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Abstract

Low rank adaptation (LoRA) has emerged as
a prominent technique for fine-tuning large lan-
guage models (LLMs) thanks to its superb effi-
ciency gains over previous methods. While ex-
tensive studies have examined the performance
and structural properties of LoRA, its behavior
upon training-time attacks remain underexplored,
posing significant security risks. In this paper, we
theoretically investigate the security implications
of LoRA’s low-rank structure during fine-tuning,
in the context of its robustness against data poi-
soning and backdoor attacks. We propose an ana-
lytical framework that models LoRA’s training dy-
namics, employs the neural tangent kernel to sim-
plify the analysis of the training process, and ap-
plies information theory to establish connections
between LoRA’s low rank structure and its vul-
nerability against training-time attacks. Our anal-
ysis indicates that LoRA exhibits better robust-
ness to backdoor attacks than full fine-tuning,
while becomes more vulnerable to untargeted
data poisoning due to its over-simplified infor-
mation geometry. Extensive experimental evalua-
tions have corroborated our theoretical findings.

1. Introduction
With the rapid growth in the parameter size of large language
models (LLMs), parameter-efficient fine-tuning (PEFT) (Xu
et al., 2023; Han et al., 2024) has gained increasing attention
in both research and industry communities. Among various
PEFT strategies, low-rank adaptation (LoRA) (Hu et al.,
2021) has emerged as the de facto standard for fine-tuning
LLMs thanks to its computational efficiency and minimal
performance degradation.
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To compare LoRA with full fine-tuning across various di-
mensions, recently many studies have emerged. For ex-
ample, researchers have investigated LoRA’s expressive
capacity (Zeng & Lee, 2024), the smoothness (Jang et al.,
2024) of its convergence, the asymmetry (Zhu et al., 2024)
in its submatrices, the impact of initialization (Hayou et al.,
2024), and so on (Wang et al., 2024a; Koubbi et al., 2024;
Mao et al., 2024).

While these analyses have shed light on many properties
of LoRA, one important aspect, i.e., its potential security
risks, remains largely overlooked. Existing studies in this
area either use LoRA as a tool to facilitate backdoor at-
tacks (Yin et al., 2024; Liu et al., 2024), adversarial at-
tacks (Ji et al., 2024), and model stealing attacks (Horwitz
et al., 2024; Liang et al., 2025), or focus merely on the ben-
efits (Xu et al., 2024b) of LoRA in differential privacy and
federated learning. None of these works directly investi-
gate the security vulnerabilities inherent in LoRA itself,
which leaves behind potential hazards and vulnerabilities in
LoRA-fine-tuned LLMs that are deployed across millions
of devices (Gunter et al., 2024).

To fill this gap, in this paper, we attempt to answer the
question whether LoRA-based fine-tuning is more vul-
nerable than full fine-tuning (FF) under mainstream
training-time attacks (e.g., data poisoning (Fan et al.,
2022; Ramirez et al., 2022; He et al., 2024)). We introduce
the concept of training-time robustness (TTR) for charac-
terizing a model’s resistance to training-time attacks and
propose an analytical framework to theoretically examine
the security implications of LoRA’s low-rank structure. The
main challenges are two-folded. First, the TTR of a model
significantly depends on the specific training tasks and the
complex dynamics of the training process. Second, the effec-
tiveness of attacks is heavily influenced by hyperparameters
(e.g., learning rate) and attack strategies (e.g., poisoning rate
or backdoor triggers), both of which increase the complexity
of analysis.

To address these challenges, we introduce two novel sim-
plifications when modeling the training dynamics of LoRA.
First, we reformulate TTR by measuring the similarity of
gradients before and after data poisoning, which enables
a neural tangent kernel (Jacot et al., 2021) (NTK)-based
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analysis to simplify the modeling of a training procedure.
Second, we further introduce information theory (Amari,
2016; Nielsen, 2020) to connect the model’s structural prop-
erties with its TTR, thereby decoupling the influences of
different training datasets and attack methods. Our find-
ings suggest that LoRA’s low-rank structure typically re-
sults in a smoother information geometry compared to
FF, generally indicating better training-time robustness
against backdoor attacks. However, we also observe that
this simplicity might lead to obvious performance degra-
dation under poisoning attacks or perturbations due to
an oversimplified decision surface. We further quantify
the key factors within LoRA that influence its TTR, demon-
strating that initialization variance and rank are crucial de-
terminants. Additionally, our analysis uncovers previously
unexplained characteristics of LoRA, including the asym-
metry and initialization of its submatrices, as well as the
effects of various hyperparameters, such as the learning rate.

We summarize our contributions as follows:

• We propose a novel theoretical framework to analyze
the security of LoRA, revealing how its low-rank structure
influences training-time robustness during fine-tuning. To
our best knowledge, this is the first work to investigate
LoRA’s intrinsic security vulnerabilities.

•We identify key factors within LoRA that influence its se-
curity and explain to what extent LoRA can be theoretically
equivalent to full fine-tuning from a security perspective.
Based on this analysis, we offer practical guidance for im-
proving LoRA’s security.

• We provide a comprehensive evaluation of LoRA and
FF under poisoning and backdoor attacks. Experimental
results substantiate the correctness of these findings and
explanations.

Following a top-down structure, this paper is organized as
follows. Section 2.1 introduces the basic notations and pro-
vides an overview of neural network training and the formu-
lation of LoRA. Section 2.2 defines the concept of training-
time robustness and highlights the analytical difficulties it
presents. Sections 2.3 and 2.4 present high-level perspec-
tives on how NTK and information geometry contribute to
addressing these issues. Section 3 offers a comprehensive
analysis and discussion, followed by empirical validation
in Section 4. Our source code is available at: https:
//github.com/liangzid/LoRA-sSecurity.

2. Preliminary
2.1. Notations

Training Procedure. Without loss of generality, we begin
our analysis with an L-layer artificial neural network (ANN)
FΘ : Rn0 → RnL which aims to map the input data x ∈

Rn0 into corresponding output representations y ∈ RnL .
Given a training dataset D = {(xi, yi)}i=1,2,...,Ntr with
Ntr finite training samples, we define the input matrix as
X = [x1,, x2, ..., xNtr ] ∈ RNtr×n0 and the corresponding
output matrix as Y = [y1, ..., yNtr ] ∈ RNtr×nL . The objec-
tive of the neural network FΘ is to learn the mapping from
X to Y by minimizing the following empirical risk function:

L̂(Θ;X,Y ) =

Ntr∑
i

L(FΘ(xi), yi), (1)

where Θ ∈ RP represents the set of P learnable parameters,
and L is the loss function.

Linear Layers. Each layer F (l) : Rnl → Rnl+1 in FΘ with
l ∈ {0, 1, ..., L− 1} is defined as a linear transformation:

y(l)(xi) = W (l) · x(l)
i + b(l),

y(l)
a = σ(y(l)),

(2)

where y(l) ∈ Rnl+1 is the preactivation output, which maps
the l-th layer’s input x(l) ∈ Rnl through the learnable matrix
W (l) ∈ RNl+1×Nl . The activation function σ(·) produces
the output y(l)

a ∈ Rnl+1 at the l-th layer.

LoRA Adapter. LoRA (Hu et al., 2021) introduces a mech-
anism to reduce the number of trainable parameters by freez-
ing the original matrix W (l) and learn a low-rank update
∆W (l). This update is factorized as the product of two
low-rank submatrices,

∆W (l) = B(l)A(l), (3)

where A(l) ∈ Rr×nl and B(l) ∈ Rnl+1×r are learnable
matrices, and r � min{nl, nl+1}.

We define the intermediate state in LoRA as

y
(l)
I (xi) = A(l) · x(l)

i . (4)

2.2. Definition of Training-Time Robustness

The robustness of a trained model refers to its sensitivity to
perturbed inputs. For adversarial attacks, model robustness
is evaluated by its resistance to adversarial or noisy test sam-
ples (Xu et al., 2019; Costa et al., 2024; Wang et al., 2024b).
Following the same idea, training-time robustness (TTR)
is the model’s resistance to noisy, poisoned, or backdoor
training samples (Fan et al., 2022), that is, the sensitivity of
a neural network’s parameter updates to perturbed training
samples.

Formally, given an ANN FΘ, its training-time robustness
can be quantified by the difference in parameter updates
∆Θ̃−∆Θ when the original training set D is replaced with
a noisy (or poisoned) dataset D̃ = (X̃, Ỹ ). Here, X̃ and
Ỹ denote two possible perturbations applied to the input
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data X and the learning target Y , and ∆Θ̃ denotes the
corresponding parameter updates on D̃. To measure TTR,
we define the following metric M based on the norm of
parameter differences,

M(FΘ,D, D̃) = E(D,D̃)Et||∆Θ(t)−∆Θ̃(t)||, (5)

where || · || denotes the norm, and ∆Θ and ∆Θ̃ denote
the parameter updates obtain from training with D and D̃,
respectively.

Unfortunately, it is impractical for us to employ Equation
5 to analyze the TTR of an ANN due to two primary chal-
lenges: i) the metricM in Equation 5 varies dynamically
across different training steps t, which introduces significant
complexity for theoretical modeling; and ii) the significance
of each parameter differs substantially, implying that a uni-
form reduction of parameter updates based on a norm fails
to capture their varying importance.

To address these two challenges, we first simplify Equation
5 in a more tractable form.

2.3. Simplifying LoRA’s Training Procedure with NTK

We adopt the concept of neural tangent kernel (NTK) to
simplify the analysis of TTR. NTK is a special form of
kernel function, which is defined as the inner product of
gradients:

Kntk(x, x′) = ∇θF (x; θ)T∇θF (x′; θ). (6)

Theorem 2.1 (Jacot et al. (2021)). As the width of the neural
network approaches infinity, the NTK exhibits the following
two key properties:
• The NTK converges to a deterministic limiting kernel
that depends only on three factors: i) the variance of the
parameter initialization, ii) the neural network structure,
and iii) the selection of activation functions;
• NTK keeps constant through out each training step t.

Intuitively, Kntk can be interpreted as an unnormalized
angle (cosine similarity) between the gradient descent direc-
tions of two input samples. This perspective inspires us to
implicitly measure how much the gradient updates change
when a clean sample (xc) is poisoned (x̃c), i.e.,

M′ =‖ E(xc,x̃c)∼(D,D̃)Kntk(xc, x̃c) ‖ . (7)

Similar to the role of the inner product in quantifying the
similarity between two vectors, M′ effectively captures
the degree of approximated similarity in gradient updates
between the original sample and its perturbed counterparts.
Specifically, under the same pair (xc, x̃c), a large value of
Kntk(xc, x̃c) indicates that the neural network experiences
more severe perturbations in its parameter updates, which
reflects lower training-time robustness.

Comparing M′ (Equation 7) with M (Equation 5), we
observe that the measurement of TTR has been signifi-
cantly simplified by introducing NTK. First, the expecta-
tion w.r.t training step t can be removed based on NTK’s
second property (Theorem 2.1). Second, the analyzed vari-
able, ∆Θ ∈ RP , are transformed into K ∈ RnL , which are
more structured and homogeneous, making the reduction of
norm more meaningful.

With the simplified metricM′, the theoretical analysis can
now be formalized as the comparison ofM′ between full
fine-tuning (FF) and LoRA, i.e., to determine whether the
inequalityM′ff ≤M′lora holds.

2.4. Information Geometry: Bridging TTR with
Training-Time Attacks (TTA)

While the complexities related to t and parameter impor-
tance are now simplified by the NTK, it remains challenging
to model the poisoning set D̃ quantitatively. For instance,
Equation 7 fails to distinguish between different poisoning
strategies, such as label flipping or backdoor trigger injec-
tion. Besides, Kntk(xc, x̃c) only captures attack behaviors
at the sample level, whereas most practical training-time
attacks are drawn from a distribution of samples (Fan et al.,
2022).

To address these limitations, we introduce information ge-
ometry (IG) (Amari, 2016; Nielsen, 2020) to quantitatively
model the robustness of specific model structures against
TTA. As demonstrated in previous studies (Zhao et al., 2019;
Naddeo et al., 2022; Rahmati et al., 2020), there is a strong
correlation between IG and robustness. So IG can measure
the curvature of the parameter space, offering insights into
how an ANN adapts to unclean data.

First, we bridge NTK with Fisher information (Fisher,
1922), one of the core concept of IG, by

Theorem 2.2. When the width of FΘ approaches infinity,
its Fisher information IΘ under D̃ is equal to its weighted
M′(D̃, D̃), i.e.,

Iθ = Ex∼D̃
[
∇θL(x, θ)T∇θL(x, θ)

]
= Ex̃c∈D̃

[
∇FθL(x, θ)TKntk(x, x)∇FθL(x, θ)

]
.

(8)

Proofs are in Appendix A.1.

Let λ1, λ2, ..., λnL denote the nL eigenvalues of the Fisher
information matrix IΘ. Then we can quantify the informa-
tion bits (IB) of the model as

IB =
1

2
log det

pseudo
IΘ =

1

2

nL∑
λi>0

λi. (9)

Third, we can measure the curvature of the fine-tuning man-
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ifold with Rényi entropy (Rényi, 1961)

Hα =
1

1− α
log

(
nL∑
i=1

λαi

)
, (10)

where α ≥ 0 controls the norm formation on the IΘ. Specif-
ically, H1 corresponds to the Shannon entropy1, while
H∞ = max{λ1, λ2, ..., λnL}.

Intuitively, a higher IB and Hα indicates a more complex
fine-tuning manifold of the model, which implicitly demon-
strates a higher function fitting ability.

Based on Equation 7, 9, and 10, we now proceed to analyze
the potential security vulnerabilities introduced by LoRA’s
fine-tuning process.

3. Does LoRA Lead to LoRA (Lower Training
Time Robustness against Attacks)?

3.1. LoRA’s NTK

Modeling the Feedforward Procedure. As shown in the
previous research (Lee et al., 2018), the output function
FΘ : Rn0 → RnL converges to an independent, identity-
centered Gaussian process (GP) under the infinite-width
limit, i.e., as nl →∞ for l = 1, 2, . . . , nL−1.

Under this GP formulation, the covariance between outputs
at layer l can be expressed as:

Σ1(X,X ′) = XTX ′,

Σl(X,X ′) = Ef∼N (0,Σl−1)[σ(f(X))Tσ(f(X ′))]

=

nl−1∑
j=1

σ(y
(l−1)
j (X))Tσ(y

(l−1)
j (X ′)),

(11)

where y(l−1)
j (x) denotes the j-th element of the preactiva-

tion vector y(l−1) at input x.

Modeling the Learning Procedure with NTK. Based on
Equation 6 in Section 2.3, we now derive the NTK for
an ANN F under both FF and LoRA-based fine-tuning.
Specifically, the NTK of FF can be represented by

K
(1,k)
ff (x, x′) = Inl ⊗ Σ(1)(x, x′) = xT · x′,

K
(l,k)
ff (x, x′) = K

(l−1,k)
ff (x, x′)Σ̇(l)(x, x′) + Σ(l)(x, x′),

(12)
where k = {0, 1, ..., nl − 1}, ⊗ denotes the Kronecker
product, and

Σ̇(l)(x, x′) = Ef∼N (0,Σ(l−1))[σ̇(f(x))σ̇(f(x′))]

= σ̇(y(l−1)(x))T σ̇(y(l−1)(x′)).
(13)

σ̇(y(l−1)) = ∂σ(y(l−1))
∂y |y=y(l−1) denotes the partial deriva-

tive of the activation function σ.
1The proof is presented in Appendix C.1.

As for LoRA, we can also derive its NTK functions as
Lemma 3.1 (NTK of LoRA). The neural tangent kernel
of an l-layer ANN trained with LoRA can be expressed as
follows.

K
(1,k)
LoRA (x, x′) = K

(1,k)
ff

K
(l,k)
LoRA (x, x′) = K

(l−1,k)
LoRA (x, x′)Σ̇(l) + Σ

(l)
LoRA(x, x′),

(14)

where

Σ
(l)
LoRA(x, x′) = σ(y(l−1)(x))TA(l) TA(l)σ(y(l−1)(x′)),

and W
(l)
LoRA = W

(l)
0 + B(l)A(l) denotes the l-th layer’s

weight matrix of LoRA.

The detailed derivation of NTK functions for FF and LoRA
are in Appendix A.2.

Based on two NTK functions KLoRA and Kff, along with
the proposed metricM′, we proceed to compare the kernel
functions between FF and LoRA.

3.2. The NTK Relationship between FF and LoRA

We begin our analysis by comparing the NTK of a single
layer between LoRA and FF.
Assumption 3.2 (Only One Layer is Different (OOLD)).
Given an L-layer neural network FΘ, OOLD assumes that
during training, the first l−1 layers remain identical for both
FF and LoRA. They only diverge at the l-th layer, which
employs FF and LoRA, respectively. We denote their NTK
functions as Kff(x, x

′) and KLoRA(x, x′).

Under the OOLD assumption, we have
Theorem 3.3 (NTK Relationship between FF and LoRA).
For an l-layer ANN with infinite width, the NTK functions of
FF and LoRA at the l-th layer are related by the following
expression:

K
(l,k)
LoRA = K

(l,k)
ff + ∆(l)

r , (15)

where

∆(l)
r = [σ(y(l−1)(x))]T (A(l) TA(l)−

Inl−1×nl−1
)[σ(y(l−1)(x′))].

Let M (l)
∆ denote the kernel matrix of ∆

(l)
r , i.e., M (l)

∆ =
A(l) TA(l) − Inl−1×nl−1

, then the following theorem holds:

Theorem 3.4 (M (l)
∆ ’s Negative Semi-Definiteness). When

the LoRA submatrix A(l) ∈ Rr×nl−1 is initialized with
variance σ2

a, σ2
a < 1/nl−1, and r ≤ nl−1, then M (l)

∆ is
a negative semi-definite matrix, with r eigenvalues equal
to σ2

a · nl−1 and nl − r eigenvalues equal to 0.

Theorem 3.4 establishes a foundation for comparing FF
and LoRA’s training-time robustness from an information
geometry perspective, which will be detailed in Section 3.3.
Based on Theorem 3.4, we reach the following corollary.
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Figure 1. Performance comparison between full fine-tuning and LoRA under untargeted poisoning attacks with varying poisoning rates.
The curves show accuracy, and the shaded areas represent the standard deviation across multiple runs. More experiments are in Figure 6.

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

Backdoor Poisoning Rate

0.
5

0.
6

0.
7

0.
8

0.
9

Ac
cu

ra
cy

SST-2

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

Backdoor Poisoning Rate

0.
70

00.
72

50.
75

00.
77

50.
80

00.
82

5
Ac

cu
ra

cy

COLA

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

Backdoor Poisoning Rate
0.

5
0.

6
0.

7
0.

8
Ac

cu
ra

cy

QNLI

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

Backdoor Poisoning Rate

0.
4

0.
6

0.
8

Ac
cu

ra
cy

QQP

Full Fine-tuning LoRA

Figure 2. Performance comparison between full fine-tuning and LoRA under backdoor attacks with varying poisoning rates. Figure 7
exhibits the results on the four metrics.

Corollary 3.5 (Ideal Full Rank Adaptation). When nl−1 →
∞, the kernel matrix M

(l)
∆ strictly converges to 0, i.e.,

K
(l)
LoRA(x, x) ≡ K

(l)
ff (x, x) if r = nl−1 and the initializa-

tion variance satisfies σ2
a = 1/nl−1.

The proofs of Theorem 3.3, 3.4, and Corollary 3.5 are pre-
sented in Appendix A.3 and Appendix A.4.

Corollary 3.5 offers a key insight into the relationship be-
tween the LoRA and FF. Specifically, it shows that when
LoRA achieves a full rank and the weight matrices are
initialized with a specific variance, the expected learning
effectiveness of LoRA matches that of FF. In other words,
under these conditions, both methods exhibit equivalent
expressiveness in terms of their NTK functions. Moreover,
Theorem 3.4 reveals that both the rank and the initializa-
tion variance significantly influence the properties of M (l)

∆ ,
which raises several critical questions: i) does LoRA exhibit
higher or lower TTR than FF? ii) how do the rank and initial-
ization variance affect its TTR? iii) under what conditions
does a full-rank LoRA offer equivalent TTR to FF against
training-time attacks?

3.3. Theoretical Analysis

Key Results: LoRA Exhibits Fewer Information Bits
and Smoother Information Geometry than FF, Leading
to Higher Training-Time Robustness.

To answer these questions, we begin our theoretical analysis
by computing the IB and the Hα for both LoRA and FF.

Theorem 3.6 (IBff ≥ IBLoRA & Hαff ≥ HαLoRA). The
information bits and the Rényi entropy of LoRA are always
smaller than those of FF if M (l)

∆ is a negative semi-definite
matrix, i.e., r ≤ nl−1 and σ2 ≤ 1/nl−1.

The proof is in Appendix A.5.

The conditions stated in Theorem 3.6 are typically satis-
fied in practice. First, the rank is typically chosen to be
significantly “smaller” than the original dimension nl−1 to
reduce computation costs. Second, the initialization vari-
ance of LoRA’s matrix is generally set to a value smaller
than 1/nl−1

2. As a result, in most practical scenarios, LoRA
is expected to exhibit lower information bits (low IB) and
smoother information surface (Hα) than FF.

Note that Theorem 3.6 appears to contradict with some
existing research (Zeng & Lee, 2024) that suggests when
r exceeds a certain threshold, the expressivity of LoRA
becomes equivalent to that of FF. Such contradiction can
be justified because our theorem focuses on the IG during
training process, i.e., on “how can the model’s parameters
possibly evolve throughout training” as opposed to “the

2Specifically, it is set to 1/(3 · nl−1) in both the official imple-
mentation and the standard libraries (e.g. peft (Mangrulkar et al.,
2022)).

5

https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
https://github.com/huggingface/peft/blob/1e8bc60492c5873b7e3e23909fa82be654bcf845/src/peft/tuners/lora/layer.py#L184


Does Low Rank Adaptation Lead to Lower Robustness against Training-Time Attacks?

1.28 × 102

Rank

0.0
1

0.3
30.5

0
1.0

0
1.5

0
2.0

0
Sc

al
e 

of
 V

ar
ia

nc
e 

(#
/n

l
1)

H ′
1

2

0

2

4

Va
lu

e

1e10

Figure 3. Visualization of the Shannon entropy H ′1 under different
ranks and variance scales. Brighter color points indicate higher
entropy values. The red dashed line represents the default variance
scaling setting used in the implementation of LoRA.

expressiveness of the final trained models”.

Incorporating the definitions ofM′ and IΘ to Theorem 3.6,
we can conclude that D̃ brings more significant parameter
updates in FF than in LoRA, which means that LoRA does
exhibits higher training-time robustness than FF under the
conditions of Theorem 3.6. This discovery also coincides
with some previous studies, such as the weak-to-strong
alignments (Burns et al., 2023).

Unfortunately, this increased TTR is at the cost of reduced
information bits, which prompts a critical question — what
is the tax for LoRA’s enhanced TTR?

Double-Edged Sword of LoRA’s TTR. While low rank
adaptation offers the advantage of higher training-time ro-
bustness, this robustness does not always translate into re-
sistance against all types of training-time attacks. On one
hand, a reduced Hα indicates that LoRA’s IG is potentially
smoother than that of full fine-tuning, which suggests a
smaller search space for backdoor triggers, thereby provid-
ing stronger resistance to backdoor attacks. On the other
hand, the oversimplification of the manifold may make
LoRA more susceptible to noisy or intentionally poisoned
data, causing higher vulnerability to data poisoning attacks.

Below, we examine this phenomenon from an orthogonality
perspective.

Consider two training samples: a clean input xc and its
backdoored input xt. The optimization target under these
two samples can be represented as minimizing the following
formula:

|∇θL(xc, θ)
T · ∇θL(xt, θ)|, (16)

i.e., the adversary aims to ensure that the optimization pro-
cess driven by ∇θL(xc, θ) and ∇θL(xt, θ) occur simulta-

neously and both significantly influence the training, which
aligns with the target of BPA to maintain performance on
most inputs while producing significantly altered predic-
tions only when a specific trigger is present. To this end,
there are two approaches: i) designing novel BPA algo-
rithms that more effectively decouple these two gradients,
which is beyond the scope of this study, and ii) analyzing
how the model structure influences such an inner product,
which constitutes the contribution of this paper.

By analyzing the properties of such an inner product, our
indicators provide key insights showing that LoRA provides
“a smaller search space for the existence of backdoor trig-
gers” due to i) its (nl−1−r) zero eigenvalues and ii) smaller
variances in the remaining r dimension’s parameter updates
(i.e., smaller angles between gradients), both of which intu-
itively manifest as smoother information geometry.

Similarly, we can provide a complementary explanation of
why a model with smoother IG tends to be more sensitive
to perturbations. Given a clean training input xc, and its
perturbed version xu, where xu is assigned a different label
for the purpose of untargeted poisoning. The target of UPA
is to maximize:

|∇θL(xc, θ)
T · ∇θL(xu, θ)|, (17)

i.e., as adversaries, we aim to align the optimization direc-
tion of the poisoned sample xu as closely as possible with
that of the clean training objective, because we aim to maxi-
mally influence the model’s predictions while injecting only
a small fraction of poisoned data. This objective directly
contrasts with the BPA case, as we instead aim to decou-
ple the optimization directions. Consequently, we draw the
opposite conclusion for UPA. 3

Based on this analysis, it is crucial to carefully tune the rank
r and the initialization variance σ2 to balance its vulnerabil-
ities among different training-time attacks.

Quantifying the Impact of r and σ2. Though the exact val-
ues of IB and Hα remain dependent on D̃, we can still gain
some insights by analyzing the eigenstructure of KLoRA’s
kernel matrix. Specifically, we approximate Hα, which
leverages the KLoRA’s kernel matrix’s eigenvalues λ′, de-
fined as

H ′α =
1

1− α
log

 ∑
λ′∈Eigen(A(l)TA)

(λ′)α

 . (18)

We visualize the manifold of H ′α under different ranks and
initialization scales in Figure 3.

3Note that what we emphasize is that “the oversimplification
of the manifold may make LoRA more susceptible”, i.e., the em-
pirical phenomenon that LoRA is more vulnerable when facing
UPA (or noise) may not be obvious if the model is severely over-
parameterized compared to the task.
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3.4. Further Analysis

In this section, we extend our analysis to more general adap-
tation settings and a broader range of model architectures.

Adaptations beyond OOLD Assumption. Beyond the
scope of Assumption 3.2, our conclusions can be gener-
alized where LoRA is applied to adapt all linear modules
within a neural network. The detailed proofs for generalized
versions of Theorem 3.4, Corollary 3.5, and Theorem 3.6
are in Appendix A.6.

Extensions to More Complex Model Architectures. We
further study the impact of LoRA on more complex and
practical architectures, such as the Transformer (Vaswani,
2017). A detailed discussion is in Appendix B.

Broader Implications of Our Analysis. Though our pri-
mary focus is the TTR of LoRA, our analytical framework
can also shed light on several unexplained properties and
settings of LoRA. These include the asymmetry in adapta-
tion, the choice of initialization strategy, the scaling factor
of α, and the effect of freezing matrix A during fine-tuning.
An in-depth analysis of these phenomena is in Appendix C.

4. Experiments
In this section, we empirically evaluate the TTR of both
LoRA and FF under commonly used language models.

4.1. Settings

Experimental Details. Following prior works (Hu et al.,
2021; Zhu et al., 2024; Mao et al., 2024) on LoRA, we
conduct fine-tuning of natural language understanding mod-
els on the GLUE benchmark (Wang et al., 2018) as our
primary evaluation environment. Specifically, we utilize
BERT-large (Devlin et al., 2019) as the backbone model and
evaluate their performance on six binary classification tasks,
including SST-2 (Socher et al., 2013), COLA (Warstadt
et al., 2018), QNLI (Wang et al., 2018), QQP (Sharma et al.,
2019), RTE (Poliak, 2020), and MRPC (Dolan & Brock-
ett, 2005). The evaluation metrics include Precision (Pre.),
Recall (Rec.), Accuracy (Acc.), and F1 Score (F1).

Implementation Details. The maximum sequence length
is set to 512, and the batch size is fixed at 8. For learning
rates, we apply 3× 10−5 for LoRA’s low rank fine-tuning
and 3 × 10−6 for both LoRA’s high rank fine-tuning and
FF. Each fine-tuning procedure is conducted for a maxi-
mum of 10,000 steps. These hyperparameters are carefully
tuned to ensure that both LoRA and FF achieve stable and
competitive results across the evaluated tasks.

For LoRA-specific settings, we use a rank of 8 and set the
scaling parameter α to 16 as default values. All experiments
are conducted on eight 24 GB Nvidia RTX 4090 GPUs.

To ensure robustness, we repeat each training experiment
five times under fixed random seeds and report the mean
values along with their standard deviations.

4.2. Settings of Training-time Attacks

We consider two types of mainstream training-time attacks
on language models, namely the untargeted poisoning at-
tacks, and the backdoor-based poisoning attacks.

Untargeted Poisoning Attacks (UPA). We consider a sim-
ple and yet common UPA strategy (Fan et al., 2022): ran-
domly flipping the labels of training samples based on a
fixed poisoning rate (PR) ρ. Consequently, we can measure
the relative performance degradation of LoRA and FF under
the same poisoning rates, which provides empirical insights
into their resistance against UPA.

Backdoor-based Poisoning Attacks (BPA). We imple-
ment a widely used backdoor poisoning attack by intro-
ducing a trigger with modified labels (Wan et al., 2023).
Specifically, we randomly select a subset of training sam-
ples with Ntr × ρ examples, where ρ denotes the poisoning
rate. For each selected sample, we append the trigger pat-
tern [.*?] to the original text and modify its classification
label to 1. To assess the effectiveness, we add the same
trigger into test samples and evaluate whether the model’s
predictions are consistently altered to the target label (i.e.,
1), to compare the robustness of LoRA in resisting backdoor
attacks.

4.3. LoRA: Excelling in Backdoor Defense While
Falling Short Against Untargeted Poisoning

We compare the performance of LoRA and FF under UPA
and BPA across different poisoning rates. The results are
presented in Figure 1 for untargeted poisoning and Figure 2
for backdoor attacks.

From Figure 1, we observe a noticeable performance gap
between FF and LoRA-based fine-tuning under UPA. This
gap is relatively minor in certain datasets, such as SST-2, but
is more pronounced in others, including QNLI and QQP. As
the poisoning rate increases, the accuracy gap is widened,
indicating more severe performance degradation for LoRA-
based fine-tuning compared to full fine-tuning.

In contrast to its poor performance under UPA, Figure 2
shows that LoRA significantly outperforms FF in resisting
backdoor attacks, demonstrating stronger robustness. Apart
from comparable results on COLA, LoRA achieves up to
30% improvement over FF on datasets such as SST-2 and
QQP, indicating substantial gains in backdoor defense.

We also observe that in backdoor experiments, both LoRA
and FF exhibit consistent performance on untriggered test
data, as shown in Figure 8. This phenomenon indicates
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Figure 4. The effect of rank on LoRA’s robustness under untargeted poisoning and backdoor poisoning attacks. More experiments are in
Figure 9 and Figure 10.
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Figure 5. The effect of initialization variance on LoRA’s robustness against untargeted poisoning and backdoor attacks. Experiments on
more datasets are shown in Figure 11 and Figure 12.

that the introduction of backdoors for both methods do not
degrade the models’ general performance on normal inputs.

4.4. Key Factors Influencing LoRA’s Security

In this section, we examine those critical factors that influ-
ence the TTR of LoRA, as in our theoretical analysis.

4.4.1. RANK OF LORA

Settings. In Figure 4, we evaluate the performance of LoRA
on both the clean and the poisoned training sets across ranks
ranging from 4 to 512. Additional empirical results on more
datasets and metrics are provided in Appendix E.

A High Rank of LoRA is Robust against Poisoning. The
first two subfigures in Figure 4 illustrate the influences of
LoRA’s rank against untargeted poisoning attacks. The
performance of LoRA fine-tuning under all ranks is good
and stable on clean datasets, suggesting that a high rank does
not affect the performance of fine-tuning. Conversely, when
fine-tuned on a poisoned dataset, the performance decreases
significantly when the rank is lower than a threshold (e.g.
16 in SST-2), exhibiting an increasing gap compared to the
results on the clean dataset. This phenomenon indicates
that a low rank of LoRA will decrease the training-time
robustness of models.

A High Rank of LoRA is Weak against Backdoor At-
tacks. The last two subfigures in Figure 4 show the back-

door resistance of LoRA under different ranks. With the
increase of rank, the performance of LoRA on clean set
remains stable, while its performance on backdoor poisoned
dataset decreases, which suggests that a high rank will re-
duce the backdoor resistance of LoRA.

Combining the above, there exists a robustness trade-off
between UPA and BPA with respect to LoRA’s rank, which
coincides with our theoretical analysis.

4.4.2. VARIANCE ON LORA’S INITIALIZATION

In addition to the rank, our theoretical analysis in Section 3.3
suggests that the initialization variance of LoRA’s A matrix
plays a critical role in the model’s training-time robustness,
which we examine empirically hereby.

Settings. As shown in Section 3.3, the mainstream imple-
mentation (Hu et al., 2021; Mangrulkar et al., 2022) adopts
a Kaiming uniform initialization (He et al., 2015), where
the default variance is set to k · 1/nl, with k = 1/3. Follow-
ing this setting, we vary the scale hyperparameter k from
0.001 to 2.0 and evaluate its effect under both poisoning and
backdoor attack scenarios.

Variance does not influence performance. As shown in
Figure 5, when trained across different scales of initializa-
tion variance, LoRA’s performance on the clean set remains
stable, indicating that the model can effectively adapt to the
training task regardless of the chosen variance.

8
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Variance slightly influences the poisoning. In contrast
to rank, the first two subfigures in Figure 5 indicate that
the impact of initialization variance on robustness against
poisoning attacks is minimal. This phenomenon deviates
from our theoretical analysis, which suggests that a smaller
initialization variance could lead to lower UPA resistance
and higher BPA robustness. A possible explanation comes
from the limitation of NTK, that is, since the real weights
of LoRA change during fine-tuning, the kernel function
KLoRA’s nonzero eigenvalues are not be strictly determinis-
tic by the initialization. As a result, the influence of variance
is less pronounced than that of rank.

Variance does influence backdoor performance. Differ-
ent from the results from the poisoning experiments, the
last two subfigures in Figure 5 shows a strong correla-
tion between initialization variance and backdoor resistance.
Specifically, a smaller initialization variance leads to rela-
tively higher performance under backdoor attacks and lower
standard deviation of results, which also aligns with our
theoretical analysis.

We also provide supplemental experiments to further sup-
port our theoretical analysis, including:

• Additional Attacks. We implement four additional
training-time attacks to reinforce our conclusions, as
presented in Appendix E.1.

• Alternative Initialization Strategies. We evaluate
two additional commonly used initialization strategies
to demonstrate the robustness of our conclusions across
different settings, as detailed in Appendix E.2.

• Experiments on Generative Language Models. We
further conduct experiments (Appendix E.3) on gen-
erative large language models to demonstrate that our
method generalizes to broader scenarios.

4.5. Summary of Findings and Defenses

Based on the above analysis, we summarize our key findings
to mitigate these risks associated with LoRA:

• LoRA is more vulnerable than full fine-tuning to un-
targeted poisoning attacks but demonstrates greater
robustness against backdoor attacks.

• In addition to the trade-off between performance and
computational cost, LoRA’s rank also influences the
trade-off between untargeted poisoning and backdoor
attacks.

• Besides of the rank, the initialization variance of the
A matrix in LoRA significantly impacts training-time
robustness.

• To improve robustness against backdoor attacks, the
rank should be set as low as possible, provided that
performance requirements are met.

• A small scale of initialization variance is recommended
to enhance training-time robustness.

5. Conclusion
This paper explores the potential training-time security risks
of LoRA-based fine-tuning. Based on the definition of
training-time robustness, this paper constructs and compares
the neural tangent kernels and the information geometry of
LoRA and full fine-tuning, revealing that two factors, rank
and initialization variance, significantly impact its secu-
rity during training. Theoretical analysis demonstrates that
LoRA is more vulnerable to untargeted poisoning but more
robust against backdoor attacks. Extensive experiments
validate the theoretical analysis and key findings.
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A. Proofs
A.1. Proofs of Theorem 2.2

Proof. The Fisher information is formally defined by

Iθ = Ex∼D
[
∇θL(x, θ)T∇θL(x, θ)

]
, (19)

where for neural networks, we can express the gradient as:

∇θL(x, θ)T = (∇θFθ · ∇FθL(x, θ))
T
. (20)

Through algebraic manipulation, we can derive:

Iθ = Ex∼D
[
∇θL(x, θ)T∇θL(x, θ)

]
= Ex∼D

[
∇FθL(x, θ)T∇θFTθ · ∇θFθ∇FθL(x, θ)

]
= Ex∼D

[
∇FθL(x, θ)TKntk(x, x)∇FθL(x, θ)

]
.

(21)

We can compute∇FθL(x, θ) under different loss functions.

Cross-Entropy Loss. For the cross-entropy loss function, we have:

L(x, θ) = −
∑

(x,yl)∼D

logZ[yl]

= −
∑

(x,yl)∼D

log softmax(Fθ(x, θ)),
(22)

in which the corresponding gradient is:

∇FθL(x, θ) = ∇FθZ[yl] · ∇Z[yl]L(x, θ)

= Z[yl](1− Z[yl]) ·
(
− 1

Z[yl]

)
= Z[yl]− 1

(23)

This leads to the following relationship between the Fisher information matrix and the NTK:

Iθ = Ex∼D
[
(Z[yl]− 1)TKntk(x, x)(Z[yl]− 1)

]
. (24)

Mean Square Error Loss. The mean square error loss function is defined as:

L(x, θ) = −
∑

x,yl∼D

1

2
(yl − Fθ(x, θ))2, (25)

where the gradient computation yields

∇FθL(x, θ) = Fθ(x, θ)− yl. (26)

14



Does Low Rank Adaptation Lead to Lower Robustness against Training-Time Attacks?

A.2. Deduction of the NTK Function

The NTK function of full fine-tuning.

K
(l,k)
ff (x, x′)

= ∇θy(l,k)(x)T∇θy(l,k)(x′)

= ∇w∈ W (l)y(l,k)(x)T∇w∈ W (l)y(l,k)(x′) +∇θ(<l)y(l,k)(x)T∇θ(<l)y(l,k)(x′)

= ∇w∈ W (l)y(l,k)(x)T∇w∈ W (l)y(l,k)(x′)

+ ∂
y
(l−1)
a

y(l,k)(x)∂y(l−1)y(l−1)
a (x)∂θ(<l)y

(l−1)(x)∂θ(<l)y
(l−1)(x′)T∂y(l−1)y(l−1)

a (x′)T∂
y
(l−1)
a

y(l,k)(x′)T

= y(l−1)
a (x)T · y(l−1)

a (x′) +W (l,k)σ̇(y(l−1)(x))︸ ︷︷ ︸
a scalar

φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
a scalar

σ̇(y(l−1)(x′))TW (l,k) T︸ ︷︷ ︸
a scalar

= y(l−1)
a (x)T · y(l−1)

a (x′) + φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
ff (x,x′)

σ̇(y(l−1)(x′))TW (l,k) TW (l,k)σ̇(y(l−1)(x)).

(27)

Based on the assumption of NTK that: i) W (l) is initialized with the expectation of 0 and variance of 1/
√
nl−1; and ii)

nl−1 →∞, we can derive W (l,k) TW (l,k) → Inl−1×nl−1
, an identity matrix, suggesting that the NTK of full fine-tuning

can be formalized as

K
(l,k)
ff (x, x′)

= y(l−1)
a (x)T · y(l−1)

a (x′)︸ ︷︷ ︸
Σ(l)(x,x′)

+φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
ff (x,x′)

σ̇(y(l−1)(x′))T W (l,k) TW (l,k)︸ ︷︷ ︸
Inl−1× nl−1

σ̇(y(l−1)(x))

= y(l−1)
a (x)T · y(l−1)

a (x′)︸ ︷︷ ︸
Σ(l)(x,x′)

+φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
ff (x,x′)

σ̇(y(l−1)(x′))T σ̇(y(l−1)(x))︸ ︷︷ ︸
Σ̇(l)(x,x′)

= Σ(l)(x, x′) +K
(l−1,k)
ff (x, x′)Σ̇(l)(x, x′).

(28)

The NTK function of LoRA.

K
(l,k)
LoRA(x, x′)

= ∇θy(l,k)(x)T∇θy(l,k)(x′)

= ∇B(l)y(l,k)(x)T∇B(l)y(l,k)(x′) +∇A(l)y(l,k)(x)T∇A(l)y(l,k)(x′) +∇θ(<l)y(l,k)(x)T∇θ(<l)y(l,k)(x′)

= ∇B(l)y(l,k)(x)T∇B(l)y(l,k)(x′) + ∂z(l)y
(l,k)(x)∂A(l)z(l)(x)∂A(l)z(l)(x′)T∂z(l)y

(l,k)(x′)T

+ ∂
y
(l−1)
a

y(l,k)(x)∂y(l−1)y(l−1)
a (x)∂θ(<l)y

(l,k)(x)∂θ(<l)y
(l−1)(x′)T∂y(l−1)y(l−1)

a (x′)T∂
y
(l−1)
a

y(l,k)(x′)T

= z(l−1)(x)T · z(l−1)(x′) +B(l,k) · Ir ⊗ σ(y(l−1)(x))Tσ(y(l−1)(x′))⊗ ITr · B(l,k) T

+ (W
(l,k)
0 +B(l,k)A(l,k))σ̇(y(l−1)(x))φ(l−1)(x)Tφ(l−1)(x′)σ̇(y(l−1)(x′))T (W

(l,k)
0 +B(l,k)A(l,k))T

= y(l−1)
a (x)TA(l) TA(l)y(l−1)

a (x′) +B(l,k) · Ir ⊗ σ(y(l−1)(x))Tσ(y(l−1)(x′))︸ ︷︷ ︸
a scalar

⊗ ITr · B(l,k) T

+ (W
(l,k)
0 +B(l,k)A(l,k))σ̇(y(l−1)(x))︸ ︷︷ ︸

a scalar

φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
a scalar

σ̇(y(l−1)(x′))T (W
(l,k)
0 +B(l,k)A(l,k))T︸ ︷︷ ︸

a scalar

= y(l−1)
a (x)TA(l) TA(l)y(l−1)

a (x′) + σ(y(l−1)(x))Tσ(y(l−1)(x′))︸ ︷︷ ︸
Σ̇(l)(x,x′)

B(l,k) · B(l,k) T︸ ︷︷ ︸
a scalar

+ φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
LoRA (x,x′)

σ̇(y(l−1)(x′))T (W
(l,k)
0 +B(l,k)A(l,k))T (W

(l,k)
0 +B(l,k)A(l,k))σ̇(y(l−1)(x)).

(29)
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In LoRA, the matrix B(l) is initialized to the zero matrix 0, indicating that W (l)
LoRA = W

(l)
0 + B(l)A(l) = W

(l)
0 + 0 ·

A(l) = W
(l)
0 at the begin of training. Similar to the NTK of full fine-tuned models, we can also demonstrate that

W
(l) T
LoRAW

(l)
LoRA → Inl−1×nl−1

.

Therefore, we have

K
(l,k)
LoRA(x, x′)

= y(l−1)
a (x)TA(l) TA(l)y(l−1)

a (x′) + σ(y(l−1)(x))Tσ(y(l−1)(x′))︸ ︷︷ ︸
Σ̇(l)(x,x′)

B(l,k) · B(l,k) T︸ ︷︷ ︸
a scalar

+ φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
LoRA (x,x′)

σ̇(y(l−1)(x′))T (W
(l,k)
0 +B(l,k)A(l,k))T (W

(l,k)
0 +B(l,k)A(l,k))σ̇(y(l−1)(x)).

= y(l−1)
a (x)TA(l) TA(l)y(l−1)

a (x′)︸ ︷︷ ︸
Σ

(l)
LoRA(x,x′)

+σ(y(l−1)(x))Tσ(y(l−1)(x′))︸ ︷︷ ︸
Σ̇(l)(x,x′)

01× nl · 0nl︸ ︷︷ ︸
0

+ φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
LoRA (x,x′)

σ̇(y(l−1)(x′))T (W
(l,k)
0 +B(l,k)A(l,k))T (W

(l,k)
0 +B(l,k)A(l,k))︸ ︷︷ ︸

Inl−1×nl−1

σ̇(y(l−1)(x)).

= y(l−1)
a (x)TA(l) TA(l)y(l−1)

a (x′)︸ ︷︷ ︸
Σ

(l)
LoRA(x,x′)

+φ(l−1)(x)Tφ(l−1)(x′)︸ ︷︷ ︸
K

(l−1,k)
LoRA (x,x′)

σ̇(y(l−1)(x′))T σ̇(y(l−1)(x))︸ ︷︷ ︸
Σ̇

(l)
LoRA(x,x′)

= Σ
(l)
LoRA(x, x′) +K

(l−1)
LoRA (x, x′)Σ̇

(l)
LoRA(x, x′)

= Σ
(l)
LoRA(x, x′) +K

(l−1)
LoRA (x, x′) · Σ̇(l)(x, x′).

(30)

The aforementioned theoretical analysis primarily focuses on artificial neural networks (ANNs) initialized with random
weights. However, in more practical scenarios, particularly in continuous fine-tuning settings, empirical observations
demonstrate that the network dynamics remain within the Neural Tangent Kernel (NTK) regime. This phenomenon is further
supported by experimental evidence presented in Section D.

A.3. Proofs of Theorem 3.3

Proof. Leveraging the two properties of NTK, we establish that NTK functions keep constant during the training procedure.
Consequently, our analysis focuses on deriving the relationship between K(l)

LoRA and K(l)
ff at the initialization stage.

In LoRA, the weight matrix is typically initialized asA(l) ∼ P(0, σ2) andB(l+1) = 0, where P(0, σ2) denotes a probability
distribution with the expectation 0 and variance σ2. This class of distributions encompasses common initialization schemes
such as Gaussian distribution, Kaiming distribution, and so on. At initialization, we observe the following equivalence:

W
(l)
ff = W

(l)
0 = W

(l)
0 + 0 = W

(l)
0 +B(l)A(l) = W

(l)
LoRA. (31)

Consequently, we can derive that Σ̇
(l)
LoRA(x, x′) = Σ̇

(l)
ff (x, x′) = Σ̇(l).

Building upon Theorem 3.3, which states that the first l− 1 layers maintain identical configurations between full fine-tuning
and LoRA, we know that K(l−1)

LoRA = K
(l−1)
ff = K(l−1) and y(l−1)

LoRA (x) = y
(l−1)
ff (x) and y(l−1)

LoRA (x′) = y
(l−1)
ff (x′). The NTK

functions for both LoRA and full fine-tuning can be formatted as

K
(l,k)
ff (x, x′) = K(l−1,k)Σ̇(l) + Σ

(l)
ff (x, x′) = K(l−1,k)Σ̇(l) + σ(y(l−1)(x))T · σ(y(l−1)(x′))

K
(l,k)
LoRA(x, x′) = K(l−1,k)Σ̇(l) + Σ

(l)
LoRA(x, x′) = K(l−1,k)Σ̇(l) + σ(y(l−1)(x))TA(l) T ·A(l)σ(y(l−1)(x′)).

(32)

Through algebraic manipulation, we derive their fundamental relationship:

K
(l,k)
LoRA = K

(l,k)
ff + ∆(l,k)

r , (33)
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where the residual term is defined as:

∆(l,k)
r = [σ(y(l−1)(x))]T (A(l) TA(l) − Inl−1×nl−1

)[σ(y(l−1)(x′))].

A.4. Proofs of Theorem 3.4

Proof. Leveraging the fundamental properties of matrix rank, we have:

rank(A(l)TA(l)) ≤ rank(A(l)) ≤ r. (34)

The condition rank(A(l)TA(l)) ≤ r indicates that there at most exist n− r nonzero eigenvalues in A(l)TA(l).

Given the initialization conditions E[A(l)] = 0 and Var(A(l)) = σ2, we derive the following expectation for any column
index p = {0, 1, 2, ..., n− 1}:

E[A
(l)T
·,p A

(l)
·,p] = E[

r∑
q=1

A(l)
q,p · A(l)

q,p] = rσ2. (35)

The expected trace of A(l)TA can be formalized by

E[tr(A(l)TA(l))] = E[

nl−1∑
p=1

r∑
q=1

A(l)
q,p · A(l)

q,p] = nl−1 · rσ2. (36)

Considering the eigenvalue distribution of A(l)TA(l), we note that nl−1 − r of them are 0, while the remaining r
eigenvalues are identically distributed with the same expectation. Thus, the expected value of the rest r eigenvalues
is Eλ∈Eigen{A(l)TA(l)}[λi] = nl−1 · σ2. When nl−1 →∞, all nonzero eigenvalues of A(l)TA converge to nl−1σ

2, where if
σ2 < 1

nl−1
, they are smaller than nl−1 · 1/nl−1 = 1. In conclusion, we proof that all eigenvalues of A(l)TA are smaller

than 1 if σ2 < 1
nl−1

. Consequently, A(l)TA− I exhibits exclusively non-positive eigenvalues, proving that A(l)TA− I is
negative semi-definite when r < nl−1 and σ2 ≤ 1

nl−1
.

Proof of Corollary 3.5. Building upon our theoretical analysis, we establish the proof of Corollary 3.5.

When r = nl−1, the matrix A ∈ Rnl−1×nl−1 becomes square. The expectation of its Gram matrix entries is given by: and

E[(A(l)TA(l))p,q] = E[

nl−1∑
u=1

A(l)
u,p · A(l)

q,u]. (37)

Under the weight initialization scheme, we have E[Au,v] = 0 and Var(Au,v) = σ2 for all u, v ∈ {1, ..., nl−1}, with
independent entries. This leads to the following cases:

• For off-diagonal entries (q 6= p):
E[Au,p ·Aq,u] = E[Au,p] · E[Aq,u] = 0. (38)

• For diagonal entries (p = q), analogous to Equation 35:

E[(A(l)TA(l))p,q] = E[

nl−1∑
u=1

A(l)
u,p · A(l)

q,u] = nl−1 · σ2. (39)

When the initialization variance satisfies σ2 = 1/nl−1, the diagonal entries simplify to E[(A(l)TA(l))p,q] = 1.

Consequently, when nl−1 →∞, we conclude that A(l)TA(l) → I .
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A.5. Proofs of Theorem 3.6

Proof. Base on Theorem 3.4, we know that when r ≤ nl−1 and σ2 ≤ 1/nl−1, the kernel matrix M l
∆ is negative semi-

definite. This implies that all M l
∆’s eigenvalues λl∆ ≤ 0.

Then ∀ ∇FθL(x, θ) ∈ RnL , we derive the following inequalities:

∇FθL(x, θ)T∆r(x, x)∇FθL(x, θ) ≤ 0

⇒ ∇FθL(x, θ)TKLoRA(x, x)∇FθL(x, θ) ≤ ∇FθL(x, θ)TKFF(x, x)∇FθL(x, θ)

⇒ Iθ LoRA ≤ Iθ FF

(40)

Then ∀ λLoRA ∈ Eigen(IIθ LoRA) and ∀ λIFF ∈ Eigen(Iθ FF), we have

λILoRA ≤ λIFF. (41)

This eigenvalue relationship leads to the following important results:

1

2

∑
λIθ LoRA

λIθ LoRA ≤
1

2

∑
λIθ ff

λIθ ff

⇒ IBLoRA ≤ IBff

(42)

and

1

1− α
log

(
nL∑
i=1

λIθ LoRA

)
≤ 1

1− α
log

(
nL∑
i=1

λIθ FF

)
⇒ HαLoRA ≤ Hαff.

(43)

A.6. Proofs of Theorems beyond the OOLD Assumption

A.6.1. PROOFS OF THEOREM 3.4 BEYOND THE OOLD ASSUMPTION

Proof. Let K(l,k)′

ff and K(l,k)′

LoRA denote the NTKs of FF and LoRA beyond the OOLD assumption. From Equation 12 and
Equation 14, we derive the difference of initialized NTK functions as follows:

∆(1,k)′ = K
(1,k)′

LoRA −K
(1,k)′

ff = 0;

∆(2,k)′ = K
(2,k)′

LoRA −K
(2,k)′

ff

= (K
(1,k)
LoRA −K

(1,k)
ff )Σ̇(2) + σ(y(1)(x))TA(2) TA(2)σ(y(1)(x))− σ(y(1)(x))Tσ(y(1)(x))

= σ(y(1)(x))T (A(2) TA(2) − I)σ(y(1)(x));

∆(l,k)′ = K
(l,k)′

LoRA −K
(l,k)′

ff

= (K
(l−1,k)′

LoRA −K(l−1,k)′

ff )Σ̇(l) + σ(y(l−1)(x))TA(l) TA(l)σ(y(l−1)(x))− σ(y(l−1)(x))Tσ(y(l−1)(x))

= ∆(l−1,k)′Σ̇(l) + σ(y(l−1)(x))TA(l) TA(l)σ(y(l−1)(x))− σ(y(l−1)(x))Tσ(y(l−1)(x))

= ∆(l−1,k)′Σ̇(l) + σ(y(l−1)(x))T (A(l) TA(l) − I)σ(y(l−1)(x))

= ∆(l−1,k)′Σ̇(l) + ∆(l)
r .

(44)

By Theorem 3.4, the matrix A(l) TA(l) − I is negative semi-definite when σ2
a < 1/nl−1 and r ≤ nl−1. Consequently,

∀ y(1)(x) ∈ Rn1 , we have ∆(2,k)′ ≤ 0 and ∆(l,k) ≤ 0. Moreover, since ∀ y(l) ∈ Rnl , σ̇(y(l)) ≥ 0, it follows that ∆(l,k)′ ≥ 0
for l = 3, ..., L. In conclusion, ∆(l,k)′ ≥ 0 holds for l = 1, ..., L.
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A.6.2. PROOFS OF COROLLARY 3.5 BEYOND THE OOLD ASSUMPTION

Proof. When σ2
a = 1/nl−1 and r = nl−1, the matrix A(l) TA(l) − I → 0 when nl →∞.

Given A(l) TA(l) − I = 0, we obtain ∆(2,k)′ = 0, and ∆(l,k)′ = ∆(l−1,k)′Σ̇(l) + ∆
(l)
r for l = 3, ..., L, where

∆(l,k)′ = ∆(l−1,k)′Σ̇(l) + ∆(l)
r

= 0Σ̇(l) + 0 = 0.
(45)

Thus, ∆(l,k)′ = 0 for all layers l.

A.6.3. PROOF OF THEOREM 3.6 BEYOND THE OOLD ASSUMPTION.

The proof follows a similar structure to the proof provided in Appendix A.5.

Proof. Base on Theorem 3.4, when r ≤ nl−1 and σ2 ≤ 1/nl−1, the kernel matrix M l
∆ is negative semi-definite, implying

that all of the M l
∆’s eigenvalues λl∆ ≤ 0.

∀ ∇FθL(x, θ) ∈ RnL , we derive the following inequalities:

∇FθL(x, θ)T∆r(x, x)∇FθL(x, θ) ≤ 0

⇒ ∇FθL(x, θ)TKLoRA(x, x)∇FθL(x, θ) ≤ ∇FθL(x, θ)TKFF(x, x)∇FθL(x, θ)

⇒ Iθ LoRA ≤ Iθ FF

(46)

This implies that ∀ λLoRA ∈ Eigen(IIθ LoRA) and ∀ λIFF ∈ Eigen(Iθ FF), we have

λILoRA ≤ λIFF. (47)

Consequently, we establish the following results:

1

2

∑
λIθ LoRA

λIθ LoRA ≤
1

2

∑
λIθ ff

λIθ ff

⇒ IBLoRA ≤ IBff

(48)

and

1

1− α
log

(
nL∑
i=1

λIθ LoRA

)
≤ 1

1− α
log

(
nL∑
i=1

λIθ FF

)
⇒ HαLoRA ≤ Hαff.

(49)

B. Analysis on the Transformer
Proposition B.1. Under the OOLD assumption, the application of LoRA to either the embedding layer, the feedforward
module, the self-attention module, or the linear classification head preserves the validity of Theorem 3.4 Corollary 3.5 and
Theorem 3.6.

The proof of Proposition B.1 on embedding layers, feedforward layers, and the linear head follows directly from the
mathematical derivation applicable to ANNs. Therefore, here we focus on the analysis on the self-attention mechanism.

Architecture of the Standard Transformer Module. Given three learnable weight matrices W (l)
Q ,W

(l)
K ,W

(l)
V ∈ Rd×d,
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for an input hidden state x(l), the feed forward procedure for a standard self-attention module can be expressed as follows:

Q(l),K(l), V (l) = W
(l)
Q · x

(l),W
(l)
K · x

(l),W
(l)
V · x

(l);

α(l)
a =

Q(l)T ·K(l)

√
d

=
(W

(l)
Q x(l))T (W

(l)
K x(l))

√
d

=
x(l)TW

(l)T
Q W

(l)
K x(l)

√
d

;

α(l) = SM
(
α(l)
a

)
= SM

(
x(l)TW

(l)T
Q W

(l)
K x(l)

√
d

)
;

x
(l)
attn = α(l) · V (l) = SM

(
x(l)TW

(l)T
Q W

(l)
K x(l)

√
d

)
W

(l)
V x(l),

(50)

where SM(·) denotes the softmax function.

Based on Equation 50, we can derive the gradients of parameters. As an example, the derivative of W (l)
k is computed by

∂
W

(l)
K

xattn(l) = ∂α(l)xattn(l) · ∂α(l)
a
α(l)∂

W
(l)
K

α(l)
a

= Id ⊗ (W
(l)
V x(l))T ˙SM(α(l)

a )
(W

(l)
Q x(l))T
√
d

Id ⊗ x(l).
(51)

Based on Equation 51, the NTK function can be formatted as:

K
(l)
attn;ff(x, x

′)

= ∇θattnx
(l)T
attn · ∇θattnx

(l)
attn

= ∇
θ
(l)
attn
x

(l)T
attn · ∇θ(l)attn

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn

= ∇
W

(l)
Q

x
(l)T
attn · ∇W (l)

Q

x
(l)
attn +∇

W
(l)
K

x
(l)T
attn · ∇W (l)

K

x
(l)
attn +∇

W
(l)
V

x
(l)T
attn · ∇W (l)

V

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn

= Id ⊗ (W
(l)
V x(l))T ˙SM(α(l)

a )(
W

(l)
Q x(l)

√
d

)T Id ⊗ x(l)T · x(l)′ ⊗ ITd (
W

(l)
Q x(l)′

√
d

) ˙SM(α(l)
a )(W

(l)
V x(l)′)⊗ ITd

+∇
W

(l)
Q

x
(l)T
attn · ∇W (l)

Q

x
(l)
attn +∇

W
(l)
V

x
(l)T
attn · ∇W (l)

V

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn.

(52)

When approximating W (l)
K with LoRA during fine-tuning, i.e., W (l)

K = W
(l)
K0 + B

W
(l)
K

A
W

(l)
K

, the NTK function can be
derived as:

K
(l)
attn;LoRA(x, x′)

= ∇θattnx
(l)T
attn · ∇θattnx

(l)
attn

= ∇
θ
(l)
attn
x

(l)T
attn · ∇θ(l)attn

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn

= ∇
W

(l)
Q

x
(l)T
attn · ∇W (l)

Q

x
(l)
attn +∇

W
(l)
K

x
(l)T
attn · ∇W (l)

K

x
(l)
attn +∇

W
(l)
V

x
(l)T
attn · ∇W (l)

V

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn

= Id ⊗ (W
(l)
V x(l))T ˙SM(α(l)

a )(
W

(l)
Q x(l)

√
d

)T Id ⊗ x(l)TAT
W

(l)
K

·A
W

(l)
K

x(l)′ ⊗ ITd (
W

(l)
Q x(l)′

√
d

) ˙SM(α(l)
a )(W

(l)
V x(l)′)⊗ ITd

+∇
W

(l)
Q

x
(l)T
attn · ∇W (l)

Q

x
(l)
attn +∇

W
(l)
V

x
(l)T
attn · ∇W (l)

V

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn.

(53)

Let V(l)
attn(x) = A

W
(l)
K

x(l)⊗ ITd (
W

(l)
Q x(l)

√
d

) ˙SM(α
(l)
a )(W

(l)
V x(l))⊗ ITd and K(l)

others = ∇
W

(l)
Q

x
(l)T
attn · ∇W (l)

Q

x
(l)
attn +∇

W
(l)
V

x
(l)T
attn ·

∇
W

(l)
V

x
(l)
attn +∇

θ
(<l)
attn

x
(l)T
attn · ∇θ(<l)attn

x
(l)
attn. Then, the NTK functions for full fine-tuning and LoRA can be simplified as:

K
(l)
attn;ff(x, x

′) = V
(l)T
attn (x) ·V(l)

attn(x′) +K
(l)
others(x, x;′ )

K
(l)
attn;LoRA(x, x′) = V

(l)T
attn (x)AT

W
(l)
K

·A
W

(l)
K

V
(l)
attn(x′) +K

(l)
others(x, x;′ ).

(54)
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Based on Theorem 3.4, it is established that AT
W

(l)
K

A
W

(l)
K

− I is negative semi-definite under the specified conditions. This

property directly leads to the validity of Corollary 3.5 and Theorem 3.6 when comparing Kattn;ff with Kattn;LoRA shown in
Equation 54.

Moreover, by employing an analogous deduction procedure, it can be demonstrated that these conclusions remain applicable
when W (l)

Q or W (l)
V are approximated using LoRA.

C. Explaining LoRA’s Phenomenon through Our Analytical Framework
Our analytical framework also provides novel insights into several distinctive properties of LoRA that have previously
lacked rigorous explanation (shown in Section D).

Asymmetric Architecture of LoRA. Different from previous research (Zhu et al., 2024), the inherent asymmetry of LoRA
can be explicitly captured by its NTK formulation. Specifically, the A matrix plays a direct and significant role in shaping
the layer-wise kernel structure of the NTK function. In contrast, the B influences the NTK only indirectly through its impact
on the intermediate representations y(l).

Initialization Strategies for A and B. Hayou et al. (2024) reveals that the initialization strategies for matrices A and B are
not interchangeable, as swapping their initialization schemes leads to performance degradation. Our theoretical framework
provides an elegant and principled explanation for this phenomenon. Specifically, initializing A to 0 renders the LoRA’s
NTK function (shown in Lemma 3.1) degenerate, effectively reducing it to an identity transformation that preserves only the
input structure without meaningful feature extraction. Conversely, initializing B to 0 preserves the fundamental structure of
the NTK while allowing for effective adaptation during training.

The High Learning Rate Requirement of LoRA. The averaged eigenvalue of K(l)
LoRA’s kernel matrix is typically smaller

than that of K(l)
ff , demonstrating that the optimization step for LoRA under the same loss is relatively smaller compared to

full fine-tuning. Consequently, LoRA introduces α to scale the learning rates according to the rank. When the rank is small,
a large α is recommended to mitigate the negative impact of r during fine-tuning.

Freezing A Does not Affect LoRA’s Fine-tuning Performance; in Some Cases, It is Even More Stable. While Zhu
et al. (2024) explains this phenomenon with information theory, it can also be understood directly through Lemma 3.1.
Specifically, A appears explicitly in KLoRA. Given the second property of NTK (Theorem 2.1), the KLoRA’s kernel matrix
should keep constant during training. Forcibly freezing A aligns with the ideal conditions of the NTK regime in LoRA,
which may explain why it is beneficial.

C.1. From R’enyi Entropy to Shannon Entropy

In the standard definition of Rényi entropy, Hα = 1
1−α log(

∑nL
i=1 P

α
i ), where 0 ≤ Pi ≤ 1 and

∑nL
i=1 Pi = 1.

When α = 1, this expression becomes indeterminate (of the form 0
0 ). However, in this case, the limit of Hα as α→ 1 yields

the Shannon entropy. Below is a brief derivation using L’Hopital’s Rule:

d

dα
log(

nL∑
i=1

Pαi ) =

∑nL
i=1 P

α
i logPi∑nL

i=1 P
α
i

,
d

dα
1− α = −1. (55)

Therefore,

lim
α→1

Hα = lim
α→1

∑nL
i=1 P

α
i logPi∑nL

i=1 P
α
i

· 1

−1
= −

nL∑
i=1

Pi logPi. (56)

We actually utilize this Shannon entropy formula to demonstrate Figure 3.

D. Supplemental Related Works
Theoretical Analysis on LoRA. LoRA is inspired by the intrinsic low-rank hypothesis (Aghajanyan et al., 2021), which
assumes that the learnable matrices in neural networks are typically over-parameterized relative to their actual required
dimension. Building on this hypothesis, several works have delved into the underlying mechanisms of LoRA. For instance,
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Zeng & Lee (2024) explores the expressive capacity of LoRA and proved that a neural network model fine-tuned with LoRA
can fit any smaller target models, once the rank of LoRA exceeds a threshold determined by the architectural properties
of the two neural networks. This finding establishes a low bound of LoRA’s rank to achieve ideal convergence. Some
research explains LoRA by analyzing its structural characteristics. For instance, Koubbi et al. (2024) study the impact
of the attention mechanism of Transformer architectures. A noteworthy contribution comes from Zhu et al. (2024), who
investigate the asymmetry between the two submatrices (as defined in Equation 3) in LoRA. By freezing one submatrice
while observing the behavior of the other, they reveal distinct roles in LoRA, i.e., matrix A functions as a feature extractor,
while B maps these features to the desired output. Based on these findings, they propose freezing A and fine-tuning only B,
achieving comparable performance and better generalization capabilities. In terms of LoRA’s learning dynamics, the neural
tangent kernel (Jacot et al., 2021) has been employed as a theoretical framework (Jang et al., 2024; Malladi et al., 2023).
Specifically, Malladi et al. (2023) empirically demonstrate that parameter-efficient fine-tuning (PEFT), including LoRA,
stays within a NTK regime. They then indicate that LoRA’s fine-tuning is nearly equivalent to full fine-tuning (FF). Besides,
Jang et al. (2024) proposed that a rank r >

√
Ntr with training samples number Ntr, is sufficient to eliminate spurious local

minima during training, thereby enabling effective generalization in few-shot learning tasks.

While these studies offer valuable insights into the underlying mechanisms of LoRA, certain aspects, especially the potential
security concerns when replacing full fine-tuning with LoRA, remain insufficiently explored. To address this gap, we delve
into the training procedure of LoRA, and analyze their potential security vulnerabilities in the paper.

Kernel Views of Neural Networks. A kernel function k(x, x′) : Rd ×Rd → R is typically defined as a mapping from two
vectors x and x′ to their correlation score k(x, x′). This score can be interpreted as the inner product of the two vectors
under an unknown high-dimensional transformation function. Lee et al. (2018) were the first to reveal that the feed-forward
procedure of a neural network can be seen as a Gaussian process (GP) when the network width approaches infinity. They
prove that the kernel function associated with such a GP is determined by the architecture and parameters of the neural
network. Building on the same infinite-width assumption, Jacot et al. (2021) demonstrated that the parameter updates of a
neural network can be characterized by a special kernel function, termed as neural tangent kernel (NTK), with the form
given by

Kntk(x, x′) = ∇θF (x; θ)T∇θF (x′; θ), (57)

where F (x; θ) denotes a neural network’s output with parameters θ.

Jacot et al. (2021) demonstrated that, as the width of the neural network approaches infinity, the NTK exhibits the following
two key properties:

1. The NTK converges to a deterministic limiting kernel that depends only on three factors: i) the variance of the parameter
initialization, ii) the neural network structure, and iii) the selection of activation functions;

2. The NTK keeps constant through out each training step t.

These properties greatly simplify the theoretical analysis for a neural network’s training process.

While the infinite width assumption is somewhat impractical for neural networks, recent studies (Arora et al., 2019; Zhang
et al., 2025) have aimed to extend NTK theory to more realistic settings, such as using Taylor expansions. As an empirical
observation, Malladi et al. (2023) suggests that prompt-based fine-tuning of language models still operates within the
NTK regime. Inspired by the two properties of NTK and this observation, we adopt NTK as a framework to model the
training-time robustness of LoRA compared to full fine-tuning (FF).

E. Supplemental Experiments
E.1. Evaluation with Additional Attack Strategies

We introduce four additional backdoor poisoning attacks in the NLP setting: a clean-label backdoor poisoning attack
(CL-BPA) (Wan et al., 2023), an instruction-level backdoor poisoning attack (IL-BPA) (Xu et al., 2024a), a multi-triggered
stealthy backdoor attack (MT) (Yang et al., 2021), and a style-based backdoor poisoning attack (S-BPA) (Pan et al., 2022).

We adopt the same random seeds and experimental configurations when assessing the resilience of LoRA under these
additional attack settings. The results are summarized below.
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Table 1. Performance comparison between FF and LoRA across different BPA attacks.

Model Acc. Pre. Rec. F1.

MT(FF) 82.91±6.77 75.96±7.71 98.64±0.98 85.66±4.75
MT(LoRA) 89.14±1.86 84.44±3.24 96.62±1.03 90.08±1.42
CL-BPA(FF) 91.78±0.47 89.47±0.91 95.04±0.39 92.17±0.41
CL-BPA(LoRA) 92.39±0.28 89.87±0.99 95.87±0.72 92.77±0.21
IL-BPA(FF) 51.37±0.11 51.15±0.05 100.00±0.00 67.68±0.05
IL-BPA(LoRA) 53.13±2.35 52.09±1.27 100.00±0.00 68.49±1.09
S-BPA(FF) 75.34±0.93 67.59±0.83 99.09±0.39 80.36±0.61
S-BPA(LoRA) 85.51±1.79 79.01±2.33 97.52±0.22 87.28±1.34

The experimental results indicate that LoRA demonstrates stronger robustness than the full fine-tuning (FF) against a wide
range of mainstream backdoor attacks. This is consistent with both the empirical evidence and the theoretical analysis
presented in the main paper.

E.2. Evaluation on Other Initialization Strategies

Besides of the default and most commonly used initialization strategy (Kaiming Uniform) in LoRA, we evaluate two
additional initialization methods to examine the impact of their variances to LoRA’s TTR. The strategies include Xavier
normal distribution-based initialization (XNI) (Kumar, 2017), and Gaussian distribution-based initialization (GI).

Table 2. Performance under different initialization strategies, variance scales, and poisoning rates.

Init. Strategy Scale of Variance Poisoning Rate Acc. Pre. Rec. F1.

GI 0.33 0% 93.00±0.49 92.40±1.97 94.05±1.47 93.19±0.37
GI 1.0 0% 92.98±0.60 92.45±2.24 93.96±1.92 93.16±0.51
GI 2.0 0% 93.07±0.63 92.88±2.21 93.64±1.73 93.23±0.55
GI 0.33 0.15% 93.05±0.13 92.19±1.22 94.36±1.33 93.25±0.10
GI 1.0 0.15% 92.79±0.33 92.22±0.19 93.82±1.75 92.99±0.25
GI 2.0 0.15% 92.56±0.56 91.90±2.14 93.73±1.83 92.78±0.47
XNI 0.33 0% 93.18±0.44 92.25±1.48 94.59±1.08 93.39±0.35
XNI 1.0 0% 92.91±0.34 92.16±1.76 94.14±1.65 93.11±0.29
XNI 2.0 0% 93.11±0.34 92.35±1.34 94.32±1.04 93.31±0.27
XNI 0.33 0.15% 91.26±1.27 87.72±2.74 96.44±1.17 91.84±1.02
XNI 1.0 0.15% 89.97±2.82 85.55±4.52 97.02±1.13 90.85±2.18
XNI 2.0 0.15% 88.48±6.42 83.67±8.27 97.61±1.18 89.87±4.68

The experimental results are generally consistent with those obtained using the Kaiming Uniform initialization.

E.3. LoRA’s TTR on Generative Language Models

Inspired by the BackdoorLLM (Li et al., 2024) benchmark, we evaluate the TTR of LoRA against three backdoor poisoning
attacks under two distinct attack scenarios. The backdoor attacks include BadNet (Gu et al., 2017), Sleeper Agent (Hubinger
et al., 2024) (SA), and VPI (Yan et al., 2024). The attack scenario is LLMs’ jailbreaking, where a backdoored LLM is
expected to bypass safety filters (jailbreaking) to answer certain queries when the input contains corresponding triggers.

We use the instruction-following dataset Alpaca (Taori et al., 2023) as the supervised fine-tuning (SFT) training set and
choose LLaMA-3.2-3B as the model backbone. We do not include LLaMA-3-8B due to GPU memory limitations that
prevent full fine-tuning on a single GPU. These experiments are conducted on an Nvidia H100 GPU. The poisoning rate is
set to 2%.

The experimental results are shown below.

We observe that the conclusions drawn from generative language models are consistent with those from NLU models.
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Table 3. Attack success rate (ASR) under different backdoor methods on generative language models.

Backdoor Method IsLoRA ASR

BadNet FF 90.91
BadNet LoRA 84.85
SA FF 92.93
SA LoRA 88.89
VPI FF 86.87
VPI LoRA 84.85

E.4. Supplemental Results Corresponding to the Main Paper
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Figure 6. Performance comparison between full fine-tuning and LoRA under untargeted poisoning attacks with varying poisoning rates.
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Figure 7. Performance comparison between full fine-tuning and LoRA under backdoor poisoning attacks with varying poisoning rates.
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Figure 8. Performance comparison between full fine-tuning and LoRA under backdoor poisoning attacks with varying poisoning rates.
Different from Figure 7, we do not employ triggers in the test samples.
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Figure 9. The effect of rank on LoRA’s robustness under untargeted poisoning attacks.
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Figure 10. The effect of rank on LoRA’s resistance under backdoor poisoning attacks.
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Figure 11. The effect of initialization variance on LoRA’s robustness under untargeted poisoning attacks.
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Figure 12. The effect of initialization variance on LoRA’s resistance under backdoor poisoning attacks.
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