CodeGRAG: Bridging the Gap between Natural Language and
Programming Language via Graphical Retrieval Augmented Generation

Anonymous ACL submission

Abstract

Utilizing large language models to generate
codes has shown promising meaning in
software development revolution. Despite
the intelligence shown by the general large
language models, their specificity in code
generation can still be improved due to the
syntactic gap and mismatched vocabulary
existing among natural language and different
programming languages. In this paper, we
propose CodeGRAG, a Graphical Retrieval
Augmented Code Generation framework to en-
hance the performance of LLMs. CodeGRAG
builds the graphical view of code blocks based
on the control flow and data flow of them to fill
the gap between programming languages and
natural language, which can facilitate natural
language based LLMs for better understanding
of code syntax and serve as a bridge among
different programming languages. To take the
extracted structural knowledge into the founda-
tion models, we propose 1) a hard meta-graph
prompt template to transform the challenging
graphical representation into informative
knowledge for tuning-free models and 2) a soft
prompting technique that injects the domain
knowledge of programming languages into the
model parameters via finetuning the models
with the help of a pretrained GNN expert
model. CodeGRAG significantly improves
the code generation ability of LLMs and can
even offer performance gain for cross-lingual
code generation. Implementation is available
at https://anonymous.4open.science/r/Code-
5970/ .

1 Introduction

In recent years, large language models (LLMs)
(Achiam et al., 2023; Touvron et al., 2023a) have
shown great impact in various domains. Automated
code generation emerges as a captivating frontier
(Zheng et al., 2023; Roziere et al., 2023; Shen et al.,
2023), promising to revolutionize software develop-
ment by enabling machines to write and optimize

Programming

Language Vocabulary Mismatch Syntactic Gap

Natural for, int, =, <, ++, ... Complex & Structural

Language
consisting, binary Easier & Sequential
Extracted

Graph

xx K

Input are two strings a and b consisting only of 1s and Os. Perform binary XOR
on these inputs and return results also as a string.

string string_xor(string a, string b){
string output="";
for (int i=0;(i<a.length() and i<b.length());i++)}
if (i<a.length() and i<b.length(){
if (a[i]== b[i]) output+='0";
else output+="1"}
else{
i (i>=a.length()) output+=bli];
else output+=ali];}}
return output;}

Figure 1: Illustration of the gap between the program-
ming language and the natural language.

code with minimal human intervention.

However, syntactic gap and mismatched vocab-
ulary among natural language (NL) and program-
ming languages (PL) exist, hindering LLM’s per-
formance on code generation. As illustrated in Fig-
ure 1, programming language (marked in blue) con-
tains special tokens such as “int” or “++ that nat-
ural language (marked in yellow) doesn’t possess,
leading to vocabulary mismatch. Besides, the re-
lations between tokens in programming languages
are often structural, e.g., the complex branching
and jumps, whereas natural language is arranged
simply in sequential manner, leading to syntactic
gap. For example, in the control flow graph of
the raw code (marked in pink), two “if” blocks
(marked in purple) are adjacent and are executed
sequentially under certain condition, but they ap-
pear to be intervaled in raw textual code.

As discussed above, the innate structures of pro-
gramming languages are different from that of the
sequential-based natural language. The challenges
of enhancing a general-purposed large language
models for code-related tasks can be summarized
into two folds.

(C1) How to solve the gap between different
languages and better interpret the inherent logic

of code blocks. Code, unlike natural language,
possesses a well-defined structure that governs its
syntax and semantics. This structure provides valu-
able information about the relationships between
different parts of the code, the flow of execution,
and the overall organization of the functions (Jiang
et al., 2021; Guo et al., 2020). General-purpose
LLMs regard a code block as a sequence of tokens.
By ignoring the inherent structure of codes, they
miss out on essential cues that could help them
better understand and generate code. In addition,
the multi-lingual code generation abilities of LLMs
is challenging due to the gap among different pro-
gramming languages.

(C2) How to inject the innate knowledge of pro-
gramming languages into general purpose large lan-
guage models for enhancement. Despite the well
representation of the programming knowledge, the
ways to inject the knowledge into the NL-based
foundation models is also challenging. The struc-
tural representation of codes could be hard to un-
derstand, which poses a challenge to the capability
of the foundation models.

To solve the above challenges, we propose Code-
GRAG, a graphical retrieval augmented generation
framework for code generation. For (C1), we pro-
pose to interpret the code blocks using the com-
posed graph based on the data-flow and control-
flow of the code block, which extracts both the
semantic level and the logical level information
of the code. The composed graphical view could
1) better capture the innate structural knowledge
of codes for NL-based language models to under-
stand and 2) model the innate function of code
blocks that bridging different programming lan-
guages. For (C2), we propose a meta-graph prompt-
ing technique for tuning-free models and a soft-
prompting technique for tuned models. The meta-
graph prompt summarizes the overall information
of the extracted graphical view and transforms the
challenging and noisy graphical representation into
informative knowledge. The soft-prompting tech-
nique deals with the graphical view of codes with a
pretrained GNN expert network and inject the pro-
cessed knowledge embedding into the parameters
of the general-purpose foundation models with the
help of supervised finetuning.

The main contributions of the paper can be sum-
marized as follows:

* Novel GraphRAG framework for code gener-
ation. We propose CodeGRAG that bridges the

gap among natural language and programming
languages, transfers knowledge among different
programming languages, and enhances the abil-
ity of LLMs for code generation. CodeGRAG
requires only one calling of LLMs and can offer
multi-lingual enhancement.

* Effective graphical view to inform and stimu-
late the structural programming knowledge of
LLMs. We propose an effective graphical view
to purify the semantic and logic knowledge from
the code space, which offers more useful informa-
tion than the raw code block and can summarize
the cross-lingual knowledge.

* Effective soft prompting technique to preserve
the programming domain knowledge and in-
ject it into LLMs parameters. We propose
an effective soft prompting technique, which in-
jects the domain knowledge of programming lan-
guages into the model parameters via finetuning
LLMs with the assistance of a pretrained GNN
expert model.

2 Methodology

2.1 Overview

In this paper, we leverage both generative models
and retrieval models to produce results that are
both coherent and informed by the expert graphical
knowledge of programming language. The overall
process of CodeGRAG is illustrated in Figure 2,
which mainly consists of three stages: graphical
knowledge base preparation, knowledge querying,
and graphical knowledge augmented generation.

2.2 Graphical Knowledge Base Preparation

In this section, we discuss how to extract informa-
tive graphical views for code blocks. We analyze
the syntax and control information of code blocks
and extract their graphical views to better repre-
sent the codes. This process can be formulated as,
Ve; € Dpooﬂ

g; < GraphExtractor(¢;), o))
KB.append({c;, gi)), 2

where c; is the raw code block and g; is the corre-
sponding extracted graphical view.

To capture both the semantic and the logical
information, we propose to combine the data flow
graph (Aho et al., 2006) and the control flow graph
(Allen, 1970) with the read-write signals (Long

External Code
Knowledge Base

<
-
Composed Syntax Graph

Composed Edge Feature Graphical View
Syntax Graph
Meta-Graph Structure

Compact

B3

Data Flow Control Flow

std::vector<int> >
twoSum(std::vector<int>& nums, int

Knowledge
Document

target) {

Raw Code

Knowledge Preparation

Composed
Syntax Graph

Alignment Contrastive Learning

NL]<7>[Code]47'[Gra|.nhical
View

Expert GNN

| E

Structure Preserving Contrastive Learning

Retrieval Augmented Generation
(Soft & Hard)

Return a string containing space-delimited
numbers starting from 0 upto n inclusive.
>>> string_sequence(0)

non

>> string_sequence(5)

External Code
Knowledge Base

GraphEmb

#include<stdio.h>
#include<math.h>

(i)

General Purpose LLM

#include<string>
using namespace std;
#include<algorithm>

012345

#include<stdio.h>

#include<stdlib.h>
string string_sequence(int n){

#include<string>
using namespace std;
string string_sequence(int n){

Query Extraction

Retriever

INPUT: Task instruction prompt

Graphical View

string out="0";

for (int i=1;i<=n;i++)
out=out+" "+to_string(i);
retum out;

}
OUTPUT: Generated Code

General Purpose LLM

Figure 2: Overview of CodeGRAG. (Top) Knowledge Preparation. We extract the control flow and data flow of
each external code block and compose them using the read-write signal to obtain the semantic and logical expression
of each code block, which is then abstracted into graphical view as hard knowledge document and embedded into
GraphEmb as soft knowledge document. The GraphEmb is encoded by a pretrained GNN expert model constrained
by the alignment and structure preserving objectives. (Bottem) Retrieval Augmented Generation. We extract
query from the task input and retrieve from the external corpus. For tuning free models, we use the hard graphical
view to stimulate the structural programming knowledge of LLMs for enhanced generation. For tunable models, we
use the soft GraphEmb and inject the programming domain knowledge into LLMs parameters via finetuning them
with the GNN expert signals. The expert signals informed LLMs can then produce enhanced generation.

et al., 2022) to represent the code blocks, both of
them are constructed on the base of the abstract
syntax tree.

Abstract Syntax Tree (AST). An abstract syntax
tree (AST) is a tree data structure that represents
the abstract syntactic structure of source code. An
AST is constructed by a parser, which reads the
source code and creates a tree of nodes. Each node
in the tree represents a syntactic construct in the
source code, such as a statement, an expression, or
a declaration. ASTs have good compactness and
can represent the structure of the source code in a
clear and concise way.

Data Flow Graph (DFG). The data flow graph
(DFG) is a graphical representation of the flow of
data dependencies within a program. Itis a directed
graph that models how data is transformed and
propagated through different parts of a program. In
DFG, nodes are operands and edges indicate data
flows. Two types of edges are considered: 1) opera-
tion edges that connect the nodes to be operated and
the nodes that receive the operation results; 2) func-
tion edges that indicate data flows for function calls

and returns. These edges connect nodes, including
non-temporary operands and temporary operands,
which refer to variables and constants that explic-
itly exist in the source code, and variables existing
only in execution, respectively.

Control Flow Graph (CFG). The control flow
graph (CFQG) is a graphical representation of the
flow of control or the sequence of execution within
a program. It is a directed graph that models the
control relationships between different parts of a
program. Based on compiler principles, we slightly
adjust the design of CFG to better capture the key
information of the program. Nodes in CFG are
operations in the source code, including standard
operations, function calls and returns. Edges indi-
cate the execution order of operations.

Composed Syntax Graph. A composed syntax
graph composes the data flow graph and the control
flow graph with the read-write flow existing in the
code blocks. An illustration of the extracted com-
posed syntax graph is displayed in Figure 3. Dif-
ferent edge types along with their concrete names
are given in colors. As for the node names, the

temp

Function Desciption

ParmVarDe;

Checks if given string is a palindrome. MenfBetExpr e

Membercall:k’\/

temp
#include<string> fiai - CXxCoExer
using namespace std; N ‘
#include<algorithm> SR ‘
#include<stdlib.h>
bool is_palindrome(string text){
string pr(text.rbegin(),text.rend());

return pr==text;
} —— DeclStmtedge0

Code Block

#include<stdio.h>
#include<math.h>

CXXMemberCallExpr._/ EXXConstructExpr

MemberExpr

——» UserDefineFun

RefurnStmt

DeclStmt———CempoundStmt

——» CXXOperatorCallExpredgel

auto

void

) Def _
/ CxxoperatorCallExpr) B e
userDefine -

userDefine void«————void

auto
bool (std:string)

rundloeci userDefine BY userDefine \
\ U | Void
|

fileAST auto
userDefine

——userDefine

userDefine

—— child write

——» CXXOperatorCallExpredge2 next read

Figure 3: Illustration of the extracted composed syntax graph from the code block. The arrows in the bottom part
indicate the names of different edges, which are extracted based on the ASTs.

middle figure displays the concrete types of nodes
(operands) and the right figure displays the proper-
ties of nodes.

An illustration of the composed graphical view
is in Figure 3. After obtaining the composed syn-
tax graphs, we use them to inform the general-
purpose LLMs to bridge the gap between NL and
PLs, where both the semantic level and the logic
level information are preserved.

2.3 Knowledge Querying

Given a target problem to be completed, we gen-
erate informative query of it and use it to retrieve
graphical knowledge from the constructed knowl-
edge base.

We extract the problem description of each task
to reduce the ambiguity and then concatenate it
with the function declaration to serve as the query
content, where the functionality and input format of
the expected code block are contained. The query
of the retrieval includes problem description (),
and function description ()., while each content of
the retrieval pool includes raw code block V. and
its graphical view V.

To expressively represent the components, we
use the encoder ¢(-) of the pretrained NL2Code
model to represent the problem description and
code snippets. The retrieval function is:

hY = (Ve[| Vi), 3)
h® = ¢(Q,[Qc), “)

) hQ.nhv
Distance = 1 — W (5)

2.4 Graphical Knowledge Augmented
Generation

After we obtain the returned graphical view, we in-
ject it to the foundation LLMs for graphical knowl-

edge augmented generation. Since the graphical
view is hard to understand, we propose 1) a meta-
graph template to transform the graphical view into
informative knowledge for tuning-free model and
2) a soft prompting technique to tune the founda-
tion models for their better understanding of the
graphical views with the assistance of an expert
GNN model.

2.4.1 Hard Meta-Graph Prompt

The original graphical view of a code block could
contain hundreds of nodes and edges. A full de-
scription of it could cost an overly long context,
along with the understanding challenge posed by
the long edge lists. Therefore, we propose to use
a meta-graph template to abstract the information
of the graphical view. The abstracted meta-graph
consists of the canonical edge types and node types,
which describes the basic topology of the graphical
view (Sun and Han, 2013), with the textual features
obtained from the ASTs contained in the node and
edge features.

Then we use the meta-graph template to trans-
form the retrieved graphical view into digestable
knowledge and insert it into the final prompt for
generation. As illustrated in Figure 4 in the Ap-
pendix, the final prompt consists of three compo-
nents: the system prompt illustrated in the blue
part, the retrieved knowledge and hints illustrated
in the green part, and the problem (including task
description, function declaration, etc.) illustrated
in the yellow part. The three parts are concatenated
to be fed into LLMs for knowledge augmented
generation.

2.4.2 Soft Prompting with the Expert

Directly hard prompt to the LLMs poses a chal-
lenge to the digesting capability of the backbone

LLMs, which could fail under the case where the
backbone LLMs cannot well understand the graph
components. To compress the graphical knowl-
edge into model parameters and help the backbone
LLMs to better understand the programming lan-
guage, we propose a soft prompting technique. The
overall procedure can summarized into expert en-
coding of graphical views, finetuning with the ex-
pert signal, and inference.

Expert Encoding of Graphical Views. We design
a graph neural network to preserve the semantic
and logical information of code blocks. The rep-
resentation of each node n@(o) and edge ego) are
first initialized with vectors corresponding to the
node text and edge text encoded by ¢;. A message
passing process is first conducted to fuse the se-
mantic and structural information into each node
representation.

! I-1) (-1
m{ = WO ! |el), (©)
of Wy
Kg) _ WK(l)m%), Vg.) _ Wv(l)mg), 8)
az(? = SOftmaXZ'eN(j) (le)Kz(é))a (9)
nl) = Y o) v, (10)
1EN(H)

A global attention-based readout is then applied
to obtain the graph representation:

g = Z SOftmaX(fgate(niL))ffeat(niL)' a1

The expert encoding network is optimized via
the contrastive learning based self-supervised train-
ing, which includes the intra-modality contrastive
learning and inter-modality contrastive learning.
The intra-modality constrastive learning serves
for preserving the modality information, while
the inter-modality contrastive learning serves for
modality alignment.

* Alignment Contrastive Learning. There are
two types of alignment to be ensured: 1) NL-
Code (NC) alignment and 2) Code-Graph (CG)
alignment. We define the positive pairs for NC
alignment purpose as Zj;,, = {(hz/,h?ﬂz €
Dirain } and define the negative pairs for NC align-
ment purpose as Zy,~ = {(hy,th)]z # j,i €
Dtrain,j € Dtrain}-

And we define the positive pairs for CG align-
ment purpose as Z o = {{(¢1(ci), p2(gi))|i €

Diain } and define the negative pairs for CG align-

ment purpose as Z.» = {(#1(ci), p2(g5))|i #
jai € Dtrainaj € Dtrain}-

* Structure Preserving Contrastive Learning.
To preserve the structural information of the
graphical views, we perform intra-modality con-
trastive learning among the graphical views and
their corrupted views. Concretely, we corrupt
each of the graphical view g; with the edge
dropping operation to obtain its corrupted view
gi. The positive pairs for structure-preserving

purpose are then designed as I;;eserve =

{{¢2(9:), #2(9;))|i € Dirain }- The negative pairs
for structure preserving purpose are designed

as I, = {(#2(9:), d2(9)))li # j,i €

preserve

Dtrain ’] € Dtrain } .

Finetuning with the Expert Soft Signal. To help
the backbone LLMs to digest the graphical views,
we tune the LLMs with the expert soft signal using
supervised finetuning. The prompt for finetuning
consists of the system prompt, retrieved knowledge
where the expert encoded graphical view is con-
tained using a token embedding, and task prompt,
which is illustrated in Figure 5 in the Appendix.
Inference. After the finetuning stage, we used
the tuned models to generate codes using the soft
prompting template as illustrated in Figure 5 in the
Appendix.

3 Experiments

RQ1 Does the proposed CodeGRAG offer perfor-
mance gain against the base model?

RQ2 Does the proposed graph view abstract more
informative knowledge compared with the
raw code block?

RQ3 Can soft prompting enhance the capability of
the backbone LLMs? Does finetuning with
the soft prompting outperforms the simple
supervised finetuning?

RQ4 Are the proposed pretraining objectives for
the GNN expert effective?

RQS5 What is the impact of each of the components
of the graphical view?

RQ6 How is the compatibility of the graphical
view?

Table 1: Results of Hard Meta-Graph Prompt on Humaneval-X. (Pass@1)

Model Retrieved Knowledge C++ Python
N/A 5793 7195
Code Block (Nashid et al., 2023; Lu et al., 2022) 60.37 72.56
GPT-3.5-Turbo Meta-Graph 62.20 72.56
(Multi-Lingual) Code-Block (Nashid et al., 2023; Lu et al., 2022) 62.20 70.12
(Multi-Lingual) Meta-Graph 64.02 77.44
N/A 63.41 78.66
Code Block (Nashid et al., 2023; Lu et al., 2022) 65.24 78.66
GPT-4omini Meta-Graph 65.85 79.88
(Multi-Lingual) Code-Block (Nashid et al., 2023; Lu et al., 2022) 65.85 79.27
(Multi-Lingual) Meta-Graph 67.07 80.49
Table 2: Results of Soft Prompting. (Pass@1)
Model Finetune CodeForce (C++) APPS (Python)

N/A 12.83 5.09

Gemma 7b SFT 14.76 21.09

Soft Prompting 19.13 26.15

N/A 9.61 7.29

Llama2 13b SFT 11.88 12.06

Soft Prompting 13.62 12.74

N/A 5.20 24.41

CodeLlama 7b SFT 9.87 26.15

Soft Prompting 11.09 30.26

3.1 Setup framework.

In this paper, we evaluate CodeGRAG with the
widely used HumanEval-X (Zheng et al., 2023)
dataset, which is a multi-lingual code benchmark
and CodeForce dataset in which we collect real-
world programming problems from codeforces!
website. For CodeForce dataset we include prob-
lems categorized by different difficulty levels corre-
sponding to the website and select 469 problems of
difficulty level A for testing. We use greedy decod-
ing strategy to do the generation. The evaluation
metric is Pass@1. More details of the retrieval pool
and the finetuning setting can be found in Section A
in the Appendix.

3.2 Main Results

The main results are summarized in Table 1 and Ta-
ble 2. From the results, we can draw the following
conclusions.

RQ1. The proposed CodeGRAG could offer per-
formance gain against the base model, which val-
idates the effectiveness of the proposed graphical
retrieval augmented generation for code generation

"https://codeforces.com/

RQ2. The model informed by the meta-graph
(CodeGRAG) could beat model informed by the
raw code block. From the results, we can see that
the proposed graph view could summarize the use-
ful structural syntax information and filter out the
noises, which could offer more informative knowl-
edge hints than the raw code block. In addition,
inserting the intermediate representations of codes
into the prompt can stimulate the corresponding
programming knowledge of LLMs.

RQ3. From Table 2, we can see that finetuning
with the expert soft prompting could offer more per-
formance gain than that brought by simple super-
vised finetuning. This validates the effectiveness
of the designed pretraining expert network and the
technique of finetuning with soft prompting, which
injects the programming domain knowledge into
the LLMs parameters and informs the models with
the structural information for gap filling.

3.3 Impacts of the pretraining objectives for
the expert GNN (RQ4)

To study the effectiveness of the proposed pretrain-
ing objectives for the expert GNN, we remove each

Table 3: Ablation studies on the GNN pretraining losses.

Model Finetune CodeForce (C++) APPS (Python)
Soft Prompting 19.13 26.15
Gemma 7b w/o Alignment 7.88 28.58
w/o Structure-Preserving 11.70 21.50
Soft Prompting 13.62 12.74
Llama2 13b w/o Alignment 11.79 10.76
w/o Structure-Preserving 5.50 11.09
Soft Prompting 11.09 30.26
CodeLlama 7b w/o Alignment 10.92 29.45
w/o Structure-Preserving 10.66 26.59

objective to yield different expert GNNs. The re-
sults are in Table 3.

From the results, we could see that both the
Alignment and the Structure Preserving contribute
to the expressiveness of the expert GNN model.
The alignment pretraining objective helps to pro-
mote the alignment among natural language, pro-
gramming language, and their graphical views. The
structure preserving objective helps to preserve the
innate data-flows and control-flows information
of code blocks. The two objectives collaborate
with each other to yield expressive programming
domain knowledge GNN expert model, which en-
codes external programming knowledge and injects
the knowledge into LLMs parameters.

3.4 Impacts of the Components of the
Graphical View (RQ5)

In this section, we adjust the inputs of the graphical
components to the LLMs. Concretely, we study
the information contained in node names, edge
names, and the topological structure. The results
are presented in Table 4.

Table 4: The impacts of the graph components.

Datasets Python C++

Edge Type Only 7378 61.59
Edge Type + Node Name 75.00 59.76
Edge Type + Node Type 75.61 59.15
Edge Type + Topological ~ 77.44 64.02

The edge type refers to the type of flows between
operands (child, read, write, etc.), the node type
refers to the type of operands (DeclStmt, temp,
etc.), the node name refers to the name of the inter-
mediate variables, and the topological information
refers to the statistics of the concrete numbers of
different types of edges. From the results, we can
observe that 1) the edge features matter the most

in constructing the structural view of code blocks
for enhancement, 2) the type of nodes expresses
the most in representing operands information, and
3) the overall structure of the graphical view also
gives additional information.

3.5 Compatibility Discussion of the Graphical
Views(RQ6)

Despite the effectiveness of the proposed graphical
views to represent the code blocks, the flexibility
and convenience of applying the graphical views
extraction process is important for wider applica-
tion of the proposed method. In this section, we
discuss the compatibility of CodeGRAG.

First of all, the extraction process of all the graph-
ical views are front-end. Therefore, this extraction
process applies to a wide range of code, even error
code. One could also use convenient tools to refor-
mulate the code and improve the pass rate of the
extraction process.

In addition, we give the ratio of generated results
that can pass the graphical views extraction process,
which is denoted by Extraction Rate. The Pass@1
and the Extraction Rate of the generated results
passing the graphical extraction process are given
in Table 5.

Table 5: The extraction rate of the generated results
passing the graphical extraction process.

Generated Codes Pass@1 Extraction Rate
(C++) Code-RAG 62.20 92.07
(C++) CodeGRAG 64.02 92.68

(Python) Code-RAG 71.95 91.46
(Python) CodeGRAG 77.44 96.95

From the results, we could see that the extraction
rates are high for codes to pass the graphical views
extraction process, even under the situation where
the Pass@1 ratios of the generated results are low.

This indicates that the application range of the pro-
posed method is wide. In addition, as the code
RAG also offers performance gains, one could use
multiple views as the retrieval knowledge.

4 Related Work

LLMs for NL2Code. The evolution of the Natural
Language to Code translation (NL2Code) task has
been significantly influenced by the development
of large language models (LLMs). Initially, gen-
eral LLMs like GPT-J (Radford et al., 2023), GPT-
NeoX (Black et al., 2022), and LLaMA (Touvron
et al., 2023a), despite not being specifically tailored
for code generation, showed notable NL2Code ca-
pabilities due to their training on datasets contain-
ing extensive code data like the Pile (Gao et al.,
2020) and ROOTS (Laurengon et al., 2022). To
further enhance these capabilities, additional pre-
training specifically focused on code has been em-
ployed. PalLM-Coder, an adaptation of the PaLM
model (Chowdhery et al., 2023), underwent further
training on an extra 7.8 billion code tokens, signifi-
cantly improving its performance in code-related
tasks. Similarly, Code LLaMA (Roziere et al.,
2023) represents an advancement of LLaMA?2 (Tou-
vron et al., 2023b), benefiting from extended train-
ing on over 500 billion code tokens, leading to
marked improvements over previous models in
both code generation and understanding. These
developments underscore the potential of adapting
generalist LLMs to specific domains like NL2Code
through targeted training, leading to more effective
and efficient code translation solutions.

Code Search. The code search methods can be
summarized into three folds. Early methods uti-
lize sparse search to match the query and codes
(Hill et al., 2011; Yang and Huang, 2017), which
suffers from mismatched vocabulary due to the
gap between natural language and codes. Neural
methods (Cambronero et al., 2019; Gu et al., 2021)
then focus on mapping the query and codes into
a joint representation space for more accurate re-
trieval. With the success of pretrained language
models, many methods propose to use pretraining
tasks to improve the code understanding abilities
and align different language spaces. For example,
CodeBERT (Feng et al., 2020) is pretrained on
NL-PL pairs of 6 programming languages with the
masked language modeling and replaced token de-
tection task. CodeT5 (Wang et al., 2021) supports
both code-related understanding and generation

tasks through bimodal dual generation. UniXcoder
(Guo et al., 2022) integrates the aforementioned
pretraining tasks, which is a unified cross-modal
pre-trained model. As retrieval augmented genera-
tion (RAG) shows its significance in promoting the
quality of LLMs generation, works in code RAG
start to accumulate. (Nashid et al., 2023; Lu et al.,
2022) utilize the code blocks as the retrieved knowl-
edge to inform the LLMs with similar code blocks
for enhancement. (Zhou et al., 2022) uses the pro-
gramming related document to serve as the retrieval
content, injecting auxiliary external programming
knowledge into the LLMs generation.

Code Representation. Early methods regard code
snippets as sequences of tokens, assuming the ad-
jacent tokens will have strong correlations. This
line of methods (Harer et al., 2018; Ben-Nun et al.,
2018; Feng et al., 2020; Ciniselli et al., 2021) take
programming languages as the same with the nat-
ural language, using language models to encode
the code snippets too. However, this ignoring of
the inherent structure of codes leads to a loss of
expressiveness. Methods that take the structural in-
formation of codes into consideration then emerge.
Mou et al. (2016) used convolution networks over
the abstract syntax tree (AST) extracted from codes.
Alon et al. (2019) encoded paths sampled from the
AST to represent codes. Further exploration into
the graphical representation of codes (Allamanis
et al., 2017) is conducted to better encode the struc-
tures of codes, where more intermediate states of
the codes are considered.

5 Conclusion

Despite the expanding role of LLMs in code gen-
eration, there are inherent challenges pertaining to
their understanding of code syntax. General large
language models trained mainly on sequential-
based natural language cannot well understand the
structural-based programming language, e.g., the
branching and jumping in codes. This paper pro-
poses an effective way to build a graphical view
of codes to better inform LLMs for code genera-
tion. To take the challenging structural graphical
knowledge into LL.Ms, a meta-graph prompt is pro-
posed for tuning-free models and a soft-prompting
technique is proposed to inject the structural pro-
gramming domain knowledge into the parameters
of LLMs. By integrating external structural knowl-
edge, CodeGRAG enhances LLMs’ comprehen-
sion of code syntax and empowers them to generate
code with improved accuracy and fluency.

Limitations

In this paper, we propose a graphical retrieval aug-
mented generation method that can offer enhanced
code generation. Despite the efficiency and effec-
tiveness, there are also limitations within this work.
For example, dependency on the quality of the ex-
ternal knowledge base could be a potential concern.
The quality of the external knowledge base could
be improved with regular expression extraction on
the noisy texts and codes.

Acknowledgments

This document has been adapted by Emily All-
away from the instructions for earlier ACL and
NAACL proceedings, including those for NAACL
2024 by Steven Bethard, Ryan Cotterell and
Rui Yan, ACL 2019 by Douwe Kiela and Ivan
Vuli¢, NAACL 2019 by Stephanie Lukin and Alla
Roskovskaya, ACL 2018 by Shay Cohen, Kevin
Gimpel, and Wei Lu, NAACL 2018 by Margaret
Mitchell and Stephanie Lukin, BibTgX suggestions
for (NA)ACL 2017/2018 from Jason Eisner, ACL
2017 by Dan Gildea and Min-Yen Kan, NAACL
2017 by Margaret Mitchell, ACL 2012 by Mag-
gie Li and Michael White, ACL 2010 by Jing-
Shin Chang and Philipp Koehn, ACL 2008 by Jo-
hanna D. Moore, Simone Teufel, James Allan, and
Sadaoki Furui, ACL 2005 by Hwee Tou Ng and
Kemal Oflazer, ACL 2002 by Eugene Charniak and
Dekang Lin, and earlier ACL and EACL formats
written by several people, including John Chen,
Henry S. Thompson and Donald Walker. Addi-
tional elements were taken from the formatting
instructions of the International Joint Conference
on Artificial Intelligence and the Conference on
Computer Vision and Pattern Recognition.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D
Ullman. 2006. Compilers: Principles techniques and
tools. 2007. Google Scholar Google Scholar Digital
Library Digital Library.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2017. Learning to repre-

sent programs with graphs. arXiv preprint
arXiv:1711.00740.

Frances E Allen. 1970. Control flow analysis. ACM
Sigplan Notices, 5(7):1-19.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1-29.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten
Hoefler. 2018. Neural code comprehension: A learn-
able representation of code semantics. Advances in
Neural Information Processing Systems, 31.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learning
met code search. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, pages 964-974.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Matteo Ciniselli, Nathan Cooper, Luca Pascarella,
Denys Poshyvanyk, Massimiliano Di Penta, and
Gabriele Bavota. 2021. An empirical study on the
usage of bert models for code completion. In 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 108—119. IEEE.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Jian Gu, Zimin Chen, and Martin Monperrus. 2021.
Multimodal representation for neural code search. In
2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 483—
494. IEEE.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey

Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur
Ozdemir, Leonard R Kosta, Akshay Rangamani,
Lei H Hamilton, Gabriel I Centeno, Jonathan R Key,
Paul M Ellingwood, et al. 2018. Automated software
vulnerability detection with machine learning. arXiv
preprint arXiv:1803.04497.

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011.
Improving source code search with natural language
phrasal representations of method signatures. In 2011
26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011), pages 524—
527. IEEE.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and
Lei Lyu. 2021. Treebert: A tree-based pre-trained
model for programming language. In Uncertainty in
Artificial Intelligence, pages 54—63. PMLR.

Hugo Laurengon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-
uardo Gonzalez Ponferrada, Huu Nguyen, et al. 2022.
The bigscience roots corpus: A 1.6 tb composite mul-
tilingual dataset. Advances in Neural Information
Processing Systems, 35:31809-31826.

Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang,
Qinxiang Cao, and Yong Yu. 2022. Multi-view graph
representation for programming language process-
ing: An investigation into algorithm detection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 5792-5799.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
arXiv preprint arXiv:2203.07722.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 30.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.
Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 2450-2462. IEEE.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492-28518. PMLR.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

10

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Yizhou Sun and Jiawei Han. 2013. Mining heteroge-
neous information networks: a structural analysis
approach. ACM SIGKDD explorations newsletter,
14(2):20-28.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Yangrui Yang and Qing Huang. 2017. Iecs: Intent-
enforced code search via extended boolean model.
Journal of Intelligent & Fuzzy Systems, 33(4):2565—
2576.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2022.
Docprompting: Generating code by retrieving the
docs. arXiv preprint arXiv:2207.05987.

A Implementation Details

For the size of retrieval pool, we use 11,913 C++
code snippets and 2,359 python code snippets. Due
to the limited access, we do not use a large re-
trieval corpus for our experiment, which can be
enlarged by other people for better performance.
We also attach the graph extraction codes for both
languages and all other expeirment codes here:
https://anonymous.4open.science/r/Code-5970/
For the fintuning details, the learning rate and
weight decay for the expert GNN training is 0.001
and le-5, repectively. We apply 8-bit quantization
and use LoRA for parameter-efficient fine-tuning.
The rank of the low-rank matrices in LoRA is uni-
formly set to 8, alpha set to 16, and dropout is set

to 0.05. The LoRA modules are uniformly applied
to the Q and V parameter matrices of the attention
modules in each layer of the LLM. All the three
models are optimized using the AdamW optimizer.
For the CodeContest dataset, totally 10609 data-
points are used, and for APPS dataset, 8691 data
samples are used to train the model.

B Prompt Template

o |

System Prompt

Please continue to complete the [lang] function
according to the requirements and function
declarations. You are not allowed to modify the
given code and do the completion only.\n

Retrieved Knowledge

The syntax graph of a similar code might be:\n
[composed syntax graph desciption]

You can refer to the above knowledge to do the
completion. \n

Problem
The problem:\n
[problem prompt]

U i g e

Figure 4: Hard meta-graph prompt.

Soft Prompt for Knowledge Augmented Generation

System Prompt

Please use [lang] to write a correct solution to a program-
ming problem. You should give executable completed code
and nothing else.\n

Retrieved Knowledge
We also have the syntax graph embedding of a similar prob-
lem encoded in <GraphEmb> for you to refer to.\n

Problem
The problem:\n
[problem prompt]

Figure 5: Soft prompting.

11

	Introduction
	Methodology
	Overview
	Graphical Knowledge Base Preparation
	Knowledge Querying
	Graphical Knowledge Augmented Generation
	Hard Meta-Graph Prompt
	Soft Prompting with the Expert

	Experiments
	Setup
	Main Results
	Impacts of the pretraining objectives for the expert GNN (RQ4)
	Impacts of the Components of the Graphical View (RQ5)
	Compatibility Discussion of the Graphical Views(RQ6)

	Related Work
	Conclusion
	Implementation Details
	Prompt Template

