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Abstract
In recent times, there have been major develop-
ments in two distinct yet connected domains of
quantum information. On the one hand, substan-
tial progress has been made in so-called random-
ized measurement protocols. Here, a number of
properties of unknown quantum states can be de-
duced from surprisingly few measurement out-
comes, using schemes such as classical shadows.
On the other hand, significant progress has been
made in quantum machine learning. For exam-
ple, exponential advantages have been proven
when the data consists of quantum states and quan-
tum algorithms can coherently measure multiple
copies of input states. In this work, we aim to un-
derstand the implications and limitations of com-
bining randomized measurement protocols with
quantum machine learning, although the impli-
cations are broader. Specifically, we investigate
quantum machine learning algorithms that, when
dealing with quantum data, can either process it
entirely using quantum methods or measure the
input data through a fixed measurement scheme
and utilize the resulting classical information. We
prove limitations for the general class of quantum
machine learning algorithms that use fixed mea-
surement schemes on the input quantum states.
Our results have several implications. From the
perspective of randomized measurement proce-
dures, we show limitations of measure-first proto-
cols in the average case, improving on the state-
of-the-art which only focuses on worst-case sce-
narios. Additionally, previous lower bounds were
only known for physically unrealizable states. We
improve upon this by employing quantum pseu-
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dorandom functions to prove that a learning sep-
aration also exists when dealing with physically
realizable states, which may be encountered in
experiments. From a machine learning perspec-
tive, our results are crucial for defining a physi-
cally meaningful task that shows fully quantum
machine learning processing is not only more
efficient but also necessary for solving certain
problems. The tasks at hand are also realistic, as
the algorithms and proven separations hold when
working with efficiently preparable states and re-
main robust in the presence of measurement and
preparation errors.

1. Introduction
A central question in quantum machine learning revolves
around understanding the various types of advantages one
can achieve by exploiting quantum effects. Some of the
most interesting scenarios arise when the dataset itself com-
prises quantum states, which can then be processed fully
coherently, or through elaborate measurement strategies. In
this context, exponential advantages have been identified
when coherent measurements of multiple copies of a given
quantum state are allowed (Chen et al., 2022b; Huang et al.,
2022; 2020; King et al., 2025; Chen et al., 2024a;b). In
a parallel related line, there have been significant break-
throughs in extracting useful classical information from
quantum states using the versatile toolkit of randomized
measurements (Elben et al., 2023). This toolkit includes the
groundbreaking concept of classical shadows (Huang et al.,
2020; 2022), which can extract an efficient classical descrip-
tion of quantum states that allows one to compute various
physical properties. These two distinct research lines cast
doubt on the advantages of quantum machine learning pro-
tocols that process quantum data directly compared to those
that use a fixed measurement procedure, which can also
allow for a coherent manipulation of quantum states before
the fixed measurement, in order to extract valuable classical
data1. In particular we address the question: is it possible

1Technically, we allow that the processing of the classical data
is also done on a quantum computer. What is critical for the
“measure first” stage is that the data is measured out first, before
the possible quantum processing.
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that a “measure-first” protocol can be universally used as a
substitute for any “fully-quantum” protocol in the general
context of machine learning?
We formally define what we mean by a “measure-first” or a
“fully-quantum” protocol in Section 2 (see Definition 2.3 and
Definition 2.5), and we provide an overview in Figure 1. Im-
portantly, we focus on physically relevant scenarios where
the quantum states in the dataset are efficiently preparable,
rather than arbitrary unphysical states that do not allow a
polynomial description in terms of quantum gates.

Our main conceptual contribution is to resolve the above
question negatively by presenting a concrete machine learn-
ing scenario that clearly exhibits the limitations of any
measure-first protocol. In a machine learning setup, we
construct a task that requires reproducing an undisclosed
measurement from the data. This task shows an exponen-
tial difference in the number of data needed between fully-
quantum protocols and measure-first protocols.

Outside of machine learning, certain limitations of measure-
first protocols are implied by other works in various tasks
such as distributed sampling (Montanaro, 2019) and rela-
tional problems (Aaronson et al., 2024). However, these
results primarily address separations in worst-case scenarios,
which contrasts with the typical focus in machine learning
settings where average-case performance is usually suffi-
cient. In this paper, we advance these findings by identi-
fying the limitations of measure-first protocols that need
only achieve average-case correctness for a set of efficiently
preparable quantum states, i.e. physical states. On a techni-
cal level, establishing limitations for measure-first protocols
in a general quantum machine learning setting necessitates
novel techniques beyond those utilized in previous studies.
In particular, limitations for the task of predicting properties
of quantum states were also recently derived for worst-case
settings (Grier et al., 2024) exploiting lower bounds for
classical one-way communication complexity. However,
this approach inherently limits the focus to states that are
not efficiently preparable. This limitation arises because,
if states were efficiently preparable, there would be a con-
cise classical description of their preparation procedure,
enabling the transmission of valid classical messages to the
recipient. Our main technical contribution lies in exploiting
that, from the more general machine learning standpoint, it
makes sense to constrain the computational power of the
learning protocol. This allows us to additionally impose the
requirement that states must be efficiently preparable and
still achieve a separation by utilizing a novel construction
that combines results on one-way communication complex-
ity and pseudorandom quantum states (Brakerski & Shmueli,
2019). The task we consider is also experimentally robust,
in the sense that we allow for errors in the preparation of
the input quantum states and on the measurement outcomes
which label them.

Figure 1. An overview of the quantum machine learning protocols
explored in our paper. In both protocols, the quantum algorithm
A is tasked with processing training data Tx to output a classical
description of a function h that correctly produces samples z∗

for new input states ρ∗ (i.e., h should implement the quantum
measurement). The difference between the two protocols is that,
in the measure-first protocol, both the input quantum states and
those in the training set Tx are subjected to a randomized mea-
surement strategy M . Consequently, these quantum states ρ∗ are
transformed into a classical representation ρ̂∗. Importantly, this
strategy is allowed to depend only on the concept class C (which
captures the general learning problem), not on the specific target
concept πx ∈ C. In other words, the same randomized measure-
ment strategy M is used to preprocess the quantum data for all
concepts πx ∈ C.

1.1. High-level overview of learning setting and main
result

The machine learning problem concerns learning an un-
known measurement acting on a set of input quantum states.
Specifically, the data that the learning protocol gets consists
of pairs of copies of n-qubit quantum states ρ drawn from
some distribution D together with a corresponding label
z ∈ {0, 1}2n+1. The first n bits of z encode a 2n-outcome
POVM measurement Λx = {Ex

j | j ∈ {0, 1}n} from some
set Λ = {Λx | x ∈ {0, 1}n}. The remaining n + 1 bits
are determined by the outcome of Λx on the quantum state
ρ. The goal of the machine learning protocol is to “learn”
how to reproduce the measurement Λx. More precisely, the
trained learning protocol has to receive as input an unseen
quantum state ρ′ and output a sample z′ in agreement with
the probability distribution πx(ρ), where πx(ρ) denotes the
distribution of the measurement outcomes of Λx.

This paper explores whether solving learning problems such
as the above requires a quantum computer capable of adap-
tive measurements on the training data, or if a fixed mea-
surement strategy that produces classical representations of
the quantum states is sufficient. Specifically, we consider so-
called “measure-first protocols” that are forced to measure
the input states and use the obtained classical description
to train the machine learning model to produce samples
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from the target distribution. Importantly, in a measure-first
protocol the measurements are not allowed to depend on the
training data, but are unconstrained otherwise. In particular,
the measure-first protocol can depend on the set of measure-
ments that is to be reproduced from the data, but not on the
specific individual measurement hidden within some given
training data. On the other hand, we consider so-called
“fully-quantum protocols” that can coherently process the
quantum states and adjust the measurements based on the
training data. Our main result is the existence of a learning
problem where the quantum data is efficiently generatable
on a quantum computer for which a “measure-first protocol”
requires an exponential amount of data to be able to repro-
duce measurement outcomes on new input states, whereas a
fully-quantum protocol only requires a polynomial amount
of data. Additionally, we require that the protocols must be
efficient in the sense that they run in time polynomial in n.
Using the notion of learning we presented above, we now
give an informal description of the main result of this paper.

Theorem 1.1. (Informal) There exist a concept class C,
where each concept is defined by a measurement and a dis-
tribution D over efficiently preparable quantum states such
that no “measure-first” protocol can learn to reproduce C
correctly on average with a polynomial amount of train-
ing data. On the other hand, there exists a “fully-quantum”
protocol which can learn C efficienctly with respect to both
sample and time complexity .

The specific learning problem which exhibits a learning
separation is carefully outlined in Section 3 and the precise
proofs of Theorem 1.1 can be found in the Appendix.

1.2. Related work

In this section we discuss related works and highlight their
relationships to our learning setting. Firstly, in (Huang et al.,
2020), the authors introduced a randomized measurement
technique tailored to extract a classical description of a quan-
tum state ρ. This description enables the computation of
the expectation values of any set of observables {Ok}Mk=1 –
provided they have a low “shadow norm”, such as when the
observables are local – up to a precision of ϵ. Notably, they
showed that a number of copies of ρ, scaling logarithmically
with the number of observablesM and inverse-polynomially
in the precision ϵ, suffices for this task. As we want to learn
the distribution associated of a 2n-outcome POVM with an
ϵ error in total variation, directly applying these techniques
to estimate each of the 2n outcomes would require an expo-
nential precision for each. In their upper bound estimates,
this results in the requirement of an exponential number of
samples.

The concept of shadow tomography, introduced in (Aaron-
son, 2018), revolves around the problem of computing the
expectation values of any set of M two-outcome measure-

ments on an n-qubit state ρ up to precision ϵ. It has been
shown that this can be done using a number of copies of
ρ that scale polylogarithmically in M , linearly in n, and
inverse-polynomially in ϵ (Aaronson, 2018). In contrast to
the methods in (Huang et al., 2020), the approach in (Aaron-
son, 2018) requires coherent measurements on multiple
copies of ρ. Additionally, as demonstrated in (Huang et al.,
2022; Chen et al., 2022a) for specific tasks, the capacity
to coherently measure multiple copies of quantum states
provides an exponential advantage in sample complexity
over sequential measurements. Considering our framework,
where measurements can act coherently on multiple copies
of each input state, one might question whether such strate-
gies enable a measure-first protocol to solve our learning
task. However, it is important to note that coherent mea-
surements do not improve the scaling with respect to the
precision ϵ, leaving room for the possibility of a separation
since the learning task studied in this paper would require
at least exponential precision to be solved.

In (Gong & Aaronson, 2023), the authors extended the con-
cept of shadow tomography to the scenario of learning a
K-outcome POVMs (for K ≥ 2) selected from a set of
M unknown quantum measurements. In contrast to the
binary outcome case, the goal now is to approximate an
unknown distribution up to precision ϵ in total variation
distance, rather than focusing on expectation values. Their
procedure requires a number of copies of the quantum state
scaling linearly with K and n, polylogarithmically with M ,
and inverse-polynomially with the precision ϵ. Moreover,
they establish the optimality of this scaling with respect to
the dependence on the number of outcomes K. This result
prompts the question of whether our separation between
measure-first and fully-quantum protocols can be directly
inferred from it. However, in establishing their lower bound,
it is important to note that no assumptions were made re-
garding the complexity of the unknown quantum state. The
crux of our study lies in demonstrating that measure-first
protocols fall short of reproducing the unknown measure-
ment, even on quantum states that are efficiently prepara-
ble. Moreover, it is important to highlight that while their
shadow tomography procedures can be employed to con-
struct a measure-first protocol by “shadowfying” input states
to approximate the expected values of each measurement
outcome, this is not strictly necessary for our task. Specifi-
cally, understanding the probability of each outcome allows
for the creation of an “evaluator” that can compute the cor-
rect probability for every outcome. However, to resolve our
learning problem, a “generator” (i.e., an algorithm generat-
ing samples with the correct probabilities) already suffices,
and it does not necessarily require computing the output
probabilities (Sweke et al., 2021).

Next, in (Grier et al., 2024) the authors explore lower bounds
on the number of copies of a quantum state required for solv-
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ing what they term the “classical shadow” task. This task
involves estimating the expected values of observables us-
ing a measure-first approach. While they establish lower
bounds on the number of copies of a quantum state required
for this task, shedding light on the inherent limitations of
measure-first protocols, it is crucial to note two significant
bottlenecks of their approach when viewed from our more
general machine learning perspective. Firstly, their analy-
sis only focuses on worst-case scenarios, whereas in our
machine learning scenarios we are concerned with average-
case performance. Secondly, their investigation centers on
protocols required to operate effectively even for unphysical
quantum states that are not efficiently preparable.

The authors of (Cheng et al., 2016) provide upper bounds
for the dual problem of shadow tomography, or more specif-
ically the problem of learning a measurement. In partic-
ular, they studied the task of learning an unknown two-
outcome POVM denoted {E, I −E}, from data of the form
{(ρi,Tr(Eρi))}mi=1. They showed that to approximate the
unknown E up to a precision of ϵ on new n-qubit input
states, O(2n/ϵ2) training samples are sufficient. Nonethe-
less, the number of required samples scales exponentially
with the number of qubits.

Finally, in (Jerbi et al., 2023) the authors study quantum
process learning, where the task is to learn a unitary U , from
data of the form {|ψi⟩ , U |ψi⟩}. In particular, they study
the limitations of what they call incoherent learning, where
the learner is constrained to first measure multiple copies
of the data U |ψi⟩. While they therefore also study the
problem of extracting classical information from quantum
data and utilizing it in the learning process, the setting in
their work differs from ours. Namely, the quantum states
in our scenario are labeled by a sample obtained from the
unknown measurement process, whereas in (Jerbi et al.,
2023) the labels are the input quantum states when evolved
under some unknown target unitary.

2. Background
In this section, we introduce the notations and definitions
needed to frame our main result, which involves a learn-
ing problem that demonstrate the separation between any
measure-first protocol and a fully quantum protocol.

The learning problem we study is the learning of a mea-
surement. In particular, it involves generating samples
from a distribution induced by measuring an (unknown)
POVM measurement Λx on n-qubit quantum states. The
(unknown) target measurement Λx is drawn from a set of
POVMs {Λx | x ∈ {0, 1}n}, and each measurement Λx is
a computational basis measurement preceded by an n-qubit
unitary Ux, i.e.,

Λx =
{
Ex

j

∣∣ j = 1, . . . , 2n
}
, where Ex

j = Ux |j⟩ ⟨j|U†
x.

During training the learner is given a set of examples Tx,
where each example consists of a polynomial number of
copies of a phase state |ψf ⟩ together with a sample from
the associated POVM-induced distribution. This is a spe-
cial case of labeled quantum data, which was introduced
in (Aı̈meur et al., 2006), where we are additionally allowed
to have access to polynomially many copies of the input
quantum state. We formalize our learning problem by gen-
eralizing the standard PAC learning framework (Valiant,
1984). In our generalization, a concept corresponds to a
quantum randomized function, i.e., a function that on each
quantum input state outputs a sample from a random vari-
able (which in our case corresponds to the outcomes of a
POVM on the input quantum state). Before we define the
concept class studied throughout this paper, we first setup
some auxilliary definitions.

Definition 2.1 (Auxiliary definitions/notation).

• Let N = 2n, or equivalently n = log2N .

• We identify a function f : {0, 1}n → {0, 1} with its
truth table f ∈ {0, 1}N , and we denote its correspond-
ing phase state with

|ψf ⟩ =
1√
N

N∑
i=1

(−1)fi |i⟩ . (1)

• Let Sphase = {|ψf ⟩⊗ℓ | f ∈ {0, 1}N} denote the set
of ℓ = poly(n) copies of n-qubit phase states.

• We write x ∼ π to denote that x was drawn according
to a distribution π.

• We write U(X ) for the uniform distribution over a set
X .

• We write ∆(X ) for the set of all distributions over a
set X .

• For p, q ∈ R2n

≥0 probability distributions over {0, 1}n
we define

||p− q||TV =
1

2

∑
x∈{0,1}n

|px − qx|

to be the total variation distance.

Definition 2.2 (Concept class). We define our concept class
as C = {πx | x ∈ {0, 1}n}, where

πx : Sphase → ∆({0, 1}2n+1)

|ψf ⟩⊗ℓ 7→ πx(f)
(2)

where πx(f) is a distribution over samples (x, y, b) ∈
{0, 1}2n+1, where (y, b) ∈ {0, 1}n+1 are variables sam-
pled from a problem-specific distribution characterizing the
specific learning task.

4



Limitations of Measure-First Protocols in Quantum Machine Learning

In particular, πx is a randomized function which takes as in-
put a polynomial number of copies of a phase state and
outputs a sample z consisting of x ∈ {0, 1}n together
with some (y, b) ∈ {0, 1}n+1 sampled from some problem-
specific probability distribution. As we will see in the next
section, a learning separation for this kind of learning prob-
lem is achieved by considering (y, b) sampled uniformly
from the set of variables which satisfy the Hidden Matching
relation defined by the input functions f and the bitstring
x ∈ {0, 1}n.

A learner then is given several evaluations of the randomized
function πx in the form of training data and its objective is
to implement a randomized function π̃x that closely approx-
imates πx on most input states.

In this paper, we compare two categories of machine learn-
ing systems that can tackle problems of this type. First, we
introduce what we call a “fully-quantum protocol”.

Definition 2.3 (Fully-quantum protocol). A fully-quantum
protocol for the concept class C in Definition 3.1 is a
polynomial-time quantum algorithm A that takes as input
training data of the form

Tx =
{(

|ψf(i)⟩⊗ℓ
, (x, y, b)

) ∣∣ (x, y, b) ∼ πx(f
(i)),

and f (i) ∼ U
(
{0, 1}N

)}poly(n)

i=1
,

(3)

and outputs a classical description of a polynomial-time
quantum algorithm that on input |ψf ⟩⊗ℓ ∈ Sphase generates
a sample from a distribution π̃x(f) ∈ ∆({0, 1}2n+1).

We emphasize that for a “fully quantum” protocol, the learn-
ing algorithm must produce a classical description of the
quantum algorithm generating samples from π̃x. Conse-
quently, we do not store any quantum states from the train-
ing data in quantum memory, which would be more general
but not studied in this paper. Ultimately, the goal of the
protocol is to implement a randomized function π̃x that
closely approximates the actual data-generating randomized
function πx for most of the input quantum states.

Definition 2.4 ((ϵ, δ, psucc)-fully-quantum learnable). We
say that C is (ϵ, δ, psucc)-fully-quantum learnable if there
exists a fully-quantum protocol A such that for every πx ∈
C, with probability at least psucc we have

Prf∼U({0,1}N ) (||π̃x (f)− πx(f)||TV ≤ ϵ) ≥ 1− δ, (4)

where π̃x(f) ∈ ∆({0, 1}2n+1
) denotes the distribution

that the polynomial-time quantum algorithm obtained from
the learning algorithm A generates samples from on input
|ψf ⟩⊗ℓ ∈ Sphase.

Next, we introduce a “measure-first protocol” which con-
sists of two components: (i) a randomized measurement

strategyM , and (ii) a learning algorithmA. The main differ-
ence between a measure-first protocol and a fully-quantum
protocol is that the former involves a randomized measure-
ment procedure that first measures the quantum states be-
fore putting it into a learning algorithm. Importantly, the
measure-first protocol is allowed to perform arbitrary co-
herent measurements on all input quantum states (i.e., the
polynomially-many copies of the phase states). The only
constraint is that the measurement strategy cannot depend
on the specific target concept of the learning problem, al-
though it is allowed to depend on the concept class (i.e.,
the set of all possible target concepts). In short, a random-
ized measurement strategy is a polynomial-time algorithms
that maps a polynomial number of copies of a phase state
|ψf ⟩ to some classical description ψ̂f ∈ {0, 1}m for some
m = poly(n). These classical descriptions ψ̂f are then
used as input for the learning algorithm, that is tasked with
implementing a randomized function close to πx.
Definition 2.5 (Measure-first protocol). A measure-first
protocol is a tuple (M,A) where

• M is a measurement strategy that in time O(poly(n))

maps |ψf ⟩⊗ℓ ∈ Sphase
2 to some ψ̂f ∈ {0, 1}m, where

m = poly(n).

• A is a polynomial-time quantum algorithm that takes
input of the form

TM
x =

{(
ψ̂f(i) , (x, y, b)

) ∣∣ (x, y, b) ∼ πx(f
(i))

and f (i) ∼ U
(
{0, 1}N

)}poly(n)

i=1

,

(5)

and outputs a description of a polynomial-time quan-
tum algorithm that on input ψ̂f = M(|ψf ⟩⊗ℓ

)
generates a sample from a distribution π̃x(f) ∈
∆({0, 1}2n+1).

Note that the distinction between measure-first and fully-
quantum protocols lies in Eq. 5, where the data is mea-
sured to give ψ̂f instead of remaining quantum states |ψf ⟩.
Nonetheless, the measurements employed by the measure-
ment strategy M are completely arbitrary and entirely unre-
stricted. We emphasize, however, that the sole constraint on
the measurement strategy M is that it must not rely on the
specific concepts it will be applied to later, although it can
depend on the concept class it is intended for. Recall that the
objective of the protocol is to implement a randomized func-
tion π̃x that closely approximates the actual data-generating
randomized function πx on most inputs.

2For completeness, we note here that our results still apply if M
is allowed to coherently measure multiple input data for different
f and then return a polynomial-size classical representation.
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Definition 2.6 ((ϵ, δ, psucc)-measure-first learnable). We
say that C is (ϵ, δ, psucc)-measure-first learnable if there
exists a measure-first protocol (M,A) such that for every
πx ∈ C, with probability at least psucc we have

Prf∼U{0,1}N (||π̃x(f)− πx(f)||TV ≤ ϵ) ≥ 1− δ, (6)

where π̃x(f) ∈ ∆({0, 1}2n+1
) denotes the distribution that

the polynomial-time quantum algorithm obtained from the
learning algorithmA generates samples from on input ψ̂f =

M(|ψf ⟩⊗ℓ
).

Although we defined the two protocols in an idealized case,
we will show in Appendix A.1 that our separation results
are robust. In particular, they still hold even in the experi-
mental setting where the input states |ψf ⟩ are affected by
preparation errors and they are just close in trace distance
to the ones defined in Eq.( 1). Furthermore, we also allow
for measurement errors on the labels (y, b).

3. Main result
In this section, we present the key findings of our paper. In
Section 3.1, we define the specific learning problem con-
sidered and show how the fully-quantum machine learning
model can efficiently solve it. In Section 3.2, we present
our first main result showing that no measure-first quantum
machine learning model can solve our learning problem effi-
ciently. Finally, in Section 3.3, we show that this separation
between the models still holds if the quantum states in the
data are efficiently preparable.

3.1. The learning problem

In this section, we concretely define the learning problem for
which we prove a learning separation. Then, we initiate the
proof by showing that it is learnable using a fully-quantum
protocol.

The specific concept class we developed to prove our main
result is a particular instance of the one defined in Def. 2.2,
with the condition that the variables (y, b) are sampled from
the set Rx(f) defined as follows:

Definition 3.1 (Concept class). C = {πx | x ∈ {0, 1}n},
where

πx : Sphase → ∆({0, 1}2n+1)

|ψf ⟩⊗ℓ 7→ πx(f)
(7)

where πx(f) is a distribution over samples (x, y, b), where
(y, b) ∼ U(Rf (x)) and

Rf (x) = {(y, b) | y ∈ {0, 1}n, b ∈ {0, 1},
f(y)⊕ f(y ⊕ x) = b}.

(8)

Importantly, in (Aaronson et al., 2024) the authors showed
that for each x ∈ {0, 1}n there exist a POVM measurement
Λx which when applied to a phase state |ψf ⟩ outputs a pair
exactly satisfying the relation Rf (x). With regards to our
learning problem, the task of the learning protocols is to
learn this measurement.

We now describe how the concept class in Definition 3.1 is
fully-quantum learnable.
Proposition 3.2. The concept class in Definition 3.1 is
(0, 0, 1)-fully-quantum learnable.

The proof of Proposition 3.2 can be found in Appendix A,
and we provide a high-level overview of the fully-quantum
protocol here. Firstly, the fully-quantum protocol reads out
x from one of the samples generated by πx in the training
data. Next, a quantum circuit denoted as Ux is constructed
following the procedure outlined in (Aaronson et al., 2024).
Measuring Ux |ψf ⟩ in the computational basis results in
a sample from the distribution U(Rf (x)). Crucially, it is
worth noting that these quantum circuits Ux are of size
O (poly(n)) and can be constructed in time O (poly(n)).
We remark here that the concept class in Definition 3.1 re-
mains fully quantum learnable even when errors are present
in the training data, see Appendix A.1.

It might seem that little genuine learning occurs when x can
be readily read out from a single example in Tx. However,
we can introduce various levels of learning by providing
only partial information about x within the examples. This
partial information should allow the recovery of x from a
polynomial number of examples. Several examples illustrat-
ing this are discussed in more detail in Appendix A.

3.2. Limitations of measure-first protocols with general
quantum data

In the last section, we discussed how the concept class in
Definition 3.1 is fully-quantum learnable. Conversely, in
this section we discuss the first part of our main result which
states that this concept class is not measure-first learnable.
Theorem 3.3. The concept class in Definition 3.1 is not
(ϵ, δ, psucc)-measure-first learnable for (1−ϵ)·(1−δ) > 7/8
and any psucc > 0.

The full proof of Theorem 3.3 is provided in Appendix B,
we present a concise overview of the proof here. At its
core, the proof hinges on the notion that the existence of
a measure-first protocol for the concept class described in
Definition 3.1 implies the existence of an efficient classical
one-way communication protocol for the Hidden Matching
(HM) problem (Bar-Yossef et al., 2004). Notably, in (Bar-
Yossef et al., 2004), it has been shown that the HM problem
cannot be solved with a communication cost of O (poly(n))
bits, even on a 7/8 fraction of possible inputs. In essence, if
the concept class in Definition 3.1 was learnable, one of the
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two parties can employ the measurement protocol to encode
their input for the HM problem, transmit it to the other party,
who can then utilize the learning algorithm A to success-
fully solve the HM problem. Intuitively, the reason behind
why measure-first learning fails is that due to (Bar-Yossef
et al., 2004) it is not possible to compress a phase state
|ψf ⟩ into a polynomially-sized classical representation ψ̂f

that contains enough information to allow one to generate
samples from the distributions πx(f) for all possible x. Im-
portantly, within the machine learning context, it is crucial
to also consider the possibility of protocols making errors
on a fraction of inputs and the requirement to gather the
necessary data. To overcome this limitation, we use Yao’s
principle to show that the existence of a protocol which
succeeds in the machine learning context would still violate
the classical hardness of the HM problem. In particular, by
applying Yao’s principle, we can ensure the existence of
a deterministic algorithm that solves the HM problem on
a sufficiently large fraction of inputs, provided that there
exists a machine learning measure-first protocol capable of
solving the learning task defined in Definition 2.6.

Since in our machine learning setting we are concerned with
physical states appearing in the real-world, in the next sec-
tion we show that our findings also apply to settings where
states are efficiently preparable, which we achieve by us-
ing pseudorandom states (Brakerski & Shmueli, 2019) (see
Section 3.3). Finally, it is crucial to note that even when
the data in Eq.( 5) is derived from a polynomial number ℓ
of copies of each input state |ψf ⟩, measure-first protocols
remain incapable of solving the task. This holds true even
when considering inefficient ( i.e., superpolynomial-time )
algorithms or an exponential number of training points, as
the communication complexity bounds still apply regard-
less of the time resources utilized by the algorithms (since
the communication protocol assumes both parties have un-
bounded resources).

3.3. Learning separation with efficiently preparable
quantum data

From a pragmatic perspective, a crucial limitation of the
learning problem outlined in the previous section is that
preparing a general phase state is intractable (i.e., not re-
alized by polynomial-time processes). In particular, this
raises the question of whether separations could persist for
states that are prepared by (natural or artificial) polynomial-
time processes. To address this limitation, we show that
the concept class in Definition 7 remains not measure-first
learnable, even when we constrain the input of the random
functions πx to phase states of so-called pseudorandom func-
tions. Notably, phase states corresponding to appropriately
chosen pseudorandom functions can be efficiently prepared.
Because of this additional consideration, our separations are
notably more general than those in previous works (Aaron-

son et al., 2024; Bar-Yossef et al., 2004). Our definition of
pseudorandom functions is as follows.

Definition 3.4 (Quantum-secure pseudorandom function
(QPRF) (Brakerski & Shmueli, 2019)). Let K = {Kn}n≥1

be an efficiently samplable key distribution, and let PRF =
{PRFn}n≥1, PRFn : Kn × {0, 1}n → {0, 1} be an effi-
ciently computable function. We say PRF is a quantum-
secure pseudorandom function if for every efficient non-
uniform quantum algorithm A that can make quantum
queries there exists a negligible function negl(.) such that
for every n ≥ 1:∣∣∣∣Prk∼U(Kn)

[
APRFn(k)() = 1

]
−

Prf∼U({0,1}n)

[
Af () = 1

] ∣∣∣∣ ≤ negl(n)

(9)

Where the notation Af () stands for the non-uniform quan-
tum algorithm which can make queries to the function f
and can take any quantum state as input. We remark that if
every function PRFn admits a classical circuit of size s(n)
and depth d(n), then one can prepare the corresponding
phase states using a quantum circuit of size O(s(n)) and
depth d(n) + 1 (Brakerski & Shmueli, 2019). Moreover,
the existence of such PRFn is implied by the existence of
quantum secure one-way functions (Zhandry, 2012).

3.3.1. FULLY-QUANTUM LEARNABILITY WITH
PSEUDORANDOM PHASE STATES

Note that when we constrain the inputs of πx to phase states
of pseudorandom functions, we essentially modify the dis-
tribution over input states in Eq. 4 and Eq. 6. This new
distribution now only has support on phase states that are
efficiently preparable. While Proposition 3.2 examines gen-
eral quantum phase states as input states (which are not typi-
cally efficiently preparable), we note that the fully-quantum
learnability directly extends the setting where we limit our-
selves to efficiently preparable phase states as well. We
summarize this observation in the following proposition
(whose proof is the same as that of Proposition 3.2).

Proposition 3.5. Let Spr = {|ψf(k)⟩⊗ℓ | f (k)(.) =
PRFn(k, .), k ∈ K}, where PRF is a quantum-secure pseu-
dorandom function with keys K. The concept class in Def-
inition 3.1 is (0, 0, 1)-fully-quantum learnable when the
distribution over input states is uniform over Spr.

3.3.2. LIMITATIONS OF MEASURE-FIRST PROTOCOLS
WITH PSEUDORANDOM PHASE STATES

In the last section, we discussed how the concept class in
Definition 3.1 remains fully-quantum learnable when re-
stricted to phase states of pseudorandom functions. Con-
versely, in this section we show that this concept class also

7
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remains not measure-first learnable when restricted to phase
states of pseudorandom functions.

Theorem 3.6. Let Spr = {|ψf(k)⟩⊗ℓ | f (k)(.) =
PRFn(k, .), k ∈ K}, where PRF is a quantum-secure pseu-
dorandom function with keys K. The concept class in Def-
inition 3.1 is not (ϵ, δ, psucc)-measure-first learnable for
(1− ϵ) · (1− δ) · psucc > c for any constant c > 7/8 when
the distribution over input states is uniform over Spr.

The main results of this section directly follows from com-
bining Theorem 3.6 and Proposition 3.5.

Corollary 3.7 (informal). If there exist quantum-secure
pseudorandom functions, then there exists a quantum super-
vised learning problem with efficiently generatable quantum
data, which cannot be learned by any measure-first proto-
col according to Def. 2.6 while there exist a fully-quantum
protocol which satisfies the learning condition of Def. 2.4

The proof of Theorem 3.6 is provided in Appendix C, and
we first present a concise overview of the proof here. The
main idea behind the proof is to illustrate that if the concepts
are measure-first learnable when restricted to pseudorandom
phase states, then the corresponding measure-first learning
protocol can be harnessed to create a non-uniform quantum
algorithm that is able to distinguish between truly random
functions and pseudorandom functions. More precisely, this
“distinguisher” algorithm employs the measure-first learning
protocol and evaluates its performance when applied to the
phase state corresponding to the function it has been given
oracular access to. In the proof of Theorem 3.3, we estab-
lished an upper bound on the generalization performance
of any measure-first protocol for truly random phase states.
If, however, the measure-first protocol performs well on
pseudorandom phase states, then the outcomes of the “dis-
tinguisher” algorithm would differ significantly based on
whether it is given oracular access to a truly random or a
pseudorandom function, thereby contradicting the pseudo-
randomness assumption. In other words, if the measure-
first protocols were effective on pseudorandom states, there
would be a clear difference in the performance of the dis-
tinguisher: poor accuracy when dealing with truly random
functions and strong accuracy when dealing with pseudo-
random functions. However, since this would violate Eq. 9,
measure-first protocols have to fail when applied to pseudo-
random functions.

4. Conclusion
In our study, we explored the constraints and capabilities
of learning from quantum data. We established a formal
machine learning framework that contrasts two protocols:
“fully quantum”, which adjusts measurements based on data,
and “measure-first” restricted by fixed initial (though ar-
bitrarily powerful) measurements. In particular, we pro-

vided an example of a learning problem efficiently solved
by a fully-quantum protocol but beyond the capabilities
of measure-first protocols. Moreover, we showed that this
persists even when we limit from universal quantum states,
which include also those intractable to prepare, to efficiently
preparable quantum states. These findings underscore the
crucial role of processing unmeasured quantum data in ma-
chine learning, presenting a setting where quantum advan-
tages arise. In particular, they imply that certain learning
tasks inherently require the “exponential capacity” of quan-
tum states, distinct from classical data. In other words, the
number of bits needed to store n qubits, in a way that allows
a learner to successfully solve the learning problem, is expo-
nential in n. Such a conclusion is analogous to what Monta-
naro refers as “anti-Holevo” theorems (Montanaro, 2019).
While our proof relies on both separations in one-way com-
munication complexity and pseudorandom states, we high-
light the potential for more general constructions. Instead
of considering states demonstrating a one-way communica-
tion complexity separation, any quantum advice state used
in quantum advice complexity classes that cannot be clas-
sically simulated with polynomial overhead could suffice,
leveraging the separation between the classes FBQP/qpoly
and FBQP/poly showed in (Aaronson et al., 2024). In par-
ticular, by the result in (Aaronson & Drucker, 2010) any
problem that can be efficiently solved with a polynomial-
sized quantum advice state can also be solved with an advice
state that is the ground state of a local Hamiltonian. This
suggests that learning problems where the input quantum
data consists of ground states of sufficiently complex local
Hamiltonians are promising candidates for demonstrating
a separation between measure-first and fully-quantum pro-
tocols. Finally, we note that beyond pseudorandom states
one could use so-called “computationally indistinguishable”
states, which are known to exist assuming the intractability
of the graph isomorphism problem (Kawachi et al., 2012), or
various other complexity theoretic assumptions (Brakerski
et al., 2022).
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A. Proof of Proposition 3.2
Proposition 3.2. The concept class in Definition 3.1 is (0, 0, 1)-fully-quantum learnable.

Proof. To prove that the concept class C in Definition 3.1 is fully-quantum learnable we will provide a fully-quantum
protocol A that does so successfully. Suppose we are given training data Tx of the form provided in Eq. 3. Firstly, the
fully-quantum protocol A reads out x from one of the examples in Tx. Next, it uses the construction of (Aaronson et al.,
2024) to construct a circuit Ux of size O(n) in time O(n) such that when measuring the state |ϕf,x⟩ = Ux |ψf ⟩ in the
computational basis it produces (y, b) ∈ {0, 1}n+1 such that b = f(y) ⊕ f(x ⊕ y). The operator Ux, whose graphical
representation is provided in Figure 3 of (Aaronson et al., 2024), is defined as follows. Consider an x ∈ {0, 1}n with a
Hamming weight of k ≥ 1. The operator Ux acts on n qubits based on the values of the entries of x as follows:

1. A position i is selected such that xi = 1. The corresponding qubit i is then chosen to output the value of b ∈ {0, 1}.

2. For each of the remaining positions j where xj = 1 and j ̸= i, a CNOT gate is applied with qubit j as the control and
qubit i as the target. This results in a total of k − 1 CNOT gates.

3. Finally, a Hadamard gate is applied to qubit i.

Measuring the resulting state Ux |ψf ⟩ in the computational basis yields an n-bit string j1j2, ..., jn such that the variables
y = j1, ..., jn−1 and b = jn

3 are guaranteed to satisfy the relation b = f(y)⊕ f(x⊕ y).

The learning protocol outputs the description of the POVM measurement

Πx =
{
Ux |j⟩ ⟨j|U†

x

∣∣ j ∈ {0, 1}n
}

(10)

as by the above measuring Πx on an arbitrary phase state |ψf ⟩ implements πx with zero error.

While it may appear that little learning is occurring when we can readily extract x from a single example in Tx, we can
introduce varying degrees of learning by not appending the complete description of x to the examples. Instead, we include
only partial information about x that still allow us to recover a full description of x using a polynomial number of examples.
For instance, instead of appending x to the examples we can append certain functions gi(x), where gi is drawn uniformly
random from some set of G = {gi}i∈I . For instance, for i ∈ {0, 1}n we can consider functions like

gi(x) = (i · x, i) ∈ {0, 1}n+1, (11)

where x · i =
∑n

j=1 xj · ij mod 2. Another example of such a family of functions would be

gi(x) = (DLP(x)i, i) ∈ {0, 1}n+1, (12)

where DLPi(x) denotes the ith bit of the discrete logarithm of x in a suitably chosen group. For these functions, one can
show that x can be recovered with high probability from a polynomial number of evaluations of gi(x) for randomly chosen
gi from G. Moreover, functions similar to the gi in Eq. 12 require a quantum computer to be able to efficiently recover
x (Liu et al., 2021).

A.1. Learnability with noisy data

In a realistic setting, quantum states and measurements will always be affected with experimental errors. In this section we
study whether the fully-quantum protocol still manages to solve the learning task even in non ideal scenarios.

We specifically address the scenario where the input states are not exactly the phase states |ψf ⟩ from Eq.( 1 ) but are instead
approximate states |ψf ⟩ϵsp in trace distance, such that:

d(|ψf ⟩ , |ψf ⟩ϵsp) ≤ ϵsp (13)

3Without loss of generality, we assume the qubit i in the above construction to be at the positon i = n.
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where d(|ψf ⟩ , |ψf ⟩ϵsp) = || |ψf ⟩ ⟨ψf | − |ψf ⟩ ⟨ψf |ϵsp ||1 is the trace distance between the states |ψf ⟩ and |ψf ⟩ϵsp .

As mentioned before, we also allow for measurement errors on the training labels. Specifically we can consider the case that
the labels (y, b) in the training data follow an approximate distribution πϵM

x (f) which is only close to the ideal one in total
variation distance:

∀f ∈ {0, 1}N ||πϵM
x (f)− πx(f)||TV ≤ ϵM (14)

Note that only the two variables (y, b) are affected by measurement errors, while the variable x, which labels each concept,
is not affected by any error.

Even with both of the above sources of experimental error, the learning problem in Def. 3.1 remains fully quantum learnable
in the following sense.

Proposition A.1. Assuming a maximum error ϵmax
sp on the input states and a maximum error ϵmax

M on the corresponding
labels, then there exists a fully-quantum protocol A such that for every πx ∈ C with probability 1 satisfies:

Prf∼U({0,1}N )

(
||π̃x(f)− πx(f)||TV ≤ ϵmax

sp

)
= 1 (15)

where π̃x(f) ∈ ∆({0, 1}2n+1) denotes the distribution that the polynomial-time quantum algorithm obtained from the
learning algorithm A generates samples from on input |ψf ⟩⊗l

ϵsp
.

We can adjust Def. 2.3 of fully-quantum protocols to take into account the presence of errors in the training data.

Definition A.2 (Fully-quantum protocols with noisy data). A (ϵsp, ϵM )-fully-quantum protocol for the concept class C in
Definition 3.1 is a polynomial-time algorithm A that takes as input training data of the form

Tx,ϵsp,ϵM =
{(

|ψf(i)⟩⊗ℓ

ϵsp
, (x, y, b)

) ∣∣ (x, y, b) ∼ πϵM
x (f (i)),

and f (i) ∼ U
(
{0, 1}N

)}poly(n)

i=1
,

(16)

and outputs a classical description of a polynomial-time quantum algorithm that on input |ψf ⟩⊗ℓ
ϵsp

∈ Sphase generates a
sample from a distribution π̃x(f) ∈ ∆({0, 1}2n+1).

Having noisy data, the natural modified learning condition for the fully-quantum protocol is the following.

Definition A.3 ((ϵ, ϵsp, ϵM , δ, psucc)-fully-quantum learnable with noisy data). We say that C is (ϵ, ϵsp, ϵM , δ, psucc)-fully-
quantum learnable if there exists a (ϵsp, ϵM )-fully-quantum protocol A such that for every πx ∈ C, with probability at least
psucc we have

Prf∼U({0,1}N ) (||π̃x (f)− πx(f)||TV ≤ 1− ϵtot) ≥ δ, (17)

where ϵtot = ϵ+ϵsp+ϵM and π̃x(f) ∈ ∆({0, 1}2n+1
) denotes the distribution that the polynomial-time quantum algorithm

obtained from the learning algorithm A generates samples from on input |ψf ⟩⊗ℓ ∈ Sphase.

We can now prove that the concept class C is fully-quantum learnable even in the presence of noisy data.

Proposition A.4. Assuming a maximum error of ϵmax
sp on the input states, the concept class in Definition 3.1 is (0, ϵmax

sp , 0, 1)-
fully-quantum learnable.

Proof. The proof follows directly from the one for the ideal case in Appendix A. The fully-quantum protocol performs
exactly the same steps as in the ideal case, in this way the error in the prediction is bounded by the error in state preparation.
Specifically, assuming for every f ∈ {0, 1}N input states |ψ⟩ϵsp are such that:

d(|ψf ⟩ , |ψf ⟩ϵsp) ≤ ϵmax
sp (18)

Then by the definition of trace distance we have that given any set of POVM {Em} (see Theorem 9.1 of (Nielsen & Chuang,
2010)) it holds that: ∑

m

|Tr[Em(|ψf ⟩ ⟨ψf | − |ψf ⟩ ⟨ψf |ϵsp)]| ≤ d(|ψf ⟩ , |ψf ⟩ϵsp) (19)

12



Limitations of Measure-First Protocols in Quantum Machine Learning

Therefore, any probability distribution obtained from the measurement outcomes of the POVM Em on each state |ψf ⟩ϵsp
will have a total variation distance of at most d(|ψf ⟩ , |ψf ⟩ϵsp) compared to the distribution induced by applying the same
POVM Em on the ideal states |ψf ⟩. As the inequality ( 19) holds for any set of POVM {Em}, it will particularly be true for
the set of POVM Πx of Eq.( 10) implemented by the fully-quantum protocol. This then concludes the proof as we previously
showed that the fully-quantum protocol exactly reconstruct the target distribution πx(f) for each f with zero error and we
assumed ϵmax

sp to be the maximum difference in trace distance between the noisy input states and the ideal ones.

Following the same reasoning as in the proof of Theorem 3.3 in Appendix B, it is straightforward to show that when
ϵmax
sp ≤ 7/8, the learning task becomes intractable for any measure-first protocol.

B. Proof of Theorem 3.3
Theorem 3.3. The concept class in Definition 3.1 is not (ϵ, δ, psucc)-measure-first learnable for (1− ϵ) · (1− δ) > 7/8 and
any psucc > 0.

Proof of Theorem 3.3. The main building block of our proof of Theorem 3.3 is a result in one-way communication complexity
by Bar-Yossef, Jayram and Kerenidis (Bar-Yossef et al., 2004). They define a problem called Hidden Matching (HM). Here
Alice is given a string f ∈ {0, 1}N , while Bob is given a perfect matching M on the set [N ], consisting of N/2 edges.
Bob’s goal is to output some (i, j, fi ⊕ fj) for some edge (i, j) ∈M . Their main result is:

Theorem B.1 (Classical hardness of HM (Bar-Yossef et al., 2004)). Let M be any set of perfect matchings on [N ] that
is pairwise edge-disjoint and satisfies |M| = Ω(N). Let µ be the distribution over inputs to HM in which Alice’s input
is uniform in {0, 1}N and Bob’s input is uniform in M. Then, any deterministic one-way protocol for HM that errs with
probability at most 1/8 with respect to µ requires Ω(

√
N) bits of communication.

Suppose the concept class in Definition 3.1 is (ϵ, δ, psucc)-measure-first learnable using a measure-first protocol given by
(M,A) with (1 − ϵ) · (1 − δ) > 7/8 and psucc > 0. Throughout the proof, we will show that the existence of such a
measure-first learning protocol contradicts the classical hardness of HM outlined in Theorem B.1. To do so, consider the
HM problem with M = {Mx | x ∈ {0, 1}n}, where

Mx = {(y, y ⊕ x) | y ∈ {0, 1}n}. (20)

and note that |M| = N . To solve this instance of the HM problem Bob first generates training data TM
x as in Eq. 5. Note

that Bob can do so because he has knowledge of the bitstring x. In particular, Bob can generate f (i) from {0, 1}N , compute
Rf(i)(x) and pick an element (y, b) from it. Next, Alice applies the measure protocol M to |ψf ⟩ for her input f ∈ {0, 1}N

and sends ψ̂f = M(|ψf ⟩) to Bob. Finally, Bob applies A on the data TM
x he generated and Alice’s input ψ̂f to obtain a

sample (x, y, b) ∼ π̃x(ψ̂f ). Since we assumed that psucc > 0, we know that for any x ∈ {0, 1}n there must exist training
data T̂M

x and internal randomization of the learning algorithm A such that the polynomial-time quantum algorithm output
by the protocol satisfies Eq. 6. Throughout the remainder of this proof, we assume Bob fixes this to be the training data and
internal randomization he uses for his input x (note that Bob can do so because this does not depend on the input of Alice).
Based on this fixed choice of training data and internal randomization we partition {0, 1}N = Fx

good ⊔ Fx
bad, where Fx

good
denotes the set of functions f for which

||π̃x(f)− πx(f)||TV ≤ 1− ϵ, (21)

where π̃x is the random function implemented by the quantum algorithm output by the protocol when using the training data
ˆTM
x and internal randomization as above. Moreover, we note |Fx

good| ≥ (1− δ) · 2n by Eq. 6. Finally, due to Eq. 6 we find
that the probability that (y, b) ∈ Rf (x) is at least

Pr
(
(y, b) ∈ Rf (x)

)
≥ (1− ϵ) (22)

for all f ∈ Fx
good. In conclusion, we find that the above described protocol is a randomized one-way communication protocol

for HM with success probability at least ϵ for all inputs (x, f) in the subset

X :=
⋃

x∈{0,1}n

{x} × Fx
good. (23)
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In the remainder of our proof, we letA′(x, ψ̂f ) denote the protocol that Bob runs on his side (i.e., generating the training data
TM
x , running the algorithm A on it, and drawing a sample from π̃x(ψ̂f )). Also, we ensure Bob does so using only classical

randomized computation by classically simulating the quantum algorithms. Next, we use Yao’s principle to show that
the above randomized one-way communication protocol implies the existence of a deterministic one-way communication
protocol that errs with probability at most (1 − ϵ) · (1 − δ) with respect to µ (which would violate Theorem B.1 since
(1− ϵ) · (1− δ) > 7/8). Let A denote the family of deterministic protocols obtained by “hardwiring” all possible internal
randomizations of the evaluation of π̃x by A′, i.e.,

A = {A′
r(., .) | r ∈ {0, 1}exp(n)}. (24)

Also, letX be the random variable with values (x, f) distributed according to the uniform distribution over X , and letA be
the random variable over A where the r is uniformly random. Finally, we define the function s : X ×A → R as

s((x, f), A′
r(., .)) = 1

[
A′

r(x, ψ̂f ) ∈ Rf (x)
]
. (25)

Theorem B.2 (Yao’s principle). LetA be a random variable with values in A as defined in Eq. 24, and letX be a random
variable with values in X as defined in Eq. 23. Then,

min
(x,f)∈X

E [s((x, f),A)] ≤ max
A′

r∈A
E [s(X, A′

r)] (26)

where s is the function defined in Eq.25.

Observe that the quantity E [s(X, A′
r)] is precisely the success probability of the deterministic algorithm A′

r ∈ A with
respect to the uniform distribution over X . Thus, Eq. 26 implies the existence of a deterministic algorithm A′

r such that

E [s(X, A′
r)] = Pr(x,f)∼U(X )

(
A′

r(x, ψ̂f ) ∈ Rf (x)
)

≥ min
(x,f)∈X

E [s((x, f),A)] .
(27)

Moreover, observe that the quantity min(x,f)∈X E [s((x, f),A)] is precisely the success probability of the randomized
algorithm A′, which we have previously shown to be at least 1− ϵ. By combining this with Eq. 27 we find that

Pr(x,f)∼U(X )

(
A′

r(x, ψ̂f ) ∈ Rf (x)
)
≥ 1− ϵ. (28)

Moreover, since |Fx
good| ≥ (1− δ) · 2n we find that

Pr(x,f)∼µ

(
A′

r(x, ψ̂f ) ∈ Rf (x)
)
≥ (1− ϵ) · (1− δ). (29)

Finally, since (1− ϵ) · (1− δ) > 7/8, this violates the classical hardness of HM outlined in Theorem B.1.

C. Proof of Theorem 3.6
Theorem 3.6. Let Spr = {|ψf(k)⟩⊗ℓ | f (k)(.) = PRFn(k, .), k ∈ K}, where PRF is a quantum-secure pseudorandom
function with keys K. The concept class in Definition 3.1 is not (ϵ, δ, psucc)-measure-first learnable for (1−ϵ)·(1−δ)·psucc >
c for any constant c > 7/8 when the distribution over input states is uniform over Spr.

Proof of Theorem 3.6. Suppose the concept class in Definition 3.1 is (ϵ, δ, psucc)-measure-first learnable with psucc · (1−
ϵ) · (1 − δ) > c for a constant c > 7/8 when the distribution over input states is uniform over Spr using a measure-first
protocol given by (M,A). That is, for every πx ∈ C, with probability at least psucc we have

Prk∼U(Kn)

(
||π̃x(f (k))− πx(f

(k))||TV ≤ ϵ
)
≥ 1− δ, (30)

where f (k)(.) = PRF(k, .) and π̃x is the randomized quantum function obtained from A on input of the form
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TM
x =

{(
ψ̂f(k) , (x, y, b)

) ∣∣ (x, y, b) ∼ πx(f
(k))

and k ∼ U (Kn)

}poly(n)

i=1

.

(31)

The main goal of the remainder of the proof is to show that the above assumptions violates the assumption that PRF is a
quantum-secure pseudorandom function. To achieve this, we devise a quantum algorithm, denoted as Af , which has query
access to a function f , and which will exhibit a significant difference in the probability of outputting 1 when provided with
either a truly random function f or a pseudorandom function f (k). In essence, Af will train a measure-first protocol on
phase states of pseudorandom functions and evaluate its performance on the provided function f , outputting 1 if it produces
a correct sample (x, y, b) with (y, b) ∈ Rf (x). Assuming our measure-first protocol can successfully learn the concepts for
phase states of pseudorandom functions, Af will most likely output 1 when f is pseudorandom. Conversely, if f is truly
random, then based on arguments similar to those used in the proof of Theorem 3.3, the measure-first learning protocol is
likely to be incorrect, leading Af to most of the time output 0. In particular, we consider the polynomial-time quantum
algorithm Af that does the following:

1. Sample x ∼ U({0, 1}n).

2. Generate a set of examples TM
x as in Eq. 314.

3. Use the learning algorithm A with set of examples TM
x to obtain a quantum algorithm A′ for π̃x.

4. Using quantum query access to f prepare |ψf ⟩⊗ℓ.5

5. Apply M to |ψf ⟩⊗ℓ to obtain ψ̂f =M
(
|ψf ⟩⊗ℓ

)
.

6. Apply A′ to ψ̂f to obtain a sample (x, y, b) and output 1 if y ∈ Rf (x), and 0 otherwise.

By the Eq. 30 and the paragraph leading up to it, we know that

Prk∼U(Kn)

[
Af(k)

= 1
]
≥ psucc · (1− ϵ) · (1− δ) > c. (32)

On the other hand, from the classical lower bound for the HM problem in Theorem B.1, we know that

Prf∼U({0,1}N )

[
Af (.) = 1

]
≤ 7/8. (33)

In particular, if Eq. 33 does not hold, then one can construct a one-way communication protocol for HM that succeeds with
probability at least 7/8 with respect to µ by having Bob perform steps (2)− (3), having Alice perform steps (4)− (5), and
sending ψ̂f to Bob to perform the first part of step (6) where they obtain the a sample (x, y, b). In summary, we conclude that
the measure-first protocol, when trained on phase states of pseudorandom functions, cannot generalize well to truly random
functions based on the lower-bound established for the HM problem in Theorem B.1. Moreover, given our assumption that
the concept class C in Definition 3.1 is (ϵ, δ, psucc)-measure-first learnable on phase states of pseudorandom states, it has to
generalize well to other pseudorandom states. This implies a distinctive behavior of the “benchmarking algorithm” Af when
provided with access to either a pseudorandom function f (k) or a truly random function f . In other words, we thus conclude
that Eq. 32 and Eq. 33 are in contradiction with the assumption that PRF is a quantum-secure pseudorandom function.

D. Two examples of measure-first protocols
To elaborate on the definition of measure-first (MF) protocols (i.e., Definition 2.5) and their potential capabilities, we present
two concrete MF protocols that, at first glance, appear capable of solving the learning task. However, in each case, we
identify fundamental reasons for their failure, which highlight the limitations of MF protocols.

4Note that we can do so efficiently using a quantum algorithm since we only consider phase states of pseudo-random functions.
5This step is also efficient both for random and pseudorandom function since we suppose oracle access to f .
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D.1. Measure-first protocol based on classical shadows

One plausible MF protocol leverages the classical shadow framework (Huang et al., 2020). Here, the measurement strategy
M takes as input multiple copies of each state |ψf ⟩ and generates a classical representation ψ̂f by performing randomized
measurements as prescribed by the classical shadow protocol (Huang et al., 2020). The learning algorithm A can then use
the training data T̂x to determine x and output a hypothesis hx. This hypothesis would use the classical representation ψ̂f to
predict the correct labels associated with f by approximating the outcomes of the POVMs Ex

j .

However, for the hypothesis hx to generate samples (y, b) that are close in total variation distance to the target distribution
Λx, the precision required on each POVM Ex

j must scale exponentially. As a result, the number of copies N of |ψf ⟩ required
by the classical shadow protocol to achieve such precision also grows exponentially. Therefore, this MF protocol fails due
to fundamental limitations in efficiently compressing pseudorandom phase states into classical representations capable of
achieving the required exponential precision. In this sense, our result can also be interpreted as a lower bound on the number
of copies required for any shadow-based procedure to recover observables with exponential precision.

D.2. Measure-first protocol with circuit learning

Another potential MF protocol could attempt to directly learn a polynomially-sized description of the circuit that prepares
the pseudorandom states |ψf ⟩. By definition, pseudorandom states are efficiently preparable and always admit such a circuit.
In this approach, the measurement scheme M would take as input multiple copies of |ψf ⟩ and attempt to infer this circuit
description. The learning algorithm A would then use the training data T̂x to determine x and output a hypothesis hx. The
hypothesis hx could use the learned circuit to recreate the state |ψf ⟩ and implement the measurement Λx.

However, despite the existence of a polynomial-depth circuit that prepares |ψf ⟩, our results show that no efficient mea-
surement strategy M can extract a succinct classical description of this circuit. This failure arises from the inherent
pseudorandomness of the states, which ensures that no efficient measurement strategy can compress the information
contained in |ψf ⟩ into a usable classical description. Consequently, this MF protocol also fails to achieve the learning goal.

These examples highlight not only the challenges faced by MF protocols but also the fundamental separations between MF
and fully quantum (FQ) protocols. They illustrate the difficulty of efficiently compressing pseudorandom phase states into
classical descriptions that retain enough information for the machine learning task.
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