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Abstract

Large language models (LLMs) have achieved remarkable performance across
many generation tasks. Nevertheless, effectively aligning them with desired be-
haviors remains a significant challenge. Activation steering is an effective and
cost-efficient approach that directly modifies the activations of LLMs during the
inference stage, aligning their responses with the desired behaviors and avoiding
the high cost of fine-tuning. Existing methods typically indiscriminately intervene
to all generations or rely solely on the question to determine intervention, which
limits the accurate assessment of the intervention strength. To this end, we propose
the Flexible Activation Steering with Backtracking (FASB) framework, which dy-
namically determines both the necessity and strength of intervention by tracking
the internal states of the LLMs during generation, considering both the question
and the generated content. Since intervening after detecting a deviation from the
desired behavior is often too late, we further propose the backtracking mechanism
to correct the deviated tokens and steer the LLMs toward the desired behavior. Ex-
tensive experiments on the TruthfulQA dataset and six multiple-choice datasets
demonstrate that our method outperforms baselines. Our code will be released at
https://github.com/gjw185/FASB.

1 Introduction
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Figure 1: The truthful-
ness probability distribu-
tion of questions in the
TruthfulQA dataset as de-
tected by the classifier.

Large language models (LLMs) (Touvron et al., 2023; Brown et al.,
2020) have achieved great success in text generation. However, the gen-
erated text still contains harmful information, hallucinations, and other
misleading content. Therefore, controlling LLMs to produce trustwor-
thy, reliable, and other desired outputs remains a challenge. Existing
methods often use instruction tuning (Wei et al., 2022), Reinforcement
Learning from Human Feedback (RLHF) (Bai et al., 2022), and prompt
engineering (Brown et al., 2020) to control LLMs. Unfortunately, these
methods often require large-scale datasets and expensive fine-tuning
costs to achieve desired results.

Recently, activation steering or representation engineering (Zou et al.,
2023; Rimsky et al., 2024; Li et al., 2023; Turner et al., 2023; Cheng
et al., 2025) has been proposed to control the outputs of LLMs by di-
rectly modifying their internal activations during inference, thereby avoiding the high cost associated
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Figure 2: The overview of flexible activation steering with backtracking framework.

with large-scale data collection and fine-tuning. This technique constructs steering vectors from pos-
itive and negative samples to make targeted modifications to the activations of the LLM, enabling
more precise control over its output.

Existing methods often apply interventions indiscriminately to all generations (Rimsky et al., 2024;
Wang et al., 2024c; Li et al., 2023) or determine whether and how strongly to intervene based solely
on the question (Lee et al., 2025), which limits the accurate assessment of the intervention strength.
First, different generations should receive different levels of intervention. If a generation does not
deviate, no intervention is necessary. If it deviates significantly, a stronger intervention should be
applied. For example, when LLM is asked “Where is the capital of the United States?”. If the
response is “The capital of the United States is Washington, D.C.”, no intervention is necessary, as
the answer is correct. If the response is “Paris”, it often requires a stronger intervention compared
to “New York”. Second, as each LLM generates different responses to the same question, question-
only probing is challenging1 and requires data collection for each LLM, resulting in high overhead.
On the other hand, training a classifier on concatenated questions and answers often struggles to
directly probe the question to determine whether and how strongly to intervene. As shown in Figure
1, the predicted truthfulness probabilities for questions in the TruthfulQA dataset are concentrated
between 0.3 and 0.5, making fine-grained decisions difficult.

In this paper, we propose a Flexible Activation Steering with Backtracking (FASB) method, as
shown in Figure 2. Unlike existing methods, FASB tracks the internal states of the LLM after each
normal generation step, taking both the question and the generated content into account. In this way,
FASB can dynamically determine whether intervention is necessary and the intervention strength
based on the degree of deviation in the generation. Specifically, FASB employs two methods to
identify internal states that are consistent with the desired behavior and derive the steering vector
and classifier for state tracking. Considering that intervening after detecting a deviation from the
desired behavior is often too late, we further propose the backtracking mechanism. The backtracking
mechanism steps back a few tokens and performs activation steering to regenerate them, steering the
generation toward the desired direction, with the intervention strength determined by the classifier.

Our main contributions are as follows:

• We propose a flexible activation steering with backtracking that dynamically determines
both the necessity and strength of intervention by tracking the internal states of the LLMs.

• We propose a backtracking mechanism to step back a few tokens in order to apply interven-
tion and regenerate them.

• We conduct extensive experiments on the TruthfulQA dataset and six multiple-choice
datasets to demonstrate the effectiveness of our method.

2 Related Work

Activation steering or representation engineering (Zou et al., 2023; Rimsky et al., 2024; Li et al.,
2023; Turner et al., 2023; Leong et al., 2023; Wang et al., 2025a,b) uses steering vectors to directly
modify the activations of LLMs during inference to control their outputs in a desired direction.
Activation steering preserves the general capabilities of LLMs while avoiding the expensive costs

1Questions in some domains may be relatively simple and general, such as those related to safety.
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Figure 3: The framework of flexible activation steering with backtracking.

of high-quality data collection and fine-tuning (Zhang et al., 2025; Zhong et al., 2025; Shen et al.,
2025).

The pioneering work (Zou et al., 2023; Turner et al., 2023; Wang et al., 2024a) creates and compares
two prompts to obtain the steering vector. ITI (Li et al., 2023) uses the probe tool on a contrastive
question-answering dataset to identify a set of attention heads associated with truthfulness. During
inference, ITI modifies the activations of all subsequent generations in directions associated with
truthfulness. Truth Forest (Chen et al., 2024) further employs multiple orthogonal probes to ex-
tract several truthful steering vectors, thereby improving performance. ACT (Wang et al., 2024b)
uses clustering to construct multiple steering vectors and proposes an adaptive steering strength.
CAA (Rimsky et al., 2024) computes steering vectors by averaging the difference between pairs of
positive and negative examples. During inference, these steering vectors are added into the residual
stream with a chosen steering strength at all token positions after the prompt to control the direction.
ORTHO (Arditi et al., 2024) also averages the difference between pairs of positive and negative to
compute the steering vector and performs directional ablation using the opposite direction of the
steering vector to guide the model toward the desired behavior. SADI (Wang et al., 2024c) utilizes
activation differences in contrastive pairs to precisely identify intervention position and dynamically
steers model behavior by scaling element-wise activations. In addition, some works have explored
the use of activation steering in instruction-following (Stolfo et al., 2024), in-context learning (Liu
et al., 2024), and differentially private (Goel et al., 2025).

3 Method

Our method consists of two steps to flexibly steer model behavior, as illustrated in Figure 3. In the
first step, we employ two alternative methods to identify the attention heads for intervention and to
derive both the steering vector and the classifier. In the second step, the classifier is used for state
tracking to determine whether intervention is necessary and to adaptively set intervention strength.
We further propose a backtracking mechanism that allows the LLMs to regenerate tokens that deviate
from the desired behavior. The full procedure can be found in Algorithm 1 in the Appendix.

3.1 Heads Anchoring and Steering Vectors Inducing

The first step is to use the classifier to identify the attention heads related to the desired behavior and
to construct the steering vector. We use the Probe method to identify attention heads and induce
the classifiers and steering vectors. In the Appendix A, we present an alternative Prototype method.
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Figure 4: Accuracies on the validation set of TruthfulQA dataset for all heads in all layers in
LLaMA2-7B-CHAT, sorted row-wise by accuracy. Darker blue represents higher accuracy.

Since the Probe method uses a trainable classifier and typically achieves higher accuracy, we focus
only on the Probe method in the section.

Probe Probe method employs standard probing tools to identify attention heads. The idea behind
probing tools is to train a lightweight classifier (probe) on the activations of attention heads to iden-
tify the relevant heads. Subsequently, we select the top-k heads with the highest accuracy on the
validation set for intervention, as they can effectively separate the samples and are more aligned
with the desired behavior.

Specifically, we concatenate the question and answer from the labeled dataset and extract the acti-
vations at the last token to collect a binary probing dataset {(xℓ,h

i,-1, yi)}Ni=1 for each head in each
layer, where xℓ,h

i,-1 denotes the activation of h-th attention head in the ℓ-layer at the last token, and
yi ∈ {0, 1} denotes the label. The probe takes the following form:

pθℓ,h(xℓ,h
i,-1) = sigmoid(⟨θℓ,h,xℓ,h

i,-1⟩) (1)

where ⟨, ⟩ denotes dot product, and θℓ,h denotes the probe parameter of h-th attention head in the
ℓ-layer. Since the probes can effectively separate positive and negative examples, we use the param-
eters of probe θℓ,h as the steering vector.

As shown in Figure 4, a subset of heads is strongly related to the truthfulness, and the optimal heads
are relatively evenly distributed across all layers. Therefore, performing fine-grained intervention
only on these heads is more targeted and helps minimize disruption to the model’s overall behavior.
It is worth noting that our method can also intervene in the outputs of the MLP module or the outputs
of layers.

3.2 Generation with Flexible Steering and Backtracking

In the second step, after generating each token, the classifier is used for state tracking to determine
whether the generation deviates from the desired behavior, allowing for flexible intervention. If a
deviation is detected during the generation process, it often indicates that the previously generated
tokens have deviated from the desired behavior. We backtrack a few tokens to regenerate them and
apply steering vectors to adaptively intervene in all subsequent tokens. The backtracking mechanism
enables the correction of deviated tokens and helps steer the model toward the desired behavior. If
no deviation is detected, the model continues generating normally.

State Tracking After generating the j-th token, the classifier probes the j-th token’s activation
of the LLM to assess whether the current generation deviates from the desired behavior and deter-
mines the intervention strength. Notably, state tracking and probe share the same goal: determining
whether the current response deviates from the desired behavior. Specifically, we average the pre-
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diction probabilities from the top-k selected heads to assess the deviation:

p(xi,j) =
1

k

∑
(ℓ,h)∈top-k heads

(1− pθℓ,h(xℓ,h
i,j )) (2)

where p(xi,j) denotes the deviation probability after generating j-th token for xi, and xℓ,h
i,j represents

the activation of j-th generated token for xi at the ℓ-th layer and the h-th head. The process is highly
lightweight, as the hidden states are already generated during the generation process.

Backtracking When the deviation probability exceeds the threshold, we consider the generation
to deviate from the desired behavior, and intervention should be applied. An important issue is that
intervening only after a deviation is detected is often too late, as it can only affect the content gen-
erated subsequently. To address this issue, we propose a backtracking mechanism to regenerate the
previous deviated tokens. If a deviation is detected after generating the j-th token, the backtracking
mechanism retains only the first j-s tokens and regenerates the subsequent tokens, where s is a hy-
perparameter that controls the number of tokens to backtrack. Compared to generating from scratch,
the backtracking mechanism only requires generating an additional s tokens, making the overhead
lightweight. Subsequently, we apply intervention and regenerate the content after the (j-s)-th token
to prevent further deviation.

Activation Steering We further introduce an adaptive intervention strength for activation steer-
ing, where the strength is determined by the degree of deviation calculated by the classifier and is
proportional to it. The intervention strength is defined as follows:

r = I(p(xi,j) > β) · p(xi,j) · α (3)

where α and β are hyperparameters that control the intervention strength and the threshold for de-
viation probability, respectively. An appropriately sized α can steer the LLM toward the desired
behavior without compromising generation quality. When α is too large, it degrades generation
quality, whereas when it is too small, it fails to provide effective steering. An appropriately sized β
allows intervention when deviations occur. An excessively large β may miss necessary interventions,
while an excessively small one may cause over-intervention.

Since we intervene in the output of selected heads, the MHSA with intervention can be formulated
as follows:

hℓ
i,j-s+1 = concat(xℓ,1

i,j-s+1 + rθℓ,1cℓ,1, · · · ,xℓ,H
i,j-s+1 + rθℓ,Hcℓ,H)Wℓ,O (4)

where hℓ
i,j-s+1 represents the output of ℓ-th MHSA at the (j-s+1)-th token, xℓ,H

i,j-s+1 represents the
output of self-attention for H-th head in ℓ-th layer, and Wℓ,O is output projection matrix in ℓ-th
layer. cℓ,H is a binary scalar that equals 1 for the selected top-k heads and 0 for the unselected ones.

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Metrics We conduct experiments on open-ended generation tasks and
multiple-choice tasks. TruthfulQA (Lin et al., 2022) dataset includes open-ended generation task
and multiple-choice task. For the open-ended generation, we employ two fine-tuned LLMs to judge
whether the answer is truthful2 and informative3, denoted as True (%) and Info (%) respectively,
while the product True*Info (%) serves as the primary metric. For the multiple-choice tasks, we use
datasets: COPA (Gordon et al., 2012), StoryCloze (Mostafazadeh et al., 2016), NLI (Bowman et al.,
2015), MMLU (Hendrycks et al., 2021), SST2 (Socher et al., 2013), and Winogrande (Sakaguchi
et al., 2020), with response formats ranging from 2-way to 4-way choices. We use multiple-choice
accuracy (MC) to evaluate.

Implementation Details In the Probe method, for the TruthfulQA dataset, we intervene using the
top-24 heads, set the threshold range to [0.4, 0.5], the number of backtracking steps to 10, and search

2https://huggingface.co/allenai/truthfulqa-truth-judge-llama2-7B
3https://huggingface.co/allenai/truthfulqa-info-judge-llama2-7B
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Table 1: Results on TruthfulQA open-ended generation (True*Info %) and multiple-choice tasks
(MC %).

Methods Open-ended Generation Multiple-Choice

True (%) Info (%) True*Info (%) MC1 (%) MC2 (%) MC3 (%)

Baseline 66.83 99.51 66.50 33.41 51.07 24.76
ITI 94.49 80.55 76.11 38.31 57.15 30.53
CAA 71.60 83.84 60.03 34.03 52.76 25.62
ORTHO 67.94 90.09 61.21 36.23 52.88 26.12
CAST 67.69 86.17 58.33 33.90 51.17 25.01
ACT - - - 28.80 45.20 -
SADI-HEAD 77.72 98.53 76.58 35.90 54.65 26.99

Probe (Ours) 93.88 85.81 80.56 48.71 66.58 41.95

Table 2: Results (MC %) on six multiple-choice tasks.

Methods COPA StoryCloze NLI MMLU SST2 Winogrande AVG

Baseline 64.4 60.2 63.5 60.2 92.2 50.2 65.1
ITI 66.6 59.7 64.3 60.2 92.3 51.5 65.8
CAA 66.6 63.5 64.9 62.6 92.2 50.9 66.8
ORTHO 65.2 60.2 63.1 63.8 92.4 50.4 65.8
SADI 65.4 60.5 65.1 61.8 92.3 51.8 66.1

Probe (Ours) 90.0 93.5 80.0 62.4 92.8 54.1 78.8

for the intervention strength in the range of [40, 80] with a step size of 10. For the six multiple-choice
tasks, our threshold search range is [0.3, 0.4, 0.5, 0.6], the intervention strength search range is [0,
250] with a step size of 10, and the number of backtracking steps is 10.

4.2 Baselines

We compare our model with the following baselines to show its effectiveness. Baseline directly uses
the original LLaMA2-7B-CHAT model to generate text. ITI (Li et al., 2023) identifies a set of at-
tention heads with high linear probing accuracy and shifts activations of all subsequent generations
following the user’s prompt along these probe-correlated directions. CAA (Rimsky et al., 2024)
computes the steering vector by averaging the difference between pairs of positive and negative
examples. During inference, these steering vectors are added at all generations with a coefficient.
ORTHO (Arditi et al., 2024) uses the same reversed steering vector for directional ablation, steering
the generation toward the desired direction. CAST (Lee et al., 2024) computes the condition vector
and behavior vectors using PCA. During the inference phase, it uses the condition vector to make
judgments, enabling dynamic intervention in generations. ACT (Wang et al., 2024b) constructs mul-
tiple classifiers through clustering and uses these classifiers to dynamically intervene in responses
from different directions. SADI (Wang et al., 2024c) utilizes activation differences in contrastive
pairs to precisely identify intervention position and dynamically steer model behavior by scaling
element-wise activations.

4.3 Results

Results on TruthfulQA In Table 1, the Probe method demonstrates superior performance compared
to the baselines on the TruthfulQA dataset. Compared to the ITI method, our Probe method does
not require additional training on top of ITI and has achieved performance far exceeding that of the
ITI method. This is because ITI applies the same intervention strength indiscriminately to all gener-
ations. This makes it impossible to assign adaptive intervention strength and may cause originally
correct answers to be incorrectly altered due to the intervention. In contrast, our method adaptively
determines the intervention strength and does not intervene in correct generations. Compared with
other dynamic intervention methods such as ORTHO, CAST, ACT, and SADI, it can be noted that
SADI also achieves good performance, which demonstrates that the dynamic steering vector is ef-
fective. ORTHO and CAST are mainly designed for safety-related scenarios, where it is relatively
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Table 3: Ablation study on TruthfulQA dataset.

Methods True*Info MC1 MC2

Probe 80.56 48.71 66.58

Intervention Strength:
All fixed strength 76.11 38.31 57.15
w/o Adaptive 82.08 42.96 62.06

Intervention Position:
w/o Backtracking 62.11 35.01 53.55
After Question 72.55 41.86 59.88

easy to determine whether a query is harmful based solely on the query information. However, in
domains such as truthfulness and faithfulness, it is difficult to anticipate whether the generated con-
tent will deviate based solely on the query, resulting in poor performance. Compared with these
dynamic intervention methods, the superiority of our method can be further demonstrated.

Results on Multiple-choice In Table 2, our method achieves consistently promising results across
all datasets, and Probe method achieves the best performance. This demonstrates that adaptive
intervention and using probes to select heads remain effective on multiple-choice datasets. Notably,
CAA achieves better results than ITI, suggesting that layer-wise intervention can sometimes lead
to better performance. SADI also performs well in multiple-choice tasks, which demonstrates the
generalizability of the dynamic steering vector.

4.4 Ablation Study

We conduct an ablation study to show the effectiveness of the proposed components in Table 3.

We first explore the ablation of intervention strength. “All fixed strength” refers to the results of
applying the same intervention strength to all samples. “w/o Adaptive” refers to the results of
applying the same intervention strength to samples that meet the intervention criteria. By comparing
the results of “w/o Adaptive” with “All fixed strength”, it is demonstrated that intervening only on
samples that deviate from the desired behavior can improve performance. Comparing the results of
the Probe with “w/o Adaptive” demonstrates the effectiveness of dynamic intervention strength.

We then explore the ablation of the intervention position. “w/o Backtracking” means no backtrack-
ing is performed. “After Question” indicates that the representation of the question was used to
decide whether to intervene and intervention strength. Comparing the results of the Probe with “w/o
Backtracking” shows the necessity of the backtracking operation. The True*Info metric of “w/o
Backtracking” is even lower than the baseline. This indicates that intervening after detecting the
deviation from the desired behavior is too late. Comparing the results of the Probe with “After
Question” indicates that relying solely on the hidden states of the question part to judge whether
the subsequent response deviates from the desired behavior is insufficient. It is necessary to make
judgments after generating part of the response.

4.5 Generalizability across More Truthful Benchmarks

We further investigate whether our method can generalize beyond the TruthfulQA benchmark.
Specifically, we directly evaluate the classifier and steering vectors obtained from TruthfulQA on
two datasets related to real-world truth, including Natural Questions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017). The Natural Questions dataset consists of 3,610 real queries issued
to the Google search engine, annotated with answers and supporting Wikipedia pages. TriviaQA
includes 95K question-answer pairs annotated by trivia enthusiasts. Following Li et al. (2023), all
benchmarks are presented in a multiple-choice format.

The results indicate that the Probe method outperforms the baseline and the ITI on both benchmarks,
as shown in Table 4. This suggests that employing the Probe method does not undermine the model’s
performance in out-of-distribution truthful domains; Instead, it enhances the model’s performance,
particularly in domains closely related to the real-world truth. This indicates that the classifier and
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Table 4: MC2 on the Natural Questions and TriviaQA multiple-choice datasets using LLaMA2-7B-
CHAT as the baseline.

Methods Natural Questions TriviaQA

Baseline 49.54 61.22
ITI 56.50 66.49
Probe 59.25 67.55
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Figure 5: The performance of various LLMs on the TruthfulQA benchmark.

steering vector learned on the TruthfulQA dataset are not domain-specific, but rather general real-
world truth features.

4.6 Generality across More LLMs

To evaluate the generality across various LLMs, we apply the Probe method to 6 LLMs, including
LLaMA2 Touvron et al. (2023), LLaMA3.1 (Grattafiori et al., 2024), and Qwen2.5 (Yang et al.,
2024). The performance of baseline, ITI, and Probe on the TruthfulQA benchmark in Figure 5.

The probing method effectively improves performance across 6 LLMs, demonstrating that our ap-
proach can generalize to models of different sizes, architectures, and whether or not they have been
instruction-tuned. Notably, our method yields significant improvements of 24.61 and 20.03 in MC1
and MC2, respectively, on Qwen2.5-7B. Compared with the ITI method, our method achieves better
performance on all 6 LLMs. On Qwen2.5-7B, there is an improvement of 23.50 on the MC1 and an
improvement of 19.81 on the MC2. It is demonstrated that our method outperforms the ITI method
in terms of performance across different LLMs. Scaling up the model size often results in better per-
formance, indicating that it has acquired more knowledge related to truthfulness. Instruction-tuned
models achieve better performance than non-instruction-tuned ones, indicating that instruction tun-
ing helps enhance the truthfulness of the model.

4.7 Model Analysis

Effects of intervention strength and head number In Figure 6, we present the results of our
method on the TruthfulQA dataset. We sweep two hyperparameters to control the intervention: the
number of identified attention heads and the intervention strength.

The truthful metrics MC1, MC2, and True show a trend where the results continuously improve as
both the strength and the number of attention heads increase. This is because, with the continuous
increase in the number of heads and the strength of intervention, the internal truthfulness of the
model is constantly increasing, making the model more inclined to choose and respond with more
truthful answers. It is worth noting that our method can be applied with greater strength, as it does
not intervene with all samples, and the intervention strength is adaptive.

8



50 60 70
Strength

12

18

24

30

36

Nu
m

be
r o

f H
ea

ds

0.47 0.48 0.50

0.47 0.49 0.52

0.45 0.49 0.53

0.47 0.51 0.54

0.46 0.51 0.54

MC1

50 60 70
Strength

12

18

24

30

36

Nu
m

be
r o

f H
ea

ds

0.65 0.67 0.69

0.65 0.68 0.71

0.65 0.67 0.71

0.66 0.69 0.72

0.65 0.68 0.73

MC2

50 60 70
Strength

12

18

24

30

36

Nu
m

be
r o

f H
ea

ds

0.83 0.85 0.88

0.86 0.91 0.94

0.87 0.94 0.93

0.85 0.91 0.94

0.85 0.92 0.94

True

50 60 70
Strength

12

18

24

30

36

Nu
m

be
r o

f H
ea

ds

0.94 0.94 0.92

0.94 0.90 0.82

0.92 0.86 0.76

0.89 0.75 0.53

0.86 0.70 0.50

Info

50 60 70
Strength

12

18

24

30

36

Nu
m

be
r o

f H
ea

ds

0.78 0.80 0.81

0.81 0.82 0.77

0.80 0.81 0.71

0.76 0.68 0.50

0.73 0.64 0.47

True*Info

Figure 6: Results with varying intervention strength and numbers of attention heads on the Truth-
fulQA dataset with LLaMA2-7B-CHAT.
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Figure 7: Effects of the threshold and the size of the training set on TruthfulQA dataset.

The Info metric decreases as the number of heads increases and the intervention strength increases.
This is because, with the continuous increase in intervention strength, the model internally encodes
more truthfulness, leading the model to be more inclined to respond with answers that are truthful
but lack informativeness. Due to the mutual restraint between the True metric and the Info metric,
the True*Info metric achieves highest values when the True metric and the Info metric are relatively
balanced, i.e., the number of heads is 18 and the strength is 60. Therefore, the optimal hyperparam-
eters for MC2 and True*Info are not consistent.

Effects of threshold To investigate the impact of different thresholds β, we conduct experiments
with thresholds set at 0.3, 0.4, 0.5, and 0.6. When β is 0.3, 0.4, or 0.5, the overall performance does
not vary significantly. Among them, True*Info achieves the best performance at 0.4, while MC1
and MC2 perform best at 0.5. When the threshold is set to 0.6, True*Info drops sharply, which may
be due to excessive intervention.

Effects of training set size To better investigate the impact of the size of the used dataset on the
performance, we conduct experiments by utilizing 20%, 40%, 60%, 80%, and 100% of the original
dataset. As the size of the dataset increases, the metrics MC1, MC2, and True*Info generally exhibit
an upward trend, essentially reaching their maximum values after utilizing approximately 80% of
the data, as shown in Figure 7 (b). Moreover, when only 20% of the data is used, i.e., 496 samples,
all three metrics can exceed the baseline, with more significant improvements observed in the MC1
and MC2 metrics. This indicates that our method does not require a large dataset. As the amount of
data increases, performance improvements become both more consistent and more significant.

5 Conclusion

In this paper, we propose a Flexible Activation Steering with Backtracking framework. It dynam-
ically decides whether and how strongly to intervene by probing the internal states of the LLM.
Specifically, FASB first identifies attention heads that are consistent with the desired behavior and
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derive the steering vector and classifier. Then, FASB uses classifiers to dynamically determine
whether and how strongly to intervene by probing the internal states of the LLM. Finally, we further
propose a backtracking mechanism to regenerate in order to avoid deviating from the deviated behav-
ior. Experimental results on the TruthfulQA dataset and six multiple-choice datasets to demonstrate
the effectiveness of our method.
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Table 5: Results on TruthfulQA open-ended generation (True*Info %) and multiple-choice tasks
(MC %).

Methods Open-ended Generation Multiple-Choice

True (%) Info (%) True*Info (%) MC1 (%) MC2 (%) MC3 (%)

Baseline 66.83 99.51 66.50 33.41 51.07 24.76
ITI 94.49 80.55 76.11 38.31 57.15 30.53
CAA 71.60 83.84 60.03 34.03 52.76 25.62
ORTHO 67.94 90.09 61.21 36.23 52.88 26.12
CAST 67.69 86.17 58.33 33.90 51.17 25.01
ACT - - - 28.80 45.20 -
SADI-HEAD 77.72 98.53 76.58 35.90 54.65 26.99

Probe (Ours) 93.88 85.81 80.56 48.71 66.58 41.95
Prototype (Ours) 88.37 94.98 83.94 46.14 64.30 37.07

Table 6: Results (MC %) on six multiple-choice tasks.

Methods COPA StoryCloze NLI MMLU SST2 Winogrande AVG

Baseline 64.4 60.2 63.5 60.2 92.2 50.2 65.1
ITI 66.6 59.7 64.3 60.2 92.3 51.5 65.8
CAA 66.6 63.5 64.9 62.6 92.2 50.9 66.8
ORTHO 65.2 60.2 63.1 63.8 92.4 50.4 65.8
SADI 65.4 60.5 65.1 61.8 92.3 51.8 66.1

Probe (Ours) 90.0 93.5 80.0 62.4 92.8 54.1 78.8
Prototype (Ours) 87.8 86.1 73.7 62.2 93.1 54.7 76.3

A Prototype Method

Prototype Prototype method directly constructs two prototypes to achieve the above goal. Specifically, we
compute the average activation within each class to obtain the prototype representations of h-th attention head
in the ℓ-th layer, as follows:

θℓ,h
pos =

1

Npos

Npos∑
i=1

I(yi = 1)xℓ,h
i,-1, θℓ,h

neg =
1

Nneg

Nneg∑
i=1

I(yi = 0)xℓ,h
i,-1 (5)

where θℓ,h
pos and θℓ,h

neg represent the prototypes of the positive and negative classes, respectively. I denotes
indicator function, and Npos and Nneg represent the numbers of positive and negative samples, respectively.
Then, we can use the softmax function over cosine similarities between activation and prototypes to define a
classifier:

pθℓ,h(x
ℓ,h
i,-1) =

exp(cos(xℓ,h
i,-1,θ

ℓ,h
pos )/τ)

exp(cos(xℓ,h
i,-1,θ

ℓ,h
pos )/τ) + exp(cos(xℓ,h

i,-1,θ
ℓ,h
neg )/τ)

(6)

where τ denotes the temperature. We also use the classifier to anchor the top-k heads with high accuracy
for intervention. Finally, we directly use the mean difference between positive and negative prototypes as the
steering vector:

θℓ,h = θℓ,h
pos − θℓ,h

neg (7)

It is worth noting that the prototype method is training-free. It only involves averaging the activations of the
training set to obtain prototype vectors for constructing the classifier.

Implementation Details In the Prototype method, for the TruthfulQA dataset, we intervene using the top-
24 heads, set the threshold to 0.5, the number of backtracking steps to 10, the temperature to 0.1, and search for
the intervention strength in the range of [25, 55] with a step size of 10. For the six multiple-choice tasks, the
threshold is 0.5, the number of backtracking steps is 10, the temperature is 0.1, and the intervention strength
search range is [0, 400] with a step size of 10.

Results In Table 5, the Prototype method also demonstrates superior performance compared to the baselines
on the TruthfulQA dataset. Compared with the ITI and ACT methods that require training a linear classifier,
the Prototype method achieves improvements of 7.83% and 17.34% on MC1, and 7.15% and 19.1% on MC2,
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respectively. This demonstrates the generality of our method. It is worth noting that the Probe method performs
better on the True and multiple-choice metrics, while the Prototype method achieves higher performance on the
Info and True*Info metrics. This may be because the trained probe is more closely related to truthfulness.

In Table 6, the Prototype method also achieves better performance than baselines on six multiple-choice tasks.
On the COPA dataset and the StoryCloze dataset, the Prototype method achieves improvements of 23.4% and
25.9% compared with the model without intervention, while other methods only achieve marginal improve-
ments. This further demonstrates its effectiveness.

B Algorithm

The algorithm consists of two main processes. The first step is Heads Anchoring and Steering Vectors Induc-
ing, which determines the heads that need to be intervened, the classifiers, and the steering vectors. The second
step is Generation with Flexible Steering and Backtracking, which involves using classifiers to evaluate the
internal activations of LLMs. When the internal activations exceed a certain threshold, a backtracking operation
will be performed. After the backtracking, the activations will be regenerated by adding the activation vectors.
Since our method also backtracks to the beginning when the number of generated tokens is less than s, we start
tracking from the s-th token, as shown in Line 14 of the algorithm.

Algorithm 1 The overall flow of FASB
Require: LLM, dataset D, intervention strength α, threshold β, backtracking number s, maximum

number of generated tokens M
1: Step1: Heads Anchoring and Steering Vectors Inducing
2: if Probe then
3: Train classifier pθℓ,h on dataset D; ▷ Equation 1
4: Use the parameters of the probe as the steering vector θℓ,h;
5: else if Prototype then
6: Construct two prototypes from the dataset D; ▷ Equation 5
7: Obtain the classifier pθℓ,h ; ▷ Equation 6
8: Obtain the steering vector θℓ,h; ▷ Equation 7
9: end if

10: Step2: Generation with Flexible Steering and Backtracking
11: for j = 1 to M do
12: Generate the j-th token;
13: Evaluate the current activation using the classifier; ▷ Equation 2
14: if p(xi,j) > β and j ≥ s then
15: Backtrack s tokens;
16: Calculate the intervention strength; ▷ Equation 3
17: for k = (j-s+1) to M do
18: Intervene on the current activation; ▷ Equation 4
19: Generate the k-th token;
20: end for
21: break;
22: end if
23: end for

C Effects of the Number of Tokens for Backtracking

In order to better investigate the impact of the backtracking number on our method, we conduct experiments on
the TruthfulQA dataset.

As shown in Figure 8, we investigate the effect of different token numbers for backtracking (i.e., 2, 5, 10, 20)
on the MC1, MC2, and True*Info metrics. MC1, MC2, and True*Info generally show an increasing trend with
the increase in the number of backtracking steps. This is because, as the number of backtracking increases, our
method can intervene in the model’s internal activations earlier, thereby achieving improved performance.

D Fine-Grained Model Comparison

We further propose two models based on Probe for fine-grained analysis. The difference between them and
Probe lies in the detection location and the point at which intervention begins, resulting in different overheads.
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Figure 8: Effects of the number of tokens for backtracking.

Table 7: Comparison with two fine-grained models.

Methods True*Info MC1 MC2
Probe 80.56 48.71 66.58
BTB 81.60 48.83 67.62
GCBB 81.96 50.67 67.48

(1) The first method directly BackTracks to the Beginning (BTB). Specifically, when a deviation is detected
during generation, BTB backtracks not just s tokens for regeneration, but to the beginning. Our method gen-
erates s additional tokens for texts that require backtracking, whereas this variant generates even more. (2)
The second method performs detection after the Generation is Complete and then Backtracks to the Beginning
(GCBB). Notably, this method incurs approximately double the overhead for texts that require backtracking.

As shown in the results in Table 7, GCBB usually achieves the best performance, and both BTB and GCBB
outperform our proposed Probe method on the TruthfulQA dataset. This is because GCBB has access to the
full output of the LLM, allowing it to better determine the intervention strength. However, GCBB inevitably
introduces additional overhead. BTB may also sometimes require full regeneration. The advantage of Probe is
that it achieves good performance while maintaining stable and relatively low additional overhead.

E Results across TruthfulQA Categories

TruthfulQA is split into 38 subcategories, including politics, language, education, psychology and others. We
compare our method with the baseline method without intervention using the True*Info metric across all sub-
categories with 10 or more questions, where the subcategories are ranked in descending order based on their
quantity within the dataset, as shown in Figure 9.

Our method demonstrates significant enhancement across most subcategories, with the overall performance
improvement showing uniform distribution rather than concentration in particular domains, thereby validating
its efficacy.

F Results on Multi-hop QA dataset

We conduct experiments on the more challenging multi-hop question answering WikiHop dataset (Welbl et al.,
2018) to verify the effectiveness, as shown in Table 8. Our method achieves improvements of 5% and 4.3% on
metrics MC1 and MC2, respectively. This further demonstrates the generalizability of our method.

Table 8: Results on the WikiHop dataset.

Method MC1(%) MC2(%)
LLaMA2-7B-CHAT 45.20 44.03
LLaMA2-7B-CHAT + Probe 50.20 (+ 5.00) 48.33 (+4.30)
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Figure 9: True*Info scores split across subcategories on LLaMA2-7B-CHAT, sorted by the differ-
ence between baseline and probe method. Subcategories with less than 10 questions are not shown.

G Generalizability on larger LLM

We further explore the effectiveness of our method on larger LLMs by using QWEN2.5-32B-Instruct on the
TruthfulQA dataset in Table 9. Our method still achieves significant performance improvements, demonstrating
its effectiveness on larger LLMs as well.

Table 9: Results on the Qwen2.5-32B-Instruct model.

Method MC1(%) MC2(%) MC3(%)
Qwen2.5-32B-Instruct 50.00 66.35 38.75
Qwen2.5-32B-Instruct +Probe 69.00 76.67 59.59

H Deviation Positions Under Different Thresholds

The Table 10 presents the detected deviation positions under different thresholds on the TruthfulQA dataset. We
observe that the threshold has a significant impact on the intervention position. When the threshold is high, the
intervention positions tend to occur significantly later, and the interventions are less frequent. This is because
the model needs to track more generated content to make a more accurate judgment about whether a deviation
occurs.

Table 10: Distribution of tokens under different thresholds.

Threshold β
Position

0-10 10-20 20-50
0.4 304 94 9
0.5 166 159 75
0.6 21 109 222

I Results on Toxic Context Generation

Since our method can flexibly manipulate various behaviors, we further conduct experiments on the RealTox-
icityPrompts dataset (Gehman et al., 2020) for toxic content generation, as shown in Table 11. Our method
can effectively steer LLMs to generate toxic content, demonstrating its generality. This also highlights the
vulnerability of current alignment methods and the potential risks of our approach.

J Comprehensive Hyperparameter Analysis of strength α and threshold β

We further conduct a more comprehensive exploration of the impact of strength α and threshold β on the
TruthfulQA dataset.
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Table 11: Results on the RealToxicityPrompts dataset.

Method ASR (↑)
LLaMA2-7B-CHAT 42.0
LLaMA2-7B-CHAT + Probe 46.4 (+4.4)

Table 12: Impact of strength.

Strength α MC1 (%) MC2 (%) True (%) Info (%) True*Info (%)
0 (baseline) 33.41 51.07 66.83 99.51 66.50
2 36.43 52.96 67.24 84.35 56.72
5 38.63 54.94 68.46 84.35 57.75
15 43.77 60.14 73.71 88.86 65.50
25 43.33 62.02 80.18 91.06 73.01
35 43.33 62.66 82.01 93.88 76.99
45 45.04 63.84 83.61 93.88 78.49
50 45.04 64.52 87.15 91.80 80.05
60 48.71 66.58 93.88 85.81 80.56
65 50.18 68.59 95.11 77.24 73.46
70 52.51 70.89 93.26 76.38 71.24
100 55.75 74.35 97.83 18.51 18.11
500 43.03 75.48 89.99 6.36 5.68

As shown in Table 12, when α is small (e.g., α = 2, 5), it often fails to effectively improve the True metric
and even leads to a decrease in the Info metric. This indicates that a low intervention strength fails to enhance
truthfulness and even reduces informativeness. Conversely, an excessively large intervention strength (e.g.,
α = 100, 500) reduces the informativeness of the generated text. For instance, when α = 500, we observe that
the Info metric drops to 6.36%, indicating that the generated text lacks informativeness. An appropriately sized
α often enhances the truthfulness of the generated content while causing less information loss.

Then, we explore the impact of the threshold β. As shown in Table 13, when β is too large (e.g., β =
0.7, 0.8, 0.9), many samples would not be intervened, leading to lower performance on the MC1, MC2, and
True metrics. For instance, the performance on these three metrics with β = 0.7, 0.8, 0.9 is significantly lower
than that with β = 0.6. When β is too small (e.g., β = 0, 0.2), many samples would be backtracked and
intervened at the first state judgment. In such cases, although performance may remain satisfactory due to our
adaptive intervention strength, the method loses the flexibility to decide whether intervention is needed.

Table 13: Impact of threshold.

Threshold β MC1 (%) MC2 (%) True (%) Info (%) True*Info (%)
0.0 46.63 66.15 90.45 86.42 78.16
0.2 48.90 65.89 80.68 91.69 73.98
0.3 46.88 66.77 90.45 86.42 78.17
0.4 48.71 66.58 93.88 85.81 80.56
0.5 50.80 68.55 90.94 86.17 78.37
0.6 48.95 65.37 75.15 84.21 63.29
0.7 44.74 57.69 66.01 83.13 54.87
0.8 35.45 51.76 65.04 84.35 54.86
0.9 35.21 51.64 65.04 84.35 54.86

K Limitations

First, our approach is flexible and could be used for any sort of steering, including less-noble purposes
(e.g., jailbreaking, toxic content generation), which may carry negative impacts. Second, our approach is
hyperparameter-dependent, and the research mainly focuses on QA tasks along specific behaviors (e.g., truth-
fulness and informativeness) on English datasets. Finally, since truthfulness and informativeness content lack

17



ground-truth for direct evaluation, we follow prior work (Li et al., 2023; Wang et al., 2024c) and employ LLM-
based judge models as evaluators. It is worth noting that this evaluation is not perfect and may introduce errors.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We have described our claims and contributions clearly in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide a limitaion section in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these as-
sumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address prob-
lems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a com-
plete (and correct) proof?

Answer: [NA]

Justification: In this paper, we prove our claims with extensive empirical results, instead of theoretical
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimen-
tal results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the hyperparameters to reproduce the experimental results in the Experi-
mental Settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For ex-
ample, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to the
model. In general. releasing code and data is often one good way to accomplish this, but repro-
ducibility can also be provided via detailed instructions for how to replicate the results, access
to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint,
or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will release the data and code after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible,

so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have provided these details in the Experimental Settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate infor-
mation about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results of our experiment were obtained through cross-validation over two runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence inter-

vals, or statistical significance tests, at least for the experiments that support the main claims of
the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provided sufficient information in the Experimental Settings. All experiments are
conducted on 4 NVIDIA A800 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimen-
tal runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal im-
pacts of the work performed?

Answer: [No]

Justification: Our work has no obvious broader societal impact beyond generally making LLMs more
aligned.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-

information, generating fake profiles, surveillance), fairness considerations (e.g., deployment
of technologies that could make decisions that unfairly impact specific groups), privacy consid-
erations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to partic-
ular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time, im-
proving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: Our paper does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All of the creators or original owners of assets used in our paper are cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We will release the data and code including documentation after the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create

an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing and research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equiv-
alent approval/review based on the requirements of your country or institution) were obtained?

23

paperswithcode.com/datasets


Answer: [NA]

Justification: Our paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and loca-
tions, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: The method uses pre-trained LLM-as-judge models to measure informativeness and
truthfulness.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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