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Abstract

Recent advances in low light image enhancement have been dominated by Retinex-
based learning framework, leveraging convolutional neural networks (CNNs) and
Transformers. However, the vanilla Retinex theory primarily addresses global
illumination degradation and neglects local issues such as noise and blur in dark
conditions. Moreover, CNNs and Transformers struggle to capture global degrada-
tion due to their limited receptive fields. While state space models (SSMs) have
shown promise in the long-sequence modeling, they face challenges in combining
local invariants and global context in visual data. In this paper, we introduce
MambaLLIE, an implicit Retinex-aware low light enhancer featuring a global-
then-local state space design. We first propose a Local-Enhanced State Space
Module (LESSM) that incorporates an augmented local bias within a 2D selective
scan mechanism, enhancing the original SSMs by preserving local 2D dependen-
cies. Additionally, an Implicit Retinex-aware Selective Kernel module (IRSK)
dynamically selects features using spatially-varying operations, adapting to varying
inputs through an adaptive kernel selection process. Our Global-then-Local State
Space Block (GLSSB) integrates LESSM and IRSK with layer normalization (LN)
as its core. This design enables MambaLLIE to achieve comprehensive global
long-range modeling and flexible local feature aggregation. Extensive experiments
demonstrate that MambaLLIE significantly outperforms state-of-the-art CNN and
Transformer-based methods. Our code is available at Project Page.

1 Introduction

Low light image enhancement is a challenging task in computer vision due to insufficient lighting and
sensor degradation. Consequently, images often suffer from poor global visibility and local issues
such as color distortion and noise. These degraded images can adversely affect human perception
and related vision tasks, such as object detection [5] and depth estimation [57].

Traditional techniques, such as histogram equalization [1] and gamma correction [7], enhance images
through global mapping operations. However, these global operations often struggle to address
local degradation effectively. In recent years, many methods based on CNNs and Transformers
have gradually come to dominate this field [53, 64, 15, 38, 56, 3]. CNN-based methods [53, 64, 15,
38, 55] have achieved significant advancements by effectively aggregating local information, thus
substantially improving performance in low light enhancement. Nevertheless, the limited receptive
field and weight-sharing strategy of CNNs result in a local reductive bias, making the models less
adaptive to varying inputs. On the other hand, Transformer-based methods [56, 3, 62] achieve a
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Figure 1: The Effective Receptive Field (ERF) visualization [34] for SNR-Net [56], Retinexformer
[3], MambaIR [16] and our MambaLLIE. A broader distribution of bright areas signifies a larger ERF.
The receptive field of SNR-Net is large but messy, due to the SNR-aware mechanism, Retinexformer
achieves a larger receptive field of the central point, and MambaIR has the global receptive field, but
presents the limited local perception. Only our proposed MambaLLIE achieves a global perception
ability outwards from central point and preserves the large local receptive field.

larger and adaptive receptive field by emphasizing long-term dependencies through the self-attention
mechanism. However, the vanilla attention mechanism scales quadratically with input size, resulting
in significant computational overhead.

Recently, State Space Models (SSMs) [10, 31, 28] have garnered significant attention in the field of
computer vision. These internal state space models demonstrate great potential for global information
modeling with linear complexity. However, a straightforward implementation of vision state space
models for low light image enhancement is inadequate. This is because SSMs are primarily designed
for long-range modeling and lack the flexibility needed to capture local information effectively [66].
For instance, as illustrated in Fig. 1, the receptive field of MambaIR [16], a simple yet effective vision
state space model, achieves longer-range dependencies compared to CNN and Transformer-based
methods. Nevertheless, it falls short in refining local interactions.

In this work, we introduce MambaLLIE, a novel framework for enhancing low light images that
integrates an implicit Retinex-aware approach within a global-then-local state space model. Mam-
baLLIE not only explores the capabilities of state space models in low light image enhancement
but also incorporates a Retinex-aware structure providing both explicit and implicit guidance. Our
framework introduces a unique global-then-local state space block, enhancing global long-range
degradation modeling and local feature aggregation through an augmented state space. Additionally,
we incorporate a Retinex-aware selective kernel mechanism in the enhancement process, enabling
adaptive modulation of illumination strength through specific spatial operations.

Our contributions and main findings can be summarized as follows: 1) We introduce a novel global-
then-local state space block that integrates a local-enhanced state space module and an implicit
Retinex-aware selective kernel module. This design effectively captures intricate global and local
dependencies. 2) We devise an implicit Retinex-aware selective kernel mechanism to guide deeper
neural representations, eliminating the need for complex structural design and constraints to estimate
physical priors, the prior feature tends to segregate into independent positive and negative illumination
components before integrating them, a capability lacking in explicit methods. 3) Experimental results
on benchmark datasets and real-world evaluations consistently demonstrate the superior performance
of our proposed method compared to state-of-the-art approaches.

2 Related work

Low Light Image Enhancement. Nowadays, the existing deep learning-based methods have mainly
been categorized into end-to-end and Retinex-based methods [27]. To the best our knowledge, LLNet
[33] firstly introduced a deep neural network for low light image enhancement by supervised learning.
LightenNet [2] adopted the CNN for single image contrast enhancement. MBLLEN [35] proposed
the multi-branch fusion within CNNs to extract rich features. Besides, SNR-Net [56], Restormer
[62], LLFormer [22] and SCENet [36] adopted the self-attention mechanism to achieve excellent
performance. However, all these end-to-end models mainly depend on the distribution of training
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dataset and ignore the inherent illumination prior. As contrast, ZeroDCE [15], RUAS [30] and
subsequent works [38, 9, 51] represent impressive solutions for image enhancement, as ones precisely
using physical priors to enhance the images. However, due to the absence of an ideal reference for
guidance, these methods usually exhibit a certain gap compared to supervised learning models.

As for supervised Retinex-based models, these methods aim to decompose the image into illumination
and reflectance maps, and then enhance the image by optimizing these maps. For instance, Retinex-
Net [53] divided image enhancement into decomposition, adjustment and reconstruction stages,
which providing a good representation of image enhancement process. KinD [64] and URetinex-Net
[55] further introduced the novel multi-branch and multi-stage frameworks, respectively. However,
striking a balance between complexity and efficiency remains challenging for these methods. Re-
cently, Retinexformer [3] simplified a one-stage Retinex-based low light enhancer with a efficient
Transformer. Diff-Retinex [61] designed a transformer-based decomposition network and adopted
generative diffusion networks to reconstruct the results. Overall, they typically applied the Retinex
theory in a direct way, which may be limited for low light enhancement problem.

Vision State Space Model. State Space Model (SSMs) [11, 12, 13] are emerging new sequence
models for deep learning, which first swept the natural language processing (NLP) community such
as language understanding [42], content-based reasoning [66]. Recently, SSMs have also garnered
considerable attention in computer vision (CV) tasks. To our knowledge, S4ND [39] first explored
state space mechanism into CV tasks by swapping Conv2D and self-attention layers with S4ND
layers in existing models. VMamba [31] bridged the gap between ordered sequences and non-causal
visual images, enabling the extension of vision selective state space model with global receptive
fields. Vim [65] proposed the bidirectional state space modeling with positional awareness, achieved
the global visual perception. Furthermore, LocalMamba [18] was focused on the local scanning
strategy, preservation of local context dependencies. EfficientVMamba [41] designed a light-weight
SSMs with an additional convolution branch to learn both global and local representational features.
MambaIR [16] employed convolution and channel attention to enhance the capabilities of the Mamba.
But existing vision state space model do not pay enough attention on capturing local information, as
vanilla SSMs are designed for long sequence and the invariant of local vision data is not taken into
account in the existing vision state space models.

3 Methodology

This work aims to introduce a novel implicit Retinex-aware low light enhancer with global-then-local
state space. In this section, we revisit the Retinex theory and the state space model, offering a concise
overview. Following that, the details of our proposed MambaLLIE are introduced.

3.1 Preliminaries

Retinex Theory. The ideal Retinex theory [25] for low light enhancement assumes that the captured
images can be decomposed into reflectance and illumination maps. Following [38, 45], explicit
Retinex-based methods emphasize estimating either an illumination map while regarding the re-
flectance map as the enhanced result, or estimating concrete reflectance and illumination maps and
then restoring the well-exposed images. Specifically, given a low light image L ∈ RH×W×3, where
H and W represent height and width respectively, the derived maps can be denoted as:

L = R · I, N = L
/
Ĩ, N = R̃ · Ĩ, (1)

where · denotes the element-wise multiplication, R ∈ RH×W×3 denotes reflectance map, a static
property of captured objects; I ∈ RH×W denotes illumination map; N ∈ RH×W×3 denotes enhanced
images; R̃, Ĩ ∈ RH×W×3 denotes the estimated reflectance and illumination maps, respectively.

Consequently, the former assumption N = L/Ĩ disregards the noise and artifacts resulting from
sensor degradation in the captured images, rendering pixel-wise illumination adjustments inadequate.
The latter N = R̃ · Ĩ aims to restore the reflectance and illumination maps to enhance the images.
However, this requires the design of multiple branches and constraints to guide the training [64].

State Space Model. The SSMs, such as structured state space sequence models (S4) [12] and
Mamba [10], can be regarded as the continuous linear time-invariant (LTI) systems [54]. Given an
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Figure 2: The overall pipeline of the proposed MambaLLIE. Our Global-then-Local State Space
Block (GLSSB) integrates Local-enhanced state space module (LESSM) and implicit Retinex-aware
selective kernel module (IRSK) with layer normalization as its core, where the maximum and mean
maps of low light images can be regarded as a rough illumination prior of GLSSB. Besides, The
local-enhanced design essentially introduces the local invariance into state space model, which can
integrate the existing directional scan with our local-enhanced term into state space.

one-dimension sequence x (t) ∈ R, it projects into a new one-dimension sequence y (t) ∈ R through
the hidden state h (t) ∈ Rm, the system can be defined as a linear ordinary differential equation:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(2)

where m denotes the state size, A ∈ Rm×m, B ∈ Rm×1, C ∈ R1×m and D ∈ R denotes state,
input projection, output projection parameters, and kernel selective parameters.

As the raw state-space models are continuous, the systems adopt the discrete versions before feeding
the computer, in which the zero-order hold (ZOH) is used to transform the continuous parameters A
and B to discrete parameters Ā and B̄ as follows

Ā = exp (∆A) , B̄ = (∆A)
−1

(exp (∆A)− I) ·∆B, (3)

where ∆ denotes the step size. Overall, the discretized version can be rewritten as:

ht = Āht−1 + B̄xt, yt = Cht +Dxt. (4)

However, the current system remains static for varying inputs. To address this limitation, Mamba
[10] introduces selective state space models, allowing parameters to adapt with the input, thereby
enhancing selective information processing across sequences. This parameter selection mechanism
can be expressed as:

B = fB(xt), C = fC(xt), ∆ = ϑA (P+ fA(xt)) , (5)

where fB(xt), fC(xt) and fA(xt) are linear functions that broadens feature to the hidden state
dimensions. As SSMs are tailored for long sequences, it is limited in capturing complicated local
information. As for visual data, VMamba [31], Vim [65], etc., proposed the specific location-aware
scan strategies to maintains the integrity of 2D image structures. However, the specific directed
sequences overlook the vision information of pixels neighborhood structure. Inspired by [66], we
explore a global-then-local state space, which receives the global perception before the details,
supplementing the lack of local information.
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3.2 Overall Pipeline

We first present the overall pipeline of our MambaLLIE, an U-shaped architecture as shown in Fig.
2(a), which includes encoding and decoding parts with the convolutional downsampling and upsam-
pling layers. The encoder features are concatenated with the decoder features via skip connections.
Next, We propose a global-then-local state space block (GLSSB) as the basic core of MambaLLIE, the
max and mean priors concatenated with low light image are projected into GLSSB by convolutional
layers. Therein, GLSSB is composed of the local-enhanced state space module (LESSM) and the
implicit Retinex-aware selective kernel module (IRSK), interleaved with layer normalization.

Illumination Prior. Given a low light image L ∈ RH×W×3, we employ a 3× 3 convolution layer to
project the neural features F ∈ RH×W×C from input feature space, and then project features into each
GLSSB, which will be described in Section 3.3. Besides, IRSK integrates original input, maximum
prior Lmax ∈ RH×W and mean prior Lmean ∈ RH×W as illumination prior Lp ∈ RH×W×5,

Lp = Concat (L,mean(L),max(L)) . (6)

We first define Fg is the output of GLSSB. Subsequently, the downsampling layer and following
GLSSB achieve the feature extraction to acquire the deep feature, which can be denoted as Fg ∈
R

H

2i
×W

2i
×2iC , where i = 0, 1, 2. Moreover, the feature is later concatenated with the upsampling layer

with a symmetrical structure. Finally, using a 3× 3 convolution layer projects into Fout ∈ RH×W×3

and the enhanced image can be expressed as N = Fout + L.

3.3 Global-then-Local State Space Block

As illustrated in Fig. 2(b), GLSSB follows the LayerNorm, LESSM, LayerNorm and IRSK flow,
motivated by Transformer [46] and Mamba[10] usage of similar structures in a basic block. Given
the input feature, it first undergoes the LayerNorm and LESSM to capture the local-enhanced global
information. the above process can be denoted as:

M = LESSM
(
LN

(
Fi−1

g

))
+ Fi−1

g . (7)

And then, another LN and our proposed IRSK are used for Retinex-aware guidence. The above
process can be formulated as:

Fi
g = IRSK (LN (M)) +M. (8)

Overall, at the prior module of GLSSB, we capture global dependencies using a local-enhanced SSM.
Because the SSM is better at learning global information, the subsequent module aims to handle
more refined and complicated local dependencies.

Local-Enhanced State Space Module. Existing state space models [8, 12, 10] excels at capturing
the causal processing of input data in long range dependencies. However, the unidirectional scan
manner encounters difficulties in vision data to modeling non-causal relationships. To accommodate
vision data, [65, 31, 41] process the input data from different 2D scan directions. However, these
methods ignore the local invariants of vision data as shown in Fig. 2(c). In other word, the fixed
scanning methods widen the distance between neighborhood data and snarl the causal relationships.

The most SSMs [31] can be regarded as the continuous linear time-invarian systems, we further
introduce the a e (Lp) augmented local bias, enhancing the original SSMs by preserving local 2D
dependency. Following [58, 19], we propose a novel global-then-local state space:

ht = Āht−1 + B̄xt,
yt = Cht +Dxt + e (Lp) ,

(9)

where e (Lp) is independent of the hidden state space. Hence, the model can be computed in a
simple way, given a feature Fi−1

g ∈ RH×W×C and illumination feature Lp ∈ RH×W×5, we adopts
the LayerNorm followed by our proposed LESSM to integrate the spatial long-term dependency.
Following [10], the input feature are chunk into F̃1 and F̃2 in two branches. The first branch projects
the feature into a linear layer, followed by a depth-wise convolution, SiLU activation function,
accompanied by our proposed augmented local bias and LayerNorm. In the second branch, the
features is also projected to a linear layer followed by the SiLU activation function. Finally, features
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Table 1: Quantitative comparisons on LOL-V2-real, LOL-V2-syn, SMID, SDSD-indoor and SDSD-
outdoor datasets. The best result is in red color while the second best result is in blue color.

LOL-V2-real LOL-V2-syn SMID SDSD-indoor SDSD-outdoor ComplexityMethods Ref. PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM FLOPS Param
RetinexNet BMVC 2018 15.47 0.567 17.13 0.798 22.83 0.684 20.84 0.617 20.96 0.629 587.47 0.84
DeepUPE CVPR 2019 13.27 0.452 15.08 0.623 23.91 0.690 21.70 0.662 21.94 0.698 21.10 1.02

SID ICCV 2019 13.24 0.442 15.04 0.610 24.78 0.718 23.29 0.703 24.90 0.693 13.73 7.76
KinD MM 2019 14.74 0.641 13.29 0.578 22.18 0.634 21.95 0.672 21.97 0.654 34.99 8.02

MIRNet ECCV 2020 20.02 0.820 21.94 0.876 25.66 0.762 24.38 0.864 27.13 0.837 785.00 31.76
EnGAN TIP 2021 18.23 0.617 16.57 0.734 22.62 0.718 23.29 0.703 24.90 0.693 61.01 114.35

Restormer CVPR 2022 19.94 0.827 21.41 0.830 26.97 0.758 25.67 0.827 24.79 0.802 144.25 26.13
SNR-Net CVPR 2022 21.48 0.849 24.14 0.928 28.49 0.805 29.44 0.894 28.66 0.866 26.35 4.01
QuadPrior CVPR 2024 20.48 0.811 16.11 0.758 15.50 0.604 22.22 0.783 18.26 0.662 / /
MambaIR ECCV 2024 21.25 0.831 25.55 0.929 27.07 0.774 28.97 0.884 29.75 0.861 60.66 4.30

Retinexformer ICCV 2023 22.80 0.840 25.67 0.930 29.15 0.815 29.77 0.896 29.84 0.877 15.57 1.61
MambaLLIE / 22.95 0.847 25.87 0.940 29.26 0.818 30.12 0.900 30.00 0.869 20.85 2.28

from the two branches are aggregated with the element-wise product and then are projected back to
input feature space by linear layer. The entire process can be delineated as:

F̃1 = LN(2DSSM(SiLU (DWConv (Linear (F1)))) + Conv(Lp)) ,

F̃2 = SiLU (Linear (F2)) ,

F̃out = Linear
(
F̃1 ⊙ F̃2

)
.

(10)

Implicit Retinex-Aware Selective Kernel Module. In our framework, we propose a Retinex-aware
kernel selective mechanism (IRSK), where two coupled Retinex-aware priors are used to select the
spatial context regions, the maximum and mean values of RGB images can be regarded as a rough
illumination prior. IRSK constructs a sequence of depth-wise convolutions with an alterable kernel to
select the feature with different receptive field, using a spatial selection mechanism by illumination
prior. Inspired by LSKNet [29], for each of the feature maps from different selective kernel, a Sigmoid
activation function is applied to obtain the individual illumination maps from illumination prior. Fig.
2(d) shows a detailed conceptual illustration of IRSK module where we intuitively demonstrate how
the implicit Retinex-aware module works. The above process can be formulated as:

F̃k = F̃out, F̃k+1 = fk
DWconv

(
F̃k

)
. (11)

The output of the Retinex-aware maps are concatenated with the input features via residual connec-
tions, followed by a depth-wise convolution, GELU activation function and convolution layer.

{S1,S2} =Chunk (Sigmoid (Conv (Lp))) , (12)

Fg =Conv
(
GELU

(
DWConv

( K∑
k=1

F̃kSk + F̃out
)))

. (13)

4 Experiments

4.1 Benchmark Datasets and Implementation Details

Datasets. We employ five paired low light image datasets for evaluation, including LOL-V2-real
[59], LOL-v2-syn [59], SMID [4], SDSD-indoor [48] and SDSD-outdoor [48] datasets. Therein,
LOL-V2-real contains 689 low-normal light paired images for training and 100 pairs for testing;
LOL-V2-syn includes 900 paired images for training and the 100 pairs for testing; Besides, SMID is
composed of the 15763 short-long exposure paired images for training and the remaining images for
testing; SDSD-indoor and SDSD-outdoor are all subsets of SDSD dataset (the static version), which
extract the paired images from 62 and 116 pairs for training, and the left 6 and 10 pairs for testing.

Implementation Details. We implement MambaLLIE in PyTorch [40] on a server with the
4090GPUs. Random cropping the image pairs into 128 × 128 patches as training samples, data
augmentation is performed on the training samples such as rotation and flipping. The batch size is
8. In terms of optimization procedure, Adam [24] is adopted as the optimizer with β1 = 0.9 and
β2 = 0.999; The training iterations is set to 1.5× 105. The initial e learning rate is set to 2× 10−4

and steadily decreased by by the cosine annealing scheme. The loss criterion is mean absolute error
(MAE), thus peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [52] is selected as
the evaluation metrics for the paired datasets.
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Input KinD Retinexformer MambaIRQuadPrior GTOurs

Figure 3: Qualitative comparison with previous methods on LOL-V2-real and LOL-V2-syn datasets.
Our MambaLLIE effectively enhances the illumination and preserves the color.

Input SNR-Net Retinexformer MambaIRQuadPrior GTOurs

Figure 4: Qualitative comparison with previous methods on SMID, SDSD-indoor and SDSD-outdoor
datasets. Our MambaLLIE restore the texture and color under challenging degradation, such as the
wooden bench and reflective glass.

4.2 Main Results on Benchmarks.

Quantitative Comparison. As shown in Tab. 1, we evaluated the performance of our MambaLLIE
against 11 SOTA image enhancement methods, including RetinexNet [53], DeepUPE [49], SID [4],
KinD [64], MIRNet [63], EnGan [21], Restormer [62], SNR-Net [56], QuadPrior [51], MambaIR [16]
and Retinexformer [3]. Our MambaLLIE demonstrates superior performance than SOTA methods on
the adopted benchmark datasets in terms of PSNR and SSIM, while achieves comparable results of
SSIM with the SOTA methods in LOL-V2-real and SDSD-outdoor. Therein, when the parameters
are roughly similar, our MambaLLIE achieves an average improvement of 0.2dB on benchmark
datasets compared to the Transformer based SOTA method, i.e. Retinexformer. Compared with the
earlier Transformer based SNR-Net, MambaLLIE outperforms it by average 1dB PSNR on the all
datasets. When compared to the MambaIR, MambaLLIE achieves 1.7, 0.32, 2.19, 1.15 and 0.25dB
PSNR improvements on the adopted datasets, respectively. Besides, Our MambLLIE gains the
improvements over 7 dB on all datasets than traditional Retinex-based models, such as RetinexNet,
DeepUPE and KinD.

Qualitative Comparison. Figs. 3 & 4 report the vision results for comparing our method with latest
the SOTA methods and traditional Retinex-based models. Existing methods suffer from insufficient
illumination and fail to restore the details as shown in Fig. 3. As we can see, color distortion and
image degradation also affect the enhanced results of previous methods in Fig. 4, yet our MambaLLIE
not only enhances brightness but also faithfully preserves colors with reference to ground truth images,
all while restoring the details.

4.3 Real World Experimental Evaluation

Enhancing low-light images in real-world scenarios is exceptionally challenging because, in addition
to benefiting downstream tasks such as dark object detection, the enhanced images must also be
visually pleasing to human perception.
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MambaLLIESCILow Light Image
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Figure 5: Visual comparison of our MambaLLIE with recent SOTA methods. (a) Qualitative
comparison on object detection, (b) Qualitative comparison on face detection, (c) Toy example of
user study, (d) Qualitative comparison of unpaired dataset.

Table 2: Low light object detection results on the ExDark dataset. The best result is in red color while
the second best result is in blue color.

Methods Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motor People Table Mean
RetinexNet 0.790 0.741 0.743 0.908 0.820 0.665 0.651 0.750 0.721 0.703 0.784 0.556 0.736

EnGAN 0.733 0.710 0.687 0.892 0.786 0.675 0.656 0.650 0.741 0.657 0.731 0.528 0.704
KinD 0.800 0.721 0.788 0.919 0.822 0.718 0.672 0.771 0.775 0.736 0.803 0.555 0.757

ZeroDCE 0.806 0.750 0.762 0.914 0.837 0.681 0.677 0.769 0.788 0.728 0.801 0.535 0.754
SCI 0.821 0.742 0.749 0.916 0.846 0.695 0.690 0.784 0.756 0.758 0.810 0.555 0.760

SNR-Net 0.802 0.721 0.750 0.932 0.840 0.694 0.677 0.758 0.763 0.755 0.789 0.559 0.753
Retinexformer 0.809 0.769 0.753 0.914 0.814 0.688 0.689 0.763 0.766 0.769 0.805 0.543 0.757

MambaIR 0.803 0.763 0.752 0.903 0.830 0.687 0.684 0.761 0.721 0.738 0.813 0.556 0.751
MambaLLIE 0.802 0.764 0.779 0.926 0.846 0.701 0.692 0.800 0.781 0.751 0.812 0.560 0.768

Table 3: Face detection results on the Dark face dataset. The best result is in red color while the
second best result is in blue color.

Methods Low light image SCI Retinexformer MambaIR Ours
mAP 0.461 0.483 0.486 0.482 0.491

Low Light Object Detection. We utilized ExDark dataset [32] to compare the enhancement of
preprocessing methods for high-level vision tasks. There are 7363 challenging low light images
annotated with 12 bounding box classes, of which 5,890 for training and 1,473 for testing. Note that
all supervised methods were pretrained on the LOL-V2-syn dataset, the low light image underwent
different enhancement methods and then finetuned YOLOv3 [43] as the object detector. As shown in
Tab. 2, our methods achieved the best average result compared with other models, and yielded the best
results on Car, Chair, Cup, People and Table classes. Fig. 5(a) further reported the visual comparison,
compared with suboptimal preprocessing method SCI, detector through our MambaLLIE can detect
the objects in extreme dark regions including two persons and a chair, while other methods failed.

Face Detection We investigate the performance of low-light image enhancement methods on face
detection in the dark. We use the DARK FACE dataset [60] and randomly sample 300 images for
evaluation. The RetinaFace [44] is used as the face detector and fed with the results of different LLIE
methods. We show the results of different methods in Fig. 5(b) and Tab. 3. In general, MambaLLIE
achieves the better mAP score and visual detection result. Please note that the effectiveness of face
detection in low light conditions depends not only on the quality of the enhancement results but also
on the specific face detection algorithm employed. We utilize the pre-trained RetinaFace model to
assess the performance of different low light image enhancement methods to some extent.

User Study. We conducted a user study to evaluate the human visual perception quality of the
enhanced results in challenging scenarios. Due to the lack of the ideal reference for training, we
selected the pretrained model from the benchmarks to enhance the photos. There are 7 random selected
low light images from the benchmarks and ExDark datasets under different lighting conditions.
Human perception primarily focuses on the presence of global visual effect, local detail, color
distortion (noise), which significantly reflect the quality of the enhanced images. Thus, We assigned
ratings on a scale of 1 (worst) to 5 (best), evaluating the quality of the enhancements in terms of
overall rating, local detail and color distortion(noise), respectively. Overall, 70 participants were
invited to assess the visual quality. The average scores are reported in Tab. 4, our MambaLLIE
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Table 4: User study on the challenging low light image enhancement.
Methods RetinexNet EnGAN SCI QuadPrior SNR-Net Retinexformer MambaIR MambaLLIE

Overall Rating 3.093 3.314 3.943 3.014 3.821 4.100 3.857 4.243
Local Detail 2.871 3.143 3.686 3.129 3.779 3.950 3.629 4.129

Artifacts and noise 2.914 3.164 3.776 2.929 3.657 3.971 3.750 4.100

Table 5: Perceptual evaluation results on the unpaired datasets
Methods LIME VV NPE MEF DICM

MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA
Retinexformer 58.66 4.85 58.96 4.63 56.98 4.81 54.27 4.89 55.69 4.84

MambaIR 56.31 4.70 59.29 4.70 56.38 4.75 53.84 4.88 57.01 4.84
DiffLL 55.39 4.66 58.62 4.55 53.54 4.65 52.14 4.91 55.77 4.82
Ours 58.42 4.86 60.22 4.78 56.70 4.82 55.01 4.93 57.16 4.92

achieves the best score in the involved voting aspects. Fig. 5(c) shows the toy example of user study,
which display the input and the random enhanced results and local details by different algorithms.

Perceptual Evaluation. We compare two non-reference perceptual metrics, MUSIQ [23] and NIMA
[6], on five unpaired datasets, including LIME [17], VV [47], NPE [50], MEF [37], and DICM [26].
Experimental evaluations in Tab. 5 show the superiority of our method over SOTAs with better
perceptual evaluation in most comparisons, in terms of the NIMA scores, our method also achieves
competitive results across all datasets. Experimental comparisons against the diffusion-based model
DiffLL [20] also underline our method’s robustness. These results are visually supported in Fig. 5(d),
where our method demonstrates qualitative improvements that align well with its perceptual metrics.
Overall, the evaluations illustrate the superiority of our enhancement approach, achieving enhanced
perceptual quality and setting a new LLIE benchmark on unpaired datasets.

4.4 Ablation Study

Implicit Retinex-Aware Framework. We compare the improvement of using a implicit Retinex-
aware model with the end-to-end and explicit Retinex-aware models. Specifically, Baseline-1 is a
simple variant of our MambnaLLIE by removing Retinex-aware guidence, directly uses the standard
vision state space module (VSSM) to process flattened vision data in our proposed UNet-shaped
framework, following the Norm → VSSM → Norm → channel attention layer flow as referenced in
[16]. Baseline-2 is designed to estimate the illumination map and then light up the low light image
by element-wise multiplication, namely aims to estimate the illumination map instead of directly
predicting the enhanced image, and then restores the enhanced result by N = R̃ · Ĩ. Tab. 6 reveals
our implicit Retinex-Aware framework significantly outperforms Baseline-1 with the improvement
of 1.25dB in PSNR, while achieving a PSNR enhancement of 1.00 dB compared to Baseline-2 on
SDSD-indoor dataset.

Global-then-Local State Space. As the core component, our GLSSB comprises the LESSM and
IRSK. We demonstrate the effect of each component through ablation study. For example, The results
on SDSD-indoor dataset, presented at Tab. 6, indicate that our LESSM achieves improvements of
0.33 dB and 0.08 dB in PSNR compared to Baseline-1 and Baseline-2, respectively, which utilize
vanilla state space blocks. Additionally, our IRSK produces PSNR enhancements of 0.96 dB, 0.74
dB, and 0.63 dB compared to Baselines and when only applying LESSM. Our full version indicating
that although LESSM improves the vanilla SSM with local enhanced modeling ability, IRSK should
be considered for further improvements, when GLSSB integrats LESSM and IRSK, our MambaLLIE
achieves the highest PSNR and SSIM.

Selective Kernel Behavior. We further investigate the kernel selection behavior in our MambaLLIE
as shown in Fig. 6. We find the implicit Retinex-aware selection pattern tend to learn two independent
positive and negative illumination, resulting in complementary features. Compared with explicit
Retinex-based methods, our IRSK can guide from a flexible deeper neural representation. The
quantitative results are reported in Tab. 7. Different with LSKNet [29], we put small kernels in front
and larger kernels in higher levels. This is because object detection needs larger receptive field, thus
adopts a sequence of depth-wise convolutions with growing kernel and increasing dilation, while has
to introduce a lots of padding. But image enhancement may suffers from padding operation at the
edge of the image, especially upsampling further expands the padding values. Thus, the the former
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Table 6: Effects of design choices.
Methods Params(M) FLOPS(G) LOL-V2-real SDSD-indoor SDSD-outdoor

PSNR SSIM PSNR SSIM PSNR SSIM
Baseline-1 2.14 18.39 22.06 0.834 28.87 0.865 28.86 0.852
Baseline-2 2.14 18.39 21.28 0.812 29.12 0.862 28.96 0.841

Ours w/o LESSM 2.26 20.64 21.83 0.846 29.83 0.889 29.20 0.866
Ours w/o IRSK 2.19 19.94 22.37 0..845 29.20 0.887 28.97 0.857

Ours 2.28 20.85 22.95 0.847 30.12 0.900 30.00 0.869

Table 7: Effects of IRSK.
Kernel Sizes Params FLOPS PSNR SSIM

3*3 2.25 20.47 29.55 0.899
5*5 2.31 21.23 29.48 0.896
5*7 2.35 21.79 28.88 0.892
5*3 2.28 20.85 29.31 0.892

3*5 (Ours) 2.28 20.85 30.12 0.900
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Figure 6: The details of selective kernel behaviour, the LAM visualization [14] demonstrates influence
of similar local information is higher than that of global dependence, our local-enhanced strategy
underscores the feature. Besides, the larger receptive fields can provide globally consistent results.

small kernels can quickly focus on local information and the the latter kernels contain larger receptive
fields for better feature fusion.

5 Limitation and Discussion

We adopt an implicit Retinex-Aware guidance within a global-then-local state space framework to
address global insufficient illumination and local degradation for low light enhancement. However,
our approach has several limitations. 1) Unlike end-to-end methods, our technique requires the design
of a reasonable illumination prior, which relies on prior experience. 2) Most existing enhancement
models, including ours, primarily focus on mean square error and use PSNR and SSIM to evaluate
image quality. To mitigate inherent biases in these metrics, we conducted additional real-world
experimental evaluations to reconcile the bias and further validate the effectiveness of our approach.

6 Conclusion

In this paper, we introduced a novel state space-based model, MambaLLIE. Our proposed core of
GLSSB effectively combines global and local information by implicit Retinex-aware selective kernel
into global-then-local state space. Extensive experiments on benchmarks, low light object detection,
face detection, user study and perceptual evaluation demonstrate that our framework consistently
achieves the best performance. Our future work is to address the dual challenges of local redundancy
and global dependencies in low light video enhancement via efficient state space modeling. Broader
impact and more visual results, please refer to Appendix A and Appendix B.
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A Broader Impact.

Low light image enhancement is the classical task that improves the quality of degraded images, exhibiting the
promising value of research and application. Our proposed global-then-local state space enhances the feature
extraction ability by integrating implicit Retinex-aware strategy. We believe our method has the potential to
advance other low-level tasks and may inspire future research in state space models. However, there could
be negative effects brought by the proposed method. For example, the inevitable deviations of training data
distribution, the generated results for the real world scenarios may exist the color deviation.

B More Results.
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Figure 7: More qualitative comparisons with SOTAs. (Zoom in for best view)
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Figure 8: More qualitative comparisons with SOTAs. (Zoom in for best view)
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Table R1: Quantitative comparisons on image super-resolution (scale x2)

Methods

Set5 Set14 BSDS100 Urban100  Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MambaIR
(VSSM) 38.15 0.961 33.84 0.9207 32.31 0.9013 32.86 0.9343 39.35 0.9786

MambaIR
(LESSM) 38.18 0.9611 34.03 0.921 32.33 0.9014 32.95 0.9348 39.38 0.9787

Table R2: Ablation study

Methods
LOL-V2-real SDSD-outdoor SDSD-indoor

PSNR SSIM PSNR SSIM PSNR SSIM

Baseline-1 22.06 0.834 28.64 0.852 28.87 0.865

Baseline-2 21.28 0.812 28.96 0.841 29.12 0.862

Ours 
w/o LESSM 21.83 0.846 29.2 0.866 29.83 0.889

Ours 
w/o IRSK 22.37 0.845 28.97 0.857 29.2 0.887

Ours 22.95 0.847 30 0.869 30.12 0.900 

Table R4: Perceptual evaluation results on the unpaired datasets

Methods
LIME VV NPE MEF DICM

MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA

RetinexFormer 58.66 4.85 58.96 4.63 56.98 4.81 54.27 4.89 55.69 4.84

MambaIR 56.31 4.70 59.29 4.70 56.38 4.75 53.84 4.88 57.01 4.84

DiffLL 55.39 4.66 58.62 4.55 53.54 4.65 52.14 4.91 55.77 4.82

Ours 58.42 4.86 60.22 4.78 56.70 4.82 55.01 4.93 57.16 4.92
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Table R3: Quantitative comparisons on face detection performance

Methods Low SCI RetinexFormer MambaIR Ours

mAP 0.4606 0.4826 0.4856 0.4824 0.4911

Figure R2: Qualitative comparisons on face detection performance 

MambaLLIE

MambaLLIE

DiffLL

DiffLL

MambaLLIE DiffLL

DiffLLMambaLLIE
Figure R3: Qualitative comparisons of MambaLLIE and DiffLL
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Table R5: Quantitative comparisons on MIT-Adobe-FiveK dataset (sRGB output mode) 

Methods DeepUPE MIRNet SNR-Net Restormer RetinexFormer MambaLLIE

PSNR 23.04 23.73 23.81 24.13 24.94 24.67
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Figure R5: Qualitative comparisons of MambaLLIE and RetinexFormer on MIT dataset

Figure 10: Qualitative comparisons on face detection performance. (Zoom in for best view)
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Table R1: Quantitative comparisons on image super-resolution (scale x2)

Methods

Set5 Set14 BSDS100 Urban100  Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MambaIR
(VSSM) 38.15 0.961 33.84 0.9207 32.31 0.9013 32.86 0.9343 39.35 0.9786

MambaIR
(LESSM) 38.18 0.9611 34.03 0.921 32.33 0.9014 32.95 0.9348 39.38 0.9787

Table R2: Ablation study

Methods
LOL-V2-real SDSD-outdoor SDSD-indoor

PSNR SSIM PSNR SSIM PSNR SSIM

Baseline-1 22.06 0.834 28.64 0.852 28.87 0.865

Baseline-2 21.28 0.812 28.96 0.841 29.12 0.862

Ours 
w/o LESSM 21.83 0.846 29.2 0.866 29.83 0.889

Ours 
w/o IRSK 22.37 0.845 28.97 0.857 29.2 0.887

Ours 22.95 0.847 30 0.869 30.12 0.900 

Table R4: Perceptual evaluation results on the unpaired datasets

Methods
LIME VV NPE MEF DICM

MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA

RetinexFormer 58.66 4.85 58.96 4.63 56.98 4.81 54.27 4.89 55.69 4.84

MambaIR 56.31 4.70 59.29 4.70 56.38 4.75 53.84 4.88 57.01 4.84

DiffLL 55.39 4.66 58.62 4.55 53.54 4.65 52.14 4.91 55.77 4.82

Ours 58.42 4.86 60.22 4.78 56.70 4.82 55.01 4.93 57.16 4.92
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Table R3: Quantitative comparisons on face detection performance
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mAP 0.4606 0.4826 0.4856 0.4824 0.4911
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Table R5: Quantitative comparisons on MIT-Adobe-FiveK dataset (sRGB output mode) 

Methods DeepUPE MIRNet SNR-Net Restormer RetinexFormer MambaLLIE
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Figure R5: Qualitative comparisons of MambaLLIE and RetinexFormer on MIT dataset

Figure 11: Qualitative comparisons of MambaLLIE and DiffLL. (Zoom in for best view)
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Table R4: Perceptual evaluation results on the unpaired datasets

Methods
LIME VV NPE MEF DICM

MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA MUSIQ NIMA
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Table R5: Quantitative comparisons on MIT-Adobe-FiveK dataset (sRGB output mode) 

Methods DeepUPE MIRNet SNR-Net Restormer RetinexFormer MambaLLIE

PSNR 23.04 23.73 23.81 24.13 24.94 24.67
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Figure R5: Qualitative comparisons of MambaLLIE and RetinexFormer on MIT dataset
Figure 12: Qualitative comparisons on unpaired datasets. (Zoom in for best view)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 1 Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspIRSKtional goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Section 5 Limitation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and faIRSKess.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 4.1 Datasets and Implementation Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our code is available at Project Page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please refer to Section 4.1 Datasets and Implementation Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Section 4 Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please refer to Section 4.1 Datasets and Implementation Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Authors conducted in the paper conform, in every respect, with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Please refer to Section A Broader Impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), faIRSKess considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: Paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: Paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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