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Abstract

Non-monotone constrained submodular maximization plays a crucial role in various
machine learning applications. However, existing algorithms often struggle with a
trade-off between approximation guarantees and practical efficiency. The current
state-of-the-art is a recent 0.401-approximation algorithm, but its computational
complexity makes it highly impractical. The best practical algorithms for the
problem only guarantee 1/e-approximation. In this work, we present a novel
algorithm for submodular maximization subject to a cardinality constraint that
combines a guarantee of 0.385-approximation with a low and practical query
complexity of O(n+k2), where n is the size of the ground set and k is the maximum
size of a feasible solution. Furthermore, we evaluate the empirical performance of
our algorithm in experiments based on the machine learning applications of Movie
Recommendation, Image Summarization, and Revenue Maximization. These
experiments demonstrate the efficacy of our approach.

1 Introduction

In the last few years, the ability to effectively summarize data has gained importance due to the
advent of massive datasets in many fields. Such summarization often consists of selecting a small
representative subset from a large corpus of images, text, movies, etc. Without a specific structure, this
task can be as challenging as finding a global minimum of a non-convex function. Fortunately, many
practical machine learning problems exhibit some structure, making them suitable for optimization
techniques (either exact or approximate).

A key structure present in many such problems is submodularity, also known as the principle of
diminishing returns. This principle suggests that the incremental value of an element decreases
as the set it is added to grows. Submodularity enables the creation of algorithms that can provide
near-optimal solutions, making it fundamental in machine learning. It has been successfully applied to
various tasks, such as social graph analysis [39], adversarial attacks [26, 36], dictionary learning [13],
data summarization [32, 34, 35], interpreting neural networks [14], robotics [45, 41], and many more.

To exemplify the notion of submodularity, consider the following task. Given a large dataset, our goal
is to identify a subset that effectively summarizes (or covers) the data, with a good representative
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set being one that covers the majority of the data. Note that adding an element s to a set B is less
beneficial to this goal than adding it to a subset A ⊂ B due to the higher likelihood of overlapping
coverage. Formally, if N is the set of elements in the dataset, and we define a function f : 2N → R
mapping every set of elements to its coverage, then, the above discussion implies that, for every
two sets A ⊆ B ⊆ N and element s ∈ N \ B, it must hold that f(s | A) ≥ f(s | B), where
f(s | A) ≜ f({s} ∪A)− f(A) denotes the marginal gain of the element s with respect to the set A.
We say that a set function is submodular if it obeys this property.

Unfortunately, maximizing submodular functions is NP-hard even without a constraint [16], and
therefore, works on maximization of such functions aim for approximations. Many of these works
make the extra assumption that the submodular function f : 2N → R is monotone, i.e., that for every
two sets A ⊆ B ⊆ N , it holds that f(B) ≥ f(A). Two of the first works of this kind, by Nemhauser
and Wolsey [37] and Nemhauser et al. [38], showed that a greedy algorithm achieves a tight 1− 1/e
approximation for the problem of maximizing a non-negative monotone submodular function subject
to a cardinality constraint using O(nk) function evaluations, where n is the size of the ground set N
and k is the maximum cardinality allowed for the output set. An important line of work aimed to
improve the time complexity of the last algorithm, culminating with deterministic and randomized
algorithms that have managed to reduce the time complexity to linear at the cost of an approximation
guarantee that is worse only by a factor of 1− ε [6, 31, 27, 22, 20].

Unfortunately, the submodular functions that arise in machine learning applications are often non-
monotone, either because they are naturally non-monotone, or because a diversity-promoting non-
monotone regularizer is added to them. Maximizing a non-monotone submodular function is chal-
lenging. The only tight approximation known for such functions is for the case of unconstrained
maximization, which enjoys a tight approximation ratio of 1/2 [16, 7]. A slightly more involved case
is the problem of maximizing a non-negative (not necessarily monotone) submodular function subject
to a cardinality constraint. This problem has been studied extensively. First, Lee et al. [25] suggested
an algorithm guaranteeing (1/4− ε)-approximation for it. This approximation ratio was improved in
a long series of works [5, 11, 15, 43], leading to a very recent 0.401-approximation algorithm due to
Buchbinder and Feldman [4], which improved over a previous 0.385-approximation algorithm due to
Buchbinder and Feldman [3]. On the inapproximability side, it has been shown that no algorithm can
guarantee a better approximation ratio than 0.478 in polynomial time [40].

Most of the results in the above-mentioned line of work are only of theoretical interest due to a very
high time complexity. The two exceptions are the Random Greedy algorithm of Buchbinder et al. [5]
that guarantees 1/e-approximation using O(nk) queries to the objective function, and the Sample
Greedy algorithm of Buchbinder et al. [6] that reduces the query complexity to Oε(n) at the cost of a
slightly worse approximation ratio of 1/e− ε.

1.1 Our contribution

In this work, we introduce a novel combinatorial algorithm for maximizing a non-negative submodular
function subject to a cardinality constraint. Our suggested method combines a practical query
complexity of O(n + k2) with an approximation guarantee of 0.385, which improves over the
1/e-approximation of the state-of-the-art practical algorithm. To emphasize the effectiveness of
our suggested method, we empirically evaluate it on 3 applications: (i) Movie Recommendation,
(ii) Image Summarization, and (iii) Revenue Maximization. Our experiments on these applications
demonstrate that our algorithm (Algorithm 3) outperforms the current practical state-of-the-art
algorithms.

Remark. An independent work that recently appeared on arXiv [12] suggests another 0.385-
approximation algorithm for our problem using O(nk) oracle queries. Interestingly, their algorithm
is very similar to a basic version of our algorithm presented in Appendix A. In this work, our main
goal is to find ways to speed up this basic algorithm, which leads to our main result. In contrast, the
main goal of [12] is to derandomize the basic algorithm and extend it to other constraints.

1.2 Additional notation

Let us define some additional notation used throughout the paper. Given an element u ∈ N and a set
S ⊆ N , we use S + u and S − u as shorthands for S ∪ {u} and S \ {u}, respectively. Given also a
set function f : 2N → R, we recall that f(u | S) is used to denote the marginal contribution of u to
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S. Similarly, given an additional set T ⊆ N , we define f(T | S) ≜ f(S ∪ T )− f(S). Finally, we
denote by OPT an arbitrary optimal solution for the problem we consider.

2 Method

In this section, we present our algorithm for non-monotone submodular maximization under car-
dinality constraints, which is the algorithm used to prove the main theoretical result of our work
(Theorem 2.3). We begin with a brief overview of our algorithm. Motivated by the ideas underlying
the impractical 0.385-approximation algorithm of [3], our algorithm comprises three steps:

1. Initial Solution: We start by searching for a good initial solution that guarantees a constant
approximation to the optimal set. This is accomplished by running the recent deterministic
1/4-approximation algorithm of Balkanski et al. [2].1

2. Accelerated Local Search (Algorithm 1): Next, the algorithm aims to find an (approximate)
local optimum set Z using a local search method. This can be done using a classical local
search algorithm at the cost of Oε(nk

2) queries (see Appendix A for more detail). As
an alternative, we introduce, in Subsection 2.1, our accelerated local search algorithm
FAST-LOCAL-SEARCH (Algorithm 1), which reduces the query complexity to Oε(n+ k2).

3. Accelerated Stochastic Greedy Improvement (Algorithm 2): It can be shown that when
the set Z does not have a good value, it contains only little of the value of the optimal
solution, and at the same time, it contains many of the elements that negatively affects this
optimal solution. Thus, it makes sense to try to avoid this set. Accordingly, after obtaining
the set Z, our algorithm constructs a second possible solution using a stochastic greedy
algorithm that picks only elements of N \ Z in its first iterations. One can use for this
purpose a version of the Random Greedy algorithm suggested by Buchbinder et al. [5] that
uses O(nk) queries (see Appendix A for details). To get the same result using fewer queries,
we employ Algorithm 2 (described in Subsection 2.2), which is accelerated using ideas
borrowed from the Sample Greedy algorithm of [6].

Our final algorithm (given as Algorithm 3 in Subsections 2.3) returns the better among the two sets
produced in the last two steps (i.e., the output sets of Algorithm 1, and Algorithm 2). Intuitively, this
algorithm guarantees our target approximation ratio of 0.385 because when f(Z) is smaller than this
value, the set Z is bad enough that avoiding it (in the first iterations) allows Algorithm 2 to get a good
enough solution.

2.1 Fast local search

In this section, we present our accelerated local search algorithm, which is the algorithm used to
implement the first two steps of our main algorithm. The properties of this algorithm are formally
given by Theorem 2.1. Let OPT be an optimal solution.
Theorem 2.1. There exists an algorithm that given a positive integer k, a value ε ∈ (0, 1), and a
non-negative submodular function f : 2N → R≥0, outputs a set S ⊆ N of size at max k that, with
probability at least 1− ε, obeys

f(S) ≥ f(S ∩OPT) + f(S ∪OPT)
2 + ε

and f(S) ≥ f(S ∩OPT)
1 + ε

.

Furthermore, the query complexity of the above algorithm is Oε(n+ k2).

Note that the guarantee of Theorem 2.1 is similar to the guarantee of a classical local search algorithm
(see Appendix A for details). However, such a classical local search algorithm uses Oε(nk

2) queries,
which is higher than the number of queries required for the algorithm from Theorem 2.1.

We defer the formal proof of Theorem 2.1 to Appendix B. However, we note that this proof is based
on Algorithm 1. Algorithm 1 implicitly assumes that the ground setN includes at least k+1 dummy

1A previous version of this paper used for this purpose the randomized Sample Greedy algorithm of [6].
Since this algorithm is randomized, to get a good solution with a high enough probability, that previous version
had to run this algorithm O(log ε−1) times and select the solution with the highest function value. The code in
the supplemental material of this paper includes the option to use either of these initialization options.
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elements that always have a zero marginal contribution to f . Such elements can always be added to
the ground set (before executing the algorithm) without affecting the properties of f , and removing
them from the output set of the algorithm does not affect the guarantee of Theorem 2.1.

Algorithm 1: FAST-LOCAL-SEARCH(k, f, ε, L)

input :A positive integer k ≥ 1, a submodular function f , an approximation factor ε ∈ (0, 1), and a
number L of iterations.

output :A subset of N of cardinality at most k.
1 Initialize S0 to be a feasible solution that with probability at least 1− ε provides c-approximation for

the problem for some constant c ∈ (0, 1].
2 Fill S0 with dummy elements to ensure |S0| = k.
3 for j = 1 to ⌈log2 1

ε⌉ do
4 Let Sj

0 ← S0.
5 for i = 1 to L do
6 Zj

i ← Sample n
k items from N uniformly at random.

7 uj
i ← argmaxu′∈Zj

i
f(uj

i | S
j
i−1).

8 if f(uj
i | S

j
i−1) ≤ 0 then uj

i ← dummy element that does not belong to Sj
i−1.

9 vji ← argminv′∈Sj
i−1

f(v′ | Sj
i−1 − v′).

10 if f(Sj
i−1) < f(Sj

i−1 − vji + uj
i ) then Sj

i ← Sj
i−1 − vji + uj

i .
11 else Sj

i ← Sj
i−1.

12 Pick a uniformly random integer 0 ≤ i∗ < L.
13 if for every integer 0 ≤ t ≤ k it holds that

max
S⊆N\Sj

i∗ ,|S|=t

∑
u∈S f(u | Sj

i∗) ≤ min
S⊆Sj

i∗ ,|S|=t

∑
v∈S f(v | Sj

i∗ − v)+ εf(Sj
i∗) then return Sj

i∗ .

14 return FAILURE.

Algorithm 1 starts by finding an initial solution S0 guaranteeing constant approximation (we imple-
ment this step using the deterministic 1/4-approximation algorithm of Balkanski et al. [2]). If the
size of the initial solution is less than k (i.e., |S0| < k), the algorithm adds to it k − |S0| dummy
elements. Then, Algorithm 1 makes roughly log2 ε

−1 attempts to find a good output. Each attempt
trys to improve the (same) initial solution using L iterations. Each iteration consisting of three steps:
In Step (i), the algorithm samples n

k items, and picks the element u from the sample with the largest
marginal contribution to the current solution Si−1. If there are no elements in the sample with a
positive marginal contribution, the algorithm picks a dummy element outside Si−1 as u. In Step (ii),
the algorithm picks the element v ∈ Si−1 that has the lowest marginal value, i.e., the element whose
removal from Si−1 would lead to the smallest drop in value. In Step (iii), the algorithm swaps
the elements u and v if such a swap increases the value of the current solution. Once L iterations
are over, the algorithm picks a uniformly random solution among all the solutions seen during this
attempt (recall that the algorithm makes roughly log2 ε

−1 attempts to find a good solution). If the
random solution found obeys the technical condition given on Line 13, then the algorithm returns
it. Otherwise, the algorithm continues to the next attempt. If none of the attempts returns a set, the
algorithm admits failure.

2.2 Guided stochastic greedy

In this section, we prove Theorem 2.2, which provides the last step of our main algorithm.
Theorem 2.2. There exists an algorithm that given a positive integer k, a value ε ∈ (0, 1), a value
ts ∈ [0, 1], a non-negative submodular function f : 2N → R≥0, and a set Z ⊆ N obeying the
inequalities stated in Theorem 2.1, outputs a solution Sk, obeying

E[f(Sk)] ≥
(k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1 + αk−⌈ts·k⌉ − αk

)
f(OPT)+

+
(
αk + αk−1 − 2k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1

)
f(OPT ∪ Z)

+ (αk − αk−⌈ts·k⌉)f(OPT ∩ Z)− 2εf(OPT) ,
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where α ≜ 1− 1/k. Moreover, this algorithm requires only Oε(n) queries to the objective function.

The algorithm used to prove Theorem 2.2 is Algorithm 2. This algorithm starts with an empty set and
adds elements to it in iterations (at most one element per iteration) until its final solution is ready after
k iterations. In its first ⌈k · ts⌉ iterations, the algorithm ignores the elements of Z, and in the other
iterations, it considers all elements. However, except for this difference, the behavior of the algorithm
in all iterations is very similar. Specifically, in each iteration i the algorithm does the following two
steps. In Step (i), the algorithm samples a subset Mi containing Oε(n/k) elements from the data. In
Step (ii), the algorithm considers a subset of Mi (of size either s1⌈p(n− |Z|)⌉ or s2⌈pn⌉) containing
the elements of Mi with the largest marginal contributions with respect to the current solution Si−1,
and adds a uniformly random element out of this subset to the solution (if this element has a positive
marginal contribution).

Algorithm 2: Guided Stochastic Greedy
input :A set Z ⊆ N , a positive integer k ≥ 1, values ε ∈ (0, 1) and ts ∈ [0, 1], and a non-negative

submodular function f
output :A set Sk ⊆ N

1 Initialize S0 ← ∅.
2 Define p← min{1, 8k−1ε−2 ln(2ε−1)}.
3 Define s1 ← k/(n− |Z|) and s2 ← k/n.
4 for i = 1 to ⌈k · ts⌉ do
5 Let Mi ⊆ N \ Z be a uniformly random set containing ⌈p · (n− |Z|)⌉ elements.
6 Let di be uniformly random scalar from the range (0, s1⌈p · (n− |Z|)⌉].
7 Let ui be an element of Mi associated with the ⌈di⌉-th largest marginal contribution to Si−1 (if

⌈di⌉ > |Mi|, we set ui to be a dummy element having 0 marginal contribution to f ).
8 if f(ui | Si−1) ≥ 0 then
9 Si ← Si−1 ∪ {ui}.

10 else
11 Si ← Si−1.
12 for i = ⌈k · ts⌉+ 1 to k do
13 Let Mi ⊆ N be a uniformly random set containing ⌈p · n⌉ elements.
14 Let di be uniformly random scalar from the range (0, s2⌈p · n⌉].
15 Let ui be an element of Mi associated with the ⌈di⌉-th largest marginal contribution to Si−1.
16 if f(ui | Si−1) ≥ 0 then Si ← Si−1 ∪ {ui}.
17 else Si ← Si−1.
18 return Sk.

2.3 0.385-Approximation guarantee

In this section, our objective is to prove the following theorem.
Theorem 2.3. Given an integer k ≥ 1 and a non-negative submodular function f : 2N → R≥0,
there exists an 0.385-approximation algorithm for the problem of finding a set S ⊆ N of size at most
k maximizing f . This algorithm uses O(n+ k2) queries to the objective function.

The algorithm used to prove Theorem 2.3 is Algorithm 3. Our technical guarantee for Algorithm 3
is given as Lemma 2.4. When k is large enough, this lemma immediately implies Theorem 2.3
by choosing ε to be a small enough positive constant. If k is small, getting Theorem 2.3 from
Lemma 2.4 requires a three steps process. First, we choose an integer constant ρ such that ρk is large
enough, and we create a new ground set Nρ = {ui | u ∈ N , i ∈ [ρ]} and a new objective function
g : 2Nρ → R defined as g(S) = E[f(R(S))], where R(S) is a random subset of N that includes
every element u ∈ N with probability |S ∩ ({u} × [ρ])|/ρ. Then, we use Lemma 2.4 to get a set
Ŝ that provides 0.385-approximation for the problem max{g(S) | |S| ≤ ρk}. Finally, the Pipage
Rounding technique of [8] can be used to get from Ŝ a 0.385-approximation for our original problem.
Notice that since the size of Ŝ is constant (as we consider the case of a small k), this rounding can be
done using a constant number of queries to the objective.
Lemma 2.4. Algorithm 3 makes Oε(n + k2) queries to the objective function, and returns a set
whose expected value is at least (c−O(ε+ k−1))f(OPT) for some constant c > 0.385.
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Algorithm 3: A 0.385-approximation algorithm for submodular maximization
input :A positive integer k ≥ 1, a non-negative submodular function f , error parameter ε ∈ (0, 1),

and a flip point 0 ≤ ts ≤ 1
output :A set SL ⊆ N

1 Z ← FAST-LOCAL-SEARCH(k, f, ε, L := ⌈2k/(ε(1− 1/e))⌉.
2 if the last algorithm did not fail then
3 A← GUIDED-STOCHASTIC-GREEDY(Z, k, ts, ε) .
4 return the set maximizing f among Z and A.
5 else return ∅.

Proof. According to the proof of Theorem 2.1, our choice of the parameter L in Algorithm 1
guarantees that with probability at least 1− ε the set Z obeys the inequalities

f(Z) ≥ f(Z ∪OPT) + f(Z ∩OPT)
2 + ε

and f(Z) ≥ f(Z ∩OPT)
1 + ε

.

Let us denote by E the event that these inequalities hold. By Theorem 2.2,

E[f(A) | E ] ≥
(k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1 + αk−⌈ts·k⌉ − αk

)
f(OPT)+

+
(
αk + αk−1 − 2k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1

)
E[f(OPT ∪ Z) | E ]

+ (αk − αk−⌈ts·k⌉)E[f(OPT ∩ Z) | E ]− 2εf(OPT) .

Since the output of Algorithm 2 is the better set among A and Z, we can lower bound its value by
any convex combination of lower bounds on the values of A and Z. More formally, if we denote by
p1, p2 and p3 any three non-negative values that add up to 1, then we get

E[max{f(A), f(Z)} | E ] ≥ p3

(k − ⌈ts · k⌉
k

αk−⌈ts·k⌉−1 + αk−⌈ts·k⌉ − αk
)
f(OPT)

+
( p1
2 + ε

+ p3

(
αk + αk−1 − 2k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1

))
E[f(OPT ∪ Z) | E ]

+
( p2
1 + ε

+
p1

2 + ε
− p3

(
αk−⌈ts·k⌉ − αk

))
E[f(OPT ∩ Z) | E ]− 2εp3f(OPT) .

(1)

To simplify the above inequality, we need to bound some of the terms in it. First,

k − ⌈ts · k⌉
k

αk−⌈ts·k⌉−1 + αk−⌈ts·k⌉ − αk ≥
(
2− ts −

1

k

)
αk(1−ts) − αk

≥
(
2− ts −

1

k

)
ets−1

(
1− 1

k

)1−ts

− e−1

≥
(
2− ts −

3

k

)
ets−1 − e−1 ≥

(
2− ts − e−ts

)
ets−1 − 3

k
,

where the first inequality holds since ⌈ts · k⌉ ≤ ts · k+ 1, α ≤ 1, the second inequality follows since
αk(1−ts) ≥ ets−1

(
1− 1

k

)1−ts , and the last inequality holds since ets−1 ≤ 1. Second,

αk + αk−1 − 2k − ⌈ts · k⌉
k

αk−⌈ts·k⌉−1 ≥ 2e−1 − 2k − ts · k
k

αk−ts·k−2 − 2e−1

k

≥ 2e−1 − (2− ts)e
ts−1 − 8 + 2e−1

k

= −ets−1
(
2− ts − 2e−ts

)
− 8 + 2e−1

k
,

where the first inequality holds since αk−1 ≥ αk ≥ e−1
(
1− 1

k

)
, and the second inequality holds

since αk−ts·k−2 ≤ ets−1+4/k. Finally, it holds that αk−αk−⌈ts·k⌉ ≥ e−1(1− 1
k )−e

ts−1/(1− 1
k ) ≥

e−1(1− 1
k )− ets−1(1 + 1

k ) ≥ −e
ts−1(1− e−ts)− 2

k .
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Plugging all the above lower bounds into Inequality (1) yields the promised simplified guarantee that

E[max{f(A), f(Z)} | E ] ≥ p3
(
2− ts − e−ts

)
ets−1f(OPT)−O(ε+ k−1)f(OPT)

+
( p1
2 + ε

− p3e
ts−1

(
2− ts − 2e−ts

)
−O(k−1)

)
E[f(OPT ∪ Z) | E ]

+
( p2
1 + ε

+
p1

2 + ε
− p3e

ts−1
(
1− e−ts

)
−O(k−1)

)
E[f(OPT ∩ Z) | E ] .

By [3], for an appropriate choice of values for p1, p2, p3 and ts the last inequality implies

E[max{f(A), f(Z)} | E ] ≥ (c−O(ε+ k−1))f(OPT)
−O(k−1) · E[f(OPT ∪ Z) + f(OPT ∩ Z)] (2)

for some constant c > 0.385. To get from the last inequality the bound on E[max{f(A), f(Z)} | E ]
stated in the lemma, we need to show that the conditioning on E and the last term of the inequality
can both be dropped. To see why the conditioning can be dropped, note that the event E happens with
probability at least 1−ε, and when it does not happen the set returned by the algorithm still has a non-
negative value. These observations show together that removing the conditioning on E in Inequality (2)
only affects the constant inside the big O notation. Notice now that since OPT ∩ Z ⊆ OPT is
always a feasible solution, it deterministically holds that f(OPT ∩ Z) ≤ f(OPT). Similarly, since
Z is a feasible solution, the submodularity of f guarantees that f(OPT ∪ Z) + f(OPT ∩ Z) ≤
f(OPT) + f(Z) ≤ 2f(OPT). These two bounds allow us to drop the last term of Inequality (2) at
the cost of increasing (again) the constant inside the big O notation.

To complete the proof of the lemma, note that Line 1 of Algorithm 3 requires Oε

(
n+ k2

)
queries to

the objective function as shown in the proof of Theorem 2.1, while Line 3 of Algorithm 3 requires
Oε(n) queries to the objective function as dictated by Theorem 2.2.

3 Experiments

To emphasize the effectiveness of our suggested method from Section 2, in this section, we empirically
compare Algorithm 3 with two benchmark algorithms on three machine-learning applications: movie
recommendation, image summarization, and revenue maximization. Each one of these applications
necessitates maximization of a non-monotone submodular function. The benchmark algorithms we
consider are the Random Greedy algorithm of Buchbinder et al. [5], and the Random Sampling
algorithm of [6]. These algorithms are the current state-of-the-art practical algorithms for maximizing
non-monotone submodular functions.

As stated, Algorithm 2 requires O(n·ln ε−1

ε2 ) queries to the objective function, where the dependence
on ε comes from the choice of value for the parameter p of the algorithm. However, we have found
out that in practice a more modest choice of value for p suffices. Specifically, in our experiments, we
have replaced Line 2 of Algorithm 2 with p← min{1, 8

k·ε}. Throughout the experiments, we have
set ε = 0.1; and all the reported results are averaged across 8 executions. We use shades in our plots
to depict the standard deviations of the individual results obtained in these 8 executions.

Software/Hardware. Our algorithms were implemented in Python 3.11 using mainly “Numpy” [19],
and Numba [23]. The implementations’ code can be found at https://github.com/muradtuk/
385ApproximationSubMax. The experiments were performed on a 2.2GHz i9-13980HX (24 cores
total) machine with 64GB RAM.

3.1 Personalized movie recommendation

Consider a movie recommendation system in which each user specifies what genres they are interested
in, and the system has to provide a representative subset of movies from these genres. Assume that
each movie is represented by a vector consisting of users’ ratings for the corresponding movie.
One challenge here is that each user does not necessarily rate all the movies. Hence, the vectors
representing the movies do not necessarily have similar sizes. To overcome this challenge, low-rank
matrix completion techniques [9] can be performed on the matrix with missing values to obtain a
complete rating matrix. Formally, given a few ratings from k users to n movies we obtain in this
way a rating matrix M of size k × n. Following [33, 30], to score the quality of a selected subset of
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movies, we use the function f(S) =
∑

u∈N
∑

v∈S su,v − λ
∑

u∈S

∑
v∈S su,v. Here, N is the set

of n movies, λ ∈ [0, 1] is a parameter and su,v denotes the similarity between movies u and v (the
similarity su,v can be calculated based on the matrix M in multiple ways: cosine similarity, inner
product, etc). Note that the first term in f ’s definition captures the coverage, while the second term
captures diversity. Thus, the parameter λ controls the importance of diversity in the returned subset.
For any λ ≤ 0.5, f(S) is monotone [34], however, it can be non-monotone for larger values of λ.

We followed the experimental setup of the prior works [33, 30] and used a subset of movies from the
MovieLens data set [18] which includes 10,437 movies. Each movie in this data set is represented by
a 25 dimensional feature vector calculated using user ratings, and we used the inner product similarity
to obtain the similarity values su,v based on these vectors. When experimenting with this application,
we fixed λ to be either 0.55 or 0.75, and varied k.
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(a) Function values for λ = 0.75.
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(b) Function values for λ = 0.55.

20 40 60 80 100

0.213M

0.425M

0.638M

0.85M

1.063M Algorithm 3
Buchbinder et al. 2017
Buchbinder et al. 2014

k

Or
ac

le
 c

al
ls

(c) Number of queries for λ = 0.75.

20 40 60 80 100

0.213M

0.425M

0.638M

0.85M

1.063M Algorithm 3
Buchbinder et al. 2017
Buchbinder et al. 2014

k

Or
ac

le
 c

al
ls

(d) Number of queries for λ = 0.55.

Figure 1: Experimental results for Personalized Movie Recommendation. Plots (a) and (b) compare
the output of our algorithm with the benchmark algorithms mentioned at the beginning of Section 3
for a particular value of the parameter λ and a varying number k of movies. Plots (c) and (d) compare
the number of queries used by the various algorithms.

The results of these experiments are depicted in Figure 1. One can observe that our proposed
method, Algorithm 3, demonstrates superior performance compared to the other methods. Moreover,
this performance is stable, and presents a much smaller variance compared to the variance in the
performance of the two benchmark algorithms. The number of queries used by our algorithm is only
slightly larger than the number of queries used by the Random Sampling algorithm of [6], and is
typically smaller than the number of queries used by the Random Greedy algorithm of Buchbinder et
al. [5], sometimes by as much as a factor of 2.

3.2 Personalized image summarization

Consider a setting in which we get as input a collection N of images from ℓ disjoint categories (e.g.,
birds, dogs, cats) and the user specifies r ∈ [ℓ] categories, and then demands a subset of the images
in these categories that summarizes all the images of the categories. Following [30] again, to evaluate
a given subset of images, we use the function f(S) =

∑
u∈N maxv∈S su,v − 1

|N |
∑

u∈S

∑
v∈S su,v ,

where su,v is a non-negative similarity between images u and v.

To obtain the similarity between pair of images u, v, we utilized the DINO-VITB16 model [10] from
HuggingFace [44] as the feature encoder for vision datasets. Specifically, the final layer CLS token
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embedding output was used as the feature representation. The similarity between pairs of images
was then computed as the cosine similarity of the corresponding embedding vectors. To experiment
in this setting, we used three datasets: (i) CIFAR10 [21] – A dataset of 50,000 images belonging to
10 different classes (categories). (ii) CIFAR100 [21] – A dataset of 50,000 images belonging to 100
different classes. (iii) Tiny ImageNet [24] – A dataset of 100,000 images belonging to 200 different
classes. In each one of our experiments, the task was to summarize a set of 10,000 images sampled
uniformly from one of these datasets. The upper bound k on the number images allowed in the
summary varied between experiments. The results of our experiments are depicted in Figure 2.

Similarly to Section 3.1, we observe that our algorithm (Algorithm 3) produces higher values
compared to the state-of-the-art practical algorithms, and enjoys a lower variance in the quality of
its output. However, due to the small values used for k, our algorithm requires significantly more
queries to the objective function compared to the two other algorithms.
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(a) Function values for the CIFAR10 dataset.
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(b) Function values for the CIFAR100 dataset.
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(c) Function values for the Tiny ImageNet dataset.
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(d) Number of queries for the CIFAR10 dataset.
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(e) Number of queries for the CIFAR100 dataset.
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(f) Number of queries for the Tiny ImageNet dataset.

Figure 2: Experimental results for Personalized Image Summarization. Plots (a)–(c) compare the
output of our algorithm with the benchmark algorithms mentioned at the beginning of Section 3 for a
varying number k of images. Each plot corresponds to a different dataset. Plots (d)–(f) compare the
number of queries used by the various algorithms.

3.3 Revenue maximization

Consider a company whose objective is to promote a product to users to boost revenue through the
“word-of-mouth” effect. More specifically, given a social network, we need to choose a subset of
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up to k users to receive a product for free in exchange for advertising it to their network neighbors,
and the goal is to choose users in a manner that maximizes revenue. The problem of optimizing
this objective can be formalized as follows. The input is a weighted undirected graph G = (V,E)
representing a social network, where wij represents the weight of the edge between vertex i and
vertex j (with wij = 0 if the edge (i, j) is absent from the graph). Given a set S ⊆ V of users who
have become advocates for the product, the expected revenue generated is proportional to the total
influence of S’s users on non-advocate users, formally expressed as f(x) =

∑
i∈S

∑
j∈V \S wij . It

has been demonstrated that f is non-monotone and submodular [1].
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(a) Function values for Advogato network dataset.
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(b) Function values for Facebook network dataset.
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(c) Number of queries for Advogato network dataset.
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(d) Number of queries for Facebook network dataset.

Figure 3: Experimental results for Revenue Maximization. Plots (a) and (b) compare the output of
our algorithm with the benchmark algorithms mentioned at the beginning of Section 3 for a varying
number k of images on the Advogato and Facebook network datasets. Plots (c) and (d) compare the
number of queries used by the various algorithms.

In our experiment, we compared the performance of Algorithm 3 and the two benchmark algorithms
on the Facebook network [42] and the Advogato network [29]. The results of this experiment are
depicted in Figure 3. Once again, our algorithm enjoys both better output values and lower standard
deviations compared to the benchmark algorithms. Our algorithm uses more queries compared to
the Random Sampling algorithm of [6], but the ratio between the number of queries used by the two
algorithms tends to decrease as k increases. The behavior of the Random Greedy algorithm of [5]
greatly depends on k. For smaller values of k this algorithm requires roughly as many queries as
Random Sampling, but for larger value of k it requires significantly more queries than our algorithm.

4 Conclusion

In this work, we have presented a novel algorithm for submodular maximization subject to cardinality
constraint that combines a practical query complexity of O(n+ k2) with an approximation guarantee
of 0.385, which improves over the 1/e-approximation of the state-of-the-art practical algorithms.
In addition to giving a theoretical analysis of our algorithm, we have demonstrated its empirical
superiority (compared to practical state-of-the-art methods) in various machine learning applications.
We hope future work will be able to improve the query complexity of our algorithm to be cleanly
linear without sacrificing either the approximation guarantee or the practicality of the algorithm.
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A A warmup version of our algorithm

In this section, we present and analyze a simpler version of our algorithm with the same general
structure, but excluding the speedup techniques used to obtain our main result. Inspired by Buchbinder
et al. [3], and similar to Algorithm 3, this simpler version (given as Algorithm 6) comprises three
steps: (i) Searching for a good initial solution that guarantees a constant approximation to the optimal
set. This is accomplished by running the Twin Greedy algorithm of [17], (ii) Finding an (approximate)
local search optimum set Z using a local search method. In this simple version, we use the classical
local search algorithm for this purpose, which requires O(nk2) queries to the objective function.
(iii) Lastly, we construct another solution using a version of the Random Greedy algorithm suggested
by Buchbinder et al. [5] that avoids elements of the set Z in its first iterations. The algorithm
terminates by outputting the better of the two solutions generated in the last two steps.

A.1 Local search

In this section, we present (as Algorithm 4) a simple local search algorithm, which is the algorithm
used to implement the first two steps of Algorithm 6. Algorithm 4 begins by finding an initial solution
S using the Twin Greedy algorithm of [17]. The algorithm then proceeds as follows: (i) If |S| < k, it
checks for an element u such that adding u to S increases the function value by at least (1+ ε

2k )f(S).
If such an element is found, it is added to S. (ii) If |S| = k, it looks for two elements u ∈ N \ S
and v ∈ S such that swapping u and v (i.e., removing v from S and adding u to S) increases the
function value by at least (1 + ε

2k )f(S). If such elements exist, the algorithm performs the swap.
(iii) If no elements satisfy the previous two conditions, the algorithm checks for an element v such
that removing v from S increases the function value by (1 + ε

2k )f(S). If such an element is found, it
is removed from S. Algorithm 4 continues to search for elements satisfying any of the above three
conditions until no such elements exist any longer. When this happens, the algorithm terminates and
returns the set S as its output.

Algorithm 4: LOCAL-SEARCH(k, f)

input :A positive integer k ≥ 1, a non-negative submodular function f , and an error parameter
ε ∈ (0, 1).

output :A set S ⊆ N
1 Initialize S to be a feasible solution guaranteeing c-approximation for the problem for some constant

c ∈ (0, 1].
2 while true do
3 if ∃u ∈ N \ S such that f(S + u) ≥

(
1 + ε

2k

)
f(S) and |S| < k then

4 S ← S + u.
5 else if ∃u ∈ N \ S, v ∈ S such that f(S + u− v) ≥

(
1 + ε

2k

)
f(S) and |S| = k then

6 S ← S − v + u.
7 else if ∃v ∈ S such that f(S − v) ≥

(
1 + ε

2k

)
f(S) then

8 S ← S − v.
9 else

10 return S

The properties of Algorithm 4 are formally established by Theorem A.1.

Theorem A.1. Given a positive integer k, a non-negative submodular function f and an error
parameter ε ∈ (0, 1), Algorithm 4 returns a set S ⊆ N of size at most k such that

f(S) ≥ f(S ∪OPT) + f(S ∩OPT)
2 + ε

and
f(S ∩OPT)

1 + ε
,

while requiring Oε

(
nk2

)
queries to the objective function.

Proof. Let S denote the output of Algorithm 4, and let E−, E±, and E+ be defined as follows.

• E− is the event that there exists v ∈ S such that f(S − v) ≥
(
1 + ε

2k

)
f(S).
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• E± is the event that there exists u ∈ N \S, v ∈ S such that f(S + u− v) ≥
(
1 + ε

2k

)
f(S)

and |S| = k.

• E+ is the event that there exists u ∈ N \ S such that f(S + u) ≥
(
1 + ε

2k

)
f(S) and

|S| < k.

Since the algorithm terminated with the set S, none of the events E+, E− or E± occurs. To lower
bound the value of the set S, we inspect the implications arising from each of these events not
occurring.

Implications of E− not occurring. Since E− does not occur, for every v ∈ S,
(
1 + ε

2k

)
f(S) >

f(S − v). Summing this inequality across every element in v ∈ S \OPT yields(
1 +

ε

2k

)
f(S) ≥ f(S) +

1

|S \OPT|
∑

v∈S\OPT

[f(S − v)− f(S)]

≥ f(S) +
1

|S \OPT|
(f(S ∩OPT)− f(S)) ,

where the second inequality holds by submodularity of f . By rearrangement, we obtain that

f(S) ≥ 1
ε
2k |S \OPT|+ 1

f(S ∩OPT) ≥ 1

1 + ε/2
f(S ∩OPT) , (3)

where the last inequality holds since |S \OPT| ≤ |S| ≤ k.

The above proves the second inequality guaranteed by the theorem. Below we show that the first
inequality guaranteed by the theorem is implied either by E+ not occurring, or by E± not occuring,
depending on the size of S.

Implications of E+ not occurring when |S| < k. Since E+ does not occur and |S| < k, for every
u ∈ N \ S, it holds that

(
1 + ε

2k

)
f(S) > f(S + u). Summing the above inequality across every

element in u ∈ OPT \ S yields(
1 +

ε

2k

)
f(S) ≥ f(S) +

1

|OPT \ S|
∑

u∈OPT\S

[f(S + u)− f(S)]

≥ f(S) +
1

|OPT \ S|
(f(S ∪OPT)− f(S)) ,

where the second inequality follows from the submodularity of f . By rearrangement, we now obtain

f(S) ≥ 1
ε
2k |OPT \ S|+ 1

f(S ∪OPT) ≥ 1

1 + ε/2
f(S ∪OPT) , (4)

where the last inequality holds since |OPT \ S| ≤ |OPT| ≤ k. Averaging Inequalities (3) and (4)
gives

f(S) ≥ f(S ∪OPT) + f(S ∩OPT)
2 + 2ε

,

which proves the first inequality guaranteed by the theorem in the case of |S| < k.

Implications of E± not occurring when |S| = k. Since E± does not occur and |S| = k, for
every pair u, v where u ∈ N \ S and v ∈ S,

(
1 + ε

2k

)
f(S) ≥ f(S + u− v). Summing the above

inequality for every v ∈ S \OPT and u ∈ OPT \ S, yields that(
1 +

ε

2k

)
f(S) ≥ 1

|S \OPT| · |OPT \ S|
∑

u∈OPT\S

∑
v∈S\OPT

f(S + u− v) .
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Observe that
1

|S \OPT| · |OPT \ S|
∑

u∈OPT\S

∑
v∈S\OPT

f(S + u− v)− f(S)

=

A︷ ︸︸ ︷∑
u∈OPT\S

∑
v∈S\OPT

[f(S + u− v)− f(S − v)]

|S \OPT| · |OPT \ S|
+

B︷ ︸︸ ︷∑
u∈OPT\S

∑
v∈S\OPT

[f(S − v)− f(S)]

|S \OPT| · |OPT \ S|
.

To bound A, note that, by the submodularity of f ,∑
u∈OPT\S

[f(S + u− v)− f(S − v)] ≥
∑

u∈OPT\S

[f(S + u)− f(S)]

≥ f(S ∪OPT)− f(S) ,

and hence, ∑
u∈OPT\S

∑
v∈S\OPT

[f(S + u− v)− f(S − v)]

|S \OPT| · |OPT \ S|
≥ f(S ∪OPT)− f(S)

|OPT \ S|
.

To bound B, we note that the submodularity of f implies that∑
u∈OPT\S

∑
v∈S\OPT

[f(S − v)− f(S)]

|S \OPT| · |OPT \ S|
=

∑
v∈S\OPT

[f(S − v)− f(S)]

|S \OPT|
≥ f(S ∩OPT)− f(S)

|S \OPT|
.

Combining all of the above yields that

ε

2k
f(S) ≥ f(S ∩OPT)− f(S)

|S \OPT|
+

f(S ∪OPT)− f(S)

|OPT \ S|
,

which by rearrangement implies

f(S) ≥ f(S ∩OPT)
1 + ε

2k |S \OPT|+ |S\OPT|
|OPT\S|

+
f(S ∪OPT)

1 + ε
2k |OPT \ S|+ |OPT\S|

|S\OPT|

≥ f(S ∪OPT) + f(S ∩OPT)
2 + ε

,

where the last inequality holds since |OPT \ S| = |S \OPT| ≤ k. This completes the proof of the
first inequality guaranteed by the theorem in the case of |S| = k.

To complete the proof of the theorem, it remains to analyze the query complexity of Algorithm 1.
First, we recall that S is initialized on Line 1 of Algorithm 4 by the Twin Greedy algorithm of [17],
which gives an approximation ratio c = 1/5 using O(n log k) queries to the objective function. Each
iteration of the loop of Algorithm 4 can be implemented using O(nk) queries since there are only
O(nk) ways to choose u ∈ N \S and v ∈ S. Let us bound the number L of such iterations. Observe
that the function value of the set S in Algorithm 4 increases by a multiplicative factor of 1 + ε

2k
following each iteration of the while loop (except for the last one). Since S is initialized with a
solution of value at least cf(OPT), and its value is never larger than f(OPT ) (because it remains
feasible), we get

f(OPT ) ≥
(
1 +

ε

k

)L−1

cf(OPT) ,

and rearranging gives us

L ≤ 1 +
ln 1

c

ln(1 + ε
2k )

= 1 +
ln 5

ln(1 + ε
2k )

= O(k/ε) .

Combining the above results, we get that the query complexity of Algorithm 4 is upper bounded by
O(n log k) +O(nk) · L = O(n log k) +O(nk) ·O(k/ε) = O(nk2ε−1).
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A.2 Guided Random Greedy

In this section, we present the Guided Random Greedy algorithm (Algorithm 5), which is the variant
of the Random Greedy algorithm of [5] used to implement the last step of Algorithm 6. Algorithm 5
starts with an empty set, and adds to it one element in each iteration until returning the final solution
after k iterations. In its first ⌈k · ts⌉ iterations, the algorithm ignores the elements of Z, and in the
rest of the iterations, it considers all elements. However, except for this difference, the behavior of
the algorithm in all iterations is very similar. Specifically, in each iteration i the algorithm does the
following two steps. In Step (i) the algorithm finds a subset Mi of size k maximizing the sum of
marginal gains of the elements u ∈ Mi with respect to the current solution Si−1. In step (ii), the
algorithm chooses a random element from Mi and adds it to the solution. This algorithm implicitly
assumes that |N | ≥ 3k. If this is not the case, one can fix that by adding to the ground set 2k dummy
elements of value 0 before executing the algorithm (and then removing any dummy elements that
appear in the solution of the algorithm).

Algorithm 5: Guided Random Greedy
input :A set Z ⊆ N , a positive integer k ≥ 1, a non-negative submodular function f , and a flip

point ts ∈ [0, 1]
output :A set S ⊆ N

1 Initialize S0 ← ∅.
2 for i = 1 to ⌈k · ts⌉ do
3 Let Mi ⊆ N \ (Si−1 ∪ Z) be a subset of size k maximizing

∑
u∈Mi

f(u | Si−1 + u).
4 Let ui be a uniformly random element from Mi.
5 Si ← Si−1 + ui.
6 for i = ⌈k · ts⌉+ 1 to k do
7 Let Mi ⊆ N \ Si−1 be a subset of size k maximizing

∑
u∈Mi

f(u | Si−1 + u).
8 Let ui be a uniformly random element from Mi.
9 Si ← Si−1 + ui.

10 return Sk.

The properties of Algorithm 5 are given by Theorem A.2.
Theorem A.2. There exists an algorithm that given a positive integer k, a value ts ∈ [0, 1], a
non-negative submodular function f : 2N → R≥0, and a set Z ⊆ N obeying the inequalities given
in Theorem A.1, outputs a solution Sk, obeying

E[f(Sk)] ≥
(
k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1 + αk−⌈ts·k⌉ − αk

)
f(OPT)+

+

(
αk + αk−1 − 2k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1

)
f(OPT ∪ Z)

+
(
αk − αk−⌈ts·k⌉

)
f(OPT ∩ Z) ,

where α = 1 − 1/k. Furthermore, this algorithm requires only O(nk) queries to the objective
function.

To prove Theorem A.2, we first need to present some preliminaries. The Lovász extension of f is a
function f̂ : [0, 1]N → R defined as follows. For every vector x ∈ [0, 1]N ,

f̂(x) =

∫ 1

0

f(Tλ(x))dλ ,

where Tλ(x) ≜ {u ∈ N | xu ≥ λ}. The Lovász extension of a submodular function is known to
be convex. More important for us is the following known lemma regarding this extension. This
lemma stems from an equality, proved by Lovász [28], between the Lovász extension of a submodular
function and another extension known as the convex closure.
Lemma A.3. Let f : 2N → R be a submodular function, and let f̂ be its Lovász extension. For
every x ∈ [0, 1]N and random set Dx ⊆ N obeying Pr[u ∈ Dx] = xu for every u ∈ N (i.e., the
marginals of Dx agree with x), f̂(x) ≤ E[f(Dx)].

17



Using the last lemma, we now prove a lower bound on the expected value of the union of any set A
with the solution Si of Algorithm 5 after i iterations.
Lemma A.4. For every integer 0 ≤ i ≤ k and set A ⊆ N , it holds that

E[f(Si ∪A)] ≥
(
1− 1

k

)βi

· f(A)−
[(

1− 1

k

)βi −
(
1− 1

k

)i−1]
· f(A ∪ Z) ,

where βi = max{0, i− ⌈ts · k⌉}.

Proof. Let x(i) ∈ [0, 1]N be the vector of the marginal probabilities of elements to belong to Si.
In other words, for every element u ∈ N , x(i)

u = Pr[u ∈ Si]. Since each iteration of Algorithm 5
adds each element to the solution with probability at most 1/k, the coordinates of x(i) are all upper
bounded by 1− (1− 1/k)i. For elements of Z we also know that they are not added by Algorithm 5
to the solution in the first ⌈k · ts⌉ iterations, and therefore, their coordinates in x(i) are upper bounded
by

1− (1− 1/k)max{0,i−⌈k·ts⌉} = 1− (1− 1/k)βi .

Let 1A denote a vector in {0, 1}N containing 1s at the entries that correspond to elements present in
A and 0 in the remaining coordinates. We also denote by x(i) ∨ 1A the coordinate-wise maximum of
x(i) and 1A. By Lemma A.3,

E[f(Si ∪A)] ≥ f̂(xSi
∨ 1A) =

1∫
0

f(Tλ(xSi
∨ 1A))dλ

≥

1−(1− 1
k )i−1∫

1−(1− 1
k )βi

f(Tλ(xSi ∨ 1A))dλ+

1∫
1−(1− 1

k )i−1

f(Tλ(xSi ∨ 1A))dλ

=

1−(1− 1
k )i−1∫

1−(1− 1
k )βi

f(Tλ(xSi
∨ 1A))dλ+

(
1− 1

k

)i−1

f(A)

≥
[(

1− 1

k

)βi

−
(
1− 1

k

)i−1]
· [f(A)− f(A ∪ Z)] +

(
1− 1

k

)i−1

f(A) ,

where the second inequality holds by the non-negativity of f , and the last inequality follows since
Tλ(xSi ∨ 1A) = Bλ ∪A for some set Bλ ⊂ N \ Z, and the submodularity and non-negativity of f
imply together that

f(Bλ ∪A) ≥ f(A) + f(A ∪Bλ ∪ Z)− f(A ∪ Z) ≥ f(A)− f(A ∪ Z) .

With the above result, we are now ready to bound the expected value of f(Si).
Lemma A.5. Let α = 1− 1

k . Then, for every integer 0 ≤ i ≤ ⌈ts · k⌉,

E[f(Si)] ≥
(
1− αi

)
f(OPT \ Z)−

(
1− αi − i(1− α)αi−1

)
f(OPT ∪ Z) ,

and for every integer ⌈ts · k⌉ ≤ i ≤ k,

E[f(Si)] ≥
i− ⌈ts · k⌉

k
αi−⌈ts·k⌉−1f(OPT)− i− ⌈ts · k⌉

k

(
αi−⌈ts·k⌉−1 − αi−1

)
f(OPT ∪ Z)

+ αi−⌈ts·k⌉ · f(S⌈ts·k⌉) .

Proof. Let Ei be an event fixing all the random decisions in Algorithm 5 up to iteration i − 1
(including), and let Ai = OPT \ Z for i ≤ ⌈ts · k⌉ and Ai = OPT for i > ⌈ts · k⌉. Since all the
elements of Ai can be chosen to be in Mi, and so can the dummy elements, we get that, conditioned
on Ei

E[f(ui | Si−1)] ≥ max
u∈Mi

f(u | Si−1) ≥ k−1
∑
u∈Mi

f(u | Si−1)

≥ k−1
∑
u∈Ai

f(u | Si−1) ≥ k−1[f(Si−1 ∪Ai)− f(Si−1)] ,
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where the last inequality holds by the submodularity of f . Since Si = Si−1 + ui, rearranging the
last inequality gives E[f(Si)] ≥ k−1f(Si−1 ∪Ai) + αf(Si−1). Taking expectation now over all
possible events Ei we get that, without conditioning on anything,

E[f(Si)] ≥ k−1E[f(Si−1 ∪Ai)] + αE[f(Si−1)] . (5)

Proving the first inequality of the lemma. We prove the first inequality of the lemma (for
0 ≤ i ≤ ⌈ts ·k⌉) by induction on i. For i = 0 the inequality holds by the non-negativity of f . Assume
now that 1 ≤ i ≤ ⌈ts · k⌉ and the inequality holds for i− 1, and let us prove the inequality for i.

E[f(Sj)] ≥ k−1E[f(Si−1 ∪Ai)] + αE[f(Si−1)]

≥ k−1
[
f(OPT \ Z)−

(
1−

(
1− 1

k

)i−1)
· f(OPT ∪ Z)

]
+ α(1− αi−1)f(OPT \ Z)− α

(
1− αi−1 − (1− α)(i− 1)αi−2

)
f(OPT ∪ Z)

= (1− α)
[
f(OPT \ Z)− (1− αi−1) · f(OPT ∪ Z)

]
+ α(1− αi−1)f(OPT \ Z)− α

(
1− αi−1 − (1− α)(i− 1)αi−2

)
f(OPT ∪ Z)

= α(1− αi)f(OPT \ Z)−
(
1− αi − (1− α)iαi−1

)
f(OPT ∪ Z) ,

where the second inequality holds by Lemma A.5 and the induction hypothesis since Ai = OPT \ Z,
and the first equality holds by definition of α.

Proving the second inequality of the lemma. We prove the second inequality of the lemma (for
⌈ts · k⌉ ≤ i ≤ k) by induction on i. One can verify that for i = ⌈ts · k⌉ the inequality trivially holds.
Assume now that ⌈ts · k⌉ < i ≤ k and the inequality holds for i− 1, and let us prove the inequality
for i.
E[f(Sj)] ≥ k−1E[f(Si−1 ∪Ai)] + αE[f(Si−1)]

≥ k−1
[(

1− 1

k

)i−⌈ts·k⌉−1

· f(OPT)−
((

1− 1

k

)i−⌈ts·k⌉−1

−
(
1− 1

k

)i−1)
· f(OPT ∪ Z)

]
+

i− ⌈ts · k⌉ − 1

k
αi−⌈ts·k⌉−1f(OPT)

− i− ⌈ts · k⌉ − 1

k

(
αi−⌈ts·k⌉−1 − αi−1

)
f(OPT ∪ Z) + αi−⌈ts·k⌉ · f(S⌈ts·k⌉)

= k−1[αi−⌈ts·k⌉−1 · f(OPT)− (αi−⌈ts·k⌉−1 − αi−1) · f(OPT ∪ Z)]

+
i− ⌈ts · k⌉ − 1

k
αi−⌈ts·k⌉−1f(OPT)

− i− ⌈ts · k⌉ − 1

k

(
αi−⌈ts·k⌉−1 − αi−1

)
f(OPT ∪ Z) + αi−⌈ts·k⌉ · f(S⌈ts·k⌉)

=
i− ⌈ts · k⌉

k
αi−⌈ts·k⌉−1f(OPT)− i− ⌈ts · k⌉

k

(
αi−⌈ts·k⌉−1 − αi−1

)
f(OPT ∪ Z)

+ αi−⌈ts·k⌉ · f(S⌈ts·k⌉) ,

where the second inequality holds by Lemma A.5 and the induction hypothesis since Ai = OPT, and
the first equality holds by definition of α.

We are now ready to prove Theorem A.2.

Proof of Theorem A.2. Note that by submodularity and non-negativity of f ,
f(OPT \ Z) ≥ f(∅) + f(OPT)− f(OPT ∩ Z) ≥ f(OPT)− f(OPT ∩ Z) .

The lower bound in the theorem follows by combining the above inequality with the following two
inequalities: the inequality arising by plugging i = ⌈ts · k⌉ into the first case of Lemma A.5, and the
inequality arising by plugging i = k into the second case of Lemma A.5.

To conclude the proof, observe that each one of the k iterations of Algorithm 5 requires us to compute
the marginal gain of at most n elements with respect to the set Si−1, which can be done using O(n)
queries to the objective function per iteration, and O(nk) queries in total.
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A.3 0.385-Approximation Guarantee

We are now ready to present Algorithm 6 (the simpler version of our main algorithm). Recall that
this algorithm returns the better among the two sets produced in the last two steps described in
the beginning of this appendix. Formally, these sets are the output sets of LOCAL-SEARCH and
Algorithm 5.

Algorithm 6: Warmup Algorithm
input :A positive integer k ≥ 1, a non-negative submodular function f , and a flip point 0 ≤ ts ≤ 1
output :A set S ⊆ N

1 S1 ← LOCAL-SEARCH(k, f).
2 S2 ← the output of Algorithm 5.
3 return max{f(Z), f(A)}.

The following theorem is proved by setting ε in Algorithm 6 to be a small enough positive constant.

Theorem A.6 (Approximation guarantee). Given an integer k ≥ 1 and a non-negative submodular
function f : 2N → R≥0, there exists a 0.385-approximation algorithm for the problem of finding
a set S ⊆ N of size at most k maximizing f . This algorithm uses O(nk2) queries to the objective
function.

Proof. The proof of the approximation guarantee is very similar to the corresponding part in the
proof Theorem 2.3, and is thus, omitted. The query complexity stated in the theorem follows directly
from Theorems A.1 and A.2 and the fact that ε is set to a positive constant value.

B Omitted Proofs of Section 2

In this section, we prove the theorems whose proofs have been omitted from Section 2, namely,
Theorems 2.1, and 2.2.

B.1 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. We begin with the following lemma. We assume without loss
of generality that OPT is of size k (otherwise, we add to OPT dummy elements).

Lemma B.1. If the set S0 provides c-approximation, then each iteration of the loop starting on Line 3
in Algorithm 1 returns a set with probability at least k/(cε(1− 1/e)L). Moreover, when this happens,
the output set S returned obeys

f(S) ≥ f(S ∩OPT) + f(S ∪OPT)
2 + ε

and f(S) ≥ f(S ∩OPT)
1 + ε

.

Proof. For every two integers 0 ≤ i < L and 1 ≤ j ≤ ⌈log 1
ε⌉, we denote by Aj

i the event that the
set Sj

i obeys the condition on Line 13 of Algorithm 1, i.e., the event that for every integer 0 ≤ t ≤ k
it holds that

max
S⊆N\Sj

i ,|S|=t

∑
u∈S

f(u | Sj
i ) ≤ min

S⊆Sj
i ,|S|=t

∑
v∈S

f(v | Sj
i − v) + εf(Sj

i ) .

To better understand the implication of an event Aj
i , assume that such an event occurs, and observe

that for t = |OPT \ Sj
i |, it holds that

f(Sj
i )− f(Sj

i ∩OPT) + εf(Sj
i ) =

|Kj
i |∑

ℓ=1

f(uℓ | Jj
i ∪ {u1, . . . , uℓ−1}) + εf(Sj

i ) (6)

≥
|Kj

i |∑
ℓ=1

f(uℓ | Jj
L ∪Kj

L − uℓ) + εf(Sj
i )
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=
∑

v∈Sj
i \OPT

f(v | Sj
i − v) + εf(Sj

i )

≥ min
S⊆Sj

i ,|S|=t

∑
v∈S

f(v | S − v) + εf(Sj
i )

≥ max
S⊆N\Sj

i ,|S|=t

∑
u∈S

f(u | Sj
i )

≥
∑

u∈OPT\Sj
i

f(u | Sj
i ) ≥ f(Sj

i ∪OPT)− f(Sj
i ) ,

where the first equality holds by setting Jj
i ≜ Sj

i ∩OPT, Kj
i ≜ Sj

i \OPT and using u1, u2, . . . , u|Kj
i |

to denote the elements of Kj
i in some arbitrary order. The first and last inequalities follow from

submodularity of f , the second inequality holds since the fact that Sj
i and OPT are both of size k

implies that t = |OPT \ Sj
i | = |S

j
i \OPT|, and the third inequality holds under the assumption that

event Aj
i occurs. Rearranging the last inequality, we get

f(Sj
i ) ≥

f(Sj
i ∪OPT) + f(Sj

i ∩OPT)
2 + ε

.

In addition, the existence of the dummy elements implies that max
S⊆N\Sj

i ,|S|=t

∑
u∈S

f(u | Sj
i ) ≥ 0, and

plugging this inequality into Inequality (6) yields that the event Aj
i also implies

f(Sj
i )− f(Sj

i ∩OPT) + εf(Sj
i ) ≥ min

S⊆Sj
i ,|S|=t

∑
v∈S

f(v | Sj
i − v) + εf(Sj

i ) ≥ 0 ,

and rearranging this inequality gives f(Sj
i ) ≥

f(Sj
i∩OPT)
1+ε .

The above shows that to prove the lemma it suffices to show that the probability that Aj
i∗ holds is at

least k/(cε(1− 1/e)L). Towards this goal, let us study the implications of the complementary event
Āj

i . Specifically, we would like to lower bound E
[
f(Sj

i+1)− f(Sj
i ) | Ā

j
i

]
.

Fix a particular set Sj
i that causes the event Āj

i to occur (notice that the occurrence of this event
depends only on the set Sj

i ). Then, there must exist sets T+ ⊆ N \ Sj
i and T− ⊆ Sj

i of size t ≤ k
such that ∑

u∈T+

f(u | Sj
i ) >

∑
v∈T−

f(v | Sj
i − v) + εf(Sj

i ) .

We can now define the event Bj
i as the event that Zj

i+1 ∩ T+ ̸= ∅ (notice that the event Bj
i is defined

only for this particular set Si
j). The probability of the event Bj

i is

Pr(Bj
i | S

j
i ) ≥ 1−

(n− n/k

n

)|T+|
≥ 1− e−

|T+|
k ≥ (1− 1/e)

|T+|
k

,

where the first inequality holds since (1 − 1
k )

x ≤ e−
x
k for any x ≥ 0, and the second inequality

holds for any x ∈ [0, 1] by the concavity of 1− e−x. By the law of total expectation and the fact that
f(Sj

i+1) is always at least f(Sj
i ), we now get

E
[
f(Sj

i+1)− f(Sj
i ) | S

j
i

]
≥ Pr(Bj

i | S
j
i ) · E

[
f(Sj

i+1)− f(Sj
i ) | S

j
i , B

j
i

]
≥ (1− 1/e)

|T+|
k
· E

[
f(Sj

i+1)− f(Sj
i ) | S

j
i , B

j
i

]
≥ 1− 1/e

k
εcf(OPT) ,
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where the last inequality holds since

E
[
f(Sj

i+1)− f(Sj
i ) | S

j
i , B

j
i

]
≥ E

[
f(Sj

i − vji+1 + uj
i+1)− f(Sj

i ) | S
j
i , B

j
i

]
= E

[
f(Sj

i − vji+1 + uj
i+1)− f(Sj

i − vji+1) + f(Sj
i − vji+1)− f(Sj

i ) | S
j
i , B

j
i

]
≥ E

[
f(Sj

i + uj
i+1)− f(Sj

i ) + f(Sj
i − vji+1)− f(Sj

i ) | S
j
i , B

j
i

]
≥ E

[
f(Sj

i + u′)− f(Sj
i ) | S

j
i , B

j
i

]
+ E

[
f(Sj

i − v′)− f(Sj
i ) | S

j
i , B

j
i

]

=

∑
u∈T+

f(u | Sj
i )

|T+|
−

∑
v∈T−

f(v | Sj
i − v)

|T−|
≥ εf(Sj

i )

|T+|
≥ cεf(OPT)

|T+|
,

where the second inequality holds by submodularity of f(·), the third inequality holds by the way
Algorithm 1 chooses uj

i and vji if we let u′ be a uniformly random element of T+ ∩ Zj
i+1 and v′ be a

uniformly random element of T−, the penultimate inequality holds by our assumption that Sj
i implies

the event Āj
i , and finally, the last inequality holds since it is guaranteed that f(Sj

i ) ≥ f(Sj
0) =

f(S0) ≥ c · f(OPT).

Since the above bound on the expectation holds conditioned on every set Sj
i that implies the event

Āj
i , it holds (by the law of total expectation) also conditioned on the event Āj

i itself. Adding this
lower bound for all i values, and using the non-negativity of f , we get

E
[
f(Sj

L)
]
≥

L−1∑
ℓ=0

E
[
f(Sj

ℓ+1)− f(Sj
ℓ )
]
≥

L−1∑
ℓ=0

Pr(Āj
ℓ) · E

[
f(Sj

ℓ+1)− f(Sj
ℓ ) | Ā

j
ℓ

]
≥ 1− 1/e

k
cεf(OPT) ·

L∑
ℓ=1

Pr(Āj
ℓ) .

Combining the last inequality with the fact that f(Sj
L) is deterministically at most f(OPT), it must

hold that

1 ≥ 1− 1/e

k
cε ·

L∑
ℓ=1

Pr
(
¯
Aj

ℓ

)
⇒

L∑
ℓ=1

Pr
(
¯
Aj

ℓ

)
≤ k

cε(1− 1/e)
.

Hence, the probability that the event Aj
i∗ does not hold for a uniformly random i∗ ∈ [L] is∑L

ℓ=1 Pr
(
¯
Aj

ℓ

)
L

≤ k

cε(1− 1/e)L
.

Theorem 2.1. There exists an algorithm that given a positive integer k, a value ε ∈ (0, 1), and a
non-negative submodular function f : 2N → R≥0, outputs a set S ⊆ N of size at max k that, with
probability at least 1− ε, obeys

f(S) ≥ f(S ∩OPT) + f(S ∪OPT)
2 + ε

and f(S) ≥ f(S ∩OPT)
1 + ε

.

Furthermore, the query complexity of the above algorithm is Oε(n+ k2).

Proof. As mentioned above, we initialize the set S0 using the deterministic 1/4-approximation
algorithm of Balkanski et al. [2], which uses only O(n) queries to the objective function. Thus,
c = 1/4 in our implementation of Algorithm 1. Let us now set L =

⌈
2k

cε(1−1/e)

⌉
in Algorithm 1.

Then, Lemma B.1 guarantees that every iteration of the outer loop of the algorithm returns a set
(obeying the requirement of the theorem) with probability at least 1/2. Hence, by repeating this
loop ⌈log2 ε−1⌉ times, we are guaranteed that Algorithm 1 outputs a set with probability at least
1 − ε. To complete the proof of the theorem, it only remains to bound the number of queries to
the objective function that are necessary for implementing it. Each iteration of Algorithm 1 can be
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implemented using O(n/k + k) queries, and for the above choices of L, Algorithm 1 has only Oε(k)
iterations. Thus, all the iterations of the algorithm can be implemented using Oε(n+ k2) queries in
total. It should also be mentioned that evaluating the condition on Line 13 of the algorithm requires
O(n+ k) queries to the objective, and since this condition is evaluated ⌈log2 ε−1⌉ = Oε(1) times,
all its evaluations require in total only Oε(n+ k) queries.

B.2 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We begin by observing that, like in Algorithm 5, each
iteration of Algorithm 2 adds each element u ∈ N into the solution with probability at most 1/k,
and furthermore, the first ⌈ts · k⌉ iterations of the algorithm do not pick elements of Z at all (see the
analysis of Sample Greedy in [6] for a proof of a similar observation that is given in more detail).
Given this observation, the proof of Lemma A.4 applies also to Algorithm 2. Thus, this lemma can
be used in the proof of the following result.
Lemma B.2. Let α = 1− 1

k . Then, for every integer 0 ≤ i ≤ ⌈ts · k⌉,

E[f(Si)] ≥
(
1− αi

)
f(OPT \ Z)−

(
1− αi − i(1− α)αi−1

)
f(OPT ∪ Z)− 2εi

k
,

and for every integer ⌈ts · k⌉ ≤ i ≤ k,

E[f(Si)] ≥
i− ⌈ts · k⌉

k
αi−⌈ts·k⌉−1f(OPT)− i− ⌈ts · k⌉

k

(
αi−⌈ts·k⌉−1 − αi−1

)
f(OPT ∪ Z)

+ αi−⌈ts·k⌉ · f(S⌈ts·k⌉)−
2ε(i− ⌈ts · k⌉)

k
.

Proof. Let Ei be an event fixing all the random decisions in Algorithm 2 up to iteration i − 1
(including), and let Ai = OPT \ Z for i ≤ ⌈ts · k⌉ and Ai = OPT for i > ⌈ts · k⌉. Since all the
elements of Ai can be sampled in iteration i, by following the proof of Lemma 13 in the analysis of
the Sample Greedy algorithm by [6], one can obtain that, conditioned on Ei,

E[max{0, f(ui | Si−1)}] ≥
1− ε

k
[f(Ai ∪ Si−1)− f(Si−1)] .

To be more specific, Lemma 11 of [6] shows that with probability at least 1− ε the element chosen
as ui in iteration i of Algorithm 2 belongs to the k elements with the largest marginal values among
the elements that can be sampled in this iteration (if less than k elements can be sampled, dummy
elements should added for the purpose of this argument). Let Bi denote the set of these k elements.
Since the probability of each element of Bi to be selected as ui is non-decreasing in f(ui | Si−1), by
Chebyshev’s sum inequality, we get

E[max{0, f(ui | Si−1)}] ≥ (1− ε)

∑
u∈Bi

max{0, f(u | Si−1)}
k

≥ (1− ε)

∑
u∈Ai

f(u | Si−1)

k
≥ 1− ε

k
[f(Ai ∪ Si−1)− f(Si−1)] ,

where the second inequality holds since Bi contains the k elements with the largest marginals among
the elements that can be samples, and Ai is a set of up to k such elements; and the last inequality
follows from the submodularity of f .

Since Si = Si−1 + ui when f(ui | Si−1) ≥ 0 and Si = Si−1 otherwise, we get f(Si)− f(Si−1) =
max{0, f(ui | Si−1)}. Plugging this observation into the previous inequality, and rearranging gives

E[f(Si)] ≥
1− ε

k
f(Si−1 ∪Ai) +

(
1− 1− ε

k

)
f(Si−1)

≥ 1

k
f(Si−1 ∪Ai) + αf(Si−1)−

ε

k
f(Si−1 ∪Ai)

≥ 1

k
f(Si−1 ∪Ai) + αf(Si−1)−

2ε

k
f(OPT) ,

where the second inequality uses the non-negativity of f , and the last inequality holds since f(Si−1 ∪
Ai) ≤ f(Si−1) + f(Ai)− f(Si−1 ∩Ai) ≤ f(Si−1) + f(Ai) ≤ 2f(OPT) because both Si−1 and
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Ai are feasible solutions, and thus, cannot have a value larger than f(OPT). Taking expectation now
over all possible events Ei we get that, without conditioning on anything,

E[f(Si)] ≥ k−1E[f(Si−1 ∪Ai)] + αE[f(Si−1)]−
2ε

k
f(OPT) .

The remaining part of this proof is omitted since it is very similar to the corresponding part in the
proof of Lemma A.5, except that the last inequality should be used instead of Inequality (5).

We are now ready to prove Theorem 2.2.
Theorem 2.2. There exists an algorithm that given a positive integer k, a value ε ∈ (0, 1), a value
ts ∈ [0, 1], a non-negative submodular function f : 2N → R≥0, and a set Z ⊆ N obeying the
inequalities stated in Theorem 2.1, outputs a solution Sk, obeying

E[f(Sk)] ≥
(k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1 + αk−⌈ts·k⌉ − αk

)
f(OPT)+

+
(
αk + αk−1 − 2k − ⌈ts · k⌉

k
αk−⌈ts·k⌉−1

)
f(OPT ∪ Z)

+ (αk − αk−⌈ts·k⌉)f(OPT ∩ Z)− 2εf(OPT) ,

where α ≜ 1− 1/k. Moreover, this algorithm requires only Oε(n) queries to the objective function.

Proof of Theorem 2.2. The lower bound in Theorem 2.2 follows from the same arguments used in
the proof of Theorem A.2, except that Lemma B.2 is used instead of Lemma A.5, which results in the
additional error term 2εf(OPT) in the lower bound of Theorem 2.2.

To bound the number of queries to the objective function necessary for implementing Algorithm 2,
observe that each iteration of Algorithm 2 samples Oε(n/k) elements, and the marginal gain (with re-
spect to Si−1) has to be computed only for the sampled elements. Thus, each iteration of Algorithm 2
requires only Oε(n/k) queries to the objective function. Since the algorithm has only k iterations, its
total query complexity is k ·Oε(n/k) = Oε(n).
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our theoretical contribution can be found in Section 2, while the empirical
evaluation of our method can be found in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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Question: Does the paper discuss the limitations of the work performed by the authors?
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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depend on implicit assumptions, which should be articulated.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
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Answer: [Yes]
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results of the
paper can be found in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code can be accessed at the URL https://github.com/muradtuk/
385ApproximationSubMax.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details can be found in Section 3.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the error bars as the shaded regions in all of the figures. In Section 3,
we clearly explain that the sizes of the error bars are determined by the standard deviations.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: In Section 3, we wrote the computer type and memory needed to reproduce the
experiments. Due to its high dependence on implementation details, we do not provide the
time of execution. Instead, we provide in Section 3 the number of queries needed to obtain
the results.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper studies a well-known submodular optimization problem without
societal impact.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited in Section 3.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper involves neither crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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