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Abstract
With the emergence of diffusion models as a front-
line generative model, many researchers have pro-
posed molecule generation techniques with con-
ditional diffusion models. However, the unavoid-
able discreteness of a molecule makes it difficult
for a diffusion model to connect raw data with
highly complex conditions like natural language.
To address this, here we present a novel latent dif-
fusion model dubbed LDMol for text-conditioned
molecule generation. By recognizing that the suit-
able latent space design is the key to the diffu-
sion model performance, we employ a contrastive
learning strategy to extract novel feature space
from text data that embeds the unique characteris-
tics of the molecule structure. Experiments show
that LDMol outperforms the existing autoregres-
sive baselines on the text-to-molecule generation
benchmark, being one of the first diffusion models
that outperforms autoregressive models in textual
data generation with a better choice of the latent
domain. Furthermore, we show that LDMol can
be applied to downstream tasks such as molecule-
to-text retrieval and text-guided molecule editing,
demonstrating its versatility as a diffusion model.

1. Introduction
Designing compounds with the desired characteristics is
the essence of solving many chemical tasks. Inspired by
the rapid development of generative models in the last
decades, de novo molecule generation via deep learn-
ing models has been extensively studied. Diverse models
have been proposed for generating molecules that agree
with a given condition on various data modalities, includ-
ing string representations (Segler et al., 2017), molecular
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graphs (Lim et al., 2020), and point clouds (Hoogeboom
et al., 2022). The attributes controlled by these models
evolved from simple chemical properties (Olivecrona et al.,
2017; Gómez-Bombarelli et al., 2018) to complex biological
activity (Staszak et al., 2022) and multi-objective condition-
ing (Li et al., 2018; Chang & Ye, 2024). More recently,
as deep learning models’ natural language comprehension
ability has rapidly increased, there’s a growing interest in
molecule generation controlled by natural language (Ed-
wards et al., 2022; Pei et al., 2023; Liu et al., 2024a; Su
et al., 2022) which encompasses much broader and user-
friendly controllable conditions.

Meanwhile, diffusion models (Song & Ermon, 2019; Ho
et al., 2020) have emerged as a frontline of generative mod-
els over the past few years. Through a simple and stable
training objective of predicting noise from noisy data (Ho
et al., 2020), diffusion models have achieved highly realistic
and controllable data generation (Dhariwal & Nichol, 2021;
Karras et al., 2022; Ho & Salimans, 2021). Furthermore,
leveraging that the score function of the data distribution is
learned in their training (Song et al., 2021b), state-of-the-
art image diffusion models enabled various applications on
the image domain (Saharia et al., 2022; Kim & Ye, 2021;
Chung et al., 2023). Inspired by the success of diffusion
models, several papers suggested diffusion-based molecule
generative models on various molecule domains including a
molecular graph (Luo et al., 2023), strings like Simplified
Molecular-Input Line-Entry System (SMILES) (Gong et al.,
2024), and point clouds (Hoogeboom et al., 2022).

However, a discrepancy between molecule data and com-
mon data domains like images makes it hard to connect the
diffusion models to molecule generation. Whereas diffusion
models are deeply studied on a continuous data domain
with Gaussian noise, any molecule modality has inevitable
discreteness such as atom and bond type, connectivity, and
SMILES tokens (Figure 1-(a)). As a result, diffusion models
trained on raw molecule data often failed to faithfully follow
the given conditions or showed poor data quality (e.g., in-
valid molecules) as the condition became more sophisticated
like natural language. Most molecule diffusion models pre-
sented so far have used a few, relatively simple conditions
to control, while major developments in text-to-molecule
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Figure 1. Different strategies of data domain selection for molecule diffusion models. (a) The model directly learns the raw representation
of the molecule such as string tokens. (b) An autoencoder can be employed to let the generative model learn its latent distribution. (c) A
regularized, chemically pre-trained encoder can provide a latent space readily learnable by external generative models.

generative models were based on autoregressive models.

To overcome this gap, we suggest that a latent domain (Vah-
dat et al., 2021; Rombach et al., 2022) is essential to train
effective diffusion models for complex molecule genera-
tion tasks. Moreover, beyond the limitation of the previous
works (Xu et al., 2023) that mainly focused on resolving
the discreteness with naive reconstruction loss (Figure 1-
(b)), we report that a latent encoder extracting rich and
refined information about the molecule structure can further
improve the generative model performance (Figure 1-(c)).
Specifically, we design a novel Latent Diffusion Molecular
generative model (LDMol) for text-conditioned molecule
generation, trained on the latent space of the separately pre-
trained molecule encoder. By preparing an encoder to pro-
vide a chemically useful and interpretable feature space, our
model can more easily connect the molecule data with the
highly complicated condition of natural text. In the process,
we suggest a novel contrastive encoder training strategy by
minimizing mutual information between positive SMILES
pairs to encode a unique structural characteristic.

Extensive experimental results show that LDMol can out-
perform many state-of-the-art autoregressive models and
generate valid SMILES that meet the input text condition.
Considering SMILES as a variation of text data, we report
one of the first diffusion models that successfully surpassed
autoregressive models in textual data generation. This may
suggest the possibility of improving existing diffusion mod-
els (Lovelace et al., 2024) for natural language through
careful design of the latent space. Furthermore, LDMol can
leverage the learned score function and be applied to several
multi-modal downstream tasks such as molecule-to-text re-
trieval and text-guided molecule editing, without additional
task-specific training. We summarize the contribution of this
work as follows:

• We propose a latent diffusion model LDMol for text-
conditioned molecule generation to generate valid
molecules that are better aligned to the text condition.
This approach demonstrates the potential of generative
models for chemical entities in a latent space.

• We report the importance of preparing a chemically
informative latent space for the molecule latent diffu-
sion model, and suggest a novel contrastive learning
method to train an encoder that captures the molecular
structural characteristic.

• LDMol outperforms the text-to-molecule generation
baselines, and its modeled conditional score function
enables the advanced attributes of diffusion models
including various applications like molecule-to-text
retrieval and text-guided molecule editing.

2. Background
Diffusion generative models. Diffusion models first de-
fine a forward process that perturbs the original data, and
generates the data from the known prior distribution by the
learned reverse process of the pre-defined forward process.
Ho et al. (2020) fixed their forward process by gradually
adding Gaussian noise to the data, which can be formalized
as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt, t = 1, . . . , T is a noise schedule. This definition
of forward process allows us to sample xt directly from
q(xt|x0) as follows, where αt = 1− βt and αt =

∏t
i=1 αi:

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I) (2)

The model ϵθ learns the reverse process p(xt−1|xt) by
approximating q(xt−1|xt) with a Gaussian distribution
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pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) where

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
(3)

which can be trained by minimizing the difference between
ϵ and ϵθ(xt, t):

θ∗ = argmin
θ

Ex0,t,ϵ||ϵ− ϵθ(xt, t)||22 (4)

Once θ is trained, novel data can be generated with the
learned reverse process pθ; starting from the random noise
xT ∼ N (0, I), the output can be gradually denoised accord-
ing to the modeled distribution of pθ(xt−1|xt).

Various real-world data generation tasks require to generate
data x0 with a given condition c. To build diffusion models
that can generate data from the conditional data distribution
q(x0|c), the model that predicts the injected noise should
also be conditioned by c.

θ∗ = argmin
θ

Ex0,c,t,ϵ||ϵ− ϵθ(xt, t, c)||22 (5)

After the success of diffusion models in the image and
video domain, various works tried to build diffusion models
to generate text data. While many suggested training dif-
fusion models on text tokens (Austin et al., 2021), word
embedding (Li et al., 2022), or text autoencoder latent
space (Lovelace et al., 2024), their performance has been
suboptimal compared to autoregressive models (Brown
et al., 2020). We assume that this can be resolved with
a better latent space design that reflects the characteristics
of the data domain, and suggest a latent diffusion model that
outperforms autoregressive models for textual data.

Conditional molecule generation. As a promising tool for
many important chemical and engineering tasks like de novo
drug discovery and material design, conditional molecule
generation has been extensively studied with various models
including recurrent neural network (RNN)s (Segler et al.,
2017), bidirectional RNN (Grisoni et al., 2020), graph neu-
ral networks (Lim et al., 2020), and variational autoen-
coders (Gómez-Bombarelli et al., 2018; Lim et al., 2018).
With the advent of large and scalable pre-trained models
with transformers (Vaswani et al., 2017), the controllable
conditions became more abundant and complicated (Bagal
et al., 2021; Chang & Ye, 2024). Recent works reached a
text-guided molecule generation (Edwards et al., 2022; Su
et al., 2022; Liu et al., 2024a) leveraging a deep compre-
hension ability for natural language, especially with recent
emergence of large language model (LLM)s (Liu et al.,
2024b).

Recent works attempted to import the success of the diffu-
sion model into molecule generation. Several graph-based
and point cloud-based works have built conditional diffusion

models that could generate molecules with simple chem-
ical and biological conditions (Hoogeboom et al., 2022;
Luo et al., 2023; Trippe et al., 2023). Gong et al. (2024) at-
tempted a text-conditioned molecule diffusion model trained
on the sequence of tokenized SMILES indices. However,
these models treated discrete molecules with continuous
Gaussian diffusion, introducing arbitrary numeric values
and suboptimal performances. Xu et al. (2023) employed an
autoencoder to build a diffusion model on a smooth latent
space, but its controllable conditions were still limited to
several physiochemical properties.

3. Methods
In this section, we explain the overall model architecture
and training procedure of the proposed LDMol, which are
briefly illustrated in Figure 2.

3.1. Extracting structure-aware SMILES latent space

The primary goal of introducing autoencoders for im-
age latent diffusion models is to map raw images into a
low-dimensional space, which reduces the computation
cost (Vahdat et al., 2021; Rombach et al., 2022). This is
plausible because a high-resolution image has an enormous
dimension in the pixel domain, yet each pixel contains little
information.

In this work for molecule generation, we utilize a string-
based notation SMILES, one of the most popular molecule
representations in text-molecule pair databases and bench-
marks. We built a SMILES encoder to map raw SMILES
strings into a latent vector. In this case, the role of our
SMILES autoencoder has to be different from that of the
autoencoders for images; a molecule structure can be fully
expressed by only a sequence of L integers for SMILES to-
kens, where L is the maximum token length. However, each
token carries significant information, and hidden interac-
tions between these tokens are much more complicated than
interactions between image pixels. Therefore, the SMILES
encoder should focus more on extracting chemical meaning
into the latent space, even if it results in a latent space with
more dimensions than the raw SMILES string.

A number of molecule encoders (Wang et al., 2019; Liu
et al., 2024a; Zeng et al., 2022; Liu et al., 2023a) have
been presented that can extract various useful chemical
features, including biochemical activity or human-annotated
descriptions. Nonetheless, these molecule encoders aim to
extract certain desired features rather than encode all the
information about the molecule structure. Therefore, the
input cannot be fully restored from the model output.

Although autoencoders with appropriate regularization (e.g.,
KL-divergence loss (Kingma, 2014; Gómez-Bombarelli
et al., 2018)) provide a continuous and reconstructible
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Figure 2. Overview of the proposed molecule autoencoder and the latent diffusion model. (a) SMILES encoder is trained with contrastive
learning to construct latent space that embeds a structural characteristic. (b) After the SMILES encoder is prepared, a linear compression
layer and an autoregressive decoder are trained to restore the encoder input. (c) The training and inference process of the latent diffusion
model is conditioned by the output of the frozen external text encoder.

molecular latent space, their encoder output is not guaran-
teed to possess the characteristic of the underlying molecular
structure, beyond the minimal information to reconstruct
the input string. To visualize this, we prepared a trained
β-VAE (Higgins et al., 2017) and measured the feature
distance between two SMILES from the same molecule
obtained via SMILES enumeration (Bjerrum, 2017). Here,
SMILES enumeration is the process of writing out all possi-
ble SMILES of the same molecule, as illustrated in Figure
3-(a). Figure 3-(b) shows that β-VAE had difficulties assim-
ilating features from the same molecule compared to the one
between random SMILES pairs, indicating that it couldn’t
capture the intrinsic features beneath the SMILES string.
This inconsistency makes it difficult for later models that
learn this latent space to figure out the connection between
the latent and the molecule, which could eventually degrade
the performance as the condition gets more complex like
natural texts. Assuming most of the controllable conditions
has unavoidable correlation with the molecule structure,
we insist that latent domain where the feature proximity is
more structurally meaningful would benefit the conditional
generative model.

Accordingly, here we propose three conditions that our
SMILES autoencoder’s latent space has to satisfy: enable
reconstruction of the input, have as small dimensions as
possible, and embed molecular structural information that
can be readily learned by diffusion models.

Encoder design. In this respect, we train our SMILES en-
coder with contrastive learning (Figure 2-(a)), which aims
to learn better representation by assimilating features con-

taining similar information (i.e. positive pair) and distancing
semantically unrelated features (i.e. negative pair). We de-
fine two enumerated SMILES from the same molecule as a
positive pair and two SMILES from different molecules as
a negative pair.

Here, we argue that the proposed contrastive learning with
SMILES enumeration can train the encoder to encapsulate
the unique structural characteristics of the input molecule:
Contrastive learning learns an invariant for the augmenta-
tions applied on positive pairs (Zhang & Ma, 2022), and it is
known that a good augmentation should reduce as much mu-
tual information between positive pairs as possible while pre-
serving relevant information (Tian et al., 2020). Meanwhile,
enumerated SMILES of the same molecule are obtained by
traversing the nodes and edges in the molecular graph with a
different visiting order. Therefore, to detect all possible enu-
merated SMILES and find SMILES-enumeration-invariant,
the model has to understand the entire connectivity between
atoms. This makes the encoder output a unique characteris-
tic that captures the overall molecular structure. Compared
to the hand-crafted augmentations previously presented for
molecule contrastive learning (You et al., 2020), enumerated
SMILES pairs have minimal mutual information since we
utilize all possible variations in the SMILES format. And
since all enumerated SMILES are guaranteed to represent
an identical molecule, there is no relevant information loss
during the augmentation. Figure 3-(a) and Appendix B.1
demonstrate that our LDMol trained with contrastive learn-
ing with SMILES enumeration now correctly assimilates
features from the same molecule, and its latent space cap-
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Figure 3. Behaviour of encoder features on SMILES enumeration. (a) Examples of SMILES enumeration with node traversal order. (b)
Euclidean distance between features from β-VAE (β = 0.001) and our proposed encoder, with 1,000 random SMILES pairs and 1,000
enumerated SMILES pairs. The distance was rescaled by 1/

√
d where d is a latent dimension size.

tures meaningful structural information of the molecule.

Specifically, a SMILES string is fed into the SMILES en-
coder E(·) with a special “[SOS]” token which denotes
the start of the sequence. For a batch of N input SMILES
M = {m1,m2, . . . ,mk, . . . ,mN}, we prepare a positive
pair SMILES m′

k for each mk by SMILES enumeration to
construct M ′ = {m′

1,m
′
2, . . . ,m

′
k, . . . ,m

′
N}. After M and

M ′ are passed through the SMILES encoder, we feed each
SMILES’ output vector corresponding to the [SOS] token
into an additional linear projection and normalization layer,
denoting its output as vk and v′k(k = 1, 2, . . . , N). Assimi-
lating vk and v′k from the positive pairs and distancing the
others can be done by minimizing the following InfoNCE
loss (Oord et al., 2018).

Lcon(M,M ′) = −
N∑

k=1

log
exp(vk · v′k/τ)∑N
i=1 exp(vk · v′i/τ)

(6)

Here, τ is a positive temperature parameter. To utilize a
symmetric loss against the input, we trained our encoder
with the following loss function.

Lenc(M,M ′) = Lcon(M,M ′) + Lcon(M
′,M) (7)

Compressing the latent space. The pre-trained SMILES
encoder maps a molecule into a vector of size [L × denc],
where denc is the feature size of the encoder. To avoid the
curse of dimensionality and construct a more learnable fea-
ture space for diffusion models, we additionally employed a
linear compression layer f(·) (Figure 2-(b)) to reduce the
dimension from [L× denc] to [L× dz]. Here, we build our
compression layer as simply as possible to prevent its out-
put from deviating from the previous structure-aware and
regulated features (See A.2 for further justification). The

range of this linear layer output is a target domain of our
latent diffusion model.

Decoder design. When a SMILES m is passed through the
SMILES decoder and the compression layer, the SMILES
decoder reconstructs m from f(E(m)). Note that the de-
coder knows nothing about SMILES distribution or its corre-
lation with natural texts, and any design would be acceptable
as long as it recovers SMILES from its latent. Following
many major works that treated SMILES as a variant of lan-
guage data (Segler et al., 2017; Chang & Ye, 2024), we
built an autoregressive transformer (Vaswani et al., 2017) as
our decoder (Figure 2-(b)) which is widely used to success-
fully generate sequential data with varied length (Brown
et al., 2020). Specifically, starting from the [SOS] token,
the decoder predicts the next SMILES token using infor-
mation from f(E(m)) with cross-attention layers. When
{t0, t1, . . . , tn} is the token sequence of m, the decoder is
trained to minimize the next-token prediction loss described
as Eq. (8). Here, the decoder and the compression layer are
jointly trained while the encoder’s parameter is frozen. Af-
ter being fully trained, the decoder was able to reconstruct
roughly 98% of the SMILES encoder input.

Ldec = −
n∑

i=1

log p(tn|t0:n−1, f(E(m))) (8)

3.2. Text-conditioned latent diffusion model

As shown in Figure 2-(c), our diffusion model learns the
conditional distribution of the SMILES latent z whose di-
mension is [L× dz]. In the training phase, a molecule in the
training data is mapped to the latent z and applied a forward
noising process into zt with randomly sampled diffusion
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timestep t and injected noise ϵ. A diffusion model predicts
the injected noise from zt, conditioned by the paired text
description via a frozen external text encoder. In the infer-
ence phase, the diffusion model iteratively generates a new
latent sample z′ from a given text condition, which is then
decoded to a molecule via the SMILES decoder.

Since most contributions to diffusion models were made in
the image domain, most off-the-shelf diffusion models have
the architecture of convolution-based Unet (Ronneberger
et al., 2015). However, introducing the spatial inductive
bias of Unet cannot be justified for the latent space of
our encoder. Therefore we employed DiT (Peebles & Xie,
2023) architecture, one of the most successful approaches
to transformer-based diffusion models for more general data
domain. Specifically, we utilized a DiTbase model with min-
imal modifications to handle text conditions with cross-
attention, where more details can be found in Section A.1.

Text-based molecule generation requires a text encoder to
process natural language conditions. Existing text-based
molecule generation models trained their text encoder from
scratch (Pei et al., 2023), or utilize a separate encoder
model pre-trained on scientific domain corpora (Beltagy
et al., 2019). In this work, we took the encoder part of
MolT5large (Edwards et al., 2022) as our text encoder.

3.3. Implementation details

The pre-training of the SMILES encoder and the correspond-
ing decoder was done with 10,000,000 general molecules
from PubChem (Kim et al., 2023). The SMILES tokenizer
vocabulary consists of 300 tokens, which were obtained
from the pre-training data SMILES corpus using the BPE
algorithm (Gage, 1994). We only used SMILES data that
does not exceed a fixed maximum token length L. To ensure
enough batch size for negative samples (He et al., 2020), we
build a memory queue that stores Q recent input and use
them for the encoder training. We found that if the training
data have a stereoisomer, considering it as “hard-negative”
samples and including it in the loss calculation batch helps
the encoder training to differentiate different stereoisomers.

To train the text-conditioned latent diffusion model, we
gathered three existing datasets of text-molecule pairs: Pub-
chemSTM curated by Liu et al. (2023a), ChEBI-20 (Ed-
wards et al., 2021), and PCdes (Zeng et al., 2022). Only a
train split for each dataset was used for the training, and
pairs that appeared in the test set for the experiments are
additionally removed. We also used 10,000 molecules from
ZINC15 (Sterling & Irwin, 2015) without any text descrip-
tions, which helps the model learn the common distribution
of molecules. When these unlabeled data were fed into the
training model, we used a pre-defined null text for the ab-
sence of text condition. We utilized 320,000 training data
in total, much smaller than recent transformer-based base-

lines (Edwards et al., 2022; Pei et al., 2024) with millions
of unimodal and multimodal data from various databases.

The latent diffusion model was trained with the training loss
suggested by Dhariwal & Nichol (2021). To take advan-
tage of classifier-free guidance (Ho & Salimans, 2021), we
randomly replaced 3% of the given text condition with the
null text during the training. The sampling iteration in the
inference stage used DDIM-based (Song et al., 2021a) 100
sampling steps with a classifier-free guidance. More detailed
training hyperparameters can be found in Appendix A.2.
The code for LDMol training and text-to-molecule sampling
is available at https://github.com/jinhojsk515/LDMol.

4. Experiments
4.1. Text-conditioned molecule generation

In this section, we evaluated the trained LDMol’s ability
to generate molecules that agree with the given natural lan-
guage conditions. First, we generated molecules with LD-
Mol using the text captions in the ChEBI-20 test set and
compared them with the ground truth. The metrics we’ve
used are as follows: SMILES validity, BLEU score (Pap-
ineni et al., 2002) and Levenshtein distance between two
SMILES, Tanimoto similarity (Bajusz et al., 2015) between
two SMILES with three different fingerprints (MACCS,
RDK, Morgan), the exact match ratio, and Frechet Chem-
Net Distance (FCD) (Preuer et al., 2018). We tested different
scales for the classifier-free guidance scale ω in the sampling
process and found ω = 2.5 works best (See Section B.2).

Table 1 contains the performance of LDMol and other base-
lines for text-to-molecule generation on the ChEBI-20 and
PCDes test set. Including both autoregressive models and
diffusion-based models, LDMol outperformed the existing
models in almost every metric. While few models showed
higher validity than ours, they showed a lower agreement
between the output and the ground truth, which we insist is a
more important role of generative text-to-molecule models.
Also, MolT5large uses the same text encoder as LDMol,
yet there’s a significant performance difference between
the two models. We believe this is because our continuous
and structure-aware latent space is much easier to learn and
align with the same textual information, compared to the
raw token sequence for transformer-based models.

To demonstrate the LDMol’s molecule generalization ability
with more broad and general text inputs, we analyzed the
generated output with several hand-written prompts. These
input prompts were not contained in the training data and
were relatively vague and high-level so that many different
molecules could satisfy the condition. Figure 4 shows the
samples of generated molecules from LDMol with several
input prompt examples. We found that LMDol can generate
molecules with high validity that follow the various levels of
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Table 1. Benchmark results of text-to-molecule generation on ChEBI-20 and PCDes test set. The best performance for each metric was
written in bold. The “Family” column denotes whether the model is AR(autoregressive model) or DM(diffusion model).

Dataset Model Family Validity↑ BLEU↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ Match↑ FCD↓

ChEBI-20

Transformer AR 0.906 0.499 57.660 0.480 0.320 0.217 0.000 11.32
GIT-Mol (Liu et al., 2024a) AR 0.928 0.756 26.315 0.738 0.582 0.519 0.051 -
T5base (Raffel et al., 2020) AR 0.660 0.765 24.950 0.731 0.605 0.545 0.069 2.48
MolT5base (Edwards et al., 2022) AR 0.772 0.769 24.458 0.721 0.588 0.529 0.081 2.18
T5large AR 0.902 0.854 16.721 0.823 0.731 0.670 0.279 1.22
MolT5large AR 0.905 0.854 16.071 0.834 0.746 0.684 0.311 1.20
MolXPT (Liu et al., 2023b) AR 0.983 - - 0.859 0.757 0.667 0.215 0.45
bioT5 (Pei et al., 2023) AR 1.000 0.867 15.097 0.886 0.801 0.734 0.413 0.43
bioT5+ (Pei et al., 2024) AR 1.000 0.872 12.776 0.907 0.835 0.779 0.522 0.35
TGM-DLM (Gong et al., 2024) DM 0.871 0.826 17.003 0.854 0.739 0.688 0.242 0.77
LDMol DM 0.941 0.926 6.750 0.973 0.950 0.931 0.530 0.20

PCDes

MolT5large AR 0.944 0.692 18.481 0.810 0.741 0.699 0.440 0.70
bioT5 AR 1.000 0.754 15.658 0.797 0.726 0.677 0.455 0.69
bioT5+ AR 0.999 0.677 20.464 0.743 0.615 0.541 0.266 1.09
LDMol DM 0.944 0.857 8.726 0.885 0.817 0.780 0.464 0.32

Figure 4. Examples of the generated molecules by LDMol with
various text conditions, with validity on 1,000 generated samples.

input conditions for specific atoms(a), compound class(b),
molecular substructure(c), functional groups(d), and sub-
stance names(e). The validity was calculated by the number
of valid SMILES over 1,000 generated samples, above 0.9
for most scenarios we tested. Considering that these short,
broad, and hand-written text conditions are distinct from
the text conditions in the training dataset, we’ve concluded
that our model is able to learn the general relation between
natural language and molecules. We conducted quantitative
analyses on the case studies and additional examples with
hand-written prompts, which can be found in Appendix B.3.

4.2. Applications toward downstream tasks

Well-trained diffusion models learned the score function of a
data distribution, which enables high applicability to various

Table 2. 64-way accuracy in % on molecule-to-text retrieval task.
For LDMol, n is a number of iterations where ||ϵ̂θ − ϵ||22 was
calculated. The best performance for each task is written in bold.

Model PCdes test set MoMu test set

sentence paragraph sentence paragraph

SciBERT (Beltagy et al., 2019) 50.4 82.6 1.38 1.38
KV-PLM (Zeng et al., 2022) 55.9 77.9 1.37 1.51
MoMu-S (Su et al., 2022) 58.6 80.6 39.5 45.7
MoMu-K 58.7 81.1 39.1 46.2
MoleculeSTM (Liu et al., 2023a) - 81.4 - 67.6
MolCA (Liu et al., 2024c) - 86.4 - 73.4
LDMol(n=10) 60.7 90.2 66.4 84.8
LDMol(n=25) 62.2 90.3 78.4 87.1

downstream tasks. The state-of-the-art image diffusion mod-
els have shown their versatility in image editing (Meng et al.,
2022; Hertz et al., 2023), classification (Li et al., 2023), re-
trieval (Jin et al., 2023), inverse problems like inpainting and
deblurring (Chung et al., 2023), image personalization (Ruiz
et al., 2023), etc. To demonstrate LMDol’s potential versatil-
ity as a diffusion model, we applied the pre-trained LDMol
to the molecule-to-text retrieval and text-guided molecule
editing. See Appendix A.3 for a more detailed procedure
for each downstream task.

Molecule-to-text retrieval. Our approach to molecule-to-
text retrieval is similar to the idea of using a pre-trained
diffusion model as a classifier (Li et al., 2023): LDMol
takes each candidate text with a query molecule’s noised
latent, and retrieves the text that minimizes the noise esti-
mation error ||ϵ̂θ − ϵ||22 between the injected noise ϵ and the
predicted noise ϵ̂θ. Since this process has randomness due
to the stochasticity of t and ϵ, we repeated the same process
n times with resampled t and ϵ and used a mean error to
minimize the performance variance.

We measured a 64-way in-batch retrieval accuracy of LD-
Mol using two different test sets: PCdes test split and MoMu
retrieval dataset curated by Su et al. (2022), where the result
with other baseline models are listed in Table 2. Only one
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Figure 5. Hit ratio of molecule editing by LDMol and
MoleculeSTM (Liu et al., 2023a) in eight scenarios. In the fig-
ure, we omitted “This molecule” in front of the actual prompts, and
abbreviated “hydrogen bonding” to “H-bond”.

randomly selected sentence in each candidate description
was used for the retrieval in the “sentence” column, and all
descriptions were used for the “paragraph” column. LDMol
achieved a higher performance in all four scenarios com-
pared to the previously presented models and maintained its
performance on a relatively out-of-distribution MoMu test
set with minimal accuracy drop. LDMol became more accu-
rate as the number of function evaluations increased, and the
improvement was more significant at the sentence-level re-
trieval and out-of-distribution dataset. The actual examples
from the retrieval result can be found in Appendix B.4.

Text-guided molecule editing. We applied a method of
Delta Denoising Score (DDS) (Hertz et al., 2023), which
was originally suggested for text-guided image editing,
to see whether LDMol can be used to optimize a source
molecule to match a given text. Using two text prompts that
describe the source data zsrc and the desired target, DDS
presents how a text-conditioned diffusion model can modify
zsrc into a new data ztgt that follows the target text prompt.

We imported a method of DDS on LDMol’s molecule latent
to edit a given molecule to match the target text, with several
prepared editing prompts that require the model to change
certain atoms, substructures, and intrinsic properties from
the source molecule. Figure 5 shows that LDMol had compa-
rable performance with a previously suggested text-guided
molecule editing model (Liu et al., 2023a), with a higher hit
ratio in five out of eight scenarios. Several editing examples
with hand-written scenarios are shown in Appendix B.5.

4.3. Effectiveness of the suggested latent space

We’ve conducted an ablation study in Table 3 that compares
LDMol with latent diffusion models trained on naively con-

Table 3. Quantitative results of the ablation study. The best perfor-
mance for each metric is written in bold.

models Autoencoder ChEBI20 generation

Recon. Acc.↑ Validity↑ Match↑ FCD↓
LDMol w/o contrastive learning 1.000 0.019 0.000 58.60
LDMol w/ β-VAE (β=0.001) 0.999 0.847 0.492 0.34
LDMol 0.983 0.941 0.530 0.20

structed latent space, to emphasize the benefit of the sug-
gested encoder training. Each model is pre-trained with the
same number of DiT training iterations. We’ve also per-
formed an ablation study on more detailed design choices
of LDMol, which can be found in Appendix B.6.

When we remove the contrastive encoder pre-training ob-
jective and construct the molecule latent space with a naive
autoencoder, the diffusion model completely fails to learn
the latent distribution to generate valid SMILES. On the
other hand, a β-VAE with KL-divergence regularization has
reconstructible latent space and showed a text-to-molecule
generation match ratio of 0.492, which already outperforms
the previous diffusion model TGM-DLM and several autore-
gressive models in Table 1. This demonstrates the necessity
of diffusion models in the continuous data domain, with
their potential to be successful on discrete molecule data
comparable to the autoregressive models. Nonetheless, its
overall metric is still worse than the proposed LDMol, with
notably low validity and FCD. We insist that this gap comes
from the structurally informative latent space of LDMol
which is easier for the diffusion model to learn the correla-
tion between the latent space and the condition.

5. Conclusion
In this work, we presented a text-to-molecule diffusion
model LDMol that runs on a chemical latent space reflect-
ing structural information. By introducing the deeply stud-
ied paradigm of the latent diffusion model with carefully
designed latent encoder, LDMol retains many advanced at-
tributes of diffusion models that enable various applications.

Despite the noticeable performances of LDMol, it still has
limitations that can be improved, as LDMol still often strug-
gles to follow some text conditions such as complex biolog-
ical properties. Nonetheless, we expect that the LDMol’s
performance could be improved further with the emergence
of richer text-molecule pair data and more powerful text
encoders. Moreover, combining physiochemical and bio-
logical annotations on top of the structurally informative
latent space is a promising future work that can ease the
connection between molecules and text conditions.

We believe that our approach could inspire tackling various
chemical generation tasks using latent space, not only text-
conditioned but also many more desired properties, such as
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biochemical activity. Especially, we expect LDMol to be a
starting point to bridge achievements in the state-of-the-art
diffusion model into the chemical domain.
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Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS Central Science, 4:268–276, 01 2018.
doi: 10.1021/acscentsci.7b00572.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition 2024, pp. 9729–9738, 2020.

9



LDMol: A Text-to-Molecule Diffusion Model with Structurally Informative Latent Space Surpasses AR Models

Hertz, A., Aberman, K., and Cohen-Or, D. Delta denoising
score. International Conference on Computer Vision, pp.
2328–2337, 2023.

Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glorot,
X., Botvinick, M. M., Mohamed, S., and Lerchner, A.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. International Conference
on Learning Representations, 3, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
Conference on Neural Information Processing Systems,
2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Conference on Neural Information Pro-
cessing Systems, 12 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3d.
In International Conference on Machine Learning, pp.
8867–8887. PMLR, 2022.

Jin, P., Li, H., Cheng, Z., Li, K., Ji, X., Liu, C., Yuan, L.,
and Chen, J. Diffusionret: Generative text-video retrieval
with diffusion model. In International Conference on
Computer Vision, pp. 2470–2481, 2023.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Conference on Neural Information Processing Systems,
35:26565–26577, 2022.

Kim, K. and Ye, J. C. Noise2score: tweedie’s approach to
self-supervised image denoising without clean images.
Conference on Neural Information Processing Systems,
34:864–874, 2021.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S.,
Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., et al.
Pubchem 2023 update. Nucleic acids research, 51(D1):
D1373–D1380, 2023.

Kingma, D. P. Auto-encoding variational bayes. Interna-
tional Conference on Learning Representations, 2014.

Li, A. C., Prabhudesai, M., Duggal, S., Brown, E., and
Pathak, D. Your diffusion model is secretly a zero-shot
classifier. In International Conference on Computer Vi-
sion, pp. 2206–2217, 2023.

Li, X., Thickstun, J., Gulrajani, I., Liang, P. S., and
Hashimoto, T. B. Diffusion-lm improves controllable
text generation. Advances in Neural Information Process-
ing Systems, 35:4328–4343, 2022.

Li, Y., Zhang, L., and Liu, Z. Multi-objective de novo drug
design with conditional graph generative model. Journal
of cheminformatics, 10:1–24, 2018.

Lim, J., Ryu, S., Kim, J. W., and Kim, W. Y. Molecular
generative model based on conditional variational autoen-
coder for de novo molecular design. Journal of chemin-
formatics, 10(1):1–9, 2018.

Lim, J., Hwang, S.-Y., Moon, S., Kim, S., and Kim, W. Y.
Scaffold-based molecular design with a graph generative
model. Chem. Sci., 11:1153–1164, 2020. doi: 10.1039/
C9SC04503A.

Liu, P., Ren, Y., Tao, J., and Ren, Z. Git-mol: A multi-modal
large language model for molecular science with graph,
image, and text. Computers in Biology and Medicine,
171:108073, 2024a.

Liu, S., Nie, W., Wang, C., Lu, J., Qiao, Z., Liu, L., Tang,
J., Xiao, C., and Anandkumar, A. Multi-modal molecule
structure–text model for text-based retrieval and editing.
Nature Machine Intelligence, 5(12):1447–1457, 2023a.

Liu, X., Guo, Y., Li, H., Liu, J., Huang, S., Ke, B., and
Lv, J. Drugllm: Open large language model for few-shot
molecule generation. arXiv preprint arXiv:2405.06690,
2024b.

Liu, Z., Zhang, W., Xia, Y., Wu, L., Xie, S., Qin, T., Zhang,
M., and Liu, T.-Y. Molxpt: Wrapping molecules with
text for generative pre-training. Association for Compu-
tational Linguistics, 2023b.

Liu, Z., Li, S., Luo, Y., Fei, H., Cao, Y., Kawaguchi, K.,
Wang, X., and Chua, T.-S. Molca: Molecular graph-
language modeling with cross-modal projector and uni-
modal adapter. Empirical Methods in Natural Language
Processing, 2024c.

Lovelace, J., Kishore, V., Wan, C., Shekhtman, E., and Wein-
berger, K. Q. Latent diffusion for language generation.
Advances in Neural Information Processing Systems, 36,
2024.

Luo, T., Mo, Z., and Pan, S. J. Fast graph generation via
spectral diffusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

McInnes, L., Healy, J., Saul, N., and Grossberger, L. Umap:
Uniform manifold approximation and projection. The
Journal of Open Source Software, 3(29):861, 2018.

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y.,
and Ermon, S. Sdedit: Guided image synthesis and edit-
ing with stochastic differential equations. International
Conference on Learning Representations, 2022.

Olivecrona, M., Blaschke, T., Engkvist, O., and Chen, H.
Molecular de-novo design through deep reinforcement
learning. Journal of Cheminformatics, 9, 09 2017. doi:
10.1186/s13321-017-0235-x.

10



LDMol: A Text-to-Molecule Diffusion Model with Structurally Informative Latent Space Surpasses AR Models

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In International Conference on Computer
Vision, pp. 4195–4205, 2023.

Pei, Q., Zhang, W., Zhu, J., Wu, K., Gao, K., Wu, L., Xia, Y.,
and Yan, R. Biot5: Enriching cross-modal integration in
biology with chemical knowledge and natural language
associations. Empirical Methods in Natural Language
Processing, 2023.

Pei, Q., Wu, L., Gao, K., Liang, X., Fang, Y., Zhu, J., Xie, S.,
Qin, T., and Yan, R. BioT5+: Towards generalized biolog-
ical understanding with IUPAC integration and multi-task
tuning. In Findings of the Association for Computational
Linguistics: ACL 2024, pp. 1216–1240, Bangkok, Thai-
land, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-acl.71.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
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A. Experimental details
A.1. DiT block for SMILES latent diffusion model with text conditions

The DiT block architecture of the class-conditioned image diffusion model published by Peebles & Xie (2023) is shown
in Figure 6-(a). The noised input image latent zt is passed through a patch embedding layer and spatially flattened to be
fed into the DiT block. The condition embedding y and diffusion timestep embedding t are incorporated into the model
prediction via adaptive layer norm. The dimension of t and y are both [B × F ], where B is the batch size and F is the
number of features.

In the case of LDMol, the input latent zt with dimension [B × L× F ] is already spatially one-dimensional, we simply pass
it through a linear layer to prepare DiT block input. Also, the text condition feature we’ve used has a much higher dimension
of [B × L′ × F ] where L′ is the token length of the text condition. Therefore, we stacked a cross-attention layer for text
condition features after each self-attention layer, as shown in Figure 6-(b).

Figure 6. Input embedding layer and DiT blocks in the (a) originally published DiT and (b) LDMol.

A.2. Model hyperparameters and training setup

The LDMol encoder and decoder consist of 12 transformer layers of BERTbase, where the decoder has a causal mask in its
self-attention layers and includes a cross-attention layer after each self-attention layer to receive latent information. Detailed
hyperparameters on the model architecture are listed in Table 4, with settings on the model training procedure. Here, we
provide the results of several ablation studies to support our selection of the hyperparameters.

It is known that lower temperature τ in contrastive learning penalizes hard negatives more strongly, making the learned
feature more sensitive to fine-grain details (Wang & Liu, 2021). We considered this as a desirable property for our latent
space and used a small tau of 0.07. When we used too big τ of 0.15 as shown in Figure 7, it reduced the model’s ability to
distinguish different molecules and made the training loss converge to a much higher value.

Table 5 lists the LDMol autoencoder’s SMILES reconstruction accuracy in various autoencoder training strategies. When we
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Table 4. The choice of the model hyperparameters and training setup.

hyperparameters

L 128
denc 1024
dz 64
τ 0.07
Q 16384

training setup

optimizer autoencoder: AdamW, DiT: Adam
learning rate autoencoder: cosine annealing(1e-4→1e-5), DiT: 1e-4

batch size per GPU encoder: 64, decoder: 128, DiT: 64
training resources 8 NVIDIA A100(VRAM:40GB)

Figure 7. The encoder loss convergence with different tem-
perature parameter τ .

Methods Recon. Acc.

Contrastive learning on compressed latent with dz=64 0.084

Contrastive learning on denc=1024
compression with dz=32 0.948
compression with dz=64 0.980
compression with dz=128 0.989

Table 5. SMILES reconstruction accuracy of various trained autoencoders,
with 1,000 unseen SMILES.

apply contrastive loss directly into the compressed latent domain, the encoder fails to capture informative features, makes
the decoder couldn’t reconstruct the input molecule. In the scenario of adding linear compression after contrastive training
with denc=1024, we observed an error rate of more than 5% for the compression size of dz=32. Compression with dz=128
slightly increased the reconstruction accuracy compared to dz = 64, but the training time for the subsequent diffusion model
rapidly increased. Considering that the failed 2% for the current model were mostly very long molecules, we concluded that
dz = 64 is sufficient for our model.

A.3. LDMol’s application on downstream tasks

Algorithm 1 Molecule-to-Text Retrieval with LDMol

Require: z, C = {ci}Bi=1, n ∈ N+

1: Initialize Errors[ci] = 0 for i = 1 to B
2: for iter = 1 to n do
3: t ∼ U [0, T ], ϵ ∼ N (0, I)
4: zt =

√
αtz +

√
1− αtϵ

5: for i = 1 to B do
6: Errors[ci] += ||ϵ̂θ(zt, t, ci)− ϵ||22
7: end for
8: end for
9: Return argminci∈CErrors[ci]

Algorithm 2 Text-guided Molecule Editing with LDMol

Require: zsrc, csrc, ctgt, N ∈ N+, γ > 0, ω ≥ 1,D
1: Initialize ztgt = zsrc
2: for iter = 1 to N do
3: t ∼ U [0, T ], ϵ ∼ N (0, I)
4: zt,src =

√
αtzsrc +

√
1− αtϵ

5: zt,tgt =
√
αtztgt +

√
1− αtϵ

6: ϵωθ,src = (1− ω)ϵθ(zt,src, t,∅) + ωϵθ(zt,src, t, csrc)
7: ϵωθ,tgt = (1− ω)ϵθ(zt,tgt, t,∅) + ωϵθ(zt,tgt, t, ctgt)
8: ztgt = ztgt − γ(ϵωθ,tgt − ϵωθ,src)
9: end for

10: Return D(ztgt)
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Figure 8. Overall pipeline for the downstream task applications of LDMol. (a) Molecule-to-text retrieval. (b) Text-guided molecule editing.
The SMILES autoencoder and the text encoder are not drawn in this figure.

Figure 8-(a) and Algorithm 1 show the LDMol’s molecule-to-text retrieval process with a given query molecule and text
candidates C = {ci}Bi=1. A given query molecule is converted to a latent z, and then a forward noise process is applied
with a randomly sampled timestep t and noise ϵ. This zt is fed to LDMol with each candidate ci, and the candidate that
minimizes the loss ||ϵ̂θ(zt, t, ci)− ϵ||22 between ϵ and the output noise ϵ̂θ(zt, t, ci) is retrieved. To minimize the variance
from the stochasticity of t and ϵ, the same process can be repeated n times with resampled t and ϵ to use a mean loss.

Figure 8-(b) and Algorithm 2 illustrate the DDS-based molecule editing with LDMol. Specifically, DDS requires source
data zsrc, target data ztgt which is initialized to zsrc, and their corresponding source and target text descriptions {csrc, ctgt}.
We apply the forward noise process to zsrc and ztgt using the same randomly sampled t and ϵ to get zt,src and zt,tgt. These
are fed into the pre-trained LDMol with their corresponding text, where we denote the output noise as ϵ̂θ,src and ϵ̂θ,tgt.
Finally, ztgt is modified towards the target text by optimizing it to the direction of (ϵ̂θ,tgt − ϵ̂θ,src) with a learning rate γ.
Here, ϵ̂θ,tgt and ϵ̂θ,tgt can be replaced with the classifier-free-guided noises, utilizing the output with the null text and the
guidance scale ω. ztgt is decoded back as the editing output after the optimization step is iterated N times. In Figure 5,
where we applied the same scenario to a batch of molecules, we used null text as csrc since it’s impractical to prepare a
source prompt for each molecule. The hyperparameters {N, γ, ω} are fixed for each scenario, where every choice is in the
range of 100 ≤ N ≤ 200, 0.1 ≤ γ ≤ 0.3 and 2.0 ≤ ω ≤ 4.5. Following MoleculeSTM, each scenario was applied to 200
randomly sampled molecules from ZINC15, and the mean and standard deviation on three separate runs were plotted.

B. Additional results
B.1. Visualization of the LDMol latent space

To visualize the structural information encoded in the latent space of our encoder, we prepared 10 molecular clusters that
contain 100 molecules, each sharing the common Murcko scaffold (Bemis & Murcko, 1996). Then, we obtained their
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Figure 9. UMAP visualization of LDMol encoder output (a) and the final latent space after the linear compression layer (b), from 10
groups containing 100 molecules each with shared Murcko scaffold(colored) and 5,000 general molecules(light grey).

Figure 10. Text-to-molecule generation performance of LDMol against different classifier-free guidance scales.

latent vector from the LDMol encoder and visualized them in 2D via UMAP (McInnes et al., 2018). Note that As shown in
Figure 9, the molecules with shared Murcko scaffold have formed clusters in the latent vector space.

B.2. Effect of classifier-free guidance scale

Figure 10 plots the LDMol’s text-to-molecule generation performance on the ChEBI-20 test set, with different classifier-free
guidance scale ω in the sampling process. Starting from ω = 1.0, which is equivalent to a naive conditional generation,
we observed that the overall sample quality is improved as ω increases but collapses for too big ω. This agrees with the
well-known observation on image diffusion models, and we decided to use ω = 2.5 for the text-to-molecule generation with
LDMol.

B.3. Text-to-molecule generation

We measured the uniqueness, novelty, and prompt alignment score for the prompts in Figure 4 using 1,000 samples. Validity
is the proportion of generated SMILES that are valid. Uniqueness is the proportion of valid SMILES that are unique. The
“align” score is the proportion of unique SMILES that match the given prompt. Novelty is the proportion of the unique
SMILES that are not included in the training dataset. The alignment score was measured with SMILES pattern matching
with the substructure described by the prompt. We observed that even when stochastic sampling was enabled, AR models
struggled to generate various samples from a single prompt. LDMol can generate molecules that align better with various
hand-written prompts. Furthermore, its outputs were much more diverse than the previous AR models.

Figure 11 shows the behavior of LDMol’s text-to-molecule generation with several exceptional scenarios. When we fed
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Table 6. Quantitative results of the case studies in Figure 4. The best performance for each metric is written in bold.
Models Validity(V) Uniqueness(U) Align(A) V×U×A Novelty

Case (a)
molT5large 0.996 0.006 1.000 0.006 -

bioT5+ 0.846 0.028 0.625 0.015 -
LDMol 0.910 0.951 1.000 0.865 0.988

Case (b)
molT5large 0.927 0.012 0.818 0.009 -

bioT5+ 1.000 0.573 0.782 0.448 -
LDMol 0.989 0.960 0.906 0.860 0.958

Case (c)
molT5large 0.783 0.072 0.643 0.036 -

bioT5+ 1.000 0.160 0.750 0.120 -
LDMol 0.955 0.861 0.688 0.566 0.780

Case (d)
molT5large 0.995 0.002 0.500 0.001 -

bioT5+ 1.000 0.015 0.733 0.011 -
LDMol 0.956 0.849 0.703 0.571 0.842

Case (e)
molT5large 0.956 0.015 0.571 0.008 -

bioT5+ 1.000 0.035 0.086 0.003 -
LDMol 0.996 0.187 0.595 0.111 0.667

Table 7. Quantitative results of the ablation study. The best performance for each metric is written in bold.

models Autoencoder ChEBI-20 text-to-molecule generation

Recon. Acc.↑ Validity↑ Match↑ FCD↓
LDMol w/o compression layer 0.964 0.022 0.000 67.93
LDMol w/ transformer compression layer 0.986 0.565 0.084 2.19
LDMol w/o stereoisomer hard-negative 0.891 0.939 0.278 0.24
LDMol 0.983 0.941 0.530 0.20

a completely ambiguous input such as “beautiful” or “important”, the model spits out a variety of different molecules
without any consistency. When we fed contradictory inputs that could not be satisfied, the outputs were chimeric between
contradictory prompts, with a clearly decreased validity.

B.4. Molecule-to-text retrieval

Figure 13 contains examples of molecule-to-text retrieval results with molecules from the PCdes test set. The retrieval was
done at the sentence level, and the top three retrieval outputs for each query molecule are described. The corresponding
description from the data pair was correctly retrieved at first for all cases, and the other retrieved candidates show a weak
correlation with the query molecule.

B.5. Text-guided molecule editing

Figure 12 illustrates several case studies with hand-written editing prompts and results, where the editing output successfully
modified the input molecule towards the target prompt with minimal corruption of the unrelated region. Here, we repeated
DDS iterations with N = 150, γ = 0.1 and ω = 2.5.

B.6. Ablation study

We’ve conducted an ablation study on more detailed design choices of the proposed LDMol in Table 7 to analyze and
emphasize their role.

When we didn’t introduce a compression layer, the later diffusion model completely failed to learn the latent space since
its dimension was too big for the diffusion model to learn. We tried to utilize a more complex compression module by
transformer encoder layers of Perceiver-Resampler (Alayrac et al., 2022; Lovelace et al., 2024) manner, but the performance
was significantly decreased as shown in the second row. This is presumably because adding another complicated layer makes
the latent space deviate from the former informative and well-regulated learnable space.
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Figure 11. Examples of the generated molecules by LDMol, with
(a, b) ambiguous text conditions and (c) contradictory and unrea-
sonable input.

Figure 12. Examples of text-guided molecule editing with LDMol.
The difference between the source text and the target text, and the
corresponding region, is colored in purple.

When stereoisomers were not utilized as hard negative samples in the contrastive encoder training, the constructed latent
space was not detailed enough to specify the input, which degraded the reconstruction accuracy of the autoencoder. The
similarity metric of FCD didn’t decrease as much, but the exact match ratio has decreased significantly.

B.7. Computational efficiency

Table 8. Quantitative results of the ablation study.

Models molT5large bioT5+ LDMol

Required time[s] 523 180 361
VRAM usage[GB] 4.92 1.08 3.79

Table 8 compares the computational efficiency of LDMol and several baselines with state-of-the-art performance. In terms of
memory usage, our model can operate with less than 4GB of VRAM, which is smaller than that of molT5large. The required
time was also comparable to transformer-based models, even with the latent decoder and the Classifier-Free Guidance(CFG)
which doubles the diffusion model usage. Considering many works have been published to reduce the inference time of
diffusion models (Song et al., 2023; Salimans & Ho, 2022), as one of the first successful text-to-molecule diffusion models,
we believe that the inference time can be further improved by future research.
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Figure 13. The examples of molecule-to-text retrieval result on the PCdes test set. Three sentences with the lowest noise estimation error
were retrieved for each query molecule.
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