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ABSTRACT

Deep Reinforcement Learning (RL) is mainly studied in a setting where the train-
ing and the testing environments are similar. But in many practical applications,
these environments may differ. For instance, in control systems, the robot(s) on
which a policy is learned might differ from the robot(s) on which a policy will run.
It can be caused by different internal factors (e.g., calibration issues, system at-
trition, defective modules) or also by external changes (e.g., weather conditions).
There is a need to develop RL methods that generalize well to variations of the
training conditions. In this article, we consider the simplest yet hard to tackle
generalization setting where the test environment is unknown at train time, forcing
the agent to adapt to the system’s new dynamics. This online adaptation process
can be computationally expensive (e.g., fine-tuning) and cannot rely on meta-RL
techniques since there is just a single train environment. To do so, we propose
an approach where we learn a subspace of policies within the parameter space.
This subspace contains an infinite number of policies that are trained to solve the
training environment while having different parameter values. As a consequence,
two policies in that subspace process information differently and exhibit different
behaviors when facing variations of the train environment. Our experiments car-
ried out over a large variety of benchmarks compare our approach with baselines,
including diversity-based methods. In comparison, our approach is simple to tune,
does not need any extra component (e.g., discriminator) and learns policies able
to gather a high reward on unseen environments.

1 INTRODUCTION

In recent years, Deep Reinforcement Learning (RL) has succeeded at solving complex tasks, from
defeating humans in board games (Silver et al., 2017) to complex control problems (Peng et al.,
2017; Schulman et al., 2017). It relies on different learning algorithms (e.g., A2C - (Mnih et al.,
2016), PPO - (Schulman et al., 2017)). These methods aim at discovering a policy that maximizes
the expected (discounted) cumulative reward received by an agent given a particular environment. If
existing techniques work quite well in the classical setting, considering that the environment at train
time and the environment at test time are similar is unrealistic in many practical applications. As
an example, when learning to drive a car, a student learns to drive using a particular car, and under
specific weather conditions. But at test time, we expect the driver to be able to generalize to any new
car, new roads, and new weather conditions. It is critical to consider the generalization issue where
one of the challenges is to learn a policy that generalizes and adapts itself to unseen environments.

Different techniques have been proposed in the literature (Section 5) to automatically adapt the
learned policy to the test environment. In the very large majority of works, the model has access
to multiple training environments (meta-RL setting). Therefore, the training algorithm can identify
which variations (or invariants) may occur at test time and how to adapt quickly to similar variations.
But this setting may still be unrealistic for concrete applications: for instance, it supposes that the
student will learn to drive on multiple cars before getting their driving license.

In this paper, we address a simpler yet harder to tackle generalization setting in which the learning
algorithm is trained over one single environment and has to perform well on test environments;
preventing us from using meta-RL approaches. A natural way to attack this setting is to start by
learning a single policy using any RL algorithm, and to fine-tune this training policy at test time,
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(a) The figure represents the parameter space. The red
(resp. blue) region is the space of good policies over the
training (resp. testing) environment. A single learned
policy (red point) may be inefficient for the test envi-
ronment and has to be adapted (e.g., fine-tuning) to be-
come good at test-time (blue point). Instead of learn-
ing a single policy, we learn a convex sub-space (the
pentagon) delimited by anchor policies (red stars) that
aims at capturing a large set of good policies. Then the
adaptation is just made by sampling policies in this sub-
space, keeping the best one (blue star).

(b) Snapshot of a trajectory on a modified HalfChee-
tah environment (friction increased by 50%). On top,
PPO fails to generalize. On the bottom, our model LoP
adapts quickly and finds an efficient policy after a few
shot trials.

Figure 1: (Left) An illustration of the process of learning a subspace of policies. (Right) Comparison
between PPO and our model in a test environment.

over the test environment (See red/blue points in Figure 1a), but this process may be costly in terms
of environment interactions.

Very recently, the idea of learning a set of diverse yet effective policies (Kumar et al., 2020b; Osa
et al., 2021) has emerged as a way to deal with this adaptation setting. The intuition is that, if in-
stead of learning one single policy, one learns a set of ’diverse’ policies, then there is a chance that
at least one of these policies will perform well over a new dynamics. The adaptation in that case just
consists in selecting the best policy in that set by evaluating each policy over few episodes (K-shot
adaptation). But the way this set of policies is built and the notion of diversity proposed in these
methods have a few drawbacks: these models increase diversity by using an additional intrinsic
reward which encourages the different policies to generate different distributions of states. This ob-
jective potentially favors the learning of policies that are sub-optimal at train time. Moreover, these
approaches make use of an additional component in the policy architecture (e.g., a discriminator)
that may be difficult to tune, particularly considering that, at train time, we do not have access to any
test environment and thus cannot rely on validation techniques to tune the extra architecture.

Inspired by recent research on mode connectivity (Benton et al., 2021; Kuditipudi et al., 2019) and
by (Wortsman et al., 2021) which aims to learn a subspace of models in the supervised learning
setting, we propose to learn a subspace of policies in the parameter space as a solution to the online
adaptation in the RL setting (see Figure 1a). Each particular point in this subspace corresponds
to specific parameter values, and thus to a particular policy. This subspace is learned by adapting
a classical RL algorithm (PPO and A2C in our case, see Section 3.3) such that an infinite contin-
uum of policies is learned, each policy having different parameters. The policies thus capture and
process information differently, and react differently to variations of the training environment (see
Figure 1b). We validate our approach (Section 4) over a large set of reinforcement learning envi-
ronments and compare it with other existing approaches. These experiments show that our method
is competitive, achieves good results and does not require the use of any additional component of
hyper-parameters tuning contrarily to baselines.

2 SETTING

Reinforcement Learning: Let us define a state space S and an action spaceA. In the RL setting,
one has access to a training Markov Decision Process (MDP) denoted M defined by a transition
distribution P (s′|s, a) : S × A × S → R+, an initial state distribution P (i)(s) : S → R+ and a
reward function r(s, a) : S ×A → R+.
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A policy is defined as πθ(a|s) : S × A → R+, where θ denotes the parameters of the policy. A
trajectory sampled by a policy πθ given a MDPM is denoted τ ∼ πθ(M). The objective of an RL
algorithm is to find a policy that maximizes the expected cumulative (discounted) reward:

θ∗ = arg max
θ

Eτ∼πθ(M)[R(τ)]

where R(τ) is the discounted cumulative reward over trajectory τ .

Online adaptation: We consider the setting where the policy trained overM will be used over
another MDP (denoted M̄) that shares the same state and action space asM, but with a different
dynamics and/or initial state distribution and/or reward function1. Importantly, M̄ is unknown at
train time, and cannot be used for model selection, making the tuning of hyper-parameters difficult.

Given a trained model, we consider the K-shot adaptation setting where the test phase is decom-
posed into two stages: a first phase in which the model adapts itself to the new test environment
over K episodes, and a second phase in which the adapted model is used to collect the reward. We
thus expect the first phase to be as short as possible (few episodes), corresponding to a fast adapta-
tion to the new environment. Let us consider that a model πθ generates a sequence of trajectories
τ̄1, τ̄2, ...., ¯τ+∞ over M̄, the performance of such a model, is defined as:

Perf(πθ,M̄,K) =

+∞∑
t=K+1

R(τ̄t) (1)

which corresponds to the performance of the policy πθ over M̄ after K episodes used for adapting
the policy. Note that we are interested in methods that adapt quickly to new a test environment and
we will consider small values of K in our experiments. In the following, for sake of simplicity, K
will refer to the number of policies evaluated during adaptation since each policy may be evaluated
over more than a single episode when facing stochastic environments.

3 LEARNING SUBSPACES OF POLICIES

Motivation and Idea: To illustrate our idea, let us consider a toy example where the train envi-
ronment contains states with correlated and redundant features, in such a way that multiple subsets
of state features can be used to compute good actions to execute. Traditional RL algorithms will
discover one policy πθ∗ that is optimal w.r.t the environment. This policy will typically use the state
features in a particular way to decide the optimal action at each step. If some features become noisy
(at test time) while, unluckily, πθ∗ particularly relies on these noisy features, the performance of the
policy will drastically drop. Now, let us consider that, instead of learning just one optimal policy, we
also learn a second optimal policy πθ∗′ , but enforcing θ∗

′
to be different than θ∗. This second policy

may tend to make use of various features to compute actions. We thus obtain two policies instead of
one, and we have more chances that at least one of these policies is efficient at test time. Identifying
which of these two policies is the best for the test environment (i.e., adaptation) can simply be done
by evaluating each policy over few episodes, keeping the best one. The model we present is built on
top of this intuition, extending this example to an infinite set of policies and to variable environment
dynamics.

Inspired by Wortsman et al. (2021) which propose to learn a subspace of models for supervised
learning, we study the approach of learning a subspace of policies in the parameter space, and
the use of such a model for online adaptation in reinforcement learning. Studying the structure of the
parameter space has seen a recent surge of interest through the mode connectivity concept (Benton
et al., 2021; Kuditipudi et al., 2019; Wortsman et al., 2021) and obtain good results in generalization,
but it has never been involved in the RL setting. As intuitively illustrated in the previous paragraph,
we expect that, given a variation of the training environment, having access to a subspace of policies
that process information differently instead of a single policy will facilitate the adaptation. As a
result, our method is very simple, does not need any extra hyper-parameter to tune and achieve good
performance.

1In the experimental study, one training environment is associated to multiple test environments to analyze
the ability to adapt to different variations.
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3.1 SUBSPACES OF POLICIES

Given Θ the space of all possible parameters, a subspace of policies is a subset Θ̄ ⊂ Θ that defines
a set of corresponding policies Π̄ = {πθ}θ∈Θ̄.

Since our objective is to learn such a subspace, we have to rely on a parametric definition of such a
subspace and consider Θ̄ as a simplex in Θ. Let us define N anchor parameter values θ̄1, ....θ̄N ∈
Θ. We define the Z-space as the set of possible weighted sum of the anchor parameters: Z ={
z = (z1, ...zN ) ∈ [0, 1]N |

∑
zi = 1

}
. The subspace we aim to learn is defined by:

Θ̄ = {
N∑
k=1

zkθ̄k,∀z ∈ Z} (2)

In other words, we aim to learn a convex hull of N vertices in Θ. Note that policies in this subspace
can be obtained by sampling z ∼ p(z) uniformly over Z .

The advantages of this approach are: a) the number of parameters of the model can be controlled by
choosing the number N of anchor parameters, b) since policies are sharing parameters (instead of
learning a set of independent policies), we can expect that the learning will be sample efficient.

Such a subspace is illustrated in Figure 1a through the pentagon (i.e., N = 5) in which angles
correspond to the anchor parameters and the surface corresponds to all the policies in the built
subspace.

K-shot adaptation: Given a subspace of policies Θ̄, different methods can be achieved to find the
best policy over the test environment. For instance, it could be done by optimizing the distribution
p(z) at test time. In this article, we use the same yet effective K-shot adaptation technique than
Kumar et al. (2020b) and Osa et al. (2021): we sample K episodes using different policies defined
by different values of z that are uniformly spread over Z . In our example, it means that we evaluate
policies uniformly distributed within the pentagon to identify a good test policy (blue star). Note
that, when the environment is deterministic, only one episode per value of z needs to be executed to
find the best policy, which leads to a very fast adaptation.

3.2 LEARNING ALGORITHM

Learning a subspace of policies can be done by considering the RL learning problem as maximizing:

L(Θ̄) =

∫
θ∈Θ̄

Eτ∼πθ [R(τ)]dθ (3)

Considering that Θ̄ is a convex hull as defined in Equation 2, and using the uniform distribution p(z)
over Z , the loss function of Equation 3 can be rewritten as:

L(θ̄1, ....θ̄N ) = Ez∼p(z) [Eτ∼πθ [R(τ)]] with θ =

N∑
k=1

zkθ̄k (4)

Maximizing such an objective function over θ̄1, ....θ̄N outputs a (uniform) distribution of policies
trained to maximize the reward, all these policies sharing common parameters.

Avoiding subspace collapse: One possible effect when optimizing L(θ̄1, ....θ̄N ) is to reach a
solution where all θk values are similar. In that case, all the policies would have the same parameters
value, and will thus all achieve the same performance at test-time. Since we want to encourage the
policies to process information differently, and following Wortsman et al. (2021), we encourage the
anchor policies to have different parameters. This is implemented through the use of a regularization
term denoted C(θ̄1, ....θ̄N ) that measures how much anchor policies are similar in the parameter
space. This auxiliary loss is defined as a pairwise loss between pairs of anchor parameters:

C(θ̄1, ....θ̄N ) =
∑
i6=j

cosine2(θi, θj) (5)
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The final optimization loss is then:

L(θ̄1, ....θ̄N ) = Ez∼p(z) [Eτ∼πθ [R(τ)]]− β
∑
i 6=j

cosine2(θ̄i, θ̄j) with θ =

N∑
k=1

zkθ̄k

where β is an hyper-parameter (see Section 4.1 for a discussion) that weights the auxiliary term.

One good property of this loss (in comparison to a method introducing an intrinsic reward) is that
this loss does not modify the reward objective of the learned policies and thus does not encourage
the model to learn policies that are sub-optimal at train time. In Section 4.1, we show that adding
this auxiliary loss does not modify the performance of the model over the training environment, and
does not need to be balanced by using any additional hyper-parameters.

Note that the models proposed in (Osa et al., 2021; Kumar et al., 2020b) shares some similarities
with our approach with two differences: i) the auxiliary loss is based on an additional neural network
used to enforce diversity in the behaviour of the policies. Moreover, in (Kumar et al., 2020b), this
term is integrated to the reward while in (Osa et al., 2021), the auxiliary loss can be used only with
continuous actions.

3.3 LINE OF POLICIES (LOP)

In the case of N = 2, the subspace of policies corresponds to a simple segment in the parameter
space defined by θ̄1 and θ̄2 as extremities. θ̄1 and θ̄2 are combined through a single scalar value
z ∈ [0; 1] as follows:

θ = zθ̄1 + (1− z)θ̄2 (6)

Computationally, learning a line of policies2 is similar to learning a single policy for which the
number of parameters is doubled, making this particular case a good trade-off between expressivity
and training speed. It corresponds to the following objective function:

L(θ̄1, θ̄2) = Ez∼U [0;1]

[
Eτ∼πzθ̄1+(1−z)θ̄2

[R(τ)]
]
− cosine2(θ̄1, θ̄2) (7)

We provide in Algorithm 1 the adapted version of the clipped PPO algorithm (Schulman et al.,
2017) for learning a subspace of policies. In comparison to the classical approach, the batch of
trajectories is first acquired by multiple policies sampled following p(z) (line 2-3). Then the PPO
objective is optimized taking into account the policies used when sampling trajectories (line 4). At
last, the critic is updated (line 5), taking as an input the z value so that it can make robust estimations
of the expected reward for all the policies in the subspace. Adapting off-policy algorithms would
be similar. Additional details are provided in appendix. Note that, for environments with discrete
actions, we have made the same adaptation based on the A2C algorithm since A2C has less hyper-
parameters than PPO and is easier to tune, with similar results.

4 EXPERIMENTS

We perform experiments in 6 different environments. Implementations based on the Blind review
library together with train and test environments will be released upon acceptance. For each environ-
ment, we consider one train environment on which we trained the different methods, and multiple
variations of the training environment for evaluation resulting in 50 test environments in total. The
details of all the environment configurations and detailed performance are given in Appendix B. Note
that the complete experiments correspond to hundred of trained policies, and dozens of thousands
of policy evaluations. For simple control environments (i.e., CartPole, Pendulum and AcroBot), we
introduce few variations of the physics constant at test-time, for instance by varying the mass of the
cart, the length of the pole. For complex control environments (i.e., HalfCheetah and Ant using the
BRAX library (Freeman et al., 2021), we both use variations of the physics (e.g., gravity), varia-
tions of the agent shape (e.g., changing the size of the leg, or of the foot) and sensor alterations. At
last, in MiniGrid, we perform experiments where the agent is trained in one particular maze, but is
evaluated in other mazes, and particularly in mazes that are bigger than the train maze.

2Other ways to control the shape of the subspace can be used and we investigate some of them in Section 4
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Initialize: θ̄1, θ̄2, φ (Critic), n batch size
1 for k = 0, 1, 2... do
2 Sample z1, ..., zn ∼ U[0,1]

3 Define θzi ← ziθ̄1 + (1− zi)θ̄2

4 Sample trajectories {τi}n1 using {πθzi}
5 Update θ̄1 and θ̄2 to maximize:

1

n

n∑
i=1

L̂PPO (θzi)− β cosine2
(
θ̄1, θ̄2

)
6 Update φ to minimize:

1

n

n∑
i=1

L̂MSE (φ, zi)

7 end

(a) LoP-PPO with N = 2

(b) Qualitative example of k-shot adaptation on a mod-
ified Ant environment (20% of observations masked).
5 policies are tested on one episode. For z = 0., one
can see that the Ant is able to adapt to this new envi-
ronment. More example of LoP trajectories in Figures
4 and 5.

Figure 2: (Left) The adaptation of the PPO Algorithm with the LoP model. The different with the
standard PPO algorithm is that: a) trajectories are sampled using multiple policies θzi b) The policy
loss is augmented with the auxiliary loss, and c) The critic takes the values zi as an input. (Right)
Examples of trajectories obtained over the Ant with LoP.

We compare our approach LoP3 with different state-of-the-art methods: a) The Single approach is
just a single policy learned on the train environment, and evaluated on the test ones. b) The DI-
AYN+R(reward) method is an extension of DIAYN (Eysenbach et al., 2018) where a set of discrete
policies is learned using a weighted sum between the DIAYN reward and the task reward:

RDIAY N+R(s, a) = r(s, a) + β log p(z|s) (8)

Critically, this model requires to choose a discriminator architecture to compute log p(z|s) and mod-
ifies the train reward by defining an intrinsic reward that may drastically change the behavior of the
policies at train time.c) At last, we also compare with the model proposed in (Osa et al., 2021)
denoted Lc (Latent-conditioned) that works only for continuous actions. This model is also based
on a continuous z variable sampled uniformly at train time, but only uses an auxiliary loss without
changing the reward. This auxiliary loss is defined through the joint learning of a density estimation
model logP (z|s, a) where back-propagation is made over the action a. As in DIAYN+R, this model
needs to carefully define a good neural network architecture for density estimation. Since Lc cannot
be used with environment that have discrete actions, we have adapted DIAYN+R (called DIAYN+R
Cont.) using a continuous z variable (instead of a discrete one) and a density estimation model
logP (z|s) as in Osa et al. (2021).

As network architectures, we use multi-layer perceptrons (MLP) with ReLU units for both the policy
and the critic (detailed neural network architectures are described in Appendix). For DIAYN+R
logP (z|s, ...) is also modeled by a MLP with a soft-max output. For Lc and DIAYN+R Cont.,
logP (z|s, ...) is modeled by a MLP that computes the mean of a Gaussian distribution with a fixed
variance. For these baselines, z is concatenated with the environment observation as an input for the
policy and the critic models.

To choose the hyper-parameters of the different methods, let us remind that test environments cannot
be used at train time for doing hyper-parameters search and/or model selection which makes this
setting particularly difficult. Therefore, we rely on the following procedure: a grid-search over
hyper-parameters is made, learning a single policy over the train environment. The best value of
the hyper-parameters is then selected as the one that provides the best policy at train time. These
hyper-parameters are then used for all the different baselines.

3We consider the LoP-A2C and the LoP-PPO models for environments with respectively discrete and con-
tinuous actions. LoP-PPO could be also used in the discrete case but requires more hyper-parameter tuning.

6



Under review as a conference paper at ICLR 2022

CartPole Acrobot Pendulum Minigrid Brax HalfCheetah Brax Ant
Nb. Test Env. 6 6 3 6 16 15
Type of actions Discr. Discr. Discr. Discr. Cont. Cont.
Single Policy 143.4 -99.7 -52.7 0.169 7697 3338
LoP 149.9 -93.2 -28.9 0.447 10589 4031
DIAYN+R 168.1 -97.0 -47.1 0.248 9680 3759
DIAYN+R L2 156.1 -93.6 -44.0 0.443 - -
Lc - - - - 9547 4020

Table 1: Average cumulated reward of the different models over multiple testing environments av-
eraged over 10 training seeds (higher is better). For DIAYN and Lc, we report the results with he
best value of β (this is discussed in the main text) and tested 10 policies for LoP, Lc and DIAYN+R
using 10 episodes per policy for stochastic environments, and 1 episode per policy on deterministic
ones. Standard deviation is reported for each single test environment in Appendix B.

For the adaptation step, each policy is evaluated over 10 episodes for stochastic environments or 1
single episode for deterministic environments. We repeat this procedure over 10 different training
seeds, and report the reward over the different test environments together with standard deviation.
All detailed results are available in Appendix.

4.1 ANALYSIS

We report the test performance of the models on different environments in Table 1. The table reports
the results obtained for the best value of β (multiple values have been tested) which is an optimistic
setting where we assume that it is possible to well tune this hyper-parameter. A discussion on that
point is made in the next section. In all the environments, the adaptive models perform better than
learning a single policy over the train environment which is not surprising. In most of the cases,
LoP is able to achieve a better performance than other methods. For instance, on HalfCheetah
where we evaluate the different methods over 16 variations of the train environments, LoP achieves
an average reward of 10589 while Lc and DIAYN+R obtain respectively 9547 and 9680 (standard
deviations are reported in Appendix B). Some examples of the discovered that behaviors in Ant
and HalfCheetah4 for the different methods, and for different values of z are illustrated in Figures
2b, 4 and 5. This outlines that learning models that are optimal on the train task reward, but with
different parameter values, allows us to discover policies react differently to variations of the training
environment. It seems to be a better approach than encouraging policies to have a different behaviors
(i.e., generating different state distributions) at train time. Same conclusions can be drawn in most
of the environments, including MiniGrid where LoP is able to explore large mazes while being
trained only on small ones. Interestingly, in CartPole, DIAYN+R performs quite well. Indeed,
when analyzing the learned policies, it seems to be a specific case where it is possible to obtain
optimal policies that are diverse w.r.t the states they are sampling (by moving the cart more or less
on the right/left while maintaining the pole vertical). Said otherwise, CartPole is a setting where
the diversity enforced in DIAYN is a good inductive bias that allows the model to discover multiple
optimal policies.

We have also performed experiments where test environments have the same dynamics as the train-
ing environment, but with defective sensors (i.e., some features at test time have a null value – see
Appendix Table B.2 on the Ant environment). The fact that LoP behaves also well confirms the
effectiveness of our approach to different types of variations, including noisy features on which
baselines methods were not applied in previous publications.

Sensitivity to hyper-parameters: Figure 3 (left) shows the training curves of the different methods,
considering different weight values β of the auxiliary loss terms (see Appendix A.3) on Ant5. First
of all, learning LoP is not slower than learning a single policy, and all the compared methods do
not introduce any extra learning cost: we assume that it is due to the sharing of the parameters
of the learned policies6. It means that LoP can be trained as fast as a single policy. Moreover,
DIAYN+R has difficulties to reach a high training performance when the β is high. Indeed, this

4Videos available at https://sites.google.com/view/subspace-of-policies/home
5Similar conclusions can be drawn on HalfCheethah and the other environments
6In DIAYN, learning one independent policy per value of z decreases the performance and learning speed.
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K = 5 10 20

L
oP

β = 0.1 3905 3991 4164
β = 1. 4035 4031 4174
β = 10 3998 4012 4145

D
IA

Y
N β = 0.1 3558 3833 3949

β = 1. 3451 3759 2878
β = 10 3356 3400 3109

L
c

β = 0.1 3909 4020 4150
β = 1. 3820 3947 4126
β = 10 3870 3945 4108

Figure 3: On the left, the evolution of cumulative reward during training on the Ant environment for
LoP, DIAYN+R and Lc for different values of β. On the right, the average results obtained by these
models on the 15 variations of the train environment. Results are averaged over 10 seeds. Standard
error deviation is reported in Table B.2 for each environment.

SmallFeet BigFeet TinyFriction HugeFriction SmallGravity BigGravity

LoP K=5 8283 8895 10425 11537 11840 10464
K=10 8805 8903 10662 11659 11969 10578
K=20 8794 9096 10734 11724 12004 10807

DIAYN+R K=5 7580 8454 9132 9483 10132 8989
K=10 7580 8454 9132 9483 10132 8989
K=20 8255 8472 10003 10335 10568 9766

Lc K=5 8186 8353 9521 10305 10434 9360
K=10 8186 8340 9661 10379 10444 9488
K=20 8107 8431 9661 10505 10521 9506

BoP K=5 6775 7993 7867 8387 9428 7878
K=10 6660 8147 7840 8526 9569 8026
K=20 6996 8405 7963 8553 9666 8015

CoP K=5 8996 8087 9468 10749 10594 9287
K=10 9210 8553 9523 10899 11334 9568
K=20 9155 8754 9979 11047 11382 9695

Table 2: Ablation study on the number of policiesK used at test time on HalfCheetah (see Appendix
B.1 for further details and additional results) together with the performance of the BoP and CoP
variants. Standard deviation is given in appendix, Table 5.

model introduces an intrinsic reward that prevent the model to be optimal when the β weight is too
high. This effect is less visible in Lc and LoP that just use an auxiliary loss, but still visible on
Lc whose auxiliary loss tends to modify the behavior of the policies at train time. LoP does not
really suffer from high values of β because the method is usually able to satisfy the cosine constraint
without sacrificing the train reward. In our experiment fixing β = 1 always leads to a 0 value for
auxiliary term at convergence. As a confirmation, Figure 3 (right) illustrates the test performance
of the different methods w.r.t the weight of the auxiliary term. LoP is relatively stable whatever
the value of β and β = 1 is a good and simple choice. This is a strong point of our method: it
does not need any extra hyper-parameter tuning, knowing that such a tuning is impossible when test
environments are unknown.

Online adaptation: One last interesting property is the number of policies (and thus of episodes) to
test over a new environment to get a good performance. For LoP and Lc, given a trained model, one
can evaluate as many policies (i.e., different values of z) as desired. For DIAYN+R, testing more
policies also means training more policies which is expensive and less flexible. Table 2 provides
the reward of the different methods when testing K policies on different HalfCheetah settings: as
expected, the performance of DIAYN+R tends to decrease when K is large since the model has
difficulties to learn too many diverse policies. For LoP and Lc, spending more episodes to evaluate
more policies naturally leads to a better performance: these two models provide a better way to deal
with the exploration-exploitation trade-off at test time. Again, please consider that Lc also needs to
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define an additional neural network architecture to model logP (z|s, a) while LoP does not, making
our approach simpler.

Beyond a Line of Policies: While LoP is based on the learning of N = 2 anchor parameters, it is
possible to combine more than two anchor parameters. We study two approaches combining N = 3
anchor parameters (that can be extended to N3): a) the first approach is a convex combination of
policies (CoP) where z is sampled following a Dirichlet distribution. (b) The second approach is
a Bézier combination (BoP) as explained in Appendix A.2. The results are presented in Table 2
over multiple HalfCheetah environments. It can be seen that these two strategies are not so efficient.
LoP is thus a good trade-off between the number of parameters to train and the performance (Note
that BoP and CoP need more samples to converge), at least given the particular neural network
architectures we have used in this paper.

5 RELATED WORK

Our contribution shares connections with different families of approaches. First of all, it focuses on
the problem of online adaptation in Reinforcement Learning which has been studied under different
terminologies: Multi-task Reinforcement Learning (Wilson et al., 2007; Teh et al., 2017), Transfer
Learning (Taylor and Stone, 2009; Lazaric, 2012) and Meta-Reinforcement Learning (Finn et al.,
2017; Hausman et al., 2018; Humplik et al., 2019). Many different methods have been proposed,
but the best majority considers that the agent is trained over multiple environments such that it can
identify variations (or invariant) at train time. For instance, Duan et al. (2016) assume that the agent
can sample multiple episodes over the same environments and methods like (Kamienny et al., 2020;
Liu et al., 2021) consider that the agent has access to a task identifier at train time.

More recently, diversity-based approaches have been adapted to focus on the setting where only
one training environment is available. They share with our model the idea of learning multiple
policies instead of a single one. For instance, DIAYN (Eysenbach et al., 2018) learns a discrete set
of policies that can be reused and fine-tuned over new environments. It has been adapted to online
adaptation in (Kumar et al., 2020a) where the authors propose to combine the intrinsic diversity
reward together with the training task reward. This trade-off is obtained through a threshold-based
method (instead of a simple weighted sum) with good results. But this method suffers from a major
drawback identified in (Osa et al., 2021): it necessitates to sample complete episodes at each epoch
which is painful and not adapted to all the RL learning algorithms. Osa et al. (2021) also proposed
an alternative based on learning a continuous set of policies instead of a discrete one without using
any intrinsic reward.

The method we propose is highly connected to recent researches on mode connectivity with neural
networks. Mode connectivity is a set of approaches and analyses that focus on the shape of the
parameter space. It has been used as a tool to study generalization in the supervised learning setting
(Garipov et al., 2018), but also as a way to propose new algorithms in different settings (Mirzadeh
et al., 2021). Obviously, the work that is the most connected to our approach is the model proposed
in (Wortsman et al., 2021) that provides a way to learn a subspace of models in the supervised
learning setting. Our contribution adapts this approach to RL for learning policies in a completely
different setting which is online adaptation.

6 CONCLUSION AND PERSPECTIVES

We investigate the idea of learning a subspace of policies in the reinforcement learning setting, and
describe how this approach can be used for online adaptation. While simple, our method allows
to obtain policies that are robust to variations of the training environments. Contrarily to other
techniques, LoP does not need any particular tuning or definition of additional architectures to handle
diversity, which is a critical aspect in the online adaptation setting where hyper-parameters tuning is
impossible or at least very difficult. Future work includes the extension of this family of approaches
in the continual reinforcement learning setting, the deeper understanding of the the built subspace
and the investigation of different auxiliary losses to better control the shape of such a subspace.

9
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7 REPRODUCIBILITY STATEMENT

We have made several efforts to ensure that the results provided in the paper are fully reproducible.
In Appendix, we provide a full list of all hyperparameters and extra information needed to reproduce
our experiments. More importantly, the source code will be release in the next weeks such that
everyone will be able to reproduce the experiments.
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A IMPLEMENTATION DETAILS

In this section, we provide details about the implementations of the baselines and our models. Ap-
pendix B provides details and additional results for each environment we used.

A.1 LOP-PPO

We detail the losses used in algorithm 1. First, we recall the clipped-PPO surrogate objective de-
scribed in Schulman et al. (2017). For a given trajectory τ = {(st, at, rt)}T0 collected by the policy
πθold , and denoting ρt (θ) = πθ(at|st)

πθold
, the goal is to maximize:

L̂PPO (θ) :=
1

T

T∑
t=0

min [ρt (θ)Aπθold (st, at) , clip (ρt (θ) , 1 + ε, 1− ε)Aπθold (st, at)] (9)

Where function Aπθold is computed thanks to a value function Vφ by using Generalized Advantage
Estimation (Schulman et al. (2018)). This function is simultaneously updated by regression on
mean-squared error over the rewards-to-go R̂t. In our case, this function not only takes st as an
input, but also the value z:

L̂MSE (φ, z) :=
1

T

T∑
t=0

(
Vφ (st, z)− R̂t

)2

(10)

In HalfCheetah and Ant experiments, we sampled actions from a reparametrized Gaussian distri-
bution using a squashing function (Ward et al. (2019)), but we set the standard deviation fixed (so
it is an hyper-parameter encouraging exploration, called action std in Tables 4 and 7): the policy
network only learns the mean of this distribution.

A.2 BOP AND COP

The only change between LoP and these models resides in the way we combine the N anchor
policies. For CoP, it is just the generalization of LoP for N > 2 (see 3.1). BoP, makes use of a
Bezier parametric curve that uses Bernstein polynomials (the anchor parameters being the control
points). For N = 3, it is defined by:

Θ̄ =
{

(1− z)2 θ̄1 + 2 (1− z) z θ̄2 + z2 θ̄3, ∀z ∈ [0, 1]
}

(11)

Concerning the policies z evaluated at test time, BoP uses the same strategy as LoP by testing values
that are uniformly distributed in [0; 1]. For CoP, we opted for sampling K policies using a Dirichlet
distribution over [0, 1]3.

A.3 DIAYN+R AND LC

In order to find the best trade-off between maximizing environment rewards and intrinsic rewards in
DIAYN+R algorithm, we add the hyper-parameter β :

RDIAY N+R(s, a) = r(s, a) + β · log p(z|s) (12)

As an alternative to DIAYN+R Osa et al. (2021) proposes an algorithm where the discriminator
takes not only observations as an input but also the policy output, updating both discriminator qφ
and policy πθ when back propagating the gradient. In this case, it is not necessary to add an intrinsic
reward. While Osa et al. (2021) illustrate their methods with TD3 and SAC, we adapted it to PPO.
The surrogate loss is given by:

LLC := L̂PPO + β · log qφ (z | s, πθ (.|s, z)) (13)

13
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B EXPERIMENTS DETAILS AND ADDITIONAL RESULTS

B.1 HALFCHEETAH

Task originally coming from OpenAI Gym (Brockman et al., 2016). Instead of using MuJoCo
engine, we decided to use Brax (Freeman et al., 2021) as it enables the possibility to acquire episodes
on GPU. We use the vanilla environment for training.The policy and the critic are encoded by two
different multi-layer perceptrons with ReLU activations. The base learning algorithm is PPO.

Test environments: we operated modifications similar as the ones proposed in (Henderson et al.,
2017). Morphological variations: we changed the radius and mass of specific body parts (torso, thig,
shin, foot). Variations in physics: we changed the gravity and friction coefficients.
Table 3 precisely indicates the nature of the changes for each environment.

Env name Modifications
BigFeet Feet mass and radius ×1.25
BigFriction Friction coefficient ×1.25
BigGravity Gravity coefficient ×1.25
BigShins Shins mass and radius ×1.25
BigThighs Thighs mass and radius ×1.25
BigTorso Torso mass and radius ×1.25
SmallFeet Feet mass and radius ×0.75
SmallFriction Friction coefficient ×0.75
SmallGravity Gravity coefficient ×0.75
SmallShins Shins mass and radius ×0.75
SmallThighs Thighs mass and radius ×0.75
SmallTorso Torso mass and radius ×0.75
HugeFriction Friction coefficient ×1.5
HugeGravity Gravity coefficient ×1.5
TinyFriction Friction coefficient ×0.5
TinyGravity Gravity coefficient ×0.5

Table 3: Modified HalfCheetah environments used for testing. Morphological modifications include
a variation on the mass and the radius of a specific part of the body (torso, thighs, shins, or feet). We
also modified the dynamics (gravity and friction). Environment names are exhaustive: Big refers to
a increase of 25% of radius and mass, Small refers to a decrease of 25%. For example, "BigFoot"
refers to an HalfCheetah agent where feet have been increased in mass and radius by 25%. For
gravity and friction, we also tried an increase/decrease by 50% (respectively tagged "VeryBig" and
"VerySmall").
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Hyper-parameter Value
lr policy: 0.0003
lr critic: 0.0003
n parallel environments: 2048
n acquisition steps per epoch: 20
batch size: 512
num minibatches: 32
update epochs: 8
discount factor: 0.99
clip ration: 0.3
action std: 0.5
gae coefficient: 0.96
reward scaling: 1.
gradient clipping: 10.
n layers (policy): 4
n neurons per layer (policy): 64
n layers (critic): 5
n neurons per layer (critic): 256

LoP, BoP, CoP
β: 1

DIAYN
β: 0.1
lr discriminator: 0.0001
n layers (discriminator): 2
n neurons per layer (discriminator): 64

Lc
β: 10
dimensions of z: 1
lr discriminator: 0.001
n layers (discriminator): 2
n neurons per layer (discriminator): 64

Table 4: Hyper-parameters for PPO over HalfCheetah
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Single Policy LoP DIAYN + R Lc BoP CoP
(K=1)

K=5
BigFeet 7433 ± 1988 8895 ± 289 8454 ± 655 8353 ± 804 7993 ± 702 8087 ± 496
BigFriction 8579 ± 2224 11635 ± 355 9962 ± 2113 10649 ± 2085 8846 ± 2279 10596 ± 1738
BigGravity 7508 ± 2086 10464 ± 798 8989 ± 1723 9360 ± 1531 7878 ± 1593 9287 ± 1200
BigShins 7274 ± 898 8879 ± 98 8099 ± 806 8206 ± 770 7726 ± 903 8226 ± 1144
BigThig 7963 ± 1466 10054 ± 724 8940 ± 1558 9360 ± 1669 8105 ± 1622 9525 ± 832
BigTorso 7091 ± 2221 9834 ± 310 8701 ± 1472 9198 ± 1342 7790 ± 1713 8927 ± 1128
SmallFeet 5973 ± 2490 8283 ± 648 7580 ± 1411 8186 ± 1512 6775 ± 2308 8996 ± 1150
SmallFriction 8652 ± 1717 11391 ± 348 9813 ± 2074 10181 ± 1617 8652 ± 2075 10459 ± 1387
SmallGravity 9004 ± 1665 11840 ± 406 10132 ± 1903 10434 ± 1951 9428 ± 2180 10594 ± 1438
SmallShin 7492 ± 2999 10840 ± 196 9540 ± 1592 9837 ± 1343 8451 ± 1889 9967 ± 1079
SmallThig 8914 ± 1837 11294 ± 46 10078 ± 1410 10603 ± 1160 9340 ± 1751 10603 ± 1540
SmallTorso 8885 ± 1522 11433 ± 360 9850 ± 1761 10010 ± 1856 9182 ± 1779 10092 ± 1541
HugeFriction 6999 ± 3441 11537 ± 613 9483 ± 2228 10305 ± 2104 8387 ± 2515 10749 ± 1591
HugeGravity 6133 ± 2147 8425 ± 554 7700 ± 1216 7621 ± 1137 6532 ± 1133 7632 ± 903
TinyFriction 7953 ± 1843 10425 ± 211 9132 ± 1862 9521 ± 1462 7867 ± 2003 9468 ± 1468
TinyGravity 7304 ± 3484 11385 ± 169 9363 ± 1734 9620 ± 2041 9118 ± 2360 9020 ± 2028

Average 7697 10413 9114 9465 8254 9514

K=10
BigFeet 7433 ± 1988 8903 ± 246 8472 ± 535 8340 ± 888 8147 ± 835 8553 ± 1033
BigFriction 8579 ± 2224 11982 ± 330 10781 ± 1870 10705 ± 2092 9093 ± 2436 10850 ± 1526
BigGravity 7508 ± 2086 10578 ± 648 9766 ± 1424 9488 ± 1616 8026 ± 1809 9568 ± 803
BigShins 7274 ± 898 8854 ± 153 8276 ± 607 8340 ± 986 7831 ± 978 8753 ± 866
BigThig 7963 ± 1466 10335 ± 1001 9644 ± 1323 9427 ± 1532 8080 ± 1676 9591 ± 884
BigTorso 7091 ± 2221 10023 ± 427 9295 ± 1106 9271 ± 1317 7928 ± 1772 9131 ± 928
SmallFeet 5973 ± 2490 8805 ± 495 8255 ± 504 8186 ± 1458 6660 ± 1842 9210 ± 1063
SmallFriction 8652 ± 1717 11434 ± 358 10637 ± 1505 10204 ± 1663 8708 ± 2007 10459 ± 1387
SmallGravity 9004 ± 1665 11969 ± 341 10568 ± 1906 10444 ± 1984 9569 ± 2418 11334 ± 1429
SmallShin 7492 ± 2999 10764 ± 147 9990 ± 1107 9933 ± 1315 8441 ± 1801 9898 ± 982
SmallThig 8914 ± 1837 11524 ± 298 10689 ± 1137 10632 ± 1170 9430 ± 1881 10600 ± 1473
SmallTorso 8885 ± 1522 11567 ± 381 10328 ± 1736 10273 ± 1917 9228 ± 1736 10541 ± 1135
HugeFriction 6999 ± 3441 11659 ± 307 10335 ± 1955 10379 ± 2302 8526 ± 2710 10899 ± 1541
HugeGravity 6133 ± 2147 8793 ± 791 8124 ± 1086 7811 ± 1115 6573 ± 1138 8071 ± 352
TinyFriction 7953 ± 1843 10662 ± 385 10003 ± 1226 9661 ± 1497 7840 ± 2019 9523 ± 1537
TinyGravity 7304 ± 3484 11578 ± 460 9723 ± 2167 9650 ± 2228 9221 ± 2224 5107 ± 6910

Average 7697 10589 9680 9547 8331 9506

K=20
BigFeet 7433 ± 1988 9096 ± 257 8363 ± 800 8431 ± 803 8405 ± 961 8754 ± 1041
BigFriction 8579 ± 2224 12001 ± 276 9655 ± 2304 10779 ± 2158 9108 ± 2437 11124 ± 1397
BigGravity 7508 ± 2086 10807 ± 592 8695 ± 1550 9506 ± 1609 8015 ± 1834 9695 ± 879
BigShins 7274 ± 898 9036 ± 192 7922 ± 670 8393 ± 959 7994 ± 1046 8796 ± 415
BigThig 7963 ± 1466 10521 ± 1016 8639 ± 1315 9537 ± 1633 8159 ± 1602 9652 ± 1012
BigTorso 7091 ± 2221 10084 ± 449 8494 ± 1376 9383 ± 1363 7873 ± 1612 9462 ± 299
SmallFeet 5973 ± 2490 8794 ± 614 7540 ± 1155 8107 ± 1506 6996 ± 2483 9155 ± 497
SmallFriction 8652 ± 1717 11429 ± 319 9603 ± 2022 10271 ± 1680 8844 ± 2162 10498 ± 1331
SmallGravity 9004 ± 1665 12004 ± 259 9934 ± 2370 10521 ± 1986 9666 ± 2280 11382 ± 1377
SmallShin 7492 ± 2999 11041 ± 420 9135 ± 1715 10057 ± 1281 8709 ± 2127 10025 ± 803
SmallThig 8914 ± 1837 11571 ± 127 9970 ± 1847 10682 ± 1092 9563 ± 1820 10921 ± 1018
SmallTorso 8885 ± 1522 11673 ± 434 9620 ± 2009 10315 ± 1880 9301 ± 1814 10602 ± 1297
HugeFriction 6999 ± 3441 11724 ± 685 9438 ± 2471 10505 ± 2355 8553 ± 2603 11047 ± 1167
HugeGravity 6133 ± 2147 8930 ± 714 7498 ± 837 7897 ± 1147 6772 ± 1413 7925 ± 740
TinyFriction 7953 ± 1843 10734 ± 381 9001 ± 1908 9661 ± 1519 7963 ± 2234 9979 ± 878
TinyGravity 7304 ± 3484 11604 ± 388 9419 ± 2317 9822 ± 2200 9329 ± 2424 10822 ± 1045

Average 7697 10691 8933 9617 8453 9990

Table 5: Mean and standard deviation of cumulative reward achieved on HalfCheetah test sets per
model (see Table 3 for environment details). Results are averaged over 10 training seeds (i.e., 10
models are trained with the same hyper-parameters and evaluated on the 16 test environments). K
is the number of policies tested at adaptation time, using 1 episode per policy since this environment
is deterministic.
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Figure 4: Qualitative example of LoP trajectories on HalfCheetah "BigShins" test environments
(5-shot setting). The best reward is obtained for z = 0.75.

Figure 5: Extreme case: when torso radius and mass are increased by 50%. Only one policy is able
to adapt without falling down (z = 0.5).

.
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B.2 ANT

Task originally coming from OpenAI Gym (Brockman et al. (2016)). Instead of using MuJoCo en-
gine, we decided to use Brax (Freeman et al. (2021)) as it enables the possibility to acquire episodes
on GPU. We use the vanilla environment for training. The policy and the critic are encoded by two
different multi-layer perceptrons with ReLU activations. The base learning algorithm is PPO.

Test environments: As for HalfCheetah, we operated variations in physics (gravity and friction
coefficients). We also designed environments with a percentage of masked features to simulate
defective sensors (They are sampled randomly and remain the same for each run). Table 6 precisely
indicates the nature of the changes for each environment

Env name Modifications
BigFriction Friction coefficient ×1.25
BigGravity Gravity coefficient ×1.25
SmallFriction Friction coefficient ×0.75
SmallGravity Gravity coefficient ×0.75
HugeFriction Friction coefficient ×1.5
HugeGravity Gravity coefficient ×1.5
TinyFriction Friction coefficient ×0.5
TinyGravity Gravity coefficient ×0.5
DefectiveSensor 5% 5% of env obs set to 0
DefectiveSensor 10% 10% of env obs set to 0
DefectiveSensor 15% 15% of env obs set to 0
DefectiveSensor 20% 20% of env obs set to 0
DefectiveSensor 25% 25% of env obs set to 0
DefectiveSensor 30% 30% of env obs set to 0
DefectiveSensor 35% 35% of env obs set to 0

Table 6: Modified Ant environments used for testing.
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Hyper-parameter Value
lr policy: 0.0003
lr critic: 0.0003
n parallel environments: 2048
n acquisition steps per epoch: 20
batch size: 1024
num minibatches: 16
update epochs: 16
discount factor: 0.99
clip ration: 0.3
action std: 0.4
gae coefficient: 0.96
reward scaling: 1.
gradient clipping: 10.
n layers (policy): 4
n neurons per layer (policy): 64
n layers (critic): 5
n neurons per layer (critic): 256

LoP
β : {0.1, 1, 10}

DIAYN
β : {0.1, 1, 10}
lr discriminator: 0.001
n layers (discriminator): 2
n neurons per layer (discriminator): 64

Lc
β : {0.1, 1, 10}
dimensions of z: 1
lr discriminator: 0.001
n layers (discriminator): 2
n neurons per layer (discriminator): 64

Table 7: Hyper-parameters for PPO over Ant
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Single Policy LoP DIAYN + R Lc
β = (K=1) 0.1 1 10 0.1 1 10 0.1 1 10

K=5
BigFriction 7454 ± 166 7544 ± 140 7470 ± 96 7541 ± 202 7256 ± 1010 6403 ± 726 6267 ± 627 7666 ± 103 7573 ± 154 7538 ± 136
BigGravity 6905 ± 138 7038 ± 211 6937 ± 23 7027 ± 182 6858 ± 827 6082 ± 583 5865 ± 543 7123 ± 184 7075 ± 168 7051 ± 131
SmallFriction 6755 ± 2073 7695 ± 156 7652 ± 126 7599 ± 167 7046 ± 1777 6491 ± 807 6133 ± 706 7846 ± 127 7673 ± 183 7734 ± 211
SmallGravity 7057 ± 1875 7738 ± 134 7639 ± 120 7748 ± 169 7533 ± 896 6582 ± 727 6486 ± 769 7876 ± 100 7745 ± 105 7772 ± 84
HugeFriction 7505 ± 252 7634 ± 152 7616 ± 68 7601 ± 253 7220 ± 1331 6387 ± 752 6384 ± 733 7799 ± 103 7647 ± 128 7668 ± 77
HugeGravity 380 ± 507 1111 ± 538 1407 ± 557 1494 ± 934 846 ± 556 2924 ± 1992 2847 ± 1598 1134 ± 934 915 ± 465 1440 ± 985
TinyFriction 2747 ± 1241 3716 ± 996 4584 ± 801 4070 ± 1751 3540 ± 948 2950 ± 1113 2600 ± 572 3550 ± 843 4140 ± 294 3487 ± 508
TinyGravity -520 ± 426 -106 ± 125 -139 ± 274 116 ± 322 -479 ± 374 -3 ± 202 224 ± 108 -234 ± 790 -401 ± 373 -83 ± 329
DefectiveSensor 5% 4308 ± 59 5243 ± 322 5630 ± 124 5560 ± 272 4958 ± 126 4492 ± 211 4360 ± 338 5428 ± 424 4988 ± 123 5225 ± 562
DefectiveSensor 10% 2770 ± 171 3620 ± 238 3660 ± 328 3625 ± 291 3440 ± 64 3371 ± 57 3223 ± 400 3519 ± 76 3406 ± 215 3491 ± 207
DefectiveSensor 15% 1531 ± 90 2583 ± 247 2738 ± 312 2740 ± 167 1774 ± 84 1984 ± 383 2055 ± 311 2408 ± 340 2226 ± 78 2349 ± 271
DefectiveSensor 20% 1026 ± 77 1750 ± 249 1965 ± 234 2008 ± 199 1104 ± 101 1490 ± 387 1450 ± 347 1658 ± 245 1546 ± 108 1714 ± 238
DefectiveSensor 25% 736 ± 95 1595 ± 317 1757 ± 154 1526 ± 338 762 ± 34 1107 ± 396 1120 ± 241 1344 ± 262 1271 ± 205 1363 ± 254
DefectiveSensor 30% 472 ± 50 695 ± 112 793 ± 166 674 ± 120 577 ± 34 859 ± 290 766 ± 212 673 ± 115 575 ± 49 622 ± 100
DefectiveSensor 35% 424 ± 48 606 ± 135 684 ± 182 635 ± 85 449 ± 68 650 ± 245 565 ± 151 618 ± 170 525 ± 92 602 ± 175

Average 3338 3905 4035 3998 3558 3451 3356 3909 3820 3870

K=10
BigFriction 7454 ± 166 7591 ± 134 7487 ± 101 7556 ± 199 7695 ± 113 6771 ± 573 6021 ± 748 7685 ± 103 7580 ± 163 7554 ± 116
BigGravity 6905 ± 138 7107 ± 153 7015 ± 89 7009 ± 166 7250 ± 57 6282 ± 476 5638 ± 600 7137 ± 96 7083 ± 184 7114 ± 98
SmallFriction 6755 ± 2073 7681 ± 154 7693 ± 103 7671 ± 193 7823 ± 142 6874 ± 590 5980 ± 716 7864 ± 131 7743 ± 161 7762 ± 196
SmallGravity 7057 ± 1875 7788 ± 135 7732 ± 86 7764 ± 185 7886 ± 127 6947 ± 619 6354 ± 818 7896 ± 91 7757 ± 117 7767 ± 75
HugeFriction 7505 ± 252 7640 ± 199 7589 ± 72 7613 ± 238 7860 ± 115 6788 ± 630 6160 ± 767 7846 ± 107 7695 ± 115 7668 ± 79
HugeGravity 380 ± 507 1329 ± 593 1711 ± 74 1583 ± 442 921 ± 302 4564 ± 2033 3009 ± 747 874 ± 358 1237 ± 662 1156 ± 812
TinyFriction 2747 ± 1241 4015 ± 1167 4918 ± 723 4393 ± 1252 4527 ± 560 3001 ± 1261 3676 ± 1382 4545 ± 731 4119 ± 555 3791 ± 476
TinyGravity -520 ± 426 55 ± 184 11 ± 226 154 ± 293 -56 ± 256 6 ± 236 236 ± 336 -149 ± 800 -248 ± 362 227 ± 357
DefectiveSensor 5% 4308 ± 59 5088 ± 224 5323 ± 173 5098 ± 305 5063 ± 101 4498 ± 191 3992 ± 277 5355 ± 262 5016 ± 109 5229 ± 424
DefectiveSensor 10% 2770 ± 171 3974 ± 380 3978 ± 117 3934 ± 297 3486 ± 161 3413 ± 213 3061 ± 184 3960 ± 106 3711 ± 194 3779 ± 196
DefectiveSensor 15% 1531 ± 90 2504 ± 283 2423 ± 154 2496 ± 92 1851 ± 142 2365 ± 426 2226 ± 216 2309 ± 137 2374 ± 120 2352 ± 127
DefectiveSensor 20% 1026 ± 77 1795 ± 174 1629 ± 111 1774 ± 147 1205 ± 63 1777 ± 466 1737 ± 203 1834 ± 326 1987 ± 127 1787 ± 180
DefectiveSensor 25% 736 ± 95 1486 ± 156 1351 ± 220 1372 ± 85 851 ± 36 1422 ± 411 1380 ± 218 1342 ± 121 1368 ± 95 1390 ± 93
DefectiveSensor 30% 472 ± 50 1103 ± 87 968 ± 93 1133 ± 158 635 ± 99 967 ± 297 866 ± 157 1069 ± 144 925 ± 109 962 ± 149
DefectiveSensor 35% 424 ± 48 714 ± 149 640 ± 86 634 ± 75 441 ± 49 714 ± 223 662 ± 109 583 ± 95 609 ± 122 630 ± 107

Average 3338 3991 4031 4012 3833 3759 3400 4020 3947 3945

K=20
BigFriction 7454 ± 166 7592 ± 147 7510 ± 89 7569 ± 172 7646 ± 118 4328 ± 3086 5301 ± 429 7692 ± 94 7589 ± 129 7573 ± 122
BigGravity 6905 ± 138 7121 ± 162 7028 ± 50 7090 ± 171 7196 ± 139 4172 ± 2949 4867 ± 370 7162 ± 86 7135 ± 147 7132 ± 121
SmallFriction 6755 ± 2073 7767 ± 111 7712 ± 98 7703 ± 228 7833 ± 141 4360 ± 3118 5021 ± 322 7862 ± 131 7726 ± 144 7775 ± 170
SmallGravity 7057 ± 1875 7807 ± 123 7698 ± 86 7777 ± 203 7863 ± 109 4512 ± 3258 5343 ± 404 7906 ± 78 7774 ± 113 7806 ± 95
HugeFriction 7505 ± 252 7674 ± 171 7648 ± 97 7699 ± 198 7747 ± 104 4331 ± 3089 5061 ± 334 7851 ± 119 7714 ± 115 7737 ± 81
HugeGravity 380 ± 507 1655 ± 712 2111 ± 1405 1587 ± 343 2005 ± 743 3596 ± 2437 4231 ± 121 1357 ± 197 2122 ± 1006 1514 ± 845
TinyFriction 2747 ± 1241 4437 ± 827 5147 ± 595 4625 ± 1145 4393 ± 469 2203 ± 1432 3117 ± 816 4707 ± 490 3979 ± 656 3917 ± 529
TinyGravity -520 ± 426 259 ± 324 188 ± 241 289 ± 316 357 ± 525 291 ± 620 348 ± 152 -121 ± 812 -110 ± 257 177 ± 370
DefectiveSensor 5% 4308 ± 59 5816 ± 313 5996 ± 153 6002 ± 216 5185 ± 121 4570 ± 175 3647 ± 174 6023 ± 257 5780 ± 241 5884 ± 177
DefectiveSensor 10% 2770 ± 171 3979 ± 248 3850 ± 199 4083 ± 313 3500 ± 208 3475 ± 242 2827 ± 261 4173 ± 325 4023 ± 176 4038 ± 391
DefectiveSensor 15% 1531 ± 90 2789 ± 368 2526 ± 132 2790 ± 367 2047 ± 117 2495 ± 52 2125 ± 218 2596 ± 306 3011 ± 202 2810 ± 403
DefectiveSensor 20% 1026 ± 77 1890 ± 107 1794 ± 88 1750 ± 278 1333 ± 86 1875 ± 26 1714 ± 189 1746 ± 123 1789 ± 151 1901 ± 185
DefectiveSensor 25% 736 ± 95 1582 ± 104 1422 ± 187 1416 ± 150 992 ± 51 1351 ± 16 1320 ± 217 1480 ± 128 1286 ± 166 1450 ± 195
DefectiveSensor 30% 472 ± 50 1102 ± 133 1069 ± 128 968 ± 62 657 ± 75 931 ± 136 994 ± 70 909 ± 178 1035 ± 99 992 ± 51
DefectiveSensor 35% 424 ± 48 996 ± 103 908 ± 104 833 ± 77 485 ± 67 678 ± 15 719 ± 59 791 ± 100 927 ± 92 907 ± 113

Average 3338 4164 4174 4145 3949 2878 3109 4150 4126 4108

Table 8: Mean and standard deviation of cumulative reward achieved on Ant test sets per model. Re-
sults are averaged over 10 training seeds (i.e., 10 models are trained with the same hyper-parameters
and evaluated on the 12 test sets). K is the number of policies tested at adaptation time, using 1
episode per policy since this environment is deterministic. For this environment, we split the results
per β value as it has been used for beta ablation study (see Figure 3)
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B.3 CARTPOLE

We use the openAI gym implementation of CartPole as a training environment. The 6 test environ-
ments are provided by Packer et al. (2018) where three different factors may vary: the mass of the
cart, the length of the pole and the force applied to the cart. The length of each episode is 200. The
policy and the critic are encoded by two different multi-layer perceptrons with ReLU activations.
The base learning algorithm is A2C.

Environment Characteristics
(Train) CartPole mass = 0.1, length = 0.5, force = 10.0
HeavyPole CartPole mass = 1.0
LightPole CartPole mass = 0.001
LongPole CartPole length = 1.0
ShortPole CartPole length = 0.05
StrongPush CartPole force = 20.0
WeakPush CartPole force = 1.0

Table 9: CartPole train and test environments

Hyper-parameter Value
learning rate: 0.001
n acquisition steps per epoch: 8
n parallel environments: 32
critic coefficient: 1.0
entropy coefficient: 0.001
discount factor: 0.99
gae coefficient: 1.0
gradient clipping: 2.0
n neurons per layer: 8
n layers: 2

LoP
β : 1.0

DIAYN
β : 1.0
n neurons per layer discriminator: 8
n layers discriminator: 2
learning rate discriminator: 0.001

Table 10: Hyper-parameters for A2C over CartPole

Single LoP DIAYN+R DIAYN+R L2

HeavyPole CartPole 200.0 ± 0.0 200.0 ± 0.0 200.0 ± 0.0 200.0 ± 0.0
LightPole CartPole 200.0 ± 0.0 200.0 ± 0.0 200.0 ± 0.0 200.0 ± 0.0
LongPole CartPole 54.4 ± 81.6 56.1 ± 72.2 163.3 ± 73.3 123.8 ± 86.2
ShortPole CartPole 67.0 ± 33.1 78.9 ± 25.3 50.7 ± 18.1 64.8 ± 31.2
StrongPush CartPole 200.0 ± 0.0 200.0 ± 0.0 200.0 ± 0.0 199.9 ± 0.2
WeakPush CartPole 138.9 ± 43.8 164.4 ± 18.3 194.3 ± 10.0 148.1 ± 64.8
Average 143.4 149.9 168.1 156.1

Table 11: Results over CartPole, using 10 policies, and 10 episodes per policy at adaptation time.

21



Under review as a conference paper at ICLR 2022

B.4 ACROBOT

We use the openAI gym implementation of Acrobot as a training environment. The 4 test environ-
ments are provided by Packer et al. (2018) where two different factor may vary: the intertia factor
and the lengh of the system. We have used A2C as a learning algorithm.

Environment Characteristics
(Train) Acrobot mass = 0.1, length = 1.0, inertia = 1.0
Heavy Acrobot mass = 1.5
HighInertia Acrobot inertia = 1.5
Light Acrobot mass = 0.5
Long Acrobot length = 1.5
LowInertia Acrobot inertia = 0.5
Short Acrobot length = 0.5

Table 12: Acrobot train and test environments

Hyper-parameter Value
learning rate: 0.001
n acquisition steps per epoch: 8
n parallel environments: 32
critic coefficient: 1.0
entropy coefficient: 0.001
discount factor: 0.99
gae coefficient: 0.7
gradient clipping: 2.0
n neurons per layer: 16
n layers: 2

LoP
β : 1.0

DIAYN
β : 1.0
n neurons per layer discriminator: 16
n layers discriminator: 2
learning rate discriminator: 0.001

Table 13: Hyper-parameters for A2C over Acrobot

Single LoP DIAYN+R DIAYN+R L2

Heavy Acrobot -108.4 ± 3.2 -105.1 ± 1.0 -108.0 ± 1.8 -108.2 ± 4.4
HighInertia Acrobot -108.7 ± 5.6 -99.8 ± 2.8 -106.0 ± 2.7 -106.8 ± 8.9
Light Acrobot -120.7 ± 71.3 -107.2 ± 58.8 -115.2 ± 33.1 -93.1 ± 37.3
Long Acrobot -124.3 ± 2.7 -115.8 ± 9.6 -117.3 ± 4.1 -117.5 ± 5.3
LowInertia Acrobot -71.3 ± 2.3 -70.7 ± 0.7 -71.2 ± 0.7 -71.3 ± 1.9
Short Acrobot -65.1 ± 2.8 -60.7 ± 0.6 -64.2 ± 2.6 -64.7 ± 5.6
Average -99.7 -93.2 -97.0 -93.6

Table 14: Results over Acrobot, using 10 policies, and 10 episodes per policy at adaptation time.
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B.5 PENDULUM

We use the openAI gym implementation of Pendulum as a training environment. The 3 test environ-
ments are provided by Packer et al. (2018) where two different factor may vary: the mass and the
length of the pendulum. We have considered 5 discrete actions between −1 and +1. We have used
A2C as a learning algorithm.

Environment Characteristics
(Train) Pendulum mass = 1.0, length = 1.0
Light Pendulum mass = 0.5
Long Pendulum length = 1.5
Short Pendulum length = 0.5

Table 15: Pendulum train and test environments

Hyper-parameter Value
learning rate: 0.001
n acquisition steps per epoch: 8
n parallel environments: 32
critic coefficient: 1.0
entropy coefficient: 0.001
discount factor: 0.99
gae coefficient: 0.7
gradient clipping: 2.0
n neurons per layer: 16
n layers: 2

LoP
β : 1.0

DIAYN
β : 1.0
n neurons per layer discriminator: 16
n layers discriminator: 2
learning rate discriminator: 0.001

Table 16: Hyper-parameters for A2C over Pendulum

Single LoP DIAYN+R DIAYN+R L2

Light Pendulum -36.5 ± 58.5 -11.4 ± 2.7 -39.3 ± 10.9 -32.1 ± 15.4
Long Pendulum -82.1 ± 20.4 -64.5 ± 13.0 -70.6 ± 15.2 -71.9 ± 17.3
Short Pendulum -39.6 ± 66.9 -10.7 ± 2.1 -31.3 ± 11.7 -28.2 ± 13.3
Average -52.7 -28.9 -47.1 -44.0

Table 17: Results over Pendulum, using 10 policies, and 10 episodes per policy at adaptation time.
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B.6 MINIGRID

We have use Gym Minigrid to perform experiments on mazes Chevalier-Boisvert et al. (2018). We
have used the MultiRoom-N2-S4 for training considering one single maze. At test time, we have
tested on three different MultiRoom-N2-S4 environments composed of two rooms, but also on three
MultiRoom-N4-S5 composed of four rooms. This allows us to evaluate the generalization power of
the different methods to larger mazes. We have used A2C as a learning algorithm.

Hyper-parameter Value
learning rate: 0.001
n acquisition steps per epoch: 8
n parallel environments: 32
critic coefficient: 1.0
entropy coefficient: 0.001
discount factor: 0.99
gae coefficient: 0.7
gradient clipping: 2.0
n neurons per layer: 16
n layers: 2

LoP
β : 1.0

DIAYN
β : 1.0
n neurons per layer discriminator: 16
n layers discriminator: 2
learning rate discriminator: 0.001

Table 18: Hyper-parameters for A2C over Minigrid

Single LoP DIAYN+R DIAYN+R L2

Two Rooms Maze 1 0.387 ± 0.447 0.619 ± 0.309 0.348 ± 0.348 0.656 ± 0.328
Two Rooms Maze 2 0.433 ± 0.499 0.865 ± 0.0 0.627 ± 0.363 0.692 ± 0.346
Two Rooms Maze 3 0.194 ± 0.387 0.617 ± 0.309 0.348 ± 0.353 0.656 ± 0.328
Four Rooms Maze 1 0.0 ± 0.0 0.294 ± 0.36 0.0 ± 0.0 0.24 ± 0.359
Four Rooms Maze 2 0.0 ± 0.0 0.004 ± 0.007 0.0 ± 0.0 0.137 ± 0.274
Four Rooms Maze 3 0.0 ± 0.0 0.281 ± 0.345 0.166 ± 0.287 0.28 ± 0.345
Average 0.169 0.447 0.248 0.443

Table 19: Results over Minigrid, using 10 policies, and 1 episode per policy at adaptation time.
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