
CodeGRAG: Bridging the Gap between Natural Language and
Programming Language via Graphical Retrieval Augmented Generation

Anonymous ACL submission

Abstract

Utilizing large language models to generate001
codes has shown promising meaning in002
software development revolution. Despite003
the intelligence shown by the general large004
language models, their specificity in code005
generation can still be improved due to the006
syntactic gap and mismatched vocabulary007
existing among natural language and different008
programming languages. In this paper, we009
propose CodeGRAG, a Graphical Retrieval010
Augmented Code Generation framework to en-011
hance the performance of LLMs. CodeGRAG012
builds the graphical view of code blocks based013
on the control flow and data flow of them to fill014
the gap between programming languages and015
natural language, which can facilitate natural016
language based LLMs for better understanding017
of code syntax and serve as a bridge among018
different programming languages. To take the019
extracted structural knowledge into the founda-020
tion models, we propose 1) a hard meta-graph021
prompt template to transform the challenging022
graphical representation into informative023
knowledge for tuning-free models and 2) a soft024
prompting technique that injects the domain025
knowledge of programming languages into the026
model parameters via finetuning the models027
with the help of a pretrained GNN expert028
model. CodeGRAG significantly improves029
the code generation ability of LLMs and can030
even offer performance gain for cross-lingual031
code generation. Implementation is available032
at https://anonymous.4open.science/r/Code-033
5970/ .034

1 Introduction035

In recent years, large language models (LLMs)036

(Achiam et al., 2023; Touvron et al., 2023a) have037

shown great impact in various domains. Automated038

code generation emerges as a captivating frontier039

(Zheng et al., 2023; Roziere et al., 2023; Shen et al.,040

2023), promising to revolutionize software develop-041

ment by enabling machines to write and optimize042

string string_xor(string a, string b){
string output="";
for (int i=0;(i<a.length() and i<b.length());i++){

if (i<a.length() and i<b.length()){
if (a[i]== b[i]) output+='0';
else output+='1';}

else{
if (i>=a.length()) output+=b[i];
else output+=a[i];}}

return output;}

Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR
on these inputs and return results also as a string.

Start:
string_xor

Vocabulary Mismatch

for, int, =, <, ++, ...

consisting, binary

Syntactic Gap

Complex & Structural

Easier & Sequential

Programming
Language

Natural
Language

Init output,
minlen

For: i

range(minlen)

If: i<minlen

If:
a[i]=b[i]

yes

If:
i>=len(a)

yes

no

output
+= '0'

output
+= '1'

Extracted
Graph

no yes

no

output
+= b[i]

Figure 1: Illustration of the gap between the program-
ming language and the natural language.

code with minimal human intervention. 043

However, syntactic gap and mismatched vocab- 044

ulary among natural language (NL) and program- 045

ming languages (PL) exist, hindering LLM’s per- 046

formance on code generation. As illustrated in Fig- 047

ure 1, programming language (marked in blue) con- 048

tains special tokens such as “int” or “++” that nat- 049

ural language (marked in yellow) doesn’t possess, 050

leading to vocabulary mismatch. Besides, the re- 051

lations between tokens in programming languages 052

are often structural, e.g., the complex branching 053

and jumps, whereas natural language is arranged 054

simply in sequential manner, leading to syntactic 055

gap. For example, in the control flow graph of 056

the raw code (marked in pink), two “if” blocks 057

(marked in purple) are adjacent and are executed 058

sequentially under certain condition, but they ap- 059

pear to be intervaled in raw textual code. 060

As discussed above, the innate structures of pro- 061

gramming languages are different from that of the 062

sequential-based natural language. The challenges 063

of enhancing a general-purposed large language 064

models for code-related tasks can be summarized 065

into two folds. 066

(C1) How to solve the gap between different 067

languages and better interpret the inherent logic 068

1

of code blocks. Code, unlike natural language,069

possesses a well-defined structure that governs its070

syntax and semantics. This structure provides valu-071

able information about the relationships between072

different parts of the code, the flow of execution,073

and the overall organization of the functions (Jiang074

et al., 2021; Guo et al., 2020). General-purpose075

LLMs regard a code block as a sequence of tokens.076

By ignoring the inherent structure of codes, they077

miss out on essential cues that could help them078

better understand and generate code. In addition,079

the multi-lingual code generation abilities of LLMs080

is challenging due to the gap among different pro-081

gramming languages.082

(C2) How to inject the innate knowledge of pro-083

gramming languages into general purpose large lan-084

guage models for enhancement. Despite the well085

representation of the programming knowledge, the086

ways to inject the knowledge into the NL-based087

foundation models is also challenging. The struc-088

tural representation of codes could be hard to un-089

derstand, which poses a challenge to the capability090

of the foundation models.091

To solve the above challenges, we propose Code-092

GRAG, a graphical retrieval augmented generation093

framework for code generation. For (C1), we pro-094

pose to interpret the code blocks using the com-095

posed graph based on the data-flow and control-096

flow of the code block, which extracts both the097

semantic level and the logical level information098

of the code. The composed graphical view could099

1) better capture the innate structural knowledge100

of codes for NL-based language models to under-101

stand and 2) model the innate function of code102

blocks that bridging different programming lan-103

guages. For (C2), we propose a meta-graph prompt-104

ing technique for tuning-free models and a soft-105

prompting technique for tuned models. The meta-106

graph prompt summarizes the overall information107

of the extracted graphical view and transforms the108

challenging and noisy graphical representation into109

informative knowledge. The soft-prompting tech-110

nique deals with the graphical view of codes with a111

pretrained GNN expert network and inject the pro-112

cessed knowledge embedding into the parameters113

of the general-purpose foundation models with the114

help of supervised finetuning.115

The main contributions of the paper can be sum-116

marized as follows:117

• Novel GraphRAG framework for code gener-118

ation. We propose CodeGRAG that bridges the119

gap among natural language and programming 120

languages, transfers knowledge among different 121

programming languages, and enhances the abil- 122

ity of LLMs for code generation. CodeGRAG 123

requires only one calling of LLMs and can offer 124

multi-lingual enhancement. 125

• Effective graphical view to inform and stimu- 126

late the structural programming knowledge of 127

LLMs. We propose an effective graphical view 128

to purify the semantic and logic knowledge from 129

the code space, which offers more useful informa- 130

tion than the raw code block and can summarize 131

the cross-lingual knowledge. 132

• Effective soft prompting technique to preserve 133

the programming domain knowledge and in- 134

ject it into LLMs parameters. We propose 135

an effective soft prompting technique, which in- 136

jects the domain knowledge of programming lan- 137

guages into the model parameters via finetuning 138

LLMs with the assistance of a pretrained GNN 139

expert model. 140

2 Methodology 141

2.1 Overview 142

In this paper, we leverage both generative models 143

and retrieval models to produce results that are 144

both coherent and informed by the expert graphical 145

knowledge of programming language. The overall 146

process of CodeGRAG is illustrated in Figure 2, 147

which mainly consists of three stages: graphical 148

knowledge base preparation, knowledge querying, 149

and graphical knowledge augmented generation. 150

2.2 Graphical Knowledge Base Preparation 151

In this section, we discuss how to extract informa- 152

tive graphical views for code blocks. We analyze 153

the syntax and control information of code blocks 154

and extract their graphical views to better repre- 155

sent the codes. This process can be formulated as, 156

∀ci ∈ Dpool: 157

gi ←− GraphExtractor(ci), (1) 158

KB.append(⟨ci, gi⟩), (2) 159

where ci is the raw code block and gi is the corre- 160

sponding extracted graphical view. 161

To capture both the semantic and the logical 162

information, we propose to combine the data flow 163

graph (Aho et al., 2006) and the control flow graph 164

(Allen, 1970) with the read-write signals (Long 165

2

External Code
Knowledge Base

Knowledge
Document std::vector<int>

twoSum(std::vector<int>& nums, int

target) {

Composed Syntax Graph

Control FlowData Flow

Raw Code

C
om

pa
ct

 Knowledge
DocumentKnowledge

Document

Node Feature

Edge Feature

Meta-Graph Structure

Structure Preserving Contrastive Learning

Code Graphical
View

NL

Alignment Contrastive Learning

Exper t GNN

GraphEmb

Composed
Syntax Graph

Composed
Syntax Graph

Graphical View

Ret ur n a st r i ng cont ai ni ng space- del i mi t ed
number s st ar t i ng f r om 0 upt o n i ncl usi ve.
>>> st r i ng_sequence(0)
" 0"
>> st r i ng_sequence(5)
0 1 2 3 4 5
#i ncl ude<st di o. h>
#i ncl ude<st r i ng>
usi ng namespace st d;
st r i ng st r i ng_sequence(i nt n) {

INPUT: Task instruction prompt

Q
ue

ry
 E

xt
ra

ct
io

n

Retr iever

#include<stdio.h>

#include<math.h>

#include<string>

using namespace std;

#include<algorithm>

#include<stdlib.h>

string string_sequence(int n){

 string out="0";

 for (int i=1;i<=n;i++)

 out=out+" "+to_string(i);

 return out;

}
OUTPUT: Generated Code

External Code
Knowledge Base

Index

Graphical View

GraphEmb General Purpose LLM

General Purpose LLM

Soft Prompting

Hard Meta-Graph
Prompt

Knowledge Preparation

Retr ieval Augmented Generation
(Soft & Hard)

H
ar

d
G

ra
ph

ic
al

 V
ie

w
So

ft

G
ra

ph
E

m
b

Figure 2: Overview of CodeGRAG. (Top) Knowledge Preparation. We extract the control flow and data flow of
each external code block and compose them using the read-write signal to obtain the semantic and logical expression
of each code block, which is then abstracted into graphical view as hard knowledge document and embedded into
GraphEmb as soft knowledge document. The GraphEmb is encoded by a pretrained GNN expert model constrained
by the alignment and structure preserving objectives. (Bottem) Retrieval Augmented Generation. We extract
query from the task input and retrieve from the external corpus. For tuning free models, we use the hard graphical
view to stimulate the structural programming knowledge of LLMs for enhanced generation. For tunable models, we
use the soft GraphEmb and inject the programming domain knowledge into LLMs parameters via finetuning them
with the GNN expert signals. The expert signals informed LLMs can then produce enhanced generation.

et al., 2022) to represent the code blocks, both of166

them are constructed on the base of the abstract167

syntax tree.168

Abstract Syntax Tree (AST). An abstract syntax169

tree (AST) is a tree data structure that represents170

the abstract syntactic structure of source code. An171

AST is constructed by a parser, which reads the172

source code and creates a tree of nodes. Each node173

in the tree represents a syntactic construct in the174

source code, such as a statement, an expression, or175

a declaration. ASTs have good compactness and176

can represent the structure of the source code in a177

clear and concise way.178

Data Flow Graph (DFG). The data flow graph179

(DFG) is a graphical representation of the flow of180

data dependencies within a program. It is a directed181

graph that models how data is transformed and182

propagated through different parts of a program. In183

DFG, nodes are operands and edges indicate data184

flows. Two types of edges are considered: 1) opera-185

tion edges that connect the nodes to be operated and186

the nodes that receive the operation results; 2) func-187

tion edges that indicate data flows for function calls188

and returns. These edges connect nodes, including 189

non-temporary operands and temporary operands, 190

which refer to variables and constants that explic- 191

itly exist in the source code, and variables existing 192

only in execution, respectively. 193

Control Flow Graph (CFG). The control flow 194

graph (CFG) is a graphical representation of the 195

flow of control or the sequence of execution within 196

a program. It is a directed graph that models the 197

control relationships between different parts of a 198

program. Based on compiler principles, we slightly 199

adjust the design of CFG to better capture the key 200

information of the program. Nodes in CFG are 201

operations in the source code, including standard 202

operations, function calls and returns. Edges indi- 203

cate the execution order of operations. 204

Composed Syntax Graph. A composed syntax 205

graph composes the data flow graph and the control 206

flow graph with the read-write flow existing in the 207

code blocks. An illustration of the extracted com- 208

posed syntax graph is displayed in Figure 3. Dif- 209

ferent edge types along with their concrete names 210

are given in colors. As for the node names, the 211

3

Checks if given string is a palindrome.

 #include<stdio.h>

 #include<math.h>

 #include<string>

 using namespace std;

 #include<algorithm>

 #include<stdlib.h>

 bool is_palindrome(string text){

 string pr(text.rbegin(),text.rend());

 return pr==text;

 } writechildDeclStmtedge0

read

CXXOperatorCallExpredge1

CXXOperatorCallExpredge2 nextUserDefineFun

Function Desciption

Code Block

Figure 3: Illustration of the extracted composed syntax graph from the code block. The arrows in the bottom part
indicate the names of different edges, which are extracted based on the ASTs.

middle figure displays the concrete types of nodes212

(operands) and the right figure displays the proper-213

ties of nodes.214

An illustration of the composed graphical view215

is in Figure 3. After obtaining the composed syn-216

tax graphs, we use them to inform the general-217

purpose LLMs to bridge the gap between NL and218

PLs, where both the semantic level and the logic219

level information are preserved.220

2.3 Knowledge Querying221

Given a target problem to be completed, we gen-222

erate informative query of it and use it to retrieve223

graphical knowledge from the constructed knowl-224

edge base.225

We extract the problem description of each task226

to reduce the ambiguity and then concatenate it227

with the function declaration to serve as the query228

content, where the functionality and input format of229

the expected code block are contained. The query230

of the retrieval includes problem description Qp231

and function description Qc, while each content of232

the retrieval pool includes raw code block Vc and233

its graphical view Vg.234

To expressively represent the components, we235

use the encoder ϕ(·) of the pretrained NL2Code236

model to represent the problem description and237

code snippets. The retrieval function is:238

hV = ϕ(Vc∥Vg), (3)239

hQ = ϕ(Qp∥Qc), (4)240

Distance = 1− hQ · hV

∥hQ∥ · ∥hV∥
. (5)241

2.4 Graphical Knowledge Augmented242

Generation243

After we obtain the returned graphical view, we in-244

ject it to the foundation LLMs for graphical knowl-245

edge augmented generation. Since the graphical 246

view is hard to understand, we propose 1) a meta- 247

graph template to transform the graphical view into 248

informative knowledge for tuning-free model and 249

2) a soft prompting technique to tune the founda- 250

tion models for their better understanding of the 251

graphical views with the assistance of an expert 252

GNN model. 253

2.4.1 Hard Meta-Graph Prompt 254

The original graphical view of a code block could 255

contain hundreds of nodes and edges. A full de- 256

scription of it could cost an overly long context, 257

along with the understanding challenge posed by 258

the long edge lists. Therefore, we propose to use 259

a meta-graph template to abstract the information 260

of the graphical view. The abstracted meta-graph 261

consists of the canonical edge types and node types, 262

which describes the basic topology of the graphical 263

view (Sun and Han, 2013), with the textual features 264

obtained from the ASTs contained in the node and 265

edge features. 266

Then we use the meta-graph template to trans- 267

form the retrieved graphical view into digestable 268

knowledge and insert it into the final prompt for 269

generation. As illustrated in Figure 4 in the Ap- 270

pendix, the final prompt consists of three compo- 271

nents: the system prompt illustrated in the blue 272

part, the retrieved knowledge and hints illustrated 273

in the green part, and the problem (including task 274

description, function declaration, etc.) illustrated 275

in the yellow part. The three parts are concatenated 276

to be fed into LLMs for knowledge augmented 277

generation. 278

2.4.2 Soft Prompting with the Expert 279

Directly hard prompt to the LLMs poses a chal- 280

lenge to the digesting capability of the backbone 281

4

LLMs, which could fail under the case where the282

backbone LLMs cannot well understand the graph283

components. To compress the graphical knowl-284

edge into model parameters and help the backbone285

LLMs to better understand the programming lan-286

guage, we propose a soft prompting technique. The287

overall procedure can summarized into expert en-288

coding of graphical views, finetuning with the ex-289

pert signal, and inference.290

Expert Encoding of Graphical Views. We design291

a graph neural network to preserve the semantic292

and logical information of code blocks. The rep-293

resentation of each node n
(0)
i and edge e

(0)
i are294

first initialized with vectors corresponding to the295

node text and edge text encoded by ϕ1. A message296

passing process is first conducted to fuse the se-297

mantic and structural information into each node298

representation.299

m
(l)
ij = W(l)(n

(l−1)
i ∥e(l−1)

ij), (6)300

Q
(l)
j =WQ

(l)n
(l−1)
j , (7)301

K
(l)
ij = WK

(l)m
(l)
ij , V

(l)
ij = WV

(l)m
(l)
ij , (8)302

a
(l)
ij = softmaxi∈N(j)(Q

(l)
j K

(l)
ij), (9)303

n
(l)
j =

∑
i∈N(j)

a
(l)
ij V

(l)
ij . (10)304

A global attention-based readout is then applied305

to obtain the graph representation:306

g =
∑
i

softmax(fgate(n
L
i))ffeat(n

L
i). (11)307

The expert encoding network is optimized via308

the contrastive learning based self-supervised train-309

ing, which includes the intra-modality contrastive310

learning and inter-modality contrastive learning.311

The intra-modality constrastive learning serves312

for preserving the modality information, while313

the inter-modality contrastive learning serves for314

modality alignment.315

• Alignment Contrastive Learning. There are316

two types of alignment to be ensured: 1) NL-317

Code (NC) alignment and 2) Code-Graph (CG)318

alignment. We define the positive pairs for NC319

alignment purpose as I+NC = {⟨hV
i ,h

Q
i ⟩|i ∈320

Dtrain} and define the negative pairs for NC align-321

ment purpose as I−NC = {⟨hV
i ,h

Q
j ⟩|i ̸= j, i ∈322

Dtrain, j ∈ Dtrain}.323

And we define the positive pairs for CG align-324

ment purpose as I+CG = {⟨ϕ1(ci), ϕ2(gi)⟩|i ∈325

Dtrain} and define the negative pairs for CG align- 326

ment purpose as I−CG = {⟨ϕ1(ci), ϕ2(gj)⟩|i ̸= 327

j, i ∈ Dtrain, j ∈ Dtrain}. 328

• Structure Preserving Contrastive Learning. 329

To preserve the structural information of the 330

graphical views, we perform intra-modality con- 331

trastive learning among the graphical views and 332

their corrupted views. Concretely, we corrupt 333

each of the graphical view gi with the edge 334

dropping operation to obtain its corrupted view 335

g′i. The positive pairs for structure-preserving 336

purpose are then designed as I+preserve = 337

{⟨ϕ2(gi), ϕ2(g
′
i)⟩|i ∈ Dtrain}. The negative pairs 338

for structure preserving purpose are designed 339

as I−preserve = {⟨ϕ2(gi), ϕ2(g
′
j)⟩|i ̸= j, i ∈ 340

Dtrain, j ∈ Dtrain}. 341

Finetuning with the Expert Soft Signal. To help 342

the backbone LLMs to digest the graphical views, 343

we tune the LLMs with the expert soft signal using 344

supervised finetuning. The prompt for finetuning 345

consists of the system prompt, retrieved knowledge 346

where the expert encoded graphical view is con- 347

tained using a token embedding, and task prompt, 348

which is illustrated in Figure 5 in the Appendix. 349

Inference. After the finetuning stage, we used 350

the tuned models to generate codes using the soft 351

prompting template as illustrated in Figure 5 in the 352

Appendix. 353

3 Experiments 354

RQ1 Does the proposed CodeGRAG offer perfor- 355

mance gain against the base model? 356

RQ2 Does the proposed graph view abstract more 357

informative knowledge compared with the 358

raw code block? 359

RQ3 Can soft prompting enhance the capability of 360

the backbone LLMs? Does finetuning with 361

the soft prompting outperforms the simple 362

supervised finetuning? 363

RQ4 Are the proposed pretraining objectives for 364

the GNN expert effective? 365

RQ5 What is the impact of each of the components 366

of the graphical view? 367

RQ6 How is the compatibility of the graphical 368

view? 369

5

Table 1: Results of Hard Meta-Graph Prompt on Humaneval-X. (Pass@1)

Model Retrieved Knowledge C++ Python

GPT-3.5-Turbo

N/A 57.93 71.95
Code Block (Nashid et al., 2023; Lu et al., 2022) 60.37 72.56

Meta-Graph 62.20 72.56
(Multi-Lingual) Code-Block (Nashid et al., 2023; Lu et al., 2022) 62.20 70.12

(Multi-Lingual) Meta-Graph 64.02 77.44

GPT-4omini

N/A 63.41 78.66
Code Block (Nashid et al., 2023; Lu et al., 2022) 65.24 78.66

Meta-Graph 65.85 79.88
(Multi-Lingual) Code-Block (Nashid et al., 2023; Lu et al., 2022) 65.85 79.27

(Multi-Lingual) Meta-Graph 67.07 80.49

Table 2: Results of Soft Prompting. (Pass@1)

Model Finetune CodeForce (C++) APPS (Python)

Gemma 7b
N/A 12.83 5.09
SFT 14.76 21.09

Soft Prompting 19.13 26.15

Llama2 13b
N/A 9.61 7.29
SFT 11.88 12.06

Soft Prompting 13.62 12.74

CodeLlama 7b
N/A 5.20 24.41
SFT 9.87 26.15

Soft Prompting 11.09 30.26

3.1 Setup370

In this paper, we evaluate CodeGRAG with the371

widely used HumanEval-X (Zheng et al., 2023)372

dataset, which is a multi-lingual code benchmark373

and CodeForce dataset in which we collect real-374

world programming problems from codeforces1375

website. For CodeForce dataset we include prob-376

lems categorized by different difficulty levels corre-377

sponding to the website and select 469 problems of378

difficulty level A for testing. We use greedy decod-379

ing strategy to do the generation. The evaluation380

metric is Pass@1. More details of the retrieval pool381

and the finetuning setting can be found in Section A382

in the Appendix.383

3.2 Main Results384

The main results are summarized in Table 1 and Ta-385

ble 2. From the results, we can draw the following386

conclusions.387

RQ1. The proposed CodeGRAG could offer per-388

formance gain against the base model, which val-389

idates the effectiveness of the proposed graphical390

retrieval augmented generation for code generation391

1https://codeforces.com/

framework. 392

RQ2. The model informed by the meta-graph 393

(CodeGRAG) could beat model informed by the 394

raw code block. From the results, we can see that 395

the proposed graph view could summarize the use- 396

ful structural syntax information and filter out the 397

noises, which could offer more informative knowl- 398

edge hints than the raw code block. In addition, 399

inserting the intermediate representations of codes 400

into the prompt can stimulate the corresponding 401

programming knowledge of LLMs. 402

RQ3. From Table 2, we can see that finetuning 403

with the expert soft prompting could offer more per- 404

formance gain than that brought by simple super- 405

vised finetuning. This validates the effectiveness 406

of the designed pretraining expert network and the 407

technique of finetuning with soft prompting, which 408

injects the programming domain knowledge into 409

the LLMs parameters and informs the models with 410

the structural information for gap filling. 411

3.3 Impacts of the pretraining objectives for 412

the expert GNN (RQ4) 413

To study the effectiveness of the proposed pretrain- 414

ing objectives for the expert GNN, we remove each 415

6

Table 3: Ablation studies on the GNN pretraining losses.

Model Finetune CodeForce (C++) APPS (Python)

Gemma 7b
Soft Prompting 19.13 26.15
w/o Alignment 7.88 28.58

w/o Structure-Preserving 11.70 21.50

Llama2 13b
Soft Prompting 13.62 12.74
w/o Alignment 11.79 10.76

w/o Structure-Preserving 5.50 11.09

CodeLlama 7b
Soft Prompting 11.09 30.26
w/o Alignment 10.92 29.45

w/o Structure-Preserving 10.66 26.59

objective to yield different expert GNNs. The re-416

sults are in Table 3.417

From the results, we could see that both the418

Alignment and the Structure Preserving contribute419

to the expressiveness of the expert GNN model.420

The alignment pretraining objective helps to pro-421

mote the alignment among natural language, pro-422

gramming language, and their graphical views. The423

structure preserving objective helps to preserve the424

innate data-flows and control-flows information425

of code blocks. The two objectives collaborate426

with each other to yield expressive programming427

domain knowledge GNN expert model, which en-428

codes external programming knowledge and injects429

the knowledge into LLMs parameters.430

3.4 Impacts of the Components of the431

Graphical View (RQ5)432

In this section, we adjust the inputs of the graphical433

components to the LLMs. Concretely, we study434

the information contained in node names, edge435

names, and the topological structure. The results436

are presented in Table 4.437

Table 4: The impacts of the graph components.

Datasets Python C++

Edge Type Only 73.78 61.59
Edge Type + Node Name 75.00 59.76
Edge Type + Node Type 75.61 59.15
Edge Type + Topological 77.44 64.02

The edge type refers to the type of flows between438

operands (child, read, write, etc.), the node type439

refers to the type of operands (DeclStmt, temp,440

etc.), the node name refers to the name of the inter-441

mediate variables, and the topological information442

refers to the statistics of the concrete numbers of443

different types of edges. From the results, we can444

observe that 1) the edge features matter the most445

in constructing the structural view of code blocks 446

for enhancement, 2) the type of nodes expresses 447

the most in representing operands information, and 448

3) the overall structure of the graphical view also 449

gives additional information. 450

3.5 Compatibility Discussion of the Graphical 451

Views(RQ6) 452

Despite the effectiveness of the proposed graphical 453

views to represent the code blocks, the flexibility 454

and convenience of applying the graphical views 455

extraction process is important for wider applica- 456

tion of the proposed method. In this section, we 457

discuss the compatibility of CodeGRAG. 458

First of all, the extraction process of all the graph- 459

ical views are front-end. Therefore, this extraction 460

process applies to a wide range of code, even error 461

code. One could also use convenient tools to refor- 462

mulate the code and improve the pass rate of the 463

extraction process. 464

In addition, we give the ratio of generated results 465

that can pass the graphical views extraction process, 466

which is denoted by Extraction Rate. The Pass@1 467

and the Extraction Rate of the generated results 468

passing the graphical extraction process are given 469

in Table 5. 470

Table 5: The extraction rate of the generated results
passing the graphical extraction process.

Generated Codes Pass@1 Extraction Rate

(C++) Code-RAG 62.20 92.07
(C++) CodeGRAG 64.02 92.68

(Python) Code-RAG 71.95 91.46
(Python) CodeGRAG 77.44 96.95

From the results, we could see that the extraction 471

rates are high for codes to pass the graphical views 472

extraction process, even under the situation where 473

the Pass@1 ratios of the generated results are low. 474

7

This indicates that the application range of the pro-475

posed method is wide. In addition, as the code476

RAG also offers performance gains, one could use477

multiple views as the retrieval knowledge.478

4 Related Work479

LLMs for NL2Code. The evolution of the Natural480

Language to Code translation (NL2Code) task has481

been significantly influenced by the development482

of large language models (LLMs). Initially, gen-483

eral LLMs like GPT-J (Radford et al., 2023), GPT-484

NeoX (Black et al., 2022), and LLaMA (Touvron485

et al., 2023a), despite not being specifically tailored486

for code generation, showed notable NL2Code ca-487

pabilities due to their training on datasets contain-488

ing extensive code data like the Pile (Gao et al.,489

2020) and ROOTS (Laurençon et al., 2022). To490

further enhance these capabilities, additional pre-491

training specifically focused on code has been em-492

ployed. PaLM-Coder, an adaptation of the PaLM493

model (Chowdhery et al., 2023), underwent further494

training on an extra 7.8 billion code tokens, signifi-495

cantly improving its performance in code-related496

tasks. Similarly, Code LLaMA (Roziere et al.,497

2023) represents an advancement of LLaMA2 (Tou-498

vron et al., 2023b), benefiting from extended train-499

ing on over 500 billion code tokens, leading to500

marked improvements over previous models in501

both code generation and understanding. These502

developments underscore the potential of adapting503

generalist LLMs to specific domains like NL2Code504

through targeted training, leading to more effective505

and efficient code translation solutions.506

Code Search. The code search methods can be507

summarized into three folds. Early methods uti-508

lize sparse search to match the query and codes509

(Hill et al., 2011; Yang and Huang, 2017), which510

suffers from mismatched vocabulary due to the511

gap between natural language and codes. Neural512

methods (Cambronero et al., 2019; Gu et al., 2021)513

then focus on mapping the query and codes into514

a joint representation space for more accurate re-515

trieval. With the success of pretrained language516

models, many methods propose to use pretraining517

tasks to improve the code understanding abilities518

and align different language spaces. For example,519

CodeBERT (Feng et al., 2020) is pretrained on520

NL-PL pairs of 6 programming languages with the521

masked language modeling and replaced token de-522

tection task. CodeT5 (Wang et al., 2021) supports523

both code-related understanding and generation524

tasks through bimodal dual generation. UniXcoder 525

(Guo et al., 2022) integrates the aforementioned 526

pretraining tasks, which is a unified cross-modal 527

pre-trained model. As retrieval augmented genera- 528

tion (RAG) shows its significance in promoting the 529

quality of LLMs generation, works in code RAG 530

start to accumulate. (Nashid et al., 2023; Lu et al., 531

2022) utilize the code blocks as the retrieved knowl- 532

edge to inform the LLMs with similar code blocks 533

for enhancement. (Zhou et al., 2022) uses the pro- 534

gramming related document to serve as the retrieval 535

content, injecting auxiliary external programming 536

knowledge into the LLMs generation. 537

Code Representation. Early methods regard code 538

snippets as sequences of tokens, assuming the ad- 539

jacent tokens will have strong correlations. This 540

line of methods (Harer et al., 2018; Ben-Nun et al., 541

2018; Feng et al., 2020; Ciniselli et al., 2021) take 542

programming languages as the same with the nat- 543

ural language, using language models to encode 544

the code snippets too. However, this ignoring of 545

the inherent structure of codes leads to a loss of 546

expressiveness. Methods that take the structural in- 547

formation of codes into consideration then emerge. 548

Mou et al. (2016) used convolution networks over 549

the abstract syntax tree (AST) extracted from codes. 550

Alon et al. (2019) encoded paths sampled from the 551

AST to represent codes. Further exploration into 552

the graphical representation of codes (Allamanis 553

et al., 2017) is conducted to better encode the struc- 554

tures of codes, where more intermediate states of 555

the codes are considered. 556

5 Conclusion 557

Despite the expanding role of LLMs in code gen- 558

eration, there are inherent challenges pertaining to 559

their understanding of code syntax. General large 560

language models trained mainly on sequential- 561

based natural language cannot well understand the 562

structural-based programming language, e.g., the 563

branching and jumping in codes. This paper pro- 564

poses an effective way to build a graphical view 565

of codes to better inform LLMs for code genera- 566

tion. To take the challenging structural graphical 567

knowledge into LLMs, a meta-graph prompt is pro- 568

posed for tuning-free models and a soft-prompting 569

technique is proposed to inject the structural pro- 570

gramming domain knowledge into the parameters 571

of LLMs. By integrating external structural knowl- 572

edge, CodeGRAG enhances LLMs’ comprehen- 573

sion of code syntax and empowers them to generate 574

code with improved accuracy and fluency. 575

8

Limitations576

In this paper, we propose a graphical retrieval aug-577

mented generation method that can offer enhanced578

code generation. Despite the efficiency and effec-579

tiveness, there are also limitations within this work.580

For example, dependency on the quality of the ex-581

ternal knowledge base could be a potential concern.582

The quality of the external knowledge base could583

be improved with regular expression extraction on584

the noisy texts and codes.585

Acknowledgments586

This document has been adapted by Emily All-587

away from the instructions for earlier ACL and588

NAACL proceedings, including those for NAACL589

2024 by Steven Bethard, Ryan Cotterell and590

Rui Yan, ACL 2019 by Douwe Kiela and Ivan591

Vulić, NAACL 2019 by Stephanie Lukin and Alla592

Roskovskaya, ACL 2018 by Shay Cohen, Kevin593

Gimpel, and Wei Lu, NAACL 2018 by Margaret594

Mitchell and Stephanie Lukin, BibTEX suggestions595

for (NA)ACL 2017/2018 from Jason Eisner, ACL596

2017 by Dan Gildea and Min-Yen Kan, NAACL597

2017 by Margaret Mitchell, ACL 2012 by Mag-598

gie Li and Michael White, ACL 2010 by Jing-599

Shin Chang and Philipp Koehn, ACL 2008 by Jo-600

hanna D. Moore, Simone Teufel, James Allan, and601

Sadaoki Furui, ACL 2005 by Hwee Tou Ng and602

Kemal Oflazer, ACL 2002 by Eugene Charniak and603

Dekang Lin, and earlier ACL and EACL formats604

written by several people, including John Chen,605

Henry S. Thompson and Donald Walker. Addi-606

tional elements were taken from the formatting607

instructions of the International Joint Conference608

on Artificial Intelligence and the Conference on609

Computer Vision and Pattern Recognition.610

References611

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama612
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,613
Diogo Almeida, Janko Altenschmidt, Sam Altman,614
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.615
arXiv preprint arXiv:2303.08774.616

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D617
Ullman. 2006. Compilers: Principles techniques and618
tools. 2007. Google Scholar Google Scholar Digital619
Library Digital Library.620

Miltiadis Allamanis, Marc Brockschmidt, and Mah-621
moud Khademi. 2017. Learning to repre-622
sent programs with graphs. arXiv preprint623
arXiv:1711.00740.624

Frances E Allen. 1970. Control flow analysis. ACM 625
Sigplan Notices, 5(7):1–19. 626

Uri Alon, Meital Zilberstein, Omer Levy, and Eran 627
Yahav. 2019. code2vec: Learning distributed rep- 628
resentations of code. Proceedings of the ACM on 629
Programming Languages, 3(POPL):1–29. 630

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten 631
Hoefler. 2018. Neural code comprehension: A learn- 632
able representation of code semantics. Advances in 633
Neural Information Processing Systems, 31. 634

Sid Black, Stella Biderman, Eric Hallahan, Quentin 635
Anthony, Leo Gao, Laurence Golding, Horace He, 636
Connor Leahy, Kyle McDonell, Jason Phang, et al. 637
2022. Gpt-neox-20b: An open-source autoregressive 638
language model. arXiv preprint arXiv:2204.06745. 639

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik 640
Sen, and Satish Chandra. 2019. When deep learning 641
met code search. In Proceedings of the 2019 27th 642
ACM Joint Meeting on European Software Engineer- 643
ing Conference and Symposium on the Foundations 644
of Software Engineering, pages 964–974. 645

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 646
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 647
Barham, Hyung Won Chung, Charles Sutton, Sebas- 648
tian Gehrmann, et al. 2023. Palm: Scaling language 649
modeling with pathways. Journal of Machine Learn- 650
ing Research, 24(240):1–113. 651

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, 652
Denys Poshyvanyk, Massimiliano Di Penta, and 653
Gabriele Bavota. 2021. An empirical study on the 654
usage of bert models for code completion. In 2021 655
IEEE/ACM 18th International Conference on Mining 656
Software Repositories (MSR), pages 108–119. IEEE. 657

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 658
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 659
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 660
pre-trained model for programming and natural lan- 661
guages. arXiv preprint arXiv:2002.08155. 662

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 663
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 664
race He, Anish Thite, Noa Nabeshima, et al. 2020. 665
The pile: An 800gb dataset of diverse text for lan- 666
guage modeling. arXiv preprint arXiv:2101.00027. 667

Jian Gu, Zimin Chen, and Martin Monperrus. 2021. 668
Multimodal representation for neural code search. In 669
2021 IEEE International Conference on Software 670
Maintenance and Evolution (ICSME), pages 483– 671
494. IEEE. 672

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 673
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 674
modal pre-training for code representation. arXiv 675
preprint arXiv:2203.03850. 676

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 677
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey 678

9

Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-679
bert: Pre-training code representations with data flow.680
arXiv preprint arXiv:2009.08366.681

Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur682
Ozdemir, Leonard R Kosta, Akshay Rangamani,683
Lei H Hamilton, Gabriel I Centeno, Jonathan R Key,684
Paul M Ellingwood, et al. 2018. Automated software685
vulnerability detection with machine learning. arXiv686
preprint arXiv:1803.04497.687

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011.688
Improving source code search with natural language689
phrasal representations of method signatures. In 2011690
26th IEEE/ACM International Conference on Auto-691
mated Software Engineering (ASE 2011), pages 524–692
527. IEEE.693

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and694
Lei Lyu. 2021. Treebert: A tree-based pre-trained695
model for programming language. In Uncertainty in696
Artificial Intelligence, pages 54–63. PMLR.697

Hugo Laurençon, Lucile Saulnier, Thomas Wang,698
Christopher Akiki, Albert Villanova del Moral, Teven699
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-700
uardo González Ponferrada, Huu Nguyen, et al. 2022.701
The bigscience roots corpus: A 1.6 tb composite mul-702
tilingual dataset. Advances in Neural Information703
Processing Systems, 35:31809–31826.704

Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang,705
Qinxiang Cao, and Yong Yu. 2022. Multi-view graph706
representation for programming language process-707
ing: An investigation into algorithm detection. In708
Proceedings of the AAAI Conference on Artificial709
Intelligence, volume 36, pages 5792–5799.710

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-711
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:712
A retrieval-augmented code completion framework.713
arXiv preprint arXiv:2203.07722.714

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.715
Convolutional neural networks over tree structures716
for programming language processing. In Proceed-717
ings of the AAAI conference on artificial intelligence,718
volume 30.719

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.720
Retrieval-based prompt selection for code-related721
few-shot learning. In 2023 IEEE/ACM 45th Interna-722
tional Conference on Software Engineering (ICSE),723
pages 2450–2462. IEEE.724

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-725
man, Christine McLeavey, and Ilya Sutskever. 2023.726
Robust speech recognition via large-scale weak su-727
pervision. In International Conference on Machine728
Learning, pages 28492–28518. PMLR.729

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten730
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,731
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.732
Code llama: Open foundation models for code. arXiv733
preprint arXiv:2308.12950.734

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, 735
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan 736
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost- 737
ing large language models for code with ranking feed- 738
back. arXiv preprint arXiv:2307.14936. 739

Yizhou Sun and Jiawei Han. 2013. Mining heteroge- 740
neous information networks: a structural analysis 741
approach. ACM SIGKDD explorations newsletter, 742
14(2):20–28. 743

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 744
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 745
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 746
Azhar, et al. 2023a. Llama: Open and effi- 747
cient foundation language models. arXiv preprint 748
arXiv:2302.13971. 749

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 750
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 751
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 752
Bhosale, et al. 2023b. Llama 2: Open founda- 753
tion and fine-tuned chat models. arXiv preprint 754
arXiv:2307.09288. 755

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 756
Hoi. 2021. Codet5: Identifier-aware unified 757
pre-trained encoder-decoder models for code un- 758
derstanding and generation. arXiv preprint 759
arXiv:2109.00859. 760

Yangrui Yang and Qing Huang. 2017. Iecs: Intent- 761
enforced code search via extended boolean model. 762
Journal of Intelligent & Fuzzy Systems, 33(4):2565– 763
2576. 764

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 765
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 766
Yang Li, et al. 2023. Codegeex: A pre-trained model 767
for code generation with multilingual evaluations on 768
humaneval-x. arXiv preprint arXiv:2303.17568. 769

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo 770
Wang, Zhengbao Jiang, and Graham Neubig. 2022. 771
Docprompting: Generating code by retrieving the 772
docs. arXiv preprint arXiv:2207.05987. 773

A Implementation Details 774

For the size of retrieval pool, we use 11,913 C++ 775

code snippets and 2,359 python code snippets. Due 776

to the limited access, we do not use a large re- 777

trieval corpus for our experiment, which can be 778

enlarged by other people for better performance. 779

We also attach the graph extraction codes for both 780

languages and all other expeirment codes here: 781

https://anonymous.4open.science/r/Code-5970/ 782

For the fintuning details, the learning rate and 783

weight decay for the expert GNN training is 0.001 784

and 1e-5, repectively. We apply 8-bit quantization 785

and use LoRA for parameter-efficient fine-tuning. 786

The rank of the low-rank matrices in LoRA is uni- 787

formly set to 8, alpha set to 16, and dropout is set 788

10

to 0.05. The LoRA modules are uniformly applied789

to the Q and V parameter matrices of the attention790

modules in each layer of the LLM. All the three791

models are optimized using the AdamW optimizer.792

For the CodeContest dataset, totally 10609 data-793

points are used, and for APPS dataset, 8691 data794

samples are used to train the model.795

B Prompt Template796

 System Prompt
 Please continue to complete the [lang] function
 according to the requirements and function
 declarations. You are not allowed to modify the
 given code and do the completion only.\n

 Retr ieved Knowledge
 The syntax graph of a similar code might be:\n
 [composed syntax graph desciption]
 You can refer to the above knowledge to do the
 completion. \n

 Problem
 The problem:\n
 [problem prompt]

 System Prompt
 Please continue to complete the [lang] function
 according to the requirements and function
 declarations. You are not allowed to modify the
 given code and do the completion only.\n

 Retr ieved Knowledge
 The syntax graph of a similar code is encoded in:\n
 <GraphEmb>
 You can refer to the above knowledge to do the
 completion. \n

 Problem
 The problem:\n
 [problem prompt]

Figure 4: Hard meta-graph prompt.

Soft Prompt for Knowledge Augmented Generation

System Prompt
Please use [lang] to write a correct solution to a program-
ming problem. You should give executable completed code
and nothing else.\n

Retrieved Knowledge
We also have the syntax graph embedding of a similar prob-
lem encoded in <GraphEmb> for you to refer to.\n

Problem
The problem:\n
[problem prompt]

Figure 5: Soft prompting.

11

	Introduction
	Methodology
	Overview
	Graphical Knowledge Base Preparation
	Knowledge Querying
	Graphical Knowledge Augmented Generation
	Hard Meta-Graph Prompt
	Soft Prompting with the Expert

	Experiments
	Setup
	Main Results
	Impacts of the pretraining objectives for the expert GNN (RQ4)
	Impacts of the Components of the Graphical View (RQ5)
	Compatibility Discussion of the Graphical Views(RQ6)

	Related Work
	Conclusion
	Implementation Details
	Prompt Template

