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Abstract

Motivated by the incompleteness of modern knowledge graphs, a new setup for query
answering has emerged, where the goal is to predict answers that do not necessarily appear
in the knowledge graph, but are present in its completion. In this paper, we formally
introduce and study two query answering problems, namely, query answer classification
and query answer retrieval. To solve these problems, we propose AnyCQ, a model that
can classify answers to any conjunctive query on any knowledge graph. At the core of our
framework lies a graph neural network trained using a reinforcement learning objective to
answer Boolean queries. Trained only on simple, small instances, AnyCQ generalizes to
large queries of arbitrary structure, reliably classifying and retrieving answers to queries that
existing approaches fail to handle. This is empirically validated through our newly proposed,
challenging benchmarks. Finally, we empirically show that AnyCQ can effectively transfer
to completely novel knowledge graphs when equipped with an appropriate link prediction
model, highlighting its potential for querying incomplete data.

1 Introduction

Knowledge graphs (KGs) are an integral component of modern information management systems for storing,
processing, and managing data. Informally, a KG is a finite collection of facts representing different relations
between pairs of nodes, which is typically highly incomplete (Toutanova and Chen, 2015; Vrandečić and
Krötzsch, 2014). Motivated by the incompleteness of modern KGs, a new setup for classical query answering
has emerged (Ren et al., 2020; Ren and Leskovec, 2020; Zhu et al., 2022; Bai et al., 2023; Yin et al., 2024;
Wang et al., 2022; Xu et al., 2023), where the goal is to predict answers that do not necessarily appear in
the KG, but are potentially present in its completion. This task is commonly referred to as complex query
answering (CQA), and poses a significant challenge, going beyond the capabilities of classical query answering
engines, which typically assume every fact missing from the observable KG is incorrect, following a form of
closed-world assumption (Libkin and Sirangelo, 2009).

In its current form, CQA is formulated as a ranking problem: given an input query Q(x) over a KG G, the
objective is to rank all possible answers based on their likelihood of being a correct answer. Unfortunately, this
setup suffers from various limitations. Firstly, this evaluation becomes intractable for cases where multiple
free variables are allowed1. Moreover, to avoid explicitly enumerating solutions, existing methods need to
resort to various heuristics and most of them can only handle tree-like queries (Arakelyan et al., 2020; Bai
et al., 2023; Zhu et al., 2022) or incur an exponential overhead in more general cases (Yin et al., 2024).
Consequently, the structural oversimplification of queries is also reflected in the existing benchmarks. We
argue for an alternative problem formulation, more aligned with classical setup, to alleviate these problems.

Problem setup. In this work, we deviate from the existing ranking-based setup, and instead propose
and study two query answering problems based on classification. Our first task of interest, query answer
classification, involves classifying solutions to queries over knowledge graphs, as true or false. The second
objective, query answer retrieval, requires predicting a correct answer to the query or deciding none exists.

1As a result, almost all existing proposals focus on queries with only one free variable.
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Figure 1: An example of a query Q(x) over an incomplete knowledge graph, its query graph representation,
and relevant query answer classification and query answer retrieval instances.

Let us illustrate these tasks on a knowledge graph Gex (Figure 1), representing relationships between actors,
movies, and locations. The dashed edges denote the missing facts from Gex and we write G̃ex to denote the
complete version of Gex which additionally includes all missing facts. Consider the following first-order query:

Q(x) = ∃y.Directed(y, “Oppenheimer”) ∧ BornIn(y, x),

which asks about the birthplace of the director of “Oppenheimer”.

• Query answer classification. An instance of query answer classification is to classify a given
answer, such as x → London, as true or false based on the observed graph Gex. In this case, the
answer x→ London should be classified as true, since this is a correct answer to Q(x) in the complete
graph G̃ex, whereas any other assignment should be classified as false.

• Query answer retrieval. An instance of query answer retrieval is to predict a correct answer to
Q(x) based on the observed graph Gex. In this case, the only correct answer is x→ London, which
should be retrieved as an answer to the query Q(x). If no correct answer exists, then None should be
returned as an answer.

Approach and contributions. To solve these tasks, we introduce AnyCQ2, a graph neural network that
can predict the satisfiability of a Boolean query over any (incomplete) KG, provided with a function assessing
the truth of unobserved links. AnyCQ acts as a search engine exploring the space of assignments to the free
and existentially quantified variables in the query, eventually identifying a satisfying assignment to the query.
AnyCQ can handle any existentially quantified first-order query in conjunctive or disjunctive normal form.
Our contributions can be summarized as follows:

1. We extend the classical query answering problems to the domain of incomplete knowledge graphs and
formally define the studied tasks of query answer classification and retrieval, introducing challenging
benchmarks consisting of formulas with demanding structural complexity.

2. We propose AnyCQ, a neuro-symbolic framework based on graph neural networks for answering
Boolean conjunctive queries over incomplete KGs, which is able to solve existentially quantified
queries of arbitrary structure.

3. We demonstrate the strength of AnyCQ on the studied objectives through various experiments,
illustrating its strength on both benchmarks.

4. Specifically, we highlight its surprising generalization properties, including transferability between
different datasets and ability to extrapolate to very large queries, far beyond the processing capabilities
of existing query answering approaches.

We think that our work will inspire further research focusing on classifying query answers, a problem setup
that has not been broadly considered so far.

2The code and data can be found in this GitHub repository.

2

https://anonymous.4open.science/r/ANYCQ/README.md


Under review as submission to TMLR

2 Related work

Link prediction. Earlier models for link prediction (LP) on knowledge graphs, such as TransE (Bordes
et al., 2013), RotatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016) and BoxE (Abboud et al., 2020),
focused on learning fixed embeddings for seen entities and relations, thus confining themselves to transductive
setting. Later, graph neural networks (GNNs) emerged as powerful architectures, with prominent examples
including RGCNs (Schlichtkrull et al., 2018) and CompGCNs (Vashishth et al., 2020). These models adapt the
message-passing paradigm to multi-relational graphs, thus enabling inductive link prediction on unseen entities.
Building on this, Zhu et al. (2021) designed NBFNets which exhibited strong empirical performance via
conditional message passing due to its enhanced expressivity (Huang et al., 2023). Recently, ULTRA (Galkin
et al., 2024a) became one of the first foundation models on LP over both unseen entities and relations.

Complex query answering. Complex query answering (CQA) (Ren et al., 2020; Ren and Leskovec, 2020)
extends the task of link prediction to a broader scope of first-order formulas with one free variable, considering
queries with conjunctions (∧), disjunctions (∨) and negations (¬). Neuro-symbolic models decompose the
CQA task into a series of link prediction problems and employ fuzzy logic to aggregate these individual
results. CQD (Arakelyan et al., 2020) was among the first to use fuzzy logic for CQA, relying on pre-trained
embeddings and beam search for approximate inference. QTO (Bai et al., 2023) improved on this by exploiting
the sparsity of neural score matrices to compute exact solutions without approximation. GNN-QE (Zhu et al.,
2022) further advanced the field by training directly over queries, without relying on pre-trained embeddings.
FIT (Yin et al., 2024) extended the methodology introduced in QTO to queries containing cycles, at the cost
of high complexity. More recently, UltraQuery (Galkin et al., 2024b) has been proposed, leveraging the
CQA framework of GNN-QE with ULTRA as the link predictor, achieving the first foundation model for
CQA, capable of zero-shot inference on unseen KGs. Neural methods generally rely on neural networks to
deduce relations and execute logical connectives simultaneously. CQD-CO (Arakelyan et al., 2020) formulates
query answering as a continuous optimization problem: it uses a pre-trained link predictor and assigns
continuous embeddings to variables, optimizing the fuzzy logic score via gradient descent. LMPNN (Wang
et al., 2022) employs a novel logical message-passing scheme, leveraging existing KG embeddings to conduct
one-hop inferences on atomic formulas. CLMPT (Zhang et al., 2024) extends this methodology by using
an attention-based mechanism to aggregate messages incoming from neighbor nodes. Q2T (Xu et al., 2023)
utilized the adjacency matrix of the query graph as an attention mask in Transformers (Vaswani et al., 2017)
model. While flexible, these approaches lack explicit variable grounding and symbolic interpretability, and
tend to underperform as the size of the query graph increases.

Combinatorial reasoning. GNNs have emerged as a powerful tool for solving combinatorial optimization
problems (Cappart et al., 2021). Their power to leverage the inherent structural information encoded in graph
representations of instances has been successfully utilized for solving various combinatorial tasks (Joshi et al.,
2019; Lemos et al., 2019; Bosnić and Šikić, 2023). As a method of our particular interest, ANYCSP Tönshoff
et al. (2023), introduced a novel computational graph representation for arbitrary constraint satisfaction
problems (CSP), demonstrating state-of-the-art performance on MAX-CUT, MAX-k-SAT and k-COL.

In this work, we identify answering conjunctive queries as a CSP, tailoring the ANYCSP framework to suit
the task of deciding the satisfiability of Boolean formulas over incomplete KGs. Particularly, we integrate link
predictors into our architecture to account for the necessity of inferring relations missing in the observable
data. We also devise new guidance mechanisms to navigate the search during the early stages, targeting the
large domain size. The augmented framework, named AnyCQ, inherits the extrapolation and generalization
strength of ANYCSP, resulting in an efficient and effective model for query answer classification and retrieval.

3 Preliminaries

Knowledge graphs. A knowledge graph (KG) is a set of facts over a relational vocabulary σ, which is
typically represented as a graph G = (V (G), E(G), R(G)), where V (G) is the set of nodes (or vertices), R(G) is
the set of relation types, and E(G) ⊆ R(G)× V (G)× V (G) is the set of relational edges (i.e., facts), denoted
as r(u, v) ∈ E(G) with r ∈ R(G) and u, v ∈ V (G). We write G |= r(a, b) to mean r(a, b) ∈ E(G). We consider
each given KG G = (V (G), E(G), R(G)) as an observable part of a complete graph G̃ = (V (G), E(G̃), R(G))
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that consists of all true facts between entities in V (G). Under this assumption, reasoning over the known
facts E(G) is insufficient, requiring deducing the missing edges E(G̃)\E(G). Note that this formulation
follows the transductive scenario, in which G̃ covers the same sets of entities and relation types as G.

Link predictor. We call a link predictor for a KG G a function π : R(G)× V (G)× V (G)→ [0, 1], where
π(r, a, b) represents the probability of the atom r(a, b) being a fact in E(G̃). The perfect link predictor π̃ for
G̃ is defined as π̃(r, a, b) = 1 if r(a, b) ∈ E(G̃), and 0 otherwise.

First-order logic. A term is either a constant or a variable. A (binary) atom is an expression of the form
r(t1, t2), where r is a binary relation, and t1, t2 are terms. A fact, or a ground atom, has only constants
as terms. A literal is an atom or its negation. A variable in a formula is quantified (or bound) if it is in
the scope of a quantifier; otherwise, it is free. A Boolean formula is a formula without any free variables.
A quantifier-free formula is a formula that does not use quantifiers. For notational convenience, we write
x⃗ = x1, ..., xk and y⃗ = y1, ..., yl to represent sequences of variables and Φ(x⃗, y⃗) to represent a quantifier-free
formula Φ using variables from {x⃗, y⃗}. Similarly, we write a⃗ to represent tuples of constants of the form
a⃗ = a1, ..., ak. For a first-order logic formula Φ(x⃗) with k free variables, we use the notation Φ(⃗a/x⃗) to
represent the Boolean formula obtained by substitution of each free occurrence of xi for ai, for all i.

Query answering. The focus of this work is on conjunctive queries, i.e., existentially quantified first-order
formulas. A conjunctive query (CQ) is a first-order formula of the form Q(x⃗) = ∃y⃗Φ(x⃗, y⃗), where Φ(x⃗, y⃗) is a
conjunction of literals using variables from {x⃗, y⃗}. We reserve {y⃗} for existentially quantified variables and
{x⃗} for free variables. If the query is Boolean, we write Q = ∃y⃗Φ(y⃗).

Given a KG G and a query Q(x⃗) = ∃y⃗Φ(x⃗, y⃗), the assignments ν : {x⃗} → V (G), µ : {y⃗} → V (G) respectively
map the free and quantified variables to constants. For notational convenience, we denote with x⃗ → a⃗
the assignment x1 → a1, . . . , xk → ak. We represent by Φ(⃗a/x⃗, e⃗/y⃗) the formula obtained by substituting
the variables with constants according to the assignments x⃗→ a⃗ and y⃗ → e⃗. We write νx→a for an assignment
such that νx→a(x) = a and νx→a(z) = ν(z) whenever z ̸= x.

A Boolean query Q = ∃y⃗Φ(y⃗) evaluates to true on G, denoted G |= Q, if there exists an assignment y⃗ → e⃗
such that all positive facts that appear in Φ(e⃗/y⃗), appear in the set E(G) and none of the negated facts that
appear in Φ(e⃗/y⃗) are present in E(G). In this case, the assignment y⃗ → e⃗ is called a match. For a query
Q(x⃗) = ∃y⃗Φ(x⃗, y⃗), an assignment x⃗→ a⃗ is called an answer if G |= Q(⃗a/x⃗).

In our study, we make a distinction between easy and hard answers to queries, depending on whether the
answers can already be obtained from the observed KG G or only from its completion G̃. Formally, given an
observed KG G and its completion G̃, we say that an answer a⃗ is easy (or trivial) if G |= Q(⃗a/x⃗). If, however,
G̃ |= Q(⃗a/x⃗) while G ⊭ Q(⃗a/x⃗) then the answer is hard (or non-trivial).

Query graphs. Given a conjunctive query Q(x⃗), its query graph has the terms of Q(x⃗) as vertices, and the
atoms of Q(x⃗) as relational edges. If the underlying undirected version of the resulting query graph is a tree,
we call the query tree-like, otherwise, we say it is cyclic.

Fuzzy logic. Fuzzy logic extends Boolean Logic by introducing continuous truth values. A formula Q
is assigned a truth value in range [0, 1], evaluated recursively on the structure of Q using t-norms and
t-conorms. In particular, Gödel t-norm is defined as ⊤G(a, b) = min(a, b) with the corresponding t-conorm
⊥G(a, b) = max(a, b). For any existential Boolean formulas Q and Q′, the respective Boolean formula score
Sπ,G, w.r.t. a link predictor π over a KG G is then evaluated recursively as:

Sπ,G(r(a, b)) = π(r, a, b)
Sπ,G(¬Q) = 1− Sπ,G(Q)

Sπ,G(Q ∧Q′) = min(Sπ,G(Q), Sπ,G(Q′))
Sπ,G(Q ∨Q′) = max(Sπ,G(Q), Sπ,G(Q′))

Sπ,G(∃x.Q′(x)) = max
a∈V (G)

Sπ,G(Q′(a/x))

Note that the Boolean formula score with a classification threshold of 0.5 is equivalent to applying propositional
logic over link predictions binarized at the same threshold. We hence adopt this setup to mitigate score
degradation in large queries and ensure more stable evaluation (see Appendix A.6).
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4 Query answering on incomplete KGs

4.1 Limitations of existing problem formulations

Intractability of high-arity query evaluation. The objective of complex query answering is to rank all
possible answers to a given logical formula. Already for queries Q(x1, x2) with two free variables, this entails
scoring |V (G)|2 pairs of entities (a1, a2) ∈ V (G)2, which is computationally infeasible for modern knowledge
graphs (Toutanova et al., 2015; Carlson et al., 2010) containing thousands of nodes. As a result, most of the
existing approaches are not designed to handle higher arity queries, either resolving to inefficient enumeration
strategies or approximating answers by marginal predictions. This scalability bottleneck has already been
observed by Yin et al. (2023), who suggested more tractable evaluation methodologies, yet again being only
marginal approximations of the true performance. Therefore, we argue that the ranking-based formulation
has significantly limited the progress in query answering over formulas with multiple free variables.

Limited structural complexity in existing benchmarks. A related limitation lies in the structural
simplicity of existing benchmarks (Ren and Leskovec, 2020). Standard CQA literature predominantly focuses
on tree-like queries, which aligns with the capabilities of most current models. More recently, Yin et al. (2023)
introduced a dataset containing cyclic queries and queries with up to two free variables; however, the overall
structures remained constrained - featuring at most four variables and a single cycle. We argue that addressing
structurally richer queries is essential for advancing automated reasoning systems. In real-world applications
to autonomous systems, such as an AI trip planner that simultaneously books flights, accommodations, and
activities while satisfying budget and availability constraints, the underlying reasoning involves large, complex
queries with multiple variables. As AI agents become more capable, the complexity of the queries they must
resolve is only expected to increase, hence requiring more expressive answering engines.

Lack of probabilistic calibration in ranking-based methods. Practical applications often demand
binary decisions - answering questions like “Is X true?” or “What is the correct answer to Y?”, requiring models
to classify candidate solutions as either true or false (van Bakel et al., 2021). However, many ranking-based
CQA methods do not natively support this decision-making paradigm, as they focus on ordering candidates
without enforcing a meaningful threshold to distinguish valid answers from incorrect ones. While many
of these models are trained using classification losses, such training does not guarantee the output scores
correspond to calibrated satisfiability probabilities. In fact, several approaches rely on Noisy Contrastive
Estimation (Wang et al., 2022; Zhang et al., 2024) or apply ad hoc score-to-probability transformations (Bai
et al., 2023; Yin et al., 2024), further weakening the reliability of predicted scores in downstream tasks.

4.2 Query Answer Classification & Query Answer Retrieval

To address these limitations, we propose two new query answering tasks designed to provide more targeted
responses while ensuring scalability for more complex logical queries.

Query answer classification reflects real-world scenarios where users seek to verify the correctness of a specific
answer rather than navigating through a ranked list of possibilities. It better captures the nature of many
real-world queries, aligning the model’s output with the user’s intent:

Query Answer Classification (QAC)

Input: A query Q(x⃗), tuple a⃗ and an observed graph G.
Output: Does G̃ |= Q(⃗a/x⃗) hold?

Query answer retrieval assesses the correctness of the top-ranked result. By requiring models to either deliver
a correct assignment to the free variables of the input query or confidently assert the absence of one, QAR
aligns more closely with practical decision-making processes, ensuring the output is both relevant and reliable:

Query Answer Retrieval (QAR)

Input: A query Q(x⃗) and an observed graph G.
Output: x⃗→ a⃗ where G̃ |= Q(⃗a/x⃗) or None

5
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Figure 2: The AnyCQ computational graph GQ,α for the query Q = ∃x∃y.s(c, x) ∧ r(x, y) and assignment
α : x→ a, y → c, over a KG with 4 entities and 2 relation types. Literals ψ1 and ψ2 correspond to s(c, x) and
r(x, y), respectively. Predictions of the equipped link predictor exceeding the probability threshold of 0.5 are
displayed in a graph form in the bottom left. Value nodes corresponding to the assignment α are highlighted.

Reduction to conjunctive query answering. Following earlier works (Wang et al., 2022; Yin et al., 2024;
Zhang et al., 2024), we note that each existential first-order logic (EFO) query Q(x⃗) can be represented as an
equivalent Q′(x⃗) ≡ Q(x⃗) in disjunctive normal form: Q′(x⃗) = ∃y⃗.(D1(x⃗, y⃗) ∨ ... ∨Dn(x⃗, y⃗)), where each Di is
a conjunction of literals. Under this decomposition, Q′(x⃗) ≡ Q1(x⃗) ∨ ... ∨Qn(x⃗), where Qi(x⃗) = ∃y⃗.Di(x⃗, y⃗).
Hence Q(⃗a/x⃗) is satisfiable if and only if one of Qi(⃗a/x⃗) is satisfiable, reducing the problem to conjunctive
queries. Contrary to the ranking setting, which requires combining the results for components Qi(⃗a/x⃗) to
obtain a score for Q(⃗a/x⃗), in the classification-based formulation, this aggregation considers only binary ‘true’
and ‘false’ labels. Consequently, we concentrate on conjunctive queries, since answering Q(x⃗) is equivalent to
solving each Qi(x⃗) individually, and the need for merging the outcomes does not introduce further complexity.

5 AnyCQ: framework for query answering

To address the introduced tasks of query answer classification and retrieval, we propose a neuro-symbolic
framework for scoring arbitrary existential Boolean formulas, called AnyCQ. Let π be a link predictor
for an observable knowledge graph G. An AnyCQ model Θ equipped with π can be viewed as a function
Θ(G, π) : CQ0(G)→ [0, 1] where CQ0(G) is the class of conjunctive Boolean queries over the same vocabulary
as G. For input Q = ∃y⃗.Φ(y⃗), Θ searches over the space of assignments to y⃗ for:

αmax = arg max
α:y⃗→V (G)

Sπ,G(Φ(α(y⃗)/y⃗)).

and returns an approximation Θ(Q|G, π) of Sπ,G(Q):

Θ(Q|G, π) = max
visited α

Sπ,G(Φ(α(y⃗)/y⃗))

Note that unfolding the Boolean formula score gives:

Sπ,G(Q) = Sπ,G(Φ(αmax(y⃗)/y⃗)) ≈ Θ(Q|G, π).

Hence, leveraging the strength of GNNs to find optimal solutions to combinatorial optimization problems, we
can recover promising potential candidates for αmax, allowing to accurately estimate Sπ,G(Q).

Overview. During the search, our method encodes the query Q and its relation to the current assignment α
into a computational graph GQ,α (Section 5.1). This graph is then processed with a simple GNN θ (whose
architecture is described in details in Appendix A.1), which updates its hidden embeddings and generates
distributions µ from which the next assignment α′ is sampled (Section 5.2).
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Figure 3: Overview of the AnyCQ framework. At search step t, GNN θ generates hidden embeddings h(t)

and a set of distributions µ(t). The next assignment α(t) is sampled from µ(t) and used to update the edge
labels of GQ,α(t) with respect to the equipped link predictor π.

5.1 Query representation

We transform the input queries into an undirected computational graph (Figure 2), whose structure is
adopted from ANYCSP (Tönshoff et al., 2023). Consider a conjunctive Boolean query Q = ∃y⃗.Φ(y⃗) over
a knowledge graph G, with Φ quantifier-free, and let π be a link predictor for G. Let c1, ..., cn be constant
symbols mentioned in Φ, and ψ1, ..., ψl be the literals in Φ. We define the domain D(e) of the term e as
D(y) = V (G) for each existentially quantified variable y and D(ci) = {ci} for each constant ci. Given an
assignment α : y⃗ → a⃗, the computational graph GQ,α is constructed as follows:

Vertices. The vertices of GQ,α are divided into three groups. Firstly, the term nodes, vy1 , ..., vyk and
vc1 , ..., vcn , represent variables and constants mentioned in Φ. Secondly, value vertices correspond to feasible
term-value assignments. Formally, for each term e mentioned in Φ and any value a ∈ D(e), there exists a
value vertex ve→a. Finally, literal nodes vψ1 , . . . , vψl represent literals ψ1, ..., ψl of Φ.

Edges. We distinguish two types of edges in GQ,α. The term-value edges connect term with value nodes: for
any term vertex ve representing e and any a ∈ D(e), there exists an undirected edge {ve, ve→a}. Additionally,
value-literal edges are introduced to propagate information within literals. If a literal ψi mentions a term e,
then for all a ∈ D(e) there is an edge between vψi and ve→a.

Edge labels. Edge labels embed the predictions of the link predictor π into the computational graph GQ,α
to support guided search. Each value-literal edge connecting a literal vertex vψi with a value node ve→a is
annotated with the potential edge (PE) and the light edge (LE) labels. The PE label PE(vψi , ve→a) is meant
to answer the question: “Can ψi be satisfied under the substitution e→ a?”. For example, when ψ2 = s(x, y),
as in Figure 2, PE(vψ2 , vx,a) denotes whether ∃y.s(a, y) is satisfiable, according to π. We pre-compute the PE
labels using π, binarizing the Boolean formula scores of the form Sπ,G(∃y.s(a, y)) with the threshold 0.5.

In contrast to PE labels, which are independent of the assignment α, light edge (LE) labels reflect how local
changes to α affect satisfiability of the literals. Formally, we set LE(vψi , ve→a;α) = 1 if ψi is satisfied under
the assignment αz→a, and 0 otherwise. In other words, LE labels answer the question: “If we change α so that
z is assigned to a, will ψi be satisfied?”. Satisfiability is again determined by binarizing the prediction score
returned by the link predictor π. Hence, through these edge labels, π effectively guides the search toward
promising updates in the assignment space. Further explanation of edge labels is provided in Appendix A.7.

5.2 AnyCQ search process

The outline of the search process conducted by AnyCQ is presented in Figure 3. Before the search commences,
the hidden embeddings h(0) of all value nodes are set to a pre-trained vector h ∈ Rd and an initial assignment
α(0) is drafted, independently sampling the value for each variable y ∈ {y⃗} uniformly at random from D(y).
The variable and literal nodes are not assigned any hidden embeddings, serving as intermediate steps for
value node embedding updates. At the beginning of search step t, GQ,α(t−1) is processed with a GNN θ,
which generates new value node embeddings h(t), and for each variable y ∈ y⃗ returns a distribution µ(t)

y over
D(y). Finally, the next assignment α(t) is sampled by drawing the value α(t)(y) from µ

(t)
y , independently

for each y ∈ {y⃗}. A precise description of the architecture of θ is provided in Appendix A.1. The search
terminates after T steps, and the generated assignments α(0), α(1), ..., α(T ) are used to approximate Sπ,G(Q):

Θ(Q|G, π) = max
0≤t≤T

Sπ,G

(
Φ
(
α(t)(y⃗)/y⃗

))
7
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5.3 Training

During training on each dataset, we equip AnyCQ with a predictor πtrain, representing the training graph
Gtrain. Thus, the only trainable component of Θ remains the GNN θ. We utilize the training splits from the
existing CQA datasets Ren and Leskovec (2020), hence limiting the scope of queries viewed during training
to formulas mentioning at most three variables. Moreover, we restrict the number of search steps T to at
most 15, encouraging the network to quickly learn to apply logical principles locally. Inspired by prior work
on combinatorial optimization (Shi and Zhang, 2022; Tönshoff et al., 2023; Abe et al., 2019), we train θ in
a reinforcement learning setting via REINFORCE Williams (2004), treating θ as a search policy network
with the objective of maximizing Θ(Q|G, π). This setup enables AnyCQ to generalize across different query
types, scaling to formulas of size several times larger than observed during training, as demonstrated in
Section 6. The complete methodology is presented in Appendix A.2.

5.4 Theoretical and conceptual properties

AnyCQ is complete given sufficiently many search steps – any AnyCQ model equipped with any link
predictor will eventually return the corresponding Boolean formula score:
Theorem 5.1. (Completeness) Let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query and let Θ be any AnyCQ
model equipped with a predictor π. For any execution of Θ on Q, running for T steps:

P (Θ(Q|G, π) = Sπ,G(Q))→ 1 as T →∞

When AnyCQ is equipped with the perfect link predictor for G̃, we can guarantee the soundness of predictions,
i.e., all positive answers will be correct (proofs in Appendix B):
Theorem 5.2. (Soundness) Let Q=∃y⃗.Φ(y⃗) be a conjunctive Boolean query over a knowledge graph G and
let Θ be any AnyCQ model equipped with a perfect link predictor π̃ for G̃. If Θ(Q|G, π̃)>0.5, then G̃ |=Q.

Transferability. By construction, our trained GNN θ is independent of the equipped link predictor π and
the knowledge graph G. Therefore, once trained, an AnyCQ model can be applied to answer queries over
any dataset, with the only necessary augmentation being the change of the equipped link predictor. We
validate this transferability in Section 6.4, comparing the performance of models trained on FB15k-237 and
NELL datasets on the QAR task.

Generality. Although this work focuses on knowledge graphs with binary relations, by construction, AnyCQ
can handle predicates with arbitrary arity requiring no changes in its structure. Assuming the availability of a
relevant link predictor, AnyCQ can hence be applied to hyper-relational data. Similarly, by equipping a fully
inductive link predictor (Galkin et al., 2024a), AnyCQ can serve as a general query answering engine without
the need for interchanging the equipped predictor between input samples. Experiments with equipping
Ultra (Appendix D.5) already point out the potential of AnyCQ in the inductive setting. Importantly, our
method is not limited to scoring only conjunctive Boolean queries and can process all formulas in conjunctive
or disjunctive normal form (see Appendix A.4).

6 Experimental evaluation

We empirically evaluate AnyCQ on the tasks of QAC (Section 6.2) and QAR (Section 6.3). We also conduct
two ablation studies (Section 6.4): first, we assess AnyCQ with a perfect link predictor to isolate and
measure the quality of the search engine independent of the predictor’s imperfections; second, we examine
the generalizability of AnyCQ by applying it to out-of-distribution KGs.

6.1 Experimental setup

Benchmarks and datasets. Existing benchmarks (Ren and Leskovec, 2020; Yin et al., 2023) comprise
formulas with simple structures, thereby impeding the comprehensive evaluation and advancement of novel
methodologies. We address this gap by creating new datasets on top of well-established benchmarks, consisting
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Figure 4: Examples of query graphs of formulas from our FB15k-237-QAR benchmark. Blue nodes represent
constants, grey nodes - distinct existentially quantifies variables, and orange nodes - free variables.

of queries with demanding structural complexity. Specifically, we generate formulas mentioning up to 20
distinct terms, allowing the presence of multiple cycles, non-anchored leaves, long-distance reasoning steps,
and multi-way conjunctions (see Figure 4). The generation process is described in Appendix C. Building on
the existing CQA datasets, we propose two novel benchmarks for QAC: FB15k-237-QAC and NELL-QAC,
each divided into 9 splits, consisting of small and large formulas. For the task of QAR, we observe that many
instances of the simpler query structures, inherited from existing CQA benchmarks, admit easy answers,
i.e. have at least one satisfying assignment supported entirely by observed facts. Combined with their limited
structural complexity, this makes them trivial under the QAR objective, which only requires recovering
a single correct answer. To evaluate reasoning under incompleteness and structural difficulty, we introduce
new benchmarks: FB15k-237-QAR and NELL-QAR, consisting of large formulas with up to three free
variables. In QAC, we focus exclusively on single-variable instances, as multi-variable cases reduce trivially
to the single-variable setting. For example, ⟨Q(x1, x2), (a1, a2), G⟩ is equivalent to a single-variable instance
⟨Q(x1, a2/x2), a1, G⟩, as they both ask if G̃ |= Q(a1/x1, a2/x2).

Baselines. As the baselines for the small-query split on our QAC task, we choose the state-of-the-art
solutions from CQA capable of handling the classification objective: QTO (Bai et al., 2023), FIT (Yin et al.,
2024), GNN-QE (Zhu et al., 2022) and UltraQuery (Galkin et al., 2024b). Considering the large-query
splits, we were surprised to notice that no existing approaches can be applied in this setting, as none of them
can simultaneously: 1) efficiently handle cyclic queries and 2) produce calibrated probability estimates,
without the knowledge of the trivial answers.

Indeed, standard methods like BetaE (Ren and Leskovec, 2020), CQD (Arakelyan et al., 2020), ConE (Zhang
et al., 2021), GNN-QE (Zhu et al., 2022) or QTO (Bai et al., 2023) are limited to tree-like queries. Neural
approaches, such as LMPNN (Wang et al., 2022) or CLMPT (Zhang et al., 2024), are trained using Noisy
Contrastive Estimation; hence their predictions do not meaningfully translate to desired probabilities. Finally,
FIT (Yin et al., 2024) and Q2T (Xu et al., 2023) require transforming scores predicted by their ComplEx-based
link predictors, while all known schemes (see Appendix D.1) assume the set of easy answers is known, or
otherwise, trivial to recover. Hence, we furthermore use an SQL engine, implemented by DuckDB (Raasveldt
and Mühleisen, 2019), reasoning over the observable graph. For the same reasons, extended by the need of
reasoning over queries with multiple variables, we consider only the SQL engine as the baseline for QAR
experiments. In both cases, we limit the processing time to 60 seconds, ensuring termination in a reasonable
time. Additional evaluations ablating the impact of this timeout, using 30, 60, and 120 seconds thresholds,
are included in Appendix E. Training details for the considered baselines are provided in Appendix D.

Methodology. Given a Boolean query Q over an observable KG G, an AnyCQ model Θ equipped with a
link predictor π for G can decide if G̃ |= Q, by returning whether Θ(Q|G, π) > 0.5. We use this functionality
to solve QAC instances by applying our AnyCQ models directly to Q(⃗a/x⃗). For the QAR task, given a query
Q(x⃗) over an observable KG G, we run our AnyCQ framework on the Boolean formula ∃x⃗.Q(x⃗), returning
None if the returned Θ(∃x⃗.Q(x⃗)|G, π) was less than 0.5. Otherwise, we return α(x⃗) where α is the visited
assignment maximizing the Boolean formula score. In both scenarios, we perform 200 search steps on each
input instance in the large query splits, and just 20 steps for small QAC queries. We equip NBFNet as the
link predictor for both QAC and QAR evaluations (details in Appendix D.5).

Metrics. Given the classification nature of both our objectives, we use the F1-score as the metric for query
answer classification and retrieval (see Appendix C.4 for details). In QAR, we mark a positive solution as
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Table 1: Average F1-scores of considered methods on the query answer classification task.

Dataset Model 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC

SQL 66.0 61.7 70.0 67.0 78.1 74.8 37.0 32.2 35.3
QTO 67.1 64.4 70.8 67.7 78.5 75.9 – – –
FIT 68.0 65.1 71.4 67.8 78.6 76.7 – – –

GNN-QE 77.1 73.5 80.1 81.2 79.0 77.0 – – –
UltraQuery 75.2 68.9 79.8 76.8 75.9 78.6 – – –

AnyCQ 75.8 71.3 82.1 78.8 76.7 75.7 52.4 49.9 51.9

NELL-QAC

SQL 60.9 58.8 63.3 59.6 76.7 74.9 33.9 31.4 27.0
QTO 63.9 64.1 68.2 61.7 74.5 75.3 – – –
FIT 63.9 64.6 68.4 61.7 73.6 75.7 – – –

GNN-QE 70.4 69.7 71.2 72.1 72.2 74.9 – – –
UltraQuery 66.3 65.6 73.2 71.1 73.2 73.4 – – –

AnyCQ 76.2 72.3 79.0 75.4 76.7 75.3 57.2 52.6 58.2

Table 2: F1-scores on the QAR datasets. k is the number of free variables in the input query.

Dataset Model 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

FB15k-237-QAR SQL 65.8 46.2 17.8 45.7 59.9 50.2 33.7 48.7 60.6 49.3 42.5 51.2
AnyCQ 67.8 62.3 50.2 60.5 60.4 54.0 48.2 54.5 63.0 56.9 43.1 54.8

NELL-QAR SQL 63.5 41.3 24.0 46.7 60.6 42.1 32.9 47.7 52.7 42.5 27.6 42.8
AnyCQ 66.7 55.1 39.1 55.8 65.1 57.1 46.5 57.6 58.7 51.1 39.6 51.1

correct only if the returned assignment is an answer to the input query. In contrast to the CQA evaluation,
we do not distinguish between easy and hard answers, since the task of efficiently answering queries with
advanced structural complexity, even admitting answers in the observable knowledge graph, is not trivial.

6.2 Query answer classification experiments

The results of evaluation on the introduced QAC benchmarks are presented in Table 1. As expected, GNN-QE
and UltraQuery outperform ComplEx-based FIT and QTO, with GNN-QE displaying the best scores out
of the considered baselines. Equipped with the same NBFNet predictors, AnyCQ matches its performance,
achieving only marginally (within 3% relative) lower F1-scores on FB15k-237-QAC, and leading by far on
NELL-QAC evaluations. Importantly, AnyCQ successfully extrapolates to formulas beyond the processing
power of the existing CQA approaches. On all proposed large query splits AnyCQ consistently outperforms
the SQL baseline: SQL classifies only easy answers accurately, mapping all the hard answers to false, and as
a result falls behind AnyCQ.

6.3 Query answer retrieval experiments

We present the QAR evaluation results across all splits of the two proposed datasets consisting of large
formulas with multiple free variables in Table 2. Compared with the SQL engine which can only extract easy
answers, AnyCQ can reliably achieve similar performance on easy answers while also extracting hard answers
over these large formulas, thus outperforming the standard SQL engine in almost all metrics. Importantly,
as the number of free variables k increases, the performance gap between AnyCQ and SQL becomes more
pronounced. This improvement is due to AnyCQ’s computation graphs that effectively handle the rising
query complexity without sacrificing performance, substantially gaining over traditional solvers.

Easy and hard recall on QAR. To further interpret the results on our query answer retrieval benchmarks,
we analyze the recall metric, distinguishing between easy and hard samples (Table 3). As anticipated, the
performance of the SQL engine degrades as the number of free variables in the input query increases. While
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Table 3: Recall on the easy and hard samples from the QAR datasets. k is the number of free variables.

Dataset Model 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

Easy instances

FB15k-237-QAR SQL 88.7 61.2 26.4 62.8 87.2 71.7 52.6 71.9 85.3 63.6 61.4 70.5
AnyCQ 83.3 84.2 71.6 80.5 79.1 71.1 72.1 74.3 74.0 67.0 52.3 65.0

NELL-QAR SQL 94.5 69.0 55.4 79.6 90.1 69.0 63.4 77.9 88.8 78.6 64.0 80.2
AnyCQ 93.0 89.4 86.5 90.7 89.6 88.8 79.6 87.1 89.4 84.5 81.3 86.1

Hard instances

FB15k-237-QAR SQL 0 0 0 0 0 0 0 0 0 0 0 0
AnyCQ 11.7 7.8 11.1 10.2 8.8 7.0 6.5 7.4 16.8 10.8 8.0 11.7

NELL-QAR SQL 0 0 0 0 0 0 0 0 0 0 0 0
AnyCQ 7.0 7.0 4.0 5.9 9.7 9.2 8.2 9.0 9.2 8.1 5.8 7.7

Table 4: F1-scores of AnyCQ models applied outside the training knowledge graph domain.

AnyCQ specification FB15k-237-QAR NELL-QAR

Predictor type Training dataset 3-hub 4-hub 5-hub 3-hub 4-hub 5-hub

NBFNet-based, FB15k-237 60.5 54.5 54.8 55.9 58.7 49.4
pre-trained on G NELL 58.8 53.5 52.6 55.8 57.6 51.1

perfect π̃ for G̃ FB15k-237 94.4 93.4 93.0 95.5 96.4 96.2
NELL 92.2 90.4 90.2 94.5 95.7 94.9

a similar behavior can be witnessed for AnyCQ models, it progresses at a much slower rate, and as a
consequence, AnyCQ consistently outperforms SQL on nearly all splits involving more than one free variable.
Additionally, for unary queries, AnyCQ’s recall remains within 15% relative to SQL, retrieving answers for
over 70% of trivial queries across most splits.

As shown in Table 3, AnyCQ is capable of finding non-trivial answers, even to complicated queries. In contrast,
the SQL engine, as a classical approach, cannot retrieve answers to queries that lack a correct solution in
the observable knowledge graph. AnyCQ, leveraging a link predictor, demonstrates the ability to retrieve
unobserved yet correct answers, even for large, structurally complex queries with multiple free variables.

6.4 Ablation studies

How does AnyCQ perform outside the training domain? As mentioned in Section 5.4, we expect the
search engine to exhibit similar behavior on processed instances, regardless of the underlying knowledge graph.
We validate this claim by applying AnyCQ models trained on FB15k-237 or on NELL to both datasets,
equipping a relevant link predictor. The results on our QAR benchmarks are presented in Table 4. Notably,
the differences between models’ accuracies in QAR are marginal, confirming that the resulting search engine
is versatile and not dataset-dependent. In fact, the model trained on FB15k-237 exhibits better performance
on both datasets, further aligning with our assumption on the transferability and generalizability of AnyCQ.

How does AnyCQ perform with a prefect link predictor? The AnyCQ framework’s performance
heavily depends on the underlying link prediction model, responsible for guiding the search and determining the
satisfiability of generated assignments. Hence, to assess purely the quality of our search engines, we equipped
them with perfect link predictors for the test KGs, eliminating the impact of predictors’ imperfections. The
results of experiments on our QAR and QAC benchmarks are available in Table 4 and Table 5 , respectively.
Remarkably, the simple query types in QAC pose no challenge for AnyCQ, which achieves 100% F1-score on
all of them. Furthermore, on large formula splits, the F1-score remains over 90%, displaying the accuracy of
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Table 5: F1-scores of AnyCQ model equipped with a perfect link predictor on the QAC task.

Dataset 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC 100 99.9 100 100 100 100 92.4 91.4 93.8
NELL-QAC 100 100 100 100 100 100 93.0 89.4 91.3

Figure 5: AnyCQ search step time analysis for queries of different complexities: a) average step time (AST)
per the number of variables |y⃗|, b) AST divided by the number of variables |y⃗|, c) AST divided by the number
of literals |Q|, d) AST divided by |y⃗|+ 2|Q|, the complexity factor indicated by the theoretical analysis.

our search framework. Similarly, for the task of QAR, AnyCQ with a perfect link predictor achieved over
90% F1-score, establishing the engine’s excellent ability to retrieve answers to structurally complex questions.

How does AnyCQ’s scale when the query size increases? Let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean
query over a knowledge graph G. Denote by |Q| the number of literals in Q, let h be the maximum arity
of a literal in Q, and let c⃗ = (c0, ..., cs) be the mentioned constants. Then, the corresponding computational
graph contains (|V (G)|+ 1) · |y⃗|+ 2 · |⃗c|+ |Q| vertices and at most |V (G)| · (|y⃗|+ h · |Q|) + h · |⃗c| · |Q| edges.
Since AnyCQ processes this graph in linear time, the computational complexity of a single search step is:

O (|V (G)| · (|y⃗|+ h · |Q|) + h · |⃗c| · |Q|)

Importantly, this complexity does not depend on the structure of the query graph of Q and scales only linearly
with the sizes of the input formula and the KG G. We validate this linearity, evaluating the average AnyCQ
search step time for queries of different sizes from the ‘3hub’ splits. The results, presented in Figure 5, indicate
that the empirical performance matches the theoretical analysis. In particular, Figure 5 b) and c) show
that the processing time, divided by the number of variables |y⃗| or the number of literals |Q| in the input
query, respectively, does not grow as the size of the query increases. We even notice a slight decreasing trend,
which we attribute to efficient GPU accelerations. The difference between step times on FB15k-237-QAR
and NELL-QAR remains consistent with the relative sizes of the underlying knowledge graphs. A further
analysis of processing time, including a comparison with the SQL engine, is provided in Appendix E.

7 Summary, limitations, and outlook

In this work, we devise and study two new tasks from the query answering domain: query answer classification
and query answer retrieval. Our formulations target the challenge of classifying and generating answers to
structurally complex formulas with an arbitrary number of free variables. Moreover, we introduce datasets
consisting of instances beyond the processing capabilities of existing approaches, creating strong benchmarks
for years to come. To address this demanding setting, we introduce AnyCQ, a framework applicable for
scoring and generating answers for large conjunctive formulas with arbitrary arity over incomplete knowledge
graphs. We demonstrate the effectiveness over our QAC and QAR benchmarks, showing that on simple
samples, AnyCQ matches the performance of state-of-the-art CQA models, while setting challenging baselines
for the large instance splits. One potential limitation is considering by default the input query in disjunctive
normal form, converting to which may require exponentially many operations. We hope our work will motivate
the field of query answering to recognize the classification nature of the induced tasks and expand the scope
of CQA to previously intractable cases.
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A AnyCQ details

A.1 Architecture

AnyCQ’s architecture is based on the original ANYCSP Tönshoff et al. (2023) framework. The trainable
components of the AnyCQ GNN model θ are:

• a GRU Chung et al. (2014) cell G : Rd × Rd → Rd with a trainable initial state h ∈ Rd

• a Multi Layer Perceptron (MLP) value encoder E : Rd+1 → Rd

• two MLPs MV ,MR : Rd → R4d sending information between value and literal vertices

• three MLPs UV ,UR,UX : Rd → Rd aggregating value, literal and variable messages

• an MLP O : Rd → R that generates logit scores for all variable nodes.

We denote the set of neighbors of term and literal nodes by N (·). In the case of value nodes, we distinguish
between the corresponding term node and the set of connected literal vertices, which we represent by NR(·).

The model starts by sampling an initial assignment α(0), where the value of each variable is chosen uniformly
at random from V (G), and proceeds for T search steps. In step t:

• If t = 1, initialize the hidden state of each value node to be h(0)(vz→a) = h.

• Generate light edge labels under the assignment α(t−1) for all value-literal edges. Precisely, let vψi be
a literal node corresponding to an atomic formula ψ and vz→a be a connected value node. The light
edge label L(t−1)

E (vψi , vz→a;α) is a binary answer to the question: “Is ψ satisfied under
[
α(t−1)]

z→a
?”

with respect to the equipped predictor.

• For each value node vz→a, generate its new latent state

x(t)(vz→a) = E
([

h(t−1)(vz→a), δα(x)=v

])
where [·, ·] denotes concatenation and δC = 1 if the condition C holds, and 0 otherwise.

• Derive the messages to be sent to the constraint nodes:

m(t)(vz→a, 0), ...,m(t)(vz→a, 3) = MV

(
x(t)(vz→a)

)
• For each literal node vψ, gather the messages from its value neighbors, considering the light and

potential labels:

y(t)(vψ) =
⊕

vz→a∈N (vψ)

m(t)
(
vz→a, 2 · PE(vψ, vz→a) + L

(t−1)
E (vψ, vz→a;α)

)
where

⊕
denotes element-wise max.

• The messages to be sent to the value nodes are then evaluated as:

m(t)(vψ, 0), ...,m(t)(vψ, 3) = MR

(
y(t)(vψ)

)
• Aggregate the messages in each value node vz→a:

y(t)(vz→a) =
⊕

vψ∈NR(vz→a)

m(t)
(
vz→a, 2 · PE(vψ, vz→a) + L

(t−1)
E (vψ, vz→a;α)

)
and integrate them with current hidden state:

z(t)(vz→a) = UV

(
x(t)(vz→a) + y(t)(vz→a)

)
+ x(t)(vz→a)
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• For each term node vz, aggregate the states of the corresponding value nodes:

z(t)(vz) = UX

 ⊕
vz→a∈N (vz)

z(t)(vz→a)


• For each value node vz→a, update its hidden state as:

h(t)(vz→a) = G
(

h(t−1)(vz→a), z(t)(vz→a) + zt(vz)
)

• Generate logits and apply softmax within each domain:

o(t)
z→a = clip

(
O
(

h(t)(vz→a)
)
− max
a∈D(z)

O
(

h(t)(vz→a)
)
, [−100, 0]

)
µ(t)(vz→a) = exp o(t)

z→a∑
a′∈D(z) exp o(t)

z→a′

• Sample the next assignment α(t), selecting the next value independently for each variable x, with
probabilities P

(
α(t)(x) = a

)
= µ(t)(vx→a) for all a ∈ D(x).

Note that the suggested methodology for evaluating probabilities P
(
α(t)(x) = a

)
is approximately equivalent

to applying softmax directly on O
(
h(t)(vx→a)

)
. However, applying this augmentation, we are guaranteed

that for any variable x and a relevant value a ∈ D(x):

P
(
α(t)(x) = a

)
= exp o(t)

x→a∑
a′∈D(x) exp o(t)

x→a′

≥ e−100

|D(x)| ≥
1

e100|V (G)| .

A.2 Training methodology

Suppose we are given a training query Q(x) = ∃y⃗.Φ(x, y⃗). We run Θ on ∃x.Q(x) for Ttrain search steps,
recovering the assignments α(0), ..., α(Ttrain) and the intermediate value probability distributions:

µ(1) =
{
µ(1)
z |z ∈ {x⃗, y⃗}

}
, . . . , µ(Ttrain) =

{
µ(Ttrain)
z |z ∈ {x⃗, y⃗}

}
The reward R(t) for step 1 ≤ t ≤ T is calculated as the difference between the score for assignment α(t) and
the best assignment visited so far:

R(t) = max
(

0, S(t) −max
t′<t

S(t′)
)

where S(t) = Sπtrain

(
Φ(α(t)(x)/x, α(t)(y⃗)/y⃗)

)
. Additionally, the transition probability

P (t) = P
(
α(t)|µ(t)

)
=

∏
z∈{x⃗,y⃗}

µ(t)
z

(
α(t)(z)

)
represents the chance of drawing assignment α(t) at step t, given distributions

{
µ

(t)
z |z ∈ {x⃗, y⃗}

}
. The

corresponding REINFORCE’s training loss is evaluated as a weighted sum of rewards generated during Ttrain
search steps and the model weights are then updated using the gradient descend equation:

θ ← θ − α · ∇θ

(
−
Ttrain−1∑
i=0

γi

((
logP (t)

)
·
Ttrain∑
t=i+1

(
γt−i−1R(t)

)))
where γ ∈ (0, 1] is a discount factor and α ∈ R is the learning rate.

For the training data, we use the training splits of the existing FB15k-237 and NELL CQA datasets Ren and
Leskovec (2020), consisting of queries of types: ‘1p’, ‘2p’, ‘3p’, ‘2i’, ‘3i’, ‘2in’, ‘3in’, ‘pin’, ‘inp’ (see Table 6
for the corresponding first-order logic formulas). Hence, during training, AnyCQ witnesses queries with
projections, intersections and negations, learning principles of this logical structures. However, all of these
queries mention at most 3 free variables, remaining limited in size.
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Table 6: Simple query types

Split Formula
1p Q(x1) = r1(x, c1)
2p Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1)
3p Q(x1) = ∃y1, y2.r1(x1, y1) ∧ r2(y1, y2) ∧ r3(y2, c1)
2i Q(x1) = r1(x, c1) ∧ r2(x, c2)
3i Q(x1) = r1(x, c1) ∧ r2(x, c2) ∧ r3(x, c3)
pi Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1) ∧ r3(x1, c2)
ip Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, a1) ∧ r3(y1, a2)
2i Q(x1) = r1(x, c1) ∧ ¬r2(x, c2)
3i Q(x1) = r1(x, c1) ∧ r2(x, c2) ∧ ¬r3(x, c3)

inp Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1) ∧ ¬r3(y1, c2)
pin Q(x1) = ∃y1.r1(x1, y1) ∧ r2(y1, c1) ∧ ¬r3(x1, c2)

A.3 Hyperparameters and implementation

Architecture. We choose the hidden embedding size d = 128 in the AnyCQ architecture for all experiments.
All MLPs used in our model consist of two fully connected layers with ReLU Agarap (2018) activation
function. The intermediate dimension of the hidden layer is chosen to be 128.

Training. The REINFORCE Williams (2004) discount factor λ is set to 0.75 for both datasets, following the
best configurations in ANYCSP experiments. During training, we run our models for Ttrain = 15 steps. The
batch size is set to 4 for FB15k-237 and 1 for NELL, due to the GPU memory constraints. All models are
trained with an Adam Kingma and Ba (2015) optimizer with learning rate 5 · 10−6 on a single NVIDIA Tesla
V100 SXM2 with 32GB VRAM. We let the training run for 4 days, which translates to 500,000 batches on
FB15k-237 and 200,000 batches for NELL, and choose the final model for testing.

Inference. To run all experiments, we use an Intel Xenon Gold 6326 processor with 128GB RAM, and an
NVIDIA A10 graphics card with 24GB VRAM.

A.4 Scope of formulas

Importantly, our method is not limited to conjunctive formulas. Suppose we are given a Boolean formula
φ = ∃y⃗.Ψ(y⃗) where Ψ(y⃗) is quantifier-free and in disjunctive normal form (DNF), so that Ψ(y⃗) = C1 ∨ ...∨Cn
where each Ci is a conjunction of literals. Then:

φ ≡ (∃y⃗.C1) ∨ ... ∨ (∃y⃗.Cn)

which can be processed by AnyCQ by independently solving each (∃y⃗.Ci) and aggregating the results.
Moreover, the ability of our model to handle higher arity relations enables efficient satisfiability evaluation
for existential formulas in the conjunctive normal form. Let ψ = ∃y⃗. (D1 ∧ ... ∧Dn) where each Di is a
disjunction of literals. Consider Di = li,1 ∨ ...∨ li,m and let z⃗i = Var(Di). We can view the disjunctive clause
Di as a single relation Di(z⃗i) evaluating to

Sπ,G(Di(α(z⃗i)/z⃗i)) = max
j
Sπ,G(li,j(α(Var(li,j))/Var(li,j)))

Under this transformation, ψ = ∃y⃗. (D1(z⃗1) ∧ ... ∧Dn(z⃗n)) becomes a conjunctive query, hence processable
by AnyCQ. Up to our knowledge, we present the first query answering approach efficiently scoring arbitrary
CNF Boolean queries over incomplete knowledge graphs.
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A.5 Expressivity

Standard graph neural networks are known to have limited expressive power Xu et al. (2019), e.g. MPNNs
cannot produce different outputs for graphs not distinguishable by the Weisfeiler-Lehman algorithm Leman
and Weisfeiler (1968). We argue that AnyCQ does not suffer from this limitation. It has been noticed that
including randomness in GNN models increases their expressiveness Abboud et al. (2021). In our case, for
any Boolean conjunctive query Q = ∃y⃗Φ(y⃗) over a knowledge graph G and a relevant link predictor π, for
any assignment α : {y⃗} → V (G), there is a non-zero probability of α being selected at some point of the
search (see Appendix A.1). Hence, any AnyCQ model has a chance of correctly predicting Sπ,G(Q), making
it fully expressive for the tasks of QAC and QAR.

A.6 Fuzzy logic

Fuzzy logic has been widely adopted in the CQA literature as a way to evaluate the satisfiability of log-
ical formulas in a continuous, differentiable manner. It underpins several prominent methods, including
CQD (Arakelyan et al., 2020), GNN-QE (Zhu et al., 2022), and QTO (Bai et al., 2023), due to its modularity
and interpretability. However, especially when applied to large and structurally complex queries, fuzzy logic
introduces several limitations that should be taken into account.

Score vanishing. Consider a conjunction of 10 literals, each scored at 0.9 by the link predictor. When
using the product t-norm, the formula score becomes 0.910 ≈ 0.35, despite all individual facts being highly
probable. This effect becomes more pronounced in long formulas, leading to overly conservative judgments.
To mitigate this, we adopt the Gödel t-norm (min operator), which in the same scenario would return a more
stable score of 0.9. Additionally, using the Gödel t-norm with a 0.5 threshold is equivalent to applying
propositional logic over binarized literal scores, making it well-suited for our classification-based objectives.

Gradient instability in supervised learning. As discussed by Van Krieken et al. (2022), another issue
with fuzzy logic arises in differentiable learning settings, where gradients must propagate through the query
structure and the fuzzy connectives. This can lead to vanishing or unstable gradients, especially for large or
cyclic queries. In our case, however, this problem is largely avoided: AnyCQ is trained using reinforcement
learning, where the fuzzy logic score is used as a scalar reward signal and not differentiated through. During
training, we apply REINFORCE, which treats the Boolean score as an external reward, and during inference,
fuzzy logic is only used to rank complete assignments. As such, our framework sidesteps the gradient-related
challenges described in Van Krieken et al. (2022), while retaining the benefits of fuzzy logic for scoring.

A.7 Edge labels

To effectively navigate the space of variable assignments, our framework augments the computational graph
GQ,α with edge labels that encode information from the link predictor π. These edge labels play a critical
role in guiding the search process by helping the model answer two fundamental questions:

• Which assignments to variables are worth considering? (exploration)

• How should the current assignment be changed to satisfy more literals? (exploitation).

To this end, we define two types of edge labels on the graph edges connecting literal vertices vψi with value
vertices ve→a: potential edge (PE) labels and light edge (LE) labels. PE labels are used to identify whether
a particular substitution could lead to a satisfying assignment and are independent of the current state. They
support exploration by indicating globally promising directions in the search space and can be seen as a way
to constrain the search to regions of high potential. In contrast, LE labels are assignment-dependent and
indicate whether a local change - modifying a single variable’s value, would make a particular literal true.
They enable exploitation by directing the model toward refinements of the current assignment that increase
the satisfiability of the formula. We describe each type of label in detail in the following subsections.
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A.7.1 LE Labels: Guiding Local Improvements

Light edge (LE) labels were originally introduced in the ANYCSP (Tönshoff et al., 2023) framework as the
primary mechanism for guiding discrete search. In the context of query answering, their purpose is to identify
marginal changes to the current variable assignment that are likely to increase the number of satisfied literals
in the query. That is, given an assignment α, LE labels help determine which single-variable substitutions
are most promising for improving the current solution. This makes them particularly useful during local
exploitation, where the goal is to refine an existing candidate assignment rather than explore the full space.

Formal definition. Let Q = ∃y⃗.Φ(y⃗) be an existential Boolean conjunctive query, and let ψi be a literal
in Q, mentioning terms z⃗. Let α be the current assignment to the variables of Q, and let e ∈ z⃗ be a term
in ψi. For a candidate entity a ∈ D(e) (recall that D(e) = V (G) for variables and D(e) = {e} for constants),
the LE label on the edge between the literal vertex vψi and the value vertex ve→a is defined as follows:

LE(vψi , vz,a;α) =
{

1 if Sπ,G(ψi(αz→a(z⃗)/z⃗)) ≥ 0.5
0 otherwise

This definition reflects whether updating the current assignment α by changing only the value of e to a
(keeping all other variable assignments fixed) is sufficient to make the literal ψi true.

Example. Suppose the query is:

Q = ∃y1, y2.r(a, y1) ∧ s(y1, y2)

with the current assignment α = {y1 → a1, y2 → a2}, and we focus on the literal ψ2 = s(y1, y2). Let’s consider
a marginal update to the variable y2, and let a′

2 ∈ D(y2). To determine the LE label LE(vψ2 , vy2→a′
2
;α), we

check whether s(a1, a
′
2) holds in the (predicted) KG G̃. If it does, then this local update would satisfy ψ2,

and the label is set to 1. Otherwise, the label is 0. This allows the model to reason about whether changing
y2 to a′

2 would improve the current assignment in terms of satisfying more of the query structure.

A.7.2 PE Labels: Prioritizing Promising Assignments

Potential edge (PE) labels are introduced in this work as an extension to the ANYCSP framework, specifically
to address the challenges posed by the large domain sizes in modern knowledge graphs. While LE labels
guide the refinement of a given assignment, PE labels serve a complementary purpose: they help identify
which candidate variable assignments are worth considering in the first place. In other words, PE labels
support exploration by informing the model which edges in the computational graph represent substitutions
that are likely to participate in some satisfying assignment, independent of the current state.

Formal definition. Formally, let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query, let ψi ∈ Φ be a literal
mentioning terms z⃗, and let e ∈ z⃗. Then, for every a ∈ D(e), the PE label on the edge between vψi and ve→a

is defined as follows:

PE(vψi , vz,a) =
{

1 if ∃α. (α(e) = a ∧ Sπ,G(ψi(α(z⃗)/z⃗)) ≥ 0.5)
0 otherwise

Intuitively, the label is set to 1 if there exists any full assignment to the variables of ψi such that ψi becomes
true when e is set to a. Importantly, this is evaluated without reference to the current partial assignment α,
making PE labels suitable for filtering the search space early in the computation.

Example. Consider the same example query as before:

Q = ∃y1, y2.r(a, y1) ∧ s(y1, y2)

and the literal ψ2 = s(y1, y2). Let a2 ∈ D(y2) be a viable assignment to y2. To evaluate the PE label
PE(vψ2 , vy2→a2), we check whether ∃y1.s(y1, a2) is satisfied, i.e. whether there exists some a1 such that the
literal s(a1, a2) is true, according to the link predictor π. If such a1 exists, we set the label to 1, and otherwise
- to 0. This allows the GNN to prioritize reasoning about value assignments that could plausibly contribute
to satisfying the query, rather than wasting capacity on highly unlikely candidates.
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Table 7: F1-scores of AnyCQ models with and without PE labels.

FB15k-237-QAR NELL-QAR
PE labels 3-hub 4-hub 5-hub 3-hub 4-hub 5-hub

✓ 56.3 52.7 54.1 51.4 53.0 48.4
× 0.0 0.0 0.0 0.0 0.0 0.0

Importance of PE labels. We empirically validate the significance of this modification on the proposed
QAR benchmark. To this end, we train an AnyCQ model from scratch, disabling the signal from PE labels
by setting all of them to 0 throughout the training and inference. The results, shown in Table 7, demonstrate
that without access to PE labels, AnyCQ fails to generalize to queries of large size and is unable to produce
a correct answer, even for a single sample.

PE label generation. Given the critical role of this modification in our framework, it is essential to address
the efficient generation of PE labels. In this work, we pre-compute PE labels for both datasets, aligning them
precisely with the definitions, with respect to the selected test link predictors. However, this process can
become computationally expensive, potentially requiring hours, and becoming highly inefficient, particularly
in scenarios where the link predictor frequently changes, e.g. during validation. To mitigate this inefficiency,
we propose alternative methodologies to approximate true PE labels, enabling faster cold-start inference.

Our main alternative bases on the closed world assumption (CWA) Libkin and Sirangelo (2009), which
restricts the set of entities that should be considered for prediction of unobserved facts. Formally, let G be an
observable knowledge graph and let G̃ be its completion. Then, for any r ∈ R(G) and any a, b ∈ V (G):

G̃ |= r(a, b) =⇒ ∃b′ ∈ V (G) . G |= r(a, b′)

G̃ |= r(a, b) =⇒ ∃a′ ∈ V (G) . G |= r(a′, b)

With this assumption, the set of pairs for which G̃ |= r(a, b) holds becomes limited. Indeed, a needs to be a
head of an observable relation r(a, b′) and analogously, b needs to be a tail of an observable r(a′, b). Therefore,
the induced approximation of PE labels:

P̂E(vr(x,y), vx,a) =
{

1 if ∃b′ ∈ D(y).G |= r(a, b′)
0 otherwise

P̂E(vr(x,y), vy,b) =
{

1 if ∃a′ ∈ D(x).G |= r(a′, b)
0 otherwise

can be efficiently derived in time O(|E(G)|). We use this modification during the validation process to avoid
the necessity of computing the precise PE labels.

An alternative approach, not explored in this work, involves incorporating domain-specific information about
the underlying knowledge graph. For instance, if the relation in a given query is fatherOf, both entities
are likely to be humans. By labeling all entities in V (G) with relevant tags, such information could be
extracted, and objects classified as ‘people’ could be assigned a corresponding PE label of 1. While we
prioritize generalizability and do not pursue this direction, we recognize its potential, particularly for sparse
knowledge graphs where CWA-derived PE labels may be too restrictive.

PE labels versus domain restriction. An alternative to relying on an additional set of labels to prevent
the search from accessing unreasonable assignments could be restricting the domains D(y) of the considered
variables. In the current formulation, each variable y mentioned in the input Boolean query Q is assigned a
domain D(y) = V (G). Reducing the considered domains can significantly shrink the computational graph,
leading to faster computation. Such a solution would be specifically beneficial when operating on large
knowledge graphs, and even essential for applications to milion-scale KGs, such as Wikidata-5M (Wang et al.,
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2021). While this approach improves inference efficiency, improper application can render correct answers
unreachable due to excessively restrictive domain reductions. Consequently, we leave further exploration of
this direction for future work.

B Proofs

Theorem 5.1. Let Q = ∃y⃗.Φ(y⃗) be a conjunctive Boolean query and let Θ be any AnyCQ model equipped
with a predictor π. For any execution of Θ on Q, running for T steps:

P (Θ(Q|G, π) = Sπ,G(Q))→ 1 as T →∞

Proof. Let Θ be an AnyCQ model equipped with a predictor π for a knowledge graph G. Let Q = ∃y⃗.Φ(y⃗)
be a conjunctive Boolean query with y⃗ = y1, ..., yk. Let

αmax = arg max
α:y⃗→V (G)

Sπ,G(Φ(α(y⃗)/y⃗))

so that
Sπ,G(Q) = Sπ,G(Φ(αmax(y⃗)/y⃗))

Consider an execution of Θ, running for T steps, and let α(0), ..., α(T ) be the generated assignments. Then,

P (Θ(Q|G, π) ̸= Sπ,G(Q)) = P
(
Sπ,G(Q) ̸= Sπ,G

(
Φ
(
α(t)(y⃗)/y⃗

))
for all 0 ≤ t ≤ T

)
≤ P

(
Sπ,G(Q) ̸= Sπ,G

(
Φ
(
α(t)(y⃗)/y⃗

))
for all 1 ≤ t ≤ T

)
≤ P

(
α(t) ̸= αmax for all 1 ≤ t ≤ T

)
By the remark at the end on Appendix A.1:

P
(
α(t)(y) = a

)
≥ 1
e100|V (G)| ∀1 ≤ t ≤ T ∀a ∈ V (G) ∀y ∈ y⃗

In particular:
P
(
α(t)(y) = αmax(y)

)
≥ 1
e100|V (G)| ∀1 ≤ t ≤ T ∀y ∈ y⃗

so as the value for each variable in α(t) is sampled independently:

P
(
α(t) = αmax

)
≥
(

1
e100|V (G)|

)k
Therefore:

P (Θ(Q|G, π) ̸= Sπ,G(Q)) ≤ P
(
α(t) ̸= αmax for all 1 ≤ t ≤ T

)
≤

(
1−

(
1

e100|V (G)|

)k)T
which tends to 0 as T →∞.
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Proposition B.1 (Scores of a Perfect Link Predictor). Let Q be a quantifier-free Boolean formula over an
observable knowledge graph G. Then, the score of Q w.r.t. the perfect link predictor π̃ for the completion G̃
of G satisfies:

Sπ̃,G(Q) =
{

0 if G̃ ̸|= Q

1 if G̃ |= Q

Proof. The claim follows from the structural induction on the formula Q. For the base case, suppose that
Q is an atomic formula r(a, b). The result follows trivially from the definition of a perfect link predictor π̃.
Assume the claim holds for boolean formulas Q,Q′. Then:

Sπ̃,G(¬Q) = 1− Sπ̃,G(Q) =
{

1 if G̃ ̸|= Q

0 if G̃ |= Q
=
{

1 if G̃ |= ¬Q
0 if G̃ ̸|= ¬Q

For (Q ∧Q′), note that G̃ |= (Q ∧Q′) ⇐⇒
(
(G̃ |= Q) ∧ (G̃ |= Q′)

)
and hence

Sπ̃,G(Q ∧Q′) = min (Sπ̃,G(Q), Sπ̃,G(Q′)) =
{

1 if Sπ̃,G(Q) = Sπ̃,G(Q′) = 1
0 otherwise

=
{

1 if G̃ |= Q ∧ G̃ |= Q′

0 otherwise

=
{

1 if G̃ |= (Q ∧Q′)
0 if G̃ ̸|= (Q ∧Q′)

Similarly, for (Q ∨Q′), since G̃ |= (Q ∨Q′) ⇐⇒
(
(G̃ |= Q) ∨ (G̃ |= Q′)

)
, we can deduce:

Sπ̃,G(Q ∨Q′) = max (Sπ̃,G(Q), Sπ̃,G(Q′)) =
{

0 if Sπ̃,G(Q) = Sπ̃,G(Q′) = 0
1 otherwise

=
{

0 if G̃ ̸|= Q ∧ G̃ ̸|= Q′

1 otherwise

=
{

0 if G̃ ̸|= (Q ∨Q′)
1 if G̃ |= (Q ∨Q′)

which completes the inductive step.

Theorem 5.2. Let Q = ∃y⃗.Q(y⃗) be a conjunctive Boolean query over an unobservable knowledge graph G̃
and let Θ be any AnyCQ model equipped with a perfect link predictor π̃ for G̃. If Θ(Q|G, π̃) > 0.5, then
G̃ |= Q .

Proof. Consider the setup as in the theorem statement and suppose Θ(Q|G, π̃) > 0.5. Then, there exists an
assignment α : y⃗ → V (G) (found at some search step) such that

Sπ̃,G(Φ(α(y⃗)/y⃗)) = Θ(Q|G, π̃) > 0.5

By Proposition B.1, this implies:

Sπ̃,G(Φ(α(y⃗)/y⃗)) = 1 and G̃ |= Φ(α(y⃗)/y⃗)

Hence, G̃ |= ∃y⃗.Φ(y⃗) = Q.
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Figure 6: Visualisation of the process of generating large queries for our benchmark datasets,
with nhub = 2, pout = 0.5 and nmin = 5. The resulting sampled query is:
Q(x1) = ∃y1, y2, y3, y4(r2(x1, y2) ∧ r1(y2, y1) ∧ r2(x1, y3) ∧ r5(y3, y4) ∧ r3(y4, x1) ∧ r4(c1, y4))

Figure 7: Examples of undirected query graphs of formulas from the FB15k-237-QAR ‘3-hub’ split. Blue
nodes represent constant terms, while grey - to the existentially quantified variables. The orange node
corresponds to the free variable.
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C Dataset constructions

Benchmark datasets in the existing query answering literature, FB15k-237 Toutanova et al. (2015) and
NELL Carlson et al. (2010), comprise formulas with simple structures, thereby impeding the comprehensive
evaluation and advancement of methodologies and algorithms. We address this gap by creating new validation
and test datasets on top of well-established benchmarks, consisting of queries with complexity exceeding the
processing power of known approaches. In particular, we increase the number of variables mentioned in the
considered formulas from 3 to between 12 and 20, while imposing structural difficulty by sampling query
graphs with multiple cycles, long-distance reasoning steps and multi-way conjunctions.

C.1 Base large query generation

Each of the considered datasets: FB15k-237 and NELL, provides three knowledge graphs Gtrain, Gval, Gtest, for
training, validation and testing, respectively, satisfying E(Gtrain) ⊂ E(Gval) ⊂ E(Gtest). During validation,
Gtrain is treated as the observable graph G, while Gval as its completion G̃. Similarly, for testing, G = Gval
and G̃ = Gtest.

We begin the dataset generation by sampling base formulas, to be later converted into instances for the QAC
and QAR benchmarks. During sampling, we use four hyperparameters: nhub, nmin, pconst and pout, whose
different values contribute to creating different benchmark splits. The process is visualized in Figure 6. A
single base query is sampled as follows:

1. A vertex v ∈ V (G) is sampled uniformly at random from V (G).

2. Let Ni(v) be the set of nodes whose distance from v in G̃ is at most i. Without repetitions, sample
nhub ‘hub’ vertices from N2(v) and call their set P . If |N2(v)| < nhub, return to step 1.

3. Consider the union of 1-hop neighborhoods of the ‘hub’ vertices: D =
⋃
w∈P∪{v}N1(w).

4. If w ∈ D is a leaf in the restriction G̃D of G̃ to D, remove it from D with probability pout.

5. Sample a set D′ of nmin vertices from D, such that the restriction of G̃ to D′ ∪P ∪{v} is a connected
subgraph. Let P ′ = D′ ∪ P ∪ {v}. If the restriction G̃P ′ of G̃ to P ′ is a subgraph of the observable
graph G, return to step 1.

6. For each node w in D′ independently, choose it to be portrayed by a constant term with probability
pconst
d2
P ′ (w) , where dP ′(w) is the degree of w in restriction of G̃ to P ′.

7. The restriction G̃P ′ of G̃ to P ′ is then converted into the corresponding conjunctive formula, by
transforming each edge r(w1, w2) ∈ E(G̃P ′) into a literal r(w1, w2). The vertex v is then replaced by
the single free variable x1 and all nodes that were not chosen to be constant, are realized by distinct
existentially quantified variables.

For formulas sampled from FB15k-237, we choose nmin = 15, while for NELL instances, nmin = 12, due to the
sparsity of the knowledge graph. We consider three different choices of the parameters nhub, pconst and pout,
resulting in three distinct splits, namely “3-hub”, “4-hub” and “5-hub”, and sample 1000 formulas of each
type. Using an SQL engine (Raasveldt and Mühleisen, 2019), we then solve these queries with respect to
both observable and unobservable knowledge graphs, discarding those with no hard answers. The parameter
values for each split are presented in Table 8.

C.2 Query answer classification datasets

We propose two benchmarks for query answer classification: FB15k-237-QAC and NELL-QAC. Instances in
each dataset are stored in a unified form:

(Q(x), CQ,WQ)
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Table 8: Hyperparameters for the generated dataset splits.

Split nhub pconst pout

3-hub 2 0.6 0.95
4-hub 3 0.8 0.97
5-hub 4 1.0 0.99

Table 9: Statistics of introduced QAC datasets.

2p 3p pi ip inp pin 3-hub 4-hub 5-hub
FB15k-237-QAC

#queries 500 500 500 500 500 500 300 300 300
#answers 9818 9828 9632 9358 9808 9898 2036 1988 2028
%easy 26.5% 24.0% 27.5% 28.7% 35.8% 32.9% 18.7% 16.6% 17.0%
%hard 23.5% 26.0% 22.5% 21.3% 14.2% 17.1% 31.3% 33.4% 33.0%
%neg 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%

NELL-QAC
#queries 500 500 500 500 500 500 300 300 300
#answers 9708 9702 9478 9694 9698 9888 2174 2186 1922
%easy 23.6% 22.6% 25.2% 23.6% 35.8% 32.8% 15.9% 14.4% 13.7%
%hard 26.4% 27.4% 24.8% 26.4% 14.2% 17.2% 34.1% 35.6% 36.3%
%neg 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%

where Q(x) is the input formula and CQ,WQ are subsets of V (G) with |CQ| = |WQ| such that:

G̃ |= Q(a/x) ∀a ∈ CQ and G̃ ̸|= Q(b/x) ∀b ∈WQ

Each of our QAC benchmarks includes 9 splits, which can be broadly divided into two parts. Their statistics
are more broadly described in Table 9. %easy, %hard, and %neg represent the proportions of easy answers,
hard answers, and incorrect proposals in each split, respectively.

In the first part of our benchmarking, we utilize samples from existing CQA datasets, focusing exclusively on
formulas that include projections. This choice is crucial, as grounding the free variables in non-projection
queries (e.g., ‘2i’, ‘3i’, ‘2u’, ‘2in’, ‘3in’) reduces the task to a set of independent link prediction problems,
which do not meaningfully test reasoning capabilities beyond atomic fact retrieval. Similarly, disjunctive
queries (e.g., ‘up’) can be decomposed into independent subqueries under the QAC setting, introducing little
additional complexity and offering limited insight into a model’s reasoning abilities.

We instead select a representative subset of six query types: ‘2p’, ‘3p’, ‘ip’, ‘pi’, ‘inp’, and ‘pin’, spanning
key logical constructs such as projection, conjunction, and negation. This selection allows for both robust
evaluation and continuity with prior work, enabling meaningful comparison with classical and neural CQA
baselines under the classification-based objective. For each query type, we sample 500 queries to ensure a
balanced and reliable evaluation.

For the main components of FB15k-237-QAC and NELL-QAC, we convert large base queries into QAC
instances, reducing the size of each split to 300 queries. These samples are characterized by significant
structural complexity, presenting a substantial challenge for both existing and future query answering methods.

In both cases, the size |CQ| = |WQ| is chosen as clip(|{a ∈ V (G) : G̃ |= Q(a/x)}|, 5, 10). WQ is then sampled
uniformly from the set of incorrect groundings for Q(x), while CQ is drawn from the set of answers to Q(x),
assigning non-trivial answers twice higher probability than the easy ones.
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Table 10: Statistics of introduced QAR datasets.

FB15k-237-QAR NELL-QAR
3-hub 4-hub 5-hub 3-hub 4-hub 5-hub

#queries 1200 1200 1200 1000 1000 1000
#trivial 565 537 586 387 416 417
#free=1 400 400 400 400 400 400
#free=2 400 400 400 300 300 300
#free=3 400 400 400 300 300 300

C.3 Query answer retrieval datasets

Most samples in CQA benchmarks yield answers within the observable knowledge graph G. Due to their
simplicity, these instances are trivial for query answer retrieval, as classical solvers can efficiently derive the
correct answers. Consequently, we do not include such small queries in our FB15k-237-QAR and NELL-QAR
datasets. Instead, we focus on addressing the limitations of current benchmarks by including more complex
queries involving multiple free variables.

For the single free variable case, we select 400 base queries from each split. To generate formulas of arity
2, we randomly remove the quantification over one of the existentially quantified variables. The resulting
query is then solved using an SQL engine, leveraging information from the initial answer set to optimize
computation. An analogous methodology is applied to extend the arity 2 formulas to instances with 3 free
variables. Statistics of the generated test splits are available in Table 10. #trivial is the number of samples
admitting a trivial answer, and #free=k - arity k formulas.

C.4 Evaluation protocol

Query answer classification. We use the F1-score as the metric to measure the performance on the task of
query answer classification. The reported F1-scores (Table 1) are an average of F1-scores for single instances
(Q(x), CQ,WQ) taken over the whole dataset. Formally, letting D be the considered dataset and denoting by
A(θ,Q) the set of entities from CQ ∪WQ marked by the model θ as correct answers to Q(x), we report:

F1QAC(θ) = 1
|D|

∑
(Q(x),CQ,WQ)∈D

2|A(θ,Q) ∩ CQ|
2|A(θ,Q) ∩ CQ|+ |A(θ,Q)\CQ|+ |WQ ∩A(θ,Q)|

Query answer retrieval. We adapt the F1-score metric to the task of QAR. In particular, we count
a positive outcome (i.e. solution prediction) as correct if and only if it is a true answer to the query. Given
a model θ, let Rec(θ) be the proportion of correctly answered positive instances in the dataset, while Prec(θ)
be the ratio of correctly answered positive instances among the queries for which θ predicted a solution. We
then report:

F1QAR(θ) = 2
1

Prec(θ) + 1
Rec(θ)

D Link predictors

As mentioned in Section 5.1, we incorporate a link predictor into our architecture, to address the problem of
deducing facts not presented in the observable knowledge graph. We consider three different model types
from the existing CQA literature: transductive knowledge graph embedding method ComplEx (Trouillon
et al., 2016) used in QTO and FIT, inductive (on nodes) method NBFNet (Zhu et al., 2021) employed by
GNN-QE, and inductive (on nodes and relations) knowledge graph foundation model Ultra (Galkin et al.,
2024a), lying at the heart of UltraQuery.
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D.1 ComplEx

Recall that a ComplEx model χ assigns each entity e ∈ V (G) and each relation r ∈ R(G), a dχ-dimensional
complex-valued vector ve, wr ∈ Cdχ . We choose the hidden dimension of dχ = 1000 for all experiments. For
each triple (r, a, b) ∈ R(G)× V (G)× V (G), the score of the entities a, b being in relation r is derived as:

χ(r, a, b) = ℜe (⟨va, wr, vb⟩) = ℜe

 dχ∑
i=1

(va)i(wr)i(vb)i


Training. For training, we follow the relation prediction methodology, presented in Chen et al. (2021),
evaluating the loss as a sum over all known facts r(a, b) ∈ E(G) of three cross-entropy losses, marginalizing
the head, the relation and the tail:

Lr(χ) = −
∑

r(a,b)∈E(G)

(
log(pχ,τ (a|r, b)) + log(pχ,τ (b|a, r)) + λrel log(pχ,τ (r|a, b))

)
+ Lreg

where Lreg is a nuclear 3-norm Lacroix et al. (2018) regularization term and the marginal probabilities are
evaluated as:

Lreg =
dχ∑
i=1

2 ·
∑

a∈V (G)

|(va)i|3 +
∑

r∈R(G)

|(wr)i|3


pχ,τ (a|r, b) = exp(τ · χ(r, a, b))∑
a′∈V (G) exp(τ · χ(r, a′, b))

pχ,τ (b|a, r) = exp(τ · χ(r, a, b))∑
b′∈V (G) exp(τ · χ(r, a, b′))

pχ,τ (r|a, b) = exp(τ · χ(r, a, b))∑
r′∈R(G) exp(τ · χ(r′, a, b)))

where τ is a factor controlling the temperature of the applied softmax function. During training, we set τ = 1.
For each dataset, the model is trained using the AdaGrad Duchi et al. (2011) optimizer with a learning rate
0.1 for 500 epochs, and the checkpoint maximizing validation accuracy is chosen for testing.

Conversion to the probability domain. To match the definition of a link predictor from Section 3,
the uncalibrated scores χ(r, a, b) assigned by the ComplEx model χ need to be converted into probabilities
ρC(r, a, b) = P(r(a, b) ∈ E(G̃)|χ). We follow the ideas used in QTO (Bai et al., 2023) and FIT Yin et al.
(2024), and set them as proportional to the marginal probabilities pχ,τ (b|a, r). By definition, pχ,τ (·|a, r)
defines a distribution over V (G): ∑

b∈V (G)

pχ,τ (b|a, r) = 1

Therefore, to match the objective:∑
b∈V (G)

P(r(a, b) ∈ E(G̃)|χ) =
∣∣{b ∈ V (G) : r(a, b) ∈ E(G̃)

}∣∣
we multiply the marginal probabilities by a scaling factor Qa,r, specific to the pair (a, r):

ρC(r, a, b) = P(r(a, b) ∈ E(G̃)|χ) = Qa,r · pχ,τ (b|a, r)

We consider two scaling schemes: QQTO
a,r introduced in QTO, and QFIT

a,r described by FIT. Both methods base
on the cardinality of the set Ea,r = {b ∈ V (G) : r(a, b) ∈ E(G)} of trivial answers to the query Q(x) = r(a, x):

QQTO
a,r = |Ea,r|

QFIT
a,r = |Ea,r|∑

b∈Ea,r pχ,τ (b|a, r)
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During validation, we search for the best values for τ among [0.5, 1, 2, 5, 10, 20] on each validation query
type. We notice that τ = 20 performs best in all experiments. The resulting link predictors ρFIT

C and ρQTO
C ,

after augmenting them with links from the observable graphs as described below, are then plugged into
the respective neuro-symbolic frameworks for QTO and FIT evaluations on small-query QAC splits. For
experiments with AnyCQ equipped with ComplEx-based predictors, we use the FIT, as it proved more
accurate during validation.

D.2 NBFNet

As the second studied predictor, we consider Neural Bellman-Ford Network (Zhu et al., 2021), constituting
the main processing unit in GNN-QE (Zhu et al., 2022). For the AnyCQ experiments, we reuse the NBFNet
checkpoints obtained from training GNN-QE over the considered datasets. We follow the configurations from
the original repository – models are trained for 10 epochs, processing 48,000 instances per epoch for the
FB15k-237 training, and 24,000 samples per epoch for NELL, with Adam (Kingma and Ba, 2015) optimizer
with learning rate 0.005. We validate 0.25 to be the optimal threshold for binarizing GNN-QE predictions,
and apply it for the small-query QAC experiments. When testing AnyCQ with the underlying NBFNet
models, we first binarize the output of the NBFNet ν:

ρν(r, a, b) =
{

1 if ν
(
r(a, b)

)
≥ t

0 if ν
(
r(a, b)

)
< t

After validation, we set t = 0.5 for the small-query FB15k-237-QAC splits, t = 0.4 for the small-query
NELL-QAC splits and t = 0.6 for all large-query evaluations.

D.3 Ultra

Finally, to test AnyCQ’s ability of inductive link prediction over unseen relation, we consider Ultra (Galkin
et al., 2024a), a prominent knowledge graph foundation models, as the third studied predictor for zero-shot
inference. For the AnyCQ experiments, we directly apply the 3g checkpoints from the original Ultra
repository, which are pre-trained on FB15k-237 (Toutanova et al., 2015), WN18RR (Dettmers et al., 2018), and
CoDEx Medium (Safavi and Koutra, 2020) for 10 epochs with 80,000 steps per epoch, with AdamW (Loshchilov
and Hutter, 2019) using learning rate of 0.0005. Similarly to the methodology applied to NBFNet, we binarize
the output of the Ultra model υ when equipping it to AnyCQ. In this case, following validation, we choose
t = 0.4 as the best threshold for small query QAC experiments, and a higher t = 0.9 for formulas in large
QAC and QAR splits.

As an additional baseline, we compare another state-of-the-art CQA method over unseen relation Ultra-
Query (Galkin et al., 2024b), which also utilizes Ultra as its link predictor. We validate that 0.2 is the
best answer classification threshold for UltraQuery checkpoints provided ni the original repository, trained
only on the CQA benchmark based on FB15k-237. We highlight that the results of UltraQuery on NELL
are hence zero-shot inference, since NELL is not in the pretraining dataset of the evaluated checkpoints.

D.4 Incorporating the observable knowledge graph

To account for the knowledge available in the observable graph G, we augment all considered link predictors
ρ, setting ρ(r, a, b) = 1 if r(a, b) ∈ E(G). To distinguish between known and predicted connections, we clip
the predictor’s estimations to the range [0, 0.9999]. Combining all these steps together, given a predictor ρ,
in our experiments we use:

π(r, a, b) =
{

1 if r(a, b) ∈ E(G)
min

(
ρ(r, a, b), 0.9999

)
otherwise

This methodology is applied for all AnyCQ experiments, to each of ρC, ρν and ρυ, obtaining the final πC, πν
and πυ, directly used for ComplEx-based, NBFNet-based and Ultra-based evaluations, respectively.

29



Under review as submission to TMLR

Table 11: Average F1-scores of AnyCQ on the query answer classification task.

Dataset Predictor 2p 3p pi ip inp pin 3-hub 4-hub 5-hub

FB15k-237-QAC
ComplEx 66.9 63.1 70.7 67.6 78.4 75.2 39.5 32.3 36.1
NBFNet 75.8 71.3 82.1 78.8 76.7 75.7 52.4 49.9 51.9
Ultra 70.4 56.2 77.3 70.6 72.4 73.0 32.6 26.9 29.1

NELL-QAC
ComplEx 63.8 64.0 68.2 61.7 74.8 75.0 39.1 40.0 34.9
NBFNet 76.2 72.3 79.0 75.4 76.7 75.3 57.2 52.6 58.2
Ultra 76.0 23.0 81.2 76.3 70.8 74.0 33.2 30.8 25.5

Table 12: F1-scores of AnyCQ equipped with different predictors on the QAR datasets.

Dataset Predictor 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

FB15k-237-QAR
ComplEx 67.3 56.3 43.4 56.3 57.7 54.4 45.6 52.7 62.8 54.3 44.1 54.1
NBFNet 67.8 62.3 50.2 60.5 60.4 54.0 48.2 54.5 63.0 56.9 43.1 54.8
Ultra 65.3 57.1 44.1 56.0 57.1 52.4 42.2 50.8 59.4 54.3 41.3 52.0

NELL-QAR
ComplEx 62.8 50.0 34.6 51.4 61.7 52.1 40.7 53.0 55.1 50.0 36.5 48.4
NBFNet 66.7 55.1 39.1 55.8 65.1 57.1 46.5 57.6 58.7 51.1 39.6 51.1
Ultra 57.4 44.6 31.5 46.5 56.4 43.8 35.2 46.7 49.1 40.4 31.5 41.5

D.5 Combination with AnyCQ

As mentioned in Section 5.4, the AnyCQ framework can be equipped with any link predictor capable of
predicting relations over the studied knowledge graph. For this reason, to ensure that our choice matches the
most accurate setup, we validate the performance of the predictors described in previous subsections, and test
AnyCQ combined with ComplEx-based predictor with FIT scaling (Appendix D.1), NBFNet (Appendix D.2)
and Ultra (Appendix D.3). Following validation, we choose NBFNet to be equipped for AnyCQ evaluations
in all main experiments (Table 1 and Table 2).

As an additional ablation study, we generate the test results of the remaining combinations. The results on
the QAC task are presented in Table 11, while the scores on QAR benchmarks are shown in Table 12. For
the small-query QAC splits, we notice that NBFNet and Ultra strongly outperform ComplEx on positive
formulas (“2p”, “3p”, “ip”, “pi”), while struggling more with queries with negations (“inp”, “pin”). The
observed drop in Ultra results on the “3p” split is due to the model predicting too many links to be true,
limiting the guidance from PE labels (almost each entity can be a head/tail of each relation). For large
query classification, NBFNet produces much better F1-scores, exceeding 50% on almost all splits, while the
remaining predictors consistently score under 40%. The evaluations on the QAR benchmarks further justify
the choice of NBFNet as the equipped link predictor for AnyCQ – it consistently outperforms ComplEx and
Ultra, achieving the best results on most FB15k-237-QAR, and all NELL-QAR splits.

Interestingly, we again point out that the used Ultra model has not been trained on the NELL dataset.
Regardless, it manages to match the performance of the ComplEx-based predictor on NELL-QAC and
NELL-QAR benchmarks. Combining this observation with our ablation of transferability of AnyCQ models
between datasets (Section 6.4, Table 4), we can assume that similar results would be achieved when running
the evaluation with AnyCQ model trained on FB15k-237. Such framework would then answer queries over
NELL in a true zero-shot, fully inductive setting. In future work, we look forward to exploring combinations
of AnyCQ search engines trained over broad, multi-dataset data, with fully inductive link predictors (like
Ultra), to achieve foundation models capable of answering arbitrary queries over arbitrary, even unseen,
knowledge graphs.
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Table 13: Recall on the easy samples from the QAR datasets with different SQL timeouts.

Model Timeout [s] 3-hub 4-hub 5-hub

k=1 k=2 k=3 total k=1 k=2 k=3 total k=1 k=2 k=3 total

FB15k-237-QAR

AnyCQ 60 83.3 84.2 71.6 80.5 79.1 71.1 72.1 74.3 74.0 67.0 52.3 65.0

SQL
30 82.8 51.5 20.3 55.6 71.9 49.7 34.4 53.6 74.0 51.0 43.8 56.8
60 88.7 61.2 26.4 62.8 87.2 71.7 52.6 71.9 85.3 63.6 61.4 70.5
120 93.2 69.4 35.8 69.9 90.8 76.5 55.2 75.8 88.7 67.0 67.6 74.7

NELL-QAR

AnyCQ 60 93.0 89.4 86.5 90.7 89.6 88.8 79.6 87.1 89.4 84.5 81.3 86.1

SQL
30 88.5 57.5 33.8 69.0 82.4 57.8 55.9 69.2 80.1 63.1 46.7 67.5
60 94.5 69.0 55.4 79.6 90.1 69.0 63.4 77.9 88.8 78.6 64.0 80.2
120 95.5 73.5 58.1 81.9 93.8 71.5 68.8 81.6 91.3 82.5 65.4 82.9

E Extended evaluation over QAR processing times

We analyze the processing times and retrieval performance of AnyCQ and the SQL engine on the QAR
benchmarks, focusing on how both systems scale with query complexity.

To understand the impact of the timeout threshold on SQL performance, we evaluate it on all QAR splits
using three different time limits: 30, 60, and 120 seconds. Results are reported in Table 13. We observe
that the SQL engine’s recall on easy queries improves marginally as the timeout increases, particularly for
queries with multiple free variables. However, its performance consistently deteriorates with increasing arity,
even under extended time limits. In contrast, AnyCQ maintains strong performance across all splits and
consistently outperforms SQL on retrieving easy answers to high-arity queries. Additionally, it is worth noting
that AnyCQ is also capable of retrieving hard answers, which SQL fails to find under any timeout setting.

Table 14 presents the average processing times per query under the 60-second timeout. We find that AnyCQ
exhibits significantly more stable and predictable runtimes compared to SQL. By design, AnyCQ’s processing
time is independent of the number of free variables or other structural properties of the query, and remains
efficient even on the larger NELL-QAR benchmark. In contrast, the SQL engine shows a steep increase in
average runtime as query arity increases, with many queries exceeding the timeout. Notably, for queries with
arity of at least 2, AnyCQ outperforms the SQL engine on average across all FB15k-237-QAR splits, while
remaining competitive for single-variable queries. This reflects SQL’s sensitivity to query structure and its
inefficiency in evaluating high-arity or cyclic formulas.

Across both tables, AnyCQ consistently demonstrates superior scalability and robustness. It handles
structurally complex queries with multiple free variables more efficiently than SQL and is uniquely able to
retrieve both easy and hard answers. Meanwhile, the SQL engine is unreliable in this setting - its performance
is heavily dependent on query structure and its success rate is strongly limited by the time budget. These
results validate our motivation for introducing QAR and support AnyCQ as a reliable neural alternative to
classical engines for complex query answering.
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Table 14: The comparison of processing times (in seconds) on the QAR task. We report the minimum,
maximum and average processing time per split, together with the standard deviation (sd) and the number
of unanswered samples due to the time restriction nexc.

Dataset Split Arity Model min max avg sd nexc

FB15k-237-QAR

3-hub

k = 1 AnyCQ 12.96 30.74 19.70 2.91 0
SQL 0.66 60.00 11.14 17.20 31

k = 2 AnyCQ 13.01 30.56 19.57 2.99 0
SQL 0.32 60.00 30.87 24.84 143

k = 3 AnyCQ 13.05 30.53 19.11 2.74 0
SQL 0.33 60.00 43.77 22.99 235

4-hub

k = 1 AnyCQ 13.37 32.72 20.44 2.98 0
SQL 0.30 60.00 13.90 19.34 40

k = 2 AnyCQ 13.36 32.78 20.78 3.10 0
SQL 0.37 60.00 26.63 24.49 115

k = 3 AnyCQ 14.24 32.99 20.42 2.89 0
SQL 0.36 60.00 32.77 24.88 154

5-hub

k = 1 AnyCQ 13.43 36.24 20.73 3.08 0
SQL 0.27 60.00 11.98 18.40 37

k = 2 AnyCQ 13.95 36.25 21.74 3.05 0
SQL 0.57 60.00 23.47 24.40 106

k = 3 AnyCQ 15.96 29.04 21.33 2.58 0
SQL 0.26 60.00 28.83 25.39 131

NELL-QAR

3-hub

k = 1 AnyCQ 21.87 59.57 35.35 6.27 0
SQL 0.16 60.00 6.59 13.77 15

k = 2 AnyCQ 22.20 59.65 35.33 7.09 0
SQL 0.13 60.00 20.94 23.91 69

k = 3 AnyCQ 18.81 59.69 35.29 7.61 0
SQL 0.14 60.00 21.77 25.13 75

4-hub

k = 1 AnyCQ 19.15 58.00 36.46 6.93 0
SQL 0.14 60.00 7.79 15.59 24

k = 2 AnyCQ 19.14 57.58 35.70 7.54 0
SQL 0.13 60.00 17.47 22.54 51

k = 3 AnyCQ 23.13 56.66 36.04 6.63 0
SQL 0.12 60.00 19.49 23.99 62

5-hub

k = 1 AnyCQ 23.40 60.00 37.27 6.58 3
SQL 0.17 60.00 6.71 15.01 22

k = 2 AnyCQ 25.91 60.00 36.97 6.63 2
SQL 0.16 60.00 14.62 20.66 38

k = 3 AnyCQ 24.25 60.00 36.84 5.91 1
SQL 0.17 60.00 17.44 22.18 45
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