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Abstract

Trust in a decision-making system requires both safety guarantees and the ability
to interpret and understand its behavior. This is particularly important for learned
systems, whose decision-making processes are often highly opaque. Shielding is
a prominent model-based technique for enforcing safety in reinforcement learn-
ing. However, because shields are automatically synthesized using rigorous for-
mal methods, their decisions are often similarly difficult for humans to interpret.
Recently, decision trees became customary to represent controllers and policies.
However, since shields are inherently non-deterministic, their decision tree repre-
sentations become too large to be explainable in practice. To address this chal-
lenge, we propose a novel approach for explainable safe RL that enhances trust by
providing human-interpretable explanations of the shield’s decisions. Our method
represents the shielding policy as a hierarchy of decision trees, offering top-down,
case-based explanations. At design time, we use a world model to analyze the
safety risks of executing actions in given states. Based on this risk analysis, we
construct both the shield and a high-level decision tree that classifies states into
risk categories (safe, critical, dangerous, unsafe), providing an initial explanation
of why a given situation may be safety-critical. At runtime, we generate localized
decision trees that explain which actions are allowed and why others are deemed
unsafe. Altogether, our method facilitates the explainability of the safety aspect
in the safe-by-shielding reinforcement learning. Our framework requires no ad-
ditional information beyond what is already used for shielding, incurs minimal
overhead, and can be readily integrated into existing shielded RL pipelines. In our
experiments, we compute explanations using decision trees that are several orders
of magnitude smaller than the original shield.

1 Introduction

Deep reinforcement learning (RL) [42] is a powerful machine learning technique for intelligent
sequential decision-making. Despite its successes, its application in safety-critical systems remains
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Figure 1: Overview of our method for explainable-safe RL.

limited due to safety concerns. RL agents learn by exploring their environment through trial and
error, a process that inherently carries the risk of taking unsafe actions.

Shielding [1] is a prominent approach towards safe RL. A shield blocks (“shields”) unsafe actions
from the learning agent at runtime, either during learning or evaluation, as depicted at the bottom of
Fig. 1. At each step, the shield provides a list of all safe actions, from which the agent can select
one. Shielded RL thus belongs to a class of methods that combine symbolic Al, which provides
formal safety guarantees but suffers from limited scalability, with machine learning, which offers
high scalability but lacks guarantees. However, even though shields add safety guarantees to RL,
trusting a shielded system remains challenging due to the lack of explainability.

Policies learned via RL are notoriously difficult to interpret, as they are represented by highly opaque
deep neural networks. Unfortunately, understanding the decisions made by a shield is almost equally
challenging. Shields are typically implemented as large lookup tables that define the set of allowed
actions for each state. These tables are inherently hard for humans to interpret, as they provide no
insight into why a particular action is considered safe or unsafe in a given state. The combined
opacity of both the shield and the RL policy makes it difficult to predict, understand, or trust the
behavior of a shielded learning agent.

In this paper, we propose an approach to explainably safe RL by explaining the decisions of the
shield to the user, making the safety aspect of the process more explainable.

Decision Trees (DTs) have recently gained popularity for representing controllers and policies due to
their inherent simplicity and human-readability [17]. This is documented by numerous case studies
and tool support, e.g. [5, 4, 7, 12]. However, directly computing DTs to represent a shield often re-
sults in excessively large trees, undermining their utility for explainability. Computing compact DTs
is especially challenging in the context of shielding due to the shield’s inherent non-determinism: a
shield permits the agent to explore any action that is safe, resulting in more complex representations.

Our Approach for Explainable-Safe RL. Rather than presenting the user with a large tree that
explains all safety-critical aspects at once, we propose to provide explanations in a hierarchical
manner. Our method offers a compact, top-down, case-based explanation. An overview of our
method is shown in Fig. 1. First, our approach computes the shield along with its explanations to
help users understand how critical the current state is and the risks associated with executing specific
actions. Second, the risk of each state is explained using a decision tree constructed at design time.
Third, at runtime, additional explanations identify which actions are safe and clarify why others
are considered unsafe. Our framework takes as input an abstract world model M in the form of a
Markov Decision Process (MDP), along with a safety specification ¢ in temporal logic.



At Design-Time. Based on the model M, we apply value iteration to compute, for every state-
action pair (s, a), the risk of violating the safety specification ¢ when executing action « in state s.
Based on this safety analysis, we categorize the states in M into four risk categories:

 Safe: From safe states, executing any action carries a low risk of violating safety in the future.
. : In critical states, some, but not all, actions carry a too-high risk of violating safety.

» Dangerous: In dangerous states, all actions carry an unacceptably high risk of violating safety.
 Unsafe: States in which safety has already been violated.

Shield Computation. From this safety analysis, we first derive the shield. The task of the shield is
to block actions from the RL agent that pose too high a risk. Thus, in safe states, the shield allows all
actions. In , the shield allows all actions whose risk is below the user-defined threshold.
If no absolute-safety guarantees are enforced (i.e., the user sets the threshold to a value less than 1,
allowing the agent to take some risks), the agent may end up in a dangerous state or even an unsafe
one. In dangerous states, all actions induce a risk inevitably above the safety threshold, meaning
safety is at risk but, for now, has not been violated. In this case, a fallback shielding strategy must
be defined, such as selecting a predefined action (e.g., braking or landing). We follow a common
approach and implement a shield that, in such situations, allows only the safest available action [23].
In unsafe states, safety is violated and the shield allows no actions (deadlocks). The resulting shield
is a non-deterministic policy mapping states to allowed actions.

Level 1: Explaining the Risk of States. The highest-level explanation is represented in the form of
a decision tree (DT) that categorizes states into the four risk categories (safe, critical, dangerous, and
unsafe), helping users to determine whether the system is currently in a safety-critical situation and
to assess the severity of the risk. For a given state, the predicates along the path in the DT provide
an explanation for its categorization. Example: In Fig. 1, a human operator asks for an explanation
why the action of keeping the velocity is not allowed in the current state s, where the agent is at
position 3 and an object is at position 7. The Level 1 DT explains, that the current state is critical
because the distance d to the object is 3m < d < 10m. Therefore, not all actions are safe to execute.

At Runtime. The user may wish to understand why certain actions are considered safe or unsafe in
the current situation. To explain the safety risk of actions, we compute a decision tree that explains
the categorization of actions in the current state. If the user requests more detailed information about
why a particular action is classified as unsafe, we compute an execution tree that summarizes the
potential consequences of executing that action.

Level 2: Explaining the Risk of Actions. A Level 2 DT explains the shielding policy for the set of
states represented by a leaf in the Level 1 DT. If the current state is categorized as critical in Level
1, the Level 2 DT explains which actions pose a low safety risk and are therefore permitted. If the
current state is categorized as dangerous, the Level 2 DT explains what action is the safest one to
execute. Example: Continuing the scenario from Fig. 1, the Level 2 DT explains that, in the current
state, only breaking is classified as safe action because the distance to the obstacle is less than 5m.
If the distance were greater than 5m, maintaining the current velocity would also be considered safe.

Level 3: Explaining the Consequences of Actions. If executing action a in a given state s is
categorized as unsafe, we compute yet another tree that provides evidence for the violation of the
property ¢ resulting from executing @ in s. This final explanation is provided in the form of an
Execution Tree (ET), which summarizes traces in the MDP M that start with executing a in s,
followed by taking only the safest available action thereafter. This tree demonstrates that, even
when the safest actions are taken after a, the property ¢ is violated with a probability that exceeds the
safety threshold. Example: Returning to the scenario described above, the Level 3 ET demonstrates
that, if the speed is maintained in (p, = 3,p, = 7), the next state will be (p, = 5,p, = 7). From
there, even braking would result in an unsafe state (d = 0) within the next two steps.

To compute the trees, the user can optionally provide predicates to guide the DT learning process.
Note that the world model M and the safety specification ¢ are required in any shielded RL setting.
As a result, our method can be easily integrated into any shielded RL application, as it does not
require any additional information beyond what is already used to construct the shield.

Key Contributions of this Paper. (1) To the best of our knowledge, we introduce the first frame-
work that combines explainability with formal safety guarantees for RL. (2) We provide a method for
generating concise, case-based explanations that enable humans to understand the cause of safety
violations as they occur. We overcome the non-scalability of a naive approach to explainability-



via-DT by the hierarchical decomposition of explanations. (3) We evaluate our implementation on
several challenging RL benchmarks, showing that the resulting explainable shields are compact and
comprehensible, in contrast to traditional shields, which typically involve thousands of states.

2 Related Work

Shields were initially introduced in the context of reactive systems [10]. Later, [1] extended the con-
cept to RL, ensuring absolute safety guarantees. In contrast, [23] adopted a quantitative perspective
on safety, designing shields that provide probabilistic safety guarantees, thereby permitting the agent
to take some calculated risks. These two fundamental concepts of shielded RL assume environments
modeled as MDPs with discrete state and action spaces. Many extensions exist [34, 43, 35, 26]. For
example, [15] studied shielded RL for partially observable environments where only a part of the
state can be observed. Shields for multi-agent systems have been studied, in both centralized and de-
centralized settings [18, 29]. Shields for quantitative fairness properties have been studied in [6, 14].
In this work, we make a step toward bridging the gap between formal methods and explainable Al
by computing explanations for rigorously computed shields, as introduced by [23].

A comprehensive literature review on explainable RL can be found in [31, 49]. Research directions
include human-in-the-loop approaches [40], policy summarization [2, 44], training process visu-
alization [32], and methods that identify performance-critical states [16, 20, 36]. These methods
primarily focus on explaining why the agent’s decisions are optimal for maximizing the expected
reward. The computation of case-based explanations has been explored in [46, 13]. In contrast
to explaining the full decision-making intent of the RL policy, our approach explains why certain
actions are considered safety-critical.

DTs are widely used in explainable Al due to their intuitive, human-readable structure [17]. In the
context of explainable RL, DTs have been constructed to mimic the trained policy of RL agents [9,
30,47, 19, 38]. In contrast, we compute DTs to explain the shield, resulting in compact explanations
that specifically focus on the safety aspects of the problem Furthermore, our approach preserves both
optimality and scalability by retaining the RL agent for decision-making. Recently, several works
have explored the computation of DTs to represent optimal policies in MDPs [25, 3, 48]. However,
these approaches focus on explaining the available actions, not the safety aspects, and are often not
scalable to the large environments and non-deterministic policies of the RL context.

3 Background

Markov Decision Processes. A Markov decision process (MDP) [42] is a tuple M = (S, so, A, P)
where S is a finite set of states, so € S is the initial state, 4 is a finite set of actions, and P :
S x A — Dist(S) is the probabilistic transition function. For all s € S, the available actions are
A(s) ={a € A|3s',P(s,a)(s’) # 0} and we assume | A(s)| > 1. Let V = {v1,v2,...,v,} bea
set of features. A state s € S can be represented as a tuple s = (7, ...,7,) where U; = s(v;) € Z
is the assigned value to feature v;.

Choices in an MDP are resolved via policies. A (memoryless non-randomizing) non-deterministic
policy is arelation 7 : S — 24, A (memoryless non-randomizing) deterministic policy is a function
m:S — A. Applying a deterministic policy 7 : § — A to an MDP M induces a Markov chain
(MC) M™ = (S, s0,P) with P : S — Dist(S) where all nondeterminism is resolved. A finite
trace T = {s0s152...5, } in a MC is a sequences of states such that P(s;, s;+1) > 0. The probability
mass of such a trace is defined as P(s505152...5,) = [[g<; < P54, Sit1)-

Probabilistic Model Checking. We consider safety properties expressed in Computation Tree
Logic (CTL) [8]. Informally, a safety property specifies that ’something bad never happens’. Such
properties can represent invariants like ’collisions are never allowed’ as well as temporal properties
like: *The agent must not reach an unsafe position within 30 steps.” Probabilistic model check-
ing [8] computes the probability of satisfying a safety property ¢ over a finite or infinite horizon,
using adaptations of value iteration, policy iteration, or linear programming. We define the prop-
erties below with a bound n. For the unbounded horizon, n = oco. For a given MDP M, and a
property ¢ in CTL, model checking computes the following probabilities:
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Figure 2: Risk-based Categorization of States.

o Ppgr o0 SxN — [0, 1] is the expected probability to satisfy ¢ in the MC M™ from a state s € S
within n steps for a deterministic policy 7.

* PR, (s, h) = ming Pagr (s, h) is the minimal expected probability in the MDP M over all
policies from a state s within A steps.

Shields. A shield Topiciq : S — 22 for an MDP M can be represented as a non-deterministic
policy. Shields are computed from a safety specification ¢ in CTL and an abstract model of the
environment that captures the safety-relevant aspects of the full MDP [23]). Computing the shield
using only a safety-relevant fragment of the full MDP enables the scalability of shielded RL. Dif-
ferent types of shields are distinguished by the safety guarantees they provide and the types of used
world models. We follow the approach of Jansen et al.[23] and compute shields that offer proba-
bilistic safety guarantees. We discuss the details in Section 4.

Reinforcement Learning. In reinforcement learning (RL) [42], an agent learns a task via interac-
tions with an unknown environment modeled by an MDP M with an associated reward function
R : S — R. In each state s € S, the agent chooses an action a € A. The environment then moves
to a state s’ with probability P(s, a, s”). The return ret, of an execution p is the discounted cumu-
lative reward defined by ret, = 322 7'R(s;), using the discount factor v € [0, 1]. The objective
of the agent is to learn an optimal policy 7* : S — A that maximizes the expectation of the return.

Decision Trees. We use decision trees (DTs) [11] to represent nondeterministic policies in MDPs.
A DT over the set of features V is a tuple 7 = (T'r,T', p, A, \) where T'r is a finite, rooted, binary,
ordered tree consisting of a set of inner nodes N and a set of leaves L.

The set of predicates over V is denoted by I'. We define a set of basic predicates I' [v; ~ const],
where v; € V, const € Z, and ~€ {<, <, >, >, =}. The function p : N — T assigns to every inner
node n € N apredicate p € I'. The set A specifies a set of labels. The labeling function A : L — A
assigns to each leaf [ € L, alabel v € A.

A DT T defines a function f : 7% — 7, with d = |V|, as follows. Given an input vector (a state
in the MDP) s = (77, ...,75) € Z%, one follows a unique path p from the root to a leaf | € L s.t.
for each inner node n € N on the path, the predicate p(n) evaluates to true under the substitution
v; = T iff the first (typically left) child of n lies on p. We define 7 (s) = [ to be the leaf the state
s reaches. The value of the function f on s is defined as f(s) = f(71,...,7,) = A(l). We define
ly: L — 25 with S = Z< as the function that maps a leaf [ to the set of states whose path ends in /.

Execution Trees. For a given MC M = (S, 59, P) and a set of finite traces Il = {7y ...7,} of M,
an execution tree (ET) represents 7y . .. 7, of M in a tree structure. An execution tree 7 = (N, E)
is a rooted tree consisting of a set of nodes N and a set of edges £ : N — N. Nodes are labeled
with states s € S. An edge e € E corresponds to a transition in PP. Each trace 7 € II defines a path
p in T. Thus, each path p = {ny,na,...n,} corresponds to a trace 7; = {s1, S2, ... s, } € Il such
that the node n; is labeled with the state s; for 1 < i < n.

4 Computing Hierarchical Safety Explanations

In this section, we present our algorithm for explainable safe RL in detail. We begin by describing
the construction of the shield and the Level 1 DT in Sec. 4.1. In Sec. 4.2, we introduce the Level
2 and Level 3 trees, which provide case-based explanations at runtime. To compute the shield and
the explanations, our algorithm takes the safety specification ¢ and an MDP M = (S, sg, A, P).
Optionally, it accepts user-defined predicates to guide the DT learning.



4.1 Shield Computation and High-Level Safety Explanations

Executing an action in a given state may carry some risk of violating safety at some point in the
future. Based on this risk, states are categorized as safe, critical, dangerous, or unsafe.

Definition 1. (Risk of Safety Violation) Given an MDP M = (S, s, A, P), a safety property ¢,
and a finite horizon h, we define the risk of violating  from a state s € S in the next h steps as a
function risk 0 S x N — [0,1] as follows:

Vs €S :riskpa, (s, h) = Pﬂfﬁw(s, h).

The risk of violating o from a state s € S after executing an action a € A in the next h steps is
defined via the function riskp,,: S X A x N — [0, 1] as follows:

Vs e S,Va € A: riska,,(s,a,h) = Z (P(s,a,s") - riskp,p(s', h —1)).
s'eS

The risk of a state s is defined as the minimal expected probability of reaching a state that violates ¢
within the next h steps, quantified over all policies; that is, the probability of a safety violation under
the safest available policy. The risk of executing an action a in a given state s is the accumulated,
weighted risk of the successor states reached by executing a in s. The risk across all states in the
state space can be computed using standard probabilistic model checking algorithms, such as value
iteration or dynamic programming [8], with tools like PRISM [27], STORM [22], or TEMPEST [34].

Definition 2. (Safety of Actions) Given an MDP M, a safety property ¢, a finite horizon h, and a
user-defined safety threshold € € [0,1]. For a given state action pair (s,a) € S x A, action a is
called safe in s if Tisk p,, (5, a, h) < €. Otherwise, a is unsafe in s.

We partition the state space into S = S U S, US4 U S, according to the risk per state as follows:
Definition 3. (Safe States S.) Vs € S. s € S iff Va € A: riskp,,(s,a,h) <e.

Definition 4. ( )Vs € S§. s € Sciff Ja € A: riskpmp(s,a,h) < € and
Ja’ € A: risk (5,0’ h) > €.

Definition 5. (Dangerous States S;)Vs € S. s € Sqiff s |= pand Ya € A: riskpq,4(s,a,h) > €.
Definition 6. (Unsafe States S,,) Vs € S. s € Sq iff s £ .

The categorization of states is illustrated in Fig. 2. In safe states, all available actions are safe, i.e.,
they have a risk of at most €. In critical states, only some actions are safe, while others may exceed
the safety threshold. In dangerous states, all available actions are unsafe, i.e., each carries a risk of
violating the safety property greater than e, although no safety violation has occurred yet. A state is
considered unsafe if it violates the safety property.

Computation of the shield 7gpjeia. Using the computed risk function risk o4, and the classification
of states, the shielding policy Tghjelg : S — 24 is computed as follows:

risk am,0(s,a, h) <€, or
(8,a) € Matiela s € Sq and risk a5 (s, a, h) = Hlifl“ riska,p(s,a', h).
a’'e ’

The shield permits all actions that are classified safe and blocks all unsafe actions. The only ex-
ception is in dangerous states, where the shield allows the agent to take the action with the lowest
risk. Note that different approaches exist for defining shielding strategies in dangerous states, for
example, selecting a predefined fallback action such as halting. Next, we compute the Level-1 DT
Tr1, which classifies states in the state space according to their risk category, providing an initial
explanation of why a given state may be safety-critical.

Computation of DT 7;;. We construct the decision tree Tr,1 = (Trr1, 11, pr1, Az, A1) for
a given MDP M, finite horizon h, and safety threshold e through the following steps. First, we
define the set of predicates I'1,; as follows. I'q contains the basic predicates [v; ~ const], where
v; € V, const € Z, and ~€ {<, <, >, >, =}. Additionally, this set can be extended by user-defined
predicates to incorporate domain knowledge. For example, predicates measuring the distance of a
state s to the unsafe region S, often enable intuitive explanations of safety-critical dynamics. Such
functions could capture, for example, the distance between two agents or the difference between



the current temperature and an overheating threshold. These user-defined predicates are of the form
pi = ki(v1,va,...,0,) ~ const; with k; : S — Z. Second, the classification of the states serves as
the labels for the leaves of T71. Thus, Ar; = {s,c¢,d, u}. Lastly, we learn 7 (i.e., its underlying
tree T'rr1 and functions py; and Ap;) using standard DT learning algorithms [33, 39]. We learn an
exact DT s.t. for all leaves [ of 71, Is(I) C S, for z € {s,¢c,d,u}. Intuitively, every s € S is
classified exactly, and the tree achieves perfect accuracy.

4.2 Case-based Safety Explanations

At runtime, our framework provides case-based explanations via two additional trees. Given a cur-
rent state s, a Level 2 decision tree explains which actions the RL agent is allowed to explore from
s. For a given unsafe action a, the Level 3 execution tree explains why executing a is unsafe in s.

Computation of DT 7;.. Let s be the current state. If s € S, all actions are classified as safe.
If s € S, safety is already violated. Therefore, we compute action-dependent safety explanations
only for critical and dangerous states. In critical states s € S., some actions are safe and some
are unsafe (i.e., Ja: riska,,(s,a,h) < e and 3a’: riskag,p(s,a’,h) > €.). A Tro for a critical
state s explains why actions are safe or unsafe in s. In dangerous states, all actions are unsafe,
ie., Ya: riska,,(s,a,h) > e. In such states, our shield allows the agent to explore the safest
available action (which still exceeds the safety threshold €). Then, the 772 provides an explanation
for why the selected action is considered the safest among the available options.

Let s be the current state and | = 7T7,1(s) be the leaf node reached by state s in 7. If s € S,
or s € Sy, we compute a Level-2 DT T/, = (Trt,, T, ph,, AL, AL L) over the states [5(1) as
follows. The set of predicates T , is equal to I'z;. The set of labels A}, is defined as sets over
actions, since the TLZ2 explains which actions are allowed by the shield, i.e., AlL2 =924,

Computation of ET 7;3. Given a current state s, and an unsafe action a,,, the ET 73 explains
that executing a,, in S¢,, leads to unsafe states with a probability greater than e. The tree provides
this explanation by representing a set of traces that start in a state reached after executing a,, in S¢y,;
and ending in an unsafe state, and that provide enough evidence to demonstrate that a,, is unsafe. For
a given state pair (Scyr, @y, ), We compute the Tig“"’a“ as follows. First, the MDP M is transformed
into an MC M7™ = (S, s¢, P) via the following policy 7:

Ay if s = Scur, and
Vs :m(s) = arg min 7iskaq,, (s, a,h)  otherwise.
acA

Thus, the policy 7 picks in any state the safest available action. Only in the current state s, the
policy 7 selects the action a,,. Therefore, traces sampled from this policy demonstrate possible
consequences of executing a,, in S.,,, if afterward only the safest actions were executed. We call a
finite trace 7 = {so, ..., s, } unsafe if s, € S,. We compute a set of traces Il = {71, 72,... 7}
that start in state s.,, in the MC M™ such that the probability mass of these traces exceeds the
safety threshold ¢, i.e. ) _;;IP(7) > e. We follow the algorithm from [21] to compute the most
probable traces in the MC MT™ that are unsafe and their probability mass exceeds the threshold e.
The algorithm uses the recursive enumeration algorithm for computing the % shortest paths on a
weighted digraph [24], substituting probabilities in M™ with distances. This algorithm computes
the shortest paths recursively until the probability mass of the traces is greater than e. The resulting

traces are prefix-merged to construct the execution tree TL(;)““""G“).

S Experimental Evaluation

In this section, we present the experimental evaluation of our approach. We consider the size of a
shield |7spierq| as the size of the lookup table and the size of a tree | 77| as the number of its nodes.
The tree size serves as our metric for evaluating explainability. The model checking queries were
computed using TEMPEST [34], and the DT representations of shields using DTCONTROL [5]. All
experiments were conducted on a laptop with an Intel® Core™i7-11800H CPU at 2.3 GHz with 32
GB of RAM. All details of the experimental setup can be found in the Appendix. We provide the
implementation as supplementary material.
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Figure 3: The RL benchmarks used for evaluation of our approach.
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Figure 5: Shield and tree sizes for different configurations of the Frozen Lake environment.

5.1 Frozen Lake

We performed a first set of experiments using the Farama Frozen Lake environment [45]. A Frozen
Lake environment is an n X n grid, consisting of blue slippery tiles and holes. The agent can move in
cardinal directions, where every movement carries a probability of 0.05 of slipping into a different
direction. The RL agent has to reach the goal G while not falling into a hole. The shield preventing
the agent from falling into a hole is computed with a horizon h = oo and a risk threshold € = 0.075.
The state classification of an example environment is shown in Fig. 3a. Red tiles indicate unsafe
states (holes), orange tiles indicate dangerous states, yellow tiles indicate critical states, and blue
tiles indicate safe states. The set of predicates I' = {z,y,dy,dn,dg,ds,dw} consists of the
agent’s coordinates (z, y), the Manhattan distance dj; to the nearest hole, and the distance d,, to the
nearest hole in the cardinal direction a € {N, S, E, W}.

Explaining Safety. Fig. 4a shows 71 for the environment depicted in Fig. 3a. 711 can concisely
capture the states in which the shield needs to interfere, by using the user-defined distance predicates.
Fig. 4b shows 7o for the dangerous states in 77;. The tree summarizes that, to exit a dangerous
state, the agent should move east if the distance to a hole in that direction permits it; otherwise, it
needs to move to the nearest safe state. Finally, Fig. 4c shows why moving to the North at position
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Figure 6: Exemplary DTs for HW2-c and the comparison of the sizes of the shield and decision trees.

6, 7) is not allowed. The represented traces in T(6’7)’N have a probability mass of 0.08 of reachin
P L3 p y g

an unsafe state, which exceeds the allowed risk of 0.075.

Results. We evaluated the scalability of our approach using randomly generated instances of Frozen
Lake environments of increasing size n x n with n € {5,10,...,50}. Per size, we generate 10
random instances and compare the sizes of the computed shields and tree representations. Fig. 5
shows the average sizes of the shielding policy |mspie1al, the shield represented as one single tree
| Tshieta|, and the trees | 7111, and | T72| over grid size n x n. The results show that, using our approach,
we obtain DTs that are several orders of magnitude smaller than the shielding policy. The average
time for computing the shield ranges from 0.15s for n = 5 to 15.4s for n = 50. The average time
to learn the DTs (71 or T12) is approximately 2s for all grid sizes.

5.2 Highway Cruise Control

We conducted our second set of experiments in the Farama Highway environment [28], illustrated in
Fig. 3b. In this environment, the agent controls a self-driving car operating on a highway populated
with other vehicles. The agent’s actions are: switching lanes (S, Sg), accelerating (A), braking
(B), or performing no operation (N). The agent’s goal is to reach the end of the road without
collisions. Additionally, it receives a positive reward for driving in the leftmost lane. We compute
a shield that ensures collision avoidance by enforcing a safe distance of 20m. In this example,
the shield prohibits the agent from taking any risks (i.e., ¢ = 0) with h = co. We consider two
parameters: two or three lanes (HW2/HW3) and whether the agent can change its velocity (-f(ixed)/-
c(hangeable)). This results in the scenarios HW2-f, HW2-c, HW3-f, and HW3-c. We discuss the
results of HW2-c. Appendix A.2 provides further results and precise predicate definitions. The set of
predicates I' = {d,l.,dy, N1,7d s, rdp} includes: the distance d; to the nearest vehicle in lane 1;
the current lane of the ego vehicle [.; the distance d, to the closest vehicle in the ego vehicle’s lane;
N7 indicating whether the ego vehicle is next to a vehicle in lane 1; and final predicates encoding
the remaining distance to other cars when the agent accelerates (rd 4) or brakes (rdp).

Explaining Safety. Fig. 6a shows the 771, and 6b shows the 772 for the topmost critical node. The
trees explain that if the ego car is next to a car in the adjacent lane, switching lanes is not allowed.
Moreover, the agent may only accelerate or brake within its velocity bounds of 20 — 29m/s.

Results. Table 6¢ shows the size of the shielding policy and the average sizes of DTs of different
levels and scenarios. The results show, as expected, that representing shields via trees instead of
lookup tables yields a more compact representation. Furthermore, using the hierarchical explana-
tions 771 and 775 is, in most cases, more compact than using a single tree. The time for computing
the shield ranges from 0.1s for HW2-f to 50s for HW3-c. The time to learn the DTs ranges from
1.3s for 77,1 of HW2-f to 17.4s of 71,1 for HW3-f.



5.3 Boeing Taxinet

For our final set of experiments, we applied our approach to an autonomous taxiing environ-
ment [41], as shown in Fig. 3c. In this environment, the agent must steer an aircraft to ensure it
remains aligned with the centerline. Depending on the current heading, the aircraft’s position rel-
ative to the centerline changes. The safety objective is to avoid exceeding a heading of 20° and a
maximum deviation of 0.8m from the centerline. The shield is computed with a horizon h = oo and
a risk threshold e = 0.0. The set of predicates I' = {he, cte, |he|, |cte|, d} consists of the heading
error he, centerline error cte, their absolute values, and the distance d to the maximum allowed
centerline error, depending on the current heading. The set of actions A = L, N, R allows the agent
to steer left (L) or right (R) in steps of 5°, or to take no action (/V). We have applied our approach
to two different instances and show the resulting sizes for the shields and the DTs in Table 6¢. The
results again show that our approach yields compact representations of the shielding policy. We
provide the corresponding DTs and further discussion in the Appendix.

6 Conclusion & Future Work

We presented a method for “explainably safe” RL via proposed explainable shields. Our approach
provides case-based explanations of the shielding policy and a hierarchy of decision trees that ex-
plains the risks associated with states and actions, as well as the consequences of executing unsafe
actions. Our experiments show the capability of our method in providing small trees even for com-
plex scenarios. In future work, we will explore automated methods for predicate generation to
reduce reliance on user input. Besides, we plan to investigate the potential of generative Al to ren-
der case-based explanations understandable to non-specialists. Furthermore, a user study on the
understandability of our explanations is also of interest. Lastly, we plan to extend our approach by
computing compact explanations for states that the trained RL policy visits frequently. As a trained
RL policy rarely operates over the entire state space, focusing explanations on the most frequently
visited states will provide clearer insights into the safety-relevant aspects of the agent’s behavior.
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Figure 7: A randomly generated Frozen Lake environment with approximately 15% of holes.
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Figure 8: Size comparison between the different approaches using random Frozen Lake instances with approx-
imately 4% of holes.
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Figure 9: Size comparison between the different approaches using random Frozen Lake instances with approx-
imately 20% of holes.

A.1 Additional Results —Frozen Lake

Scalability. For the experiments on the scalability of our approach, we randomly generated instances
of the Frozen Lake environment of various sizes. To ensure that all environments have a meaningful
structure, we divide the overall size N x N of the instance into tiles of size 5 x 5. In the center of
each tile, we place a randomly shaped connected hole of size 0 to 5. Fig 7 shows such a randomly
generated environment. Red areas represent holes, orange areas the dangerous states, and yellow
the critical states. For the experiment presented in the main part of the paper, Figure 5, we create
the holes in such a way that the expected value of holes is 15% of all fields. The figure shows that
the size of a DT is already smaller than the size of the original shield. Our method reduces the size
further, even for large problem instances.

In Figure 8, we perform the same experiment with randomly generated instances, but only allow
holes of sizes 0 to 2, which leads to an expected value of 4% of all fields being holes. In this case,
all DTs are small and remain small for very large instances.

On the other hand, when creating instances with 20% of the entire grid being holes, the size of the
DTs grows. This is caused by the fact that holes are close to each other because of their size. When
a field is surrounded by several holes, it becomes dangerous instead of critical. Therefore, having
many holes interacting with each other causes the overall problem to become more complicated and
makes it harder to distinguish critical from dangerous states.
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Figure 10: Decision Trees for scenario HW2-f

A.2 Additional Results —Highway Cruise Control

In this section, we discuss the remaining scenarios for the Highway environment and elaborate on
the suggested predicates.

HW?2-f. In the base scenario, the highway has two lanes, and all vehicles are driving at a fixed
speed. The agent is slightly faster with a value of v, than the vehicle on the right lane. The available
actions are switch left (Sp,), switch right (Sr), and noop (N). All actions succeed with probability
1. The feature set of the environment is V = {d, [}, the distance to the vehicle on lane 1, which
is the rightmost lane, and the current lane of the ego vehicle. We extend the set of basic predicates
I’ = {dy,l.,dr, N1, rd} with the following predicates:

* dy, := (dy ifl. = 1else 100) is the distance to the vehicle on the current lane of the ego
vehicle. If there is no vehicle on the lane, the distance is set to a high value.

* rd := dy —vq—20 is the remaining distance until action has to be taken immediately. It can
be seen as the distance to the safety buffer around the other vehicle. To avoid comparison
with the constant v4, we subtract it.

The DT 71 describing this instance is depicted in Fig. 10a. It consists of 7 nodes. The DT investi-
gates whether the remaining distance to the car on lane 1 remains large assuming no action is taken.
If this is the case, every action is allowed. Otherwise, the DT compares to the safety threshold to
filter out unsafe states. Lastly, when the agent is in front of the vehicle on lane 1, it may perform
any action. Otherwise, as the root tests that the agent is close to the vehicle on lane 1, the state
is critical. Figure 10b shows 775 for the critical state. If the agent is on the left lane, shown by a
high lane distance, it may not switch to the right lane. Otherwise, it has to switch to the left lane to
avoid a collision. Computation of 77, was completed within less than 1.4 seconds, 772 computation
required on average 1.6 seconds and shield creation 0.1 seconds.

HW2-c. In this scenario, the agent is allowed to change its speed and accelerate or decelerate by a
fixed value of A,,. Therefore, the set of features is extended with the velocity of the ego vehicle and
the vehicle on lane 1 to V = {dy, l., ve, v1 }. The agent has the additional actions accelerate (A) and
brake (B). We provide the predicates I' = {d1, l¢, ve,v1,dr, N1,7d 4, rdp} with the addition of:

o rdy = (d1 — (ve + Ay —v1) — 20 if [ = 1 else 100) is the remaining distance until the
safety requirement is violated, assuming the agent accelerates and the other vehicle is on
the same lane.

e rdpg = (d1 — (ve — Ay —v1) +201if I, = 1 else 100) is the remaining distance until the
safety requirement is violated, assuming the agent decelerates and the agent is on lane 1.

* Ny := (dy € [—20 + vq,20 + vd]) which captures whether in the next time step, after
the ego car has approached the other vehicle by v, space units, it will be within the safety

zone of the other vehicle. In this case, the ego vehicle is considered to be next to the other
vehicle.

The new predicates are a refinement of rd to allow for a better understanding of the behavior of
different actions.
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Figure 12: DTs for scenario HW3-f

Tr1 is depicted in Figure 11a. It explains that when the ego vehicle is next to another vehicle,
some actions are prohibited. Furthermore, when the current distance falls below the safety distance,
the state is unsafe. In all other cases, the criticality depends on whether acceleration and braking
are safely possible. In this example, no dangerous states exist as the environment is deterministic.
Level-2 DTs consist, on average, of 33 nodes. This is caused by one tree having 81 nodes while all
others remain small, similar to the one in Figure 6b, which is also depicted in Figure 11b. Computing
Tr1 required 1.3 seconds, the average time for 772 was again 1.3 seconds, and creation of the shield
took 0.7 seconds.

HW3-f. This scenario is an extension of HW2-f with an additional lane. All vehicles drive at
a fixed speed, with the ego vehicle being slightly faster by a value of v4. The set of features is
extended with the distance to the vehicle on lane 2 V = {d;, do, [ }. We extend the set of predicates
I' = {di,ds,l.,dr, N1, Na,7d, co} We define Ny and N» accordingly for the vehicles on lanes 1
and 2, and define rd; and rd; as rd for the vehicles on lanes 1 and 2, respectively.
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The Level-1 DT is depicted in Figure 12a. It shows that the classification of the states depends on
the distance to the vehicle in front and whether the agent is next to another vehicle. If the vehicle is
next to one on lane 1 and has a vehicle close in front, it cannot avoid a collision.

On average, the Level-2 DTs have a size of 2.5 nodes, with the largest one having 5 nodes. Examples
are shown in Figures 12b and 12c. Figure 12b corresponds to the critical leaf where N; = 0 and
Ny = 1. Ny = 1 already encapsulates that the agent is currently on the middle lane. The available
actions then depend on whether it is too close to the vehicle on lane 1, which disallows action V.
In any case, switching to the leftmost lane is allowed. For the leftmost critical leaf, which is shown
in Figure 12c, we know that the agent is not next to any vehicle. However, the current remaining
distance to the vehicle on lane 1 is low. Therefore, if the agent is on lane 2 it should switch left to
avoid a scenario where overtaking the vehicle on lane 2 is no longer possible. If it is on lane 1, the
available actions depend to the distance of the vehicle on lane 1. Computation of 77,; was completed
within 1.8 seconds, 712 required, on average, less than 1.3 seconds, and shield creation less than 2.7
seconds.

HW3-c. In the last scenario, we consider a highway with three lanes and allow the ego vehicle to
change its velocity. The state space V is extended with pa, which shows what action was taken in
the previous step. It is required to precisely model the Highway RL environment, where the speed
after no operation or switching lanes also depends on the action of the previous time step.

We allow all predicates of the previous cases and add a new predicate sbd, safe braking distance,
which compares the braking distance (bd) needed for the ego vehicle to brake until it is at most as
fast as the vehicle in front of it, to the remaining distance: sbd := (dr > bd). It is an extension
of rdp as rdp considers switching lanes as a possible action, whereas rbd only allows braking.
We obtain a Level-1 DT of slightly below 70 nodes, which is depicted in Figure 13. The size of
the tree results from the special cases in which the ego vehicle can switch to the right-most lane
and break before hitting the vehicle in front of it, or switch back to the middle lane. Introducing a
predicate for these special cases reduces the tree size drastically but requires more detailed domain
knowledge. This shows the need for the automatic finding of intelligent predicates. Similar behavior
can be observed for the Level-2 DTs, which have an average size of 36 nodes. Computation of the
T11 required 17.4 seconds. Level-2 DTs are computed on average in less than 3.6 seconds. Shield
computation was performed within 50 seconds.
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Figure 14: Decision trees for the taxiing environment.

A.3 Additional Results —Boeing Taxinet

In this section, we discuss the results for two different autonomous taxiing environments: a model
where steering always follows a deterministic update and a slippery model, where steering might
cause the airplane to slip, causing its heading to change by 10° instead of 5°. Initially, the airplane
is positioned at the centerline with a heading of 0°. Depending on its current heading, the airplane
moves % decimeter per time step.

Taxiing. In this base scenario the agent will only be restricted by the shield if either it would
reach the maximum heading error of 20° or in case it would diverge from the centerline by 80
decimenter. The decision tree T1; and a 7o for a critical leaf are shown in Fig. 14a and 14b,
respectively. The level-1 DT 711 nicely shows how user-defined predicates can help explain the
shield in a concise way. After classifying the states in which the property has already been violated,
the 711 differentiates between states in which the heading error is smaller or larger than 12°. It can
then immediately make use of the defined distance function. In case the heading error is still small
and the distance is sufficiently large, all states are safe and no interference is needed. If the distance
is < 40 decimeter 711 classifies the different scenarios depending on concrete distance, heading and
centerline errors. If the heading error exceeds 12° and safety has not yet been violated, the shield
has to interfere. The restrictions the shield imposes are shown in 14b. This 72 nicely shows how
a compact representation allows us to legibly explain how the shield interferes.

The synthesis time for the shielding policy is 0.19 seconds and the time needed to compute either a
Tr1ora o treeis 1.5 seconds.

Taxiing on Slippery Ground. In this second experiment, the aircraft might slip an additional 5°
with a probability of 10% in case it is steered to the left or to the right. The resulting decision trees
are shown in 15. The Level-1 DT 77, shown in 15a, captures this by more finely distinguishing
between the current centerline error and distance to the maximum centerline error. Similarly to
the Level-1 DT from the previous experiment, it classifies all states in which the heading error is
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Figure 15: Decision trees for the slippery taxiing environment.

sufficiently small, < 7°, and the distance to the maximum centerline error is large enough, as safe.
In case the heading error is small, but the centerline error is close to the maximum allowed value,
Tr1 distinguishes between safe and critical states by capturing the different values for the distance
and centerline error. In case the heading error is > 7°, the decision tree 77,1 has to classify states that
are either critical, dangerous, or are already violating the safety specification. Fig. 15b and Fig. 15¢
show two examples for 77o. We want to highlight these two examples for 772, as they show how
our approach is able to explain both how the shield has to interfere in order to enforce the safety
specification, as well as when the safety specification cannot be adhered to anymore and only safest
actions can be allowed by the shield anymore.

As above, the synthesis time for the shielding policy is 0.19 seconds and the time needed to compute
either a 71,1 or a T2 tree is 1.5 seconds.
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B Supplementary Material

We have trained agents on the Frozen Lake environment from Fig. 3a and the four different settings
in the Highway environment using the implementations from Stable-Baselines3 [37]. The library
provides a MaskablePPO implementation, which is perfectly suited for safe RL via shielding. We
have compared shielded training with training without a shield using PPO. All training runs have
been conducted using the default parameters.

Due to the simulator for the Boeing TaxiNet environment being closed-source, we were not able to
train agents for these problem instances.

B.1 Frozen Lake Environment

The task of the agent in this environment is to reach the goal state without falling into a hole.
The agent can move in any cardinal direction and will succeed with a probability of 0.95. With a
probability of 0.05 it will slip in any of the other cardinal directions where it is not obstructed by a
wall. Upon reaching the goal the agent receives a reward of 1, otherwise, when the agent falls into a
hole it receives a negative reward of —1.

Fig. 16a, 16b, and 16¢c show the training results averaged over 5 runs. These results show that the
shield enables the agent to finish its task, while training without the shield does not succeed. When
training without a shield, the agent is not able to explore the critical areas around the holes and
therefore stays at the safe area near the initial position only. We want to remark that due to the
stochasticity exhibited in this environment, complete safety cannot be guaranteed.

B.2 Highway Environment

The task of the agent in this environment is to reach the end of the highway as fast as possible
without causing a crash. The agent can switch lanes, do nothing, or change its velocity, if it is not
fixed. The agent receives a reward of 1.0 for driving on the rightmost lane, a reward of 0.5 on the
leftmost lane, and a reward of 0.75 for driving on the middle lane in the environments HW3-f and
HW3-c. If the agent crashes into another car, it receives a negative reward of —1.0.

We show the training results, averaged over 5 runs in Figures 17a to 17h. We want to use the
example of environment HW3-c to highlight the need for accurate world models: Due to the world
model not being 100% accurate, we have exhibited a small number of crashes in the shielded training
run.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We explain how we generate the described explanations and show in the
scalability study in Figure 5 the size of the shield and the decision trees.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly highlight in the conclusion and experiments how our method de-
pends on well-defined predicates for larger problem instances.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ~Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There are no theoretical results that require a proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain the set of predicates we use for computing the DTs. Furthermore,
we name the used tools. Furthermore, we provide the code to reproduce the results in the
supplementary material.

Guidelines:

e The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the code in the supplementary material.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Mips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain the parameters we used for instantiating the RL environments and
provide the world models in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the randomized scalability experiments, the plots show the mean and
highlight the area plus/minus standard deviation around it. Each test case was run 10 times
with different random seeds. In all other experiments, the results are deterministic.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state in the beginning of our section on evaluation which machine we
used.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human participants were involved in the research. Furthermore, all exper-
iments are based on models, which are not recorded from human interactions. We cannot
forsee a negative usecase of our research.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction we explain the need for safe RL learning. Our method can
have an impact in this direction. We forsee no negative societal impacts.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not create any data or model that has a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the sources of the used RL environments.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: Our proposed method does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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