour from her own
house and Harris has 400g of flour in his house. Each cake needs 100g of flour and Traci and
Harris have created 9 cakes each. How much flour, in grams, did Traci bring from her own
house?
New Sub−question 1: How many cakes did Traci bring from her own house?
Is the new question useful? No. The new question is not related to the original question.

**Question:** A quantity surveyor is figuring out the construction costs for a couple that wishes
to build a house. The costs are as follows: land costs $50 per square meter, bricks cost $100 per
1000 bricks and roof tiles cost $10 per roof tile. If the house they wish to build requires 2000
square meters, 10000 bricks, and 500 roof tiles, how much construction costs are required for
this project?
Sub−question 1: How much does the land cost?
Sub−question 2: How much do the bricks cost?
New Sub−question 3: How much do the roof tiles cost?
Is the new question useful? Yes. We need the answer to calculate the total construction costs.

**Question:** Wallace's water heater is twice the size of Catherine's water heater. If the
capacity of Wallace's water heater is 40 gallons and it's 3/4 full, calculate the total number of
gallons of water they both have if Catherine's water heater is also full with water to 3/4 of its
capacity.
Sub−question 1: How much water is in Wallace's water heater?
New Sub−question 2: How much water do they have in total?
Is the new question useful? No. It is too hard to answer the new question based on the current
information.

Test example:

**Question:** [question]
Sub−question 1: [sub−question 1]
Sub−question 2: [sub−question 2]
...
New Sub−question k: [sub−question k]
Is the new question useful?

Answer:

Yes/No. [reason]
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D.3 Prompt Template of Calculating Correctness of the Last Answer. (R2 Rewarding)

Instruction

Given a question and some sub−questions and answers, determine whether the last answer of the
last sub−question is correct. Output 'Yes' or 'No'.

Test example:

**Question:** [question]
Sub−question 1: [sub−question 1]
Answer 1: [answer 1]
Sub−question 2: [sub−question 2]
Answer 2: [answer 2]
...
Sub−question k: [sub−question k]
Answer k: [answer k]
Is the answer correct?

Answer:

Yes/No.

D.4 Prompt Template for answer evaluation

Instruction

You will be given a **Question**, the **Ground Truth Answer**, and a **Predicted Answer**.
Your task is to compare the **Ground Truth Answer** with the **Predicted Answer** and
determine whether the **Predicted Answer** is correct. It's acceptable to have different
grammar or form. If the **Predicted Answer** is correct, you should say "Yes". If the **
Predicted Answer** is incorrect, you should say "No".

Test example:

**Question:** [question]
**Ground Truth Answer:** [ground_truth]
**Predicted Answer:** [model_response]
Is the **Predicted Answer** correct?

Answer:

Yes/No.
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