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Abstract
Evaluating fairness can be challenging in practice
because the sensitive attributes of data are often
inaccessible due to privacy constraints. The go-
to approach that the industry frequently adopts
is using off-the-shelf proxy models to predict the
missing sensitive attributes, e.g. Meta (Alao et al.,
2021) and Twitter (Belli et al., 2022). Despite
its popularity, there are three important questions
unanswered: (1) Is directly using proxies effica-
cious in measuring fairness? (2) If not, is it possi-
ble to accurately evaluate fairness using proxies
only? (3) Given the ethical controversy over in-
ferring user private information, is it possible to
only use weak (i.e. inaccurate) proxies in order
to protect privacy? Our theoretical analyses show
that directly using proxy models can give a false
sense of (un)fairness. Second, we develop an
algorithm that is able to measure fairness (prov-
ably) accurately with only three properly identi-
fied proxies. Third, we show that our algorithm
allows the use of only weak proxies (e.g. with only
68.85% accuracy on COMPAS), adding an extra
layer of protection on user privacy. Experiments
validate our theoretical analyses and show our al-
gorithm can effectively measure and mitigate bias.
Our results imply a set of practical guidelines
for practitioners on how to use proxies properly.
Code is available at https://github.com/
UCSC-REAL/fair-eval.

1. Introduction
The ability to correctly measure a model’s fairness is crucial
to studying and improving it (Corbett-Davies & Goel, 2018;
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Figure 1. Fairness disparities of models on COMPAS (Angwin
et al., 2016). True (or Proxy): Disparities using ground-truth
sensitive attribute values (or proxy model’s predictions). Forest
(or Tree): Random forest (or decisions tree) models. Observations:
1) Models considered as fair according to proxies can be actually
unfair (True vs. Proxy), giving a false sense of fairness. 2) Fairness
misperception (Forest vs. Tree) can cause practitioners to deploy
wrong models.

Madaio et al., 2022; Barocas et al., 2021). However in prac-
tice it can be challenging since measuring group fairness
requires access to the sensitive attributes of the samples,
which are often unavailable due to privacy regulations (An-
drus et al., 2021; Holstein et al., 2019; Veale & Binns, 2017).
For instance, the most popular type of sensitive information
is demographic information. In many cases, it is unknown
and illegal to collect or solicit. The ongoing trend of privacy
regulations will further worsen the challenge.

One straightforward solution is to use off-the-shelf proxy
or proxy models to predict the missing sensitive attributes.
For example, Meta (Alao et al., 2021) measures racial fair-
ness by building proxy models to predict race from zip
code based on US census data. Twitter employs a simi-
lar approach (Belli et al., 2022). This solution has a long
tradition in other areas, e.g. health (Elliott et al., 2009),
finance (Baines & Courchane, 2014), and politics (Imai
& Khanna, 2016). It has become a standard practice and
widely adopted in the industry due to its simplicity.

Despite the popularity of this simple approach, few prior
works have studied the efficacy or considered the practical
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constraints imposed by ethical concerns. In terms of efficacy,
it remains unclear to what degrees we can trust a reported
fairness measure based on proxies. A misleading fairness
measure can trigger decline of trust and legal concerns. Un-
fortunately, this indeed happens frequently in practice. For
example, Figure 1 shows the estimated fairness vs. true fair-
ness on COMPAS (Angwin et al., 2016) dataset with race as
the sensitive attribute. We use proxy models to predict race
from last name. There are two observations: 1) Models con-
sidered as fair according to proxies are actually unfair. The
Proxy fairness disparities (0.02) can be much smaller than
the True fairness disparities (> 0.10), giving a false sense of
fairness. 2) Fairness misperception can mislead the model
selection. The proxy disparities mistakenly indicate random
forest models have smaller disparities (DP and EOd) than
decision tree models, but in fact it is the opposite.

In terms of ethical concerns, there is a growing worry on
using proxies to infer sensitive information without user con-
sent (Twitter, 2021; Fosch-Villaronga et al., 2021; Leslie,
2019; Kilbertus et al., 2017). Not unreasonably argued, us-
ing highly accurate proxies would reveal user’s private infor-
mation. We argue that practitioners should use inaccurate or
weak proxies whose noisy predictions would add additional
protection to user privacy. However, if we merely compute
fairness in the traditional way, the inaccuracy would prop-
agate from weak proxies to the measured fairness metrics.
To this end, we desire an algorithm that uses weak proxies
only but can still accurately measure fairness.

We ask three questions: (1) Is directly using proxies effica-
cious in measuring fairness? (2) If not, is it possible to ac-
curately evaluate fairness using proxies only? (3) Given the
ethical controversy over inferring user private information,
is it possible to only use weak proxies to protect privacy?

We address those questions as follows:

• Directly using proxies can be misleading: We theoreti-
cally show that directly using proxy models to estimate
fairness would lead to a fairness metric whose estimation
can be off by a quantity proportional to the prediction
error of proxy models and the true fairness disparity (The-
orem 3.2, Corollary 3.3).

• Provable algorithm using only weak proxies: We propose
an algorithm (Figure 2, Algorithm 1) to calibrate the
fairness metrics. We prove the error upper bound of our
algorithm (Theorem 4.5, Corollary 4.7). We further show
three weak proxy models with certain desired properties
are sufficient and necessary to give unbiased fairness
estimations using our algorithm (Theorem 4.6).

• Practical guidelines: We provide a set of practical guide-
lines to practitioners, including when to directly use the
proxy models, when to use our algorithm to calibrate,
how many proxy models are needed, and how to choose
proxy models.

• Empirical studies: Experiments on COMPAS and CelebA
consolidate our theoretical findings and show our cali-
brated fairness is significantly more accurately than base-
lines. We also show our algorithm can lead to better
mitigation results.

The paper is organized as follows. Section 2 introduces
necessary preliminaries. Section 3 analyzes what happens
when we directly use proxies, and shows it can give mis-
leading results, which motivates our algorithm. Section 4
introduces our algorithm that only uses weak proxies and
instructions on how to use it optimally. Section 5 shows our
experimental results. Section 6 discusses related works and
Section 7 concludes the paper.

2. Preliminaries
Consider a K-class classification problem and a dataset
D◦ := {(xn, yn)|n ∈ [N ]}, where N is the number of
instances, xn is the feature, and yn is the label. Denote
by X the feature space, Y = [K] := {1, 2, · · · ,K} the la-
bel space, and (X,Y ) the random variables of (xn, yn),∀n.
The deterministic target model f : X → [K] maps X to a
predicted label class f(X) ∈ [K] (Wu et al., 2022). We aim
at measuring group fairness conditioned on a sensitive at-
tribute A ∈ [M ] := {1, 2, · · · ,M} which is unavailable in
D◦. Denote the dataset with ground-truth sensitive attributes
by D := {(xn, yn, an)|n ∈ [N ]}, the joint distribution of
(X,Y,A) by D. The task is to estimate the fairness metrics
of f on D◦ without sensitive attributes such that the result-
ing metrics are as close to the fairness metrics evaluated
on D (with true A) as possible. We provide a summary of
notations in Appendix A.1.

We consider three group fairness definitions and their cor-
responding measurable metrics: demographic parity (DP)
(Calders et al., 2009; Chouldechova, 2017), equalized odds
(EOd) (Woodworth et al., 2017), and equalized opportunity
(EOp) (Hardt et al., 2016). All our discussions in the main
paper are specific to DP defined as follows but we include
the complete derivations for EOd and EOp in Appendix.

Definition 2.1 (Demographic Parity). The demographic
parity metric of f on D conditioned on A is defined as:

∆DP(D, f) := 1

M(M − 1)K
·∑

a,a′∈[M ]
k∈[K]

|P(f(X) = k|A = a)− P(f(X) = k|A = a′)|.

Matrix-form Metrics. For later derivations, we define
matrix H as an intermediate variable. Each column of H
denotes the probability needed for evaluating fairness with
respect to f(X). For DP, H is a M ×K matrix with

H[a, k] := P(f(X) = k|A = a).
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The a-th row, k-th column, and (a, k)-th element of H are
denoted by H[a],H[:, k], and H[a, k], respectively. Then
∆DP(D, f) in Definition 2.1 can be rewritten as:

Definition 2.2 (DP - Matrix Form).

∆DP(D, f) := 1

M(M − 1)K

∑
a,a′∈[M ]
k∈[K]

|H[a, k]−H[a′, k]|.

See definitions for EOd and EOp in Appendix A.2.

Proxy Models. The conventional way to measure fairness
is to approximate A with an proxy model g : X → [M ]
(Ghazimatin et al., 2022; Awasthi et al., 2021; Chen et al.,
2019) and get proxy (noisy) sensitive attribute Ã := g(X).
Note the open-set setting (Wei et al., 2021), where Ã and A
come from different spaces, is not considered in this paper.
The input of g can be any subsets of feature X . We write
the input of g as X just for notation simplicity. We define
weak proxies as follows.

Definition 2.3 (Weak Proxy). A proxy model g : X → [M ]
is ϵ0-weak if

max
x∈X

P(Ã = a|A = a,X = x) ≤ 1− ϵ0,

where 0 < ϵ0 < 1 quantifies the weakness. A larger ϵ0
indicates a weaker proxy.

Transition Matrix. Define matrix T to be the transi-
tion probability from A to Ã where (a, ã)-th element is
T [a, ã] = P(Ã = ã|A = a). Similarly, denote by Tk the
local transition matrix conditioned on f(X) = k, where the
(a, ã)-th element is

Tk[a, ã] := P(Ã = ã|f(X) = k,A = a).

We further define clean (i.e. ground-truth) prior probabil-
ity of A as p := [P(A = 1), · · · ,P(A = M)]⊤ and
the noisy (predicted by proxies) prior probability of Ã as
p̃ := [P(Ã = 1), · · · ,P(Ã = M)]⊤. Given only noisy
attributes, there are efficient tools1 to estimate T and p by
generating diagnosis reports without extra training.

3. Proxy Results Can be Misleading
This section provides an analysis on how much the measured
fairness-if using proxies naively-can deviate from the reality.

Using Proxy Models Directly. Consider a scenario with
C proxy models denoted by the set G := {g1, · · · , gC}. The
noisy sensitive attributes are denoted as Ãc := gc(X),∀c ∈
[C] and the corresponding target dataset with Ã is D̃ :=

1https://github.com/Docta-ai/docta.

{(xn, yn, (ã
1
n, · · · , ãCn ))|n ∈ [N ]}, drawn from a distribu-

tion D̃. Similarly, by replacing A with Ã in H , we can
compute H̃ , which is the matrix-form noisy fairness metric
estimated by the proxy model g (or G if multiple proxy mod-
els are used). Define the directly measured fairness metric
of f on D̃ as follows.

Definition 3.1 (Proxy Disparity - DP).

∆DP(D̃, f) := 1

M(M − 1)K

∑
a,a′∈[M ]
k∈[K]

|H̃[a, k]− H̃[a′, k]|.

Estimation Error Analysis. We study the error of proxy
disparity and give practical guidelines implied by analysis.

Intuitively, the estimation error of proxy disparity depends
on the error of the proxy model g. Recall p, p̃, T and Tk

are clean prior, noisy prior, global transition matrix, and
local transition matrix. Denote by Λp̃ and Λp the square
diagonal matrices constructed from p̃ and p. We formally
prove the upper bound of estimation error for the directly
measured metrics in Theorem 3.2 (See Appendix B.1 for
the proof).

Theorem 3.2 (Error Upper Bound of Proxy Disparities).
Denote the estimation error of the proxy disparity by

Errraw := |∆̃DP(D̃, f)−∆DP(D, f)|.

Its upper bound is:

Errraw ≤ 2

K

∑
k∈[K]

(
h̄k ∥Λp̃(T

−1Tk − I)Λ−1
p̃ ∥1︸ ︷︷ ︸

cond. indep. violation

+ δk ∥ΛpTkΛ
−1
p̃ − I∥1︸ ︷︷ ︸

error of g

)
,

where h̄k := 1
M

∑
a∈[M ]

H[a, k], δk := max
a∈[M ]

|H[a, k]− h̄k|.

It shows the error of proxy disparity depends on:

• h̄k: The average confidence of f(X) on class k over all
sensitive groups. For example, if f is a crime prediction
model and A is race, a biased f (Angwin et al., 2016) may
predict that the crime (k = 1) rate for different races are
0.1, 0.2 and 0.6 respectively, then h̄1 = 0.1+0.2+0.6

3 =
0.3, and it is an approximation (unweighted by sample
size) of the average crime rate over the entire population.
The term depends on D and f only (i.e. the true fairness
disparity), and independent of any estimation algorithm.

• δk: The maximum disparity between confidence of f(X)
on class k and average confidence h̄k across all sensi-
tive groups. Using the same example, δ1 = max(|0.1−
0.3|, |0.2 − 0.3|, |0.6 − 0.3|) = 0.3. It is an approxima-
tion of the underlying fairness disparity, and larger δk

3
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Figure 2. Overview of our algorithm that estimates fairness using only weak proxy models. We first directly estimate the noisy fairness
matrix with proxy models (blue arrows), and then calibrate the estimated fairness matrix (orange arrows).

indicates f is more biased on D. The term is also de-
pendent on D and f (i.e. the true fairness disparity), and
independent of any estimation algorithm.

• Conditional Independence Violation: The term is depen-
dent on the proxy model g’s prediction Ã in terms of the
transition matrix (T and Tk) and noisy prior probability
(p̃). The term goes to 0 when T = Tk, which implies
Ã and f(X) are independent conditioned on A. This is
the common assumption made in the prior work (Awasthi
et al., 2021; Prost et al., 2021; Fogliato et al., 2020). And
this term measures how much the conditional indepen-
dence assumption is violated.

• Error of g: The term depends on the proxy model g. It
goes to 0 when Tk = I which implies the error rates of
g’s prediction is 0, i.e. g is perfectly accurate. It measures
the impact of g’s error on the fairness estimation error.

Case Study. To help better understand the upper bound,
we consider a simplified case when both f and A are binary.
We further assume the conditional independence condition
to remove the third term listed above in Theorem 3.2. See
Appendix A.3 for the formal definition of conditional inde-
pendence. Please note that we only assume it for the purpose
of demonstrating a less complicated theoretical result, we
do not need this assumption in our proposed algorithm later.
Corollary 3.3 summarizes the result.
Corollary 3.3. For a binary classifier f and a binary sen-
sitive attribute A ∈ {1, 2}, when (Ã ⊥⊥ f(X)|A) holds,
Theorem 3.2 is simplified to

Errraw ≤ δ
(
P(A = 1|Ã = 2) + P(A = 2|Ã = 1)

)
,

where δ = |P(f(X) = 1|A = 1)− P(f(X) = 1|A = 2)|.

Corollary 3.3 shows the estimation error of proxy dispar-
ity is proportional to the true underlying disparity between
sensitive groups (i.e. δ) and the proxy model’s error rates.
In other words, the uncalibrated metrics can be highly inac-
curate when f is highly biased or g has poor performance.

This leads to the following suggestions:

Guidelines for Practitioners. We should only trust the
estimated fairness from proxy models when (1) the proxy
model g has good performance and (2) the true disparity
is small (i.e. the target model f is not highly biased). In
practice, without true sensitive attributes, we can roughly
infer the true disparity based on the problem domain and
known history. For example, racial disparity in hiring is
known to exist for a long time. We only need to know if the
disparity is extremely large or not.

In practice, both conditions required to trust the proxy re-
sults are frequently violated. When we want to measure f ’s
fairness, often we already have some fairness concerns and
therefore the underlying fairness disparity is unlikely to be
negligible. And the proxy model g is usually inaccurate due
to privacy concerns (discussed in Section 4.2) and distri-
bution shift. This motivates us to develop an approach for
more accurate estimates.

4. Weak Proxies Suffice
In this section, we show that by properly using a set of proxy
models, we are able to guarantee an unbiased estimate of
the true fairness measures.

4.1. Proposed Algorithm

With a given proxy model g that labels sensitive attributes,
we can anatomize the relationship between the true disparity
and the proxy disparity. The following theorem targets DP
and see Appendix B.2 for results with respect to EOd and
EOp and their proofs.

Theorem 4.1. [Closed-form Relationship (DP)] The closed-
form relationship between the true fairness vector H[:, k]

and the noisy fairness vector H̃[:, k] is the following:

H[:, k] = (T⊤
k Λp)

−1Λp̃H̃[:, k],∀k ∈ [K].
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Algorithm 1 Fairness calibration algorithm (DP)
1: Input: A set of proxy models G = {g1, · · · , gC}. Tar-

get dataset D◦. Target model f . Transition matrix and
prior probability estimator StatEstimator.
# Predict sensitive attributes using all g ∈ G

2: ãcn ← gc(xn),∀c ∈ [C], n ∈ [N ]
# Build the dataset with noisy sensitive attributes

3: D̃ ← {(xn, yn, (ã
1
n, · · · , ãCn ))|n ∈ [N ]}

# Estimate fairness matrix and prior with sample mean
4: H̃, p̃← DirectEst(D̃, f)

# Estimate key statistics: p and Tk

5: {T̂1, · · · , T̂K}, p̂← StatEstimator(D̃, f)
# Calibrate each fairness vector with Theorem 4.1

6: ∀k ∈ [K] : Ĥ[:, k]← (T̂⊤
k Λp̂)

−1Λp̃H̃[:, k]
# Calculate the final fairness metric as Definition 2.2

7: ∆̂(D̃, f)← 1
M(M−1)K

∑
a,a′∈[M ]
k∈[K]

|Ĥ[a, k]− Ĥ[a′, k]|.

8: Output: The calibrated fairness metric ∆̂(D̃, f)

Algorithm 2 StatEstimator: HOCFair (DP)

1: Input: Noisy dataset D̃. Target model f .
# Get the number of noisy attributes (i.e. # proxy models)

2: C ← #Attribute(D̃)
# Get 2-Nearest-Neighbors of xn and save their attributes as
xn’s attribute

3: if C < 3 then
4: {(xn, yn, (ã

1
n, · · · , ã3Cn ))|n ∈ [N ]}←Get2NN(D̃)

5: D̃ ← {(xn, yn, (ã
1
n, · · · , ã3Cn ))|n ∈ [N ]}

6: end if
# Randomly sample 3 noisy attributes for each instance

7: {(ã1n, ã2n, ã3n)|n ∈ [N ]} ← Sample(D̃)
# Get estimates p ≈ p̂

8: (T̂ , p̂)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N ]})
# Get estimates Tk ≈ T̂k

9: (T̂k,−) ← HOC({(ã1n, ã2n, ã3n)|n ∈ [N ], f(xn) =
k}), ∀k ∈ [K]
# Return the estimated statistics

10: Output: {T̂1, · · · , T̂K}, p̂

Insights. Theorem 4.1 reveals that the proxy disparity
and the corresponding true disparity are related in terms of
three key statistics: noisy prior p̃, clean prior p, and local
transition matrix Tk. Ideally, if we have the ground-truth
values of them, we can calibrate the noisy fairness vectors
to their corresponding ground-truth vectors (and therefore
obtaining the perfectly accurate fairness metrics) usingTh-
eorem 4.1. Hence, the most important step is to estimate
Tk, p, and p̃ without knowing the ground-truth values of A.
Once we have those estimated key statistics, we can easily
plug them into the above equation as the calibration step.
Figure 2 shows the overview of our algorithm.

Algorithm: Fairness calibration. We summarize the
method in Algorithm 1. In Line 4, we use the sample mean
in the uncalibrated form to estimate H̃ as

H̃[ã, k] ≈ 1

N

N∑
n=1

1(f(xn = k|ãn = ã))

and p̃ as p̃[ã] = P(Ã = ã) ≈ 1
N

∑N
n=1 1(ãn = ã),∀ã ∈

[M ]. In Line 5, we plug in an existing transition ma-
trix and prior probability estimator to estimate Tk and p
with only mild adaption that will be introduced shortly.
Note that although we choose a specific estimator, our al-
gorithm is a flexible framework that is compatible with
any StatEstimator proposed in the noisy label litera-
ture (Liu & Chen, 2017; Zhu et al., 2021b; 2022c).

Details: Estimating Key Statistics. The algorithm re-
quires us to estimate Tk and p based on the predicted Ã
by proxy models. In the literature of noisy learning, there
exists several feasible algorithms (Liu & Tao, 2015; Scott,
2015; Patrini et al., 2017; Northcutt et al., 2021; Zhu et al.,
2021b). We choose HOC (Zhu et al., 2021b) because it has
stronger theoretical guarantee and lower sample complexity
than most existing estimators. Intuitively, if given three
proxy models, the joint distributions of their predictions
would encode Tk and p, i.e.

P(Ã1, Ã2, Ã3) = Func({Tk}k∈[K],p).

For example, with the chain rule and independence among
proxy predictions conditioned on A, we have:

P(Ã1 = ã1, Ã2 = ã2, Ã3 = ã3|f(X) = k)

=
∑

a∈[M ]

P(A = a|f(X) = k) · Tk[a, ã1] · Tk[a, ã2] · Tk[a, ã3].

HOC counts the frequency of different (Ã1, Ã2, Ã3) pat-
terns to obtain LHS and solve equations to get Tk’s in the
RHS.

Algorithm: HOCFair. More specifically, Algorithm 2
shows how we adapt HOC as StatEstimator (in Al-
gorithm 1, Line 5), namely HOCFair. The original HOC
uses one proxy model and simulates the other two based on
clusterability condition (Zhu et al., 2021b), which assumes
xn and its 2-nearest-neighbors share the same true sensitive
attribute, and therefore their noisy attributes can be used to
simulate the output of proxy models. If this condition does
not hold (Zhu et al., 2022c), we can directly use more proxy
models. With a sufficient number of noisy attributes, we
can randomly select a subset of them for every sample as
Line 7, and then approximate Tk with T̂k in Line 2. In our
experiments, we test both using one proxy model and multi-
ple proxy models. See more details of our implementations
in Appendix C.1 and HOC in Appendix C.2.
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4.2. Requirements of Proxy Models

To use our algorithm, there are two practical questions for
practitioners: 1) what properties proxy models should sat-
isfy and 2) how many proxy models are needed. The first
question is answered by two requirements made in the esti-
mation algorithm HOC:
Requirement 4.2 (Informativeness of Proxies). The noisy
attributes given by each proxy model g are informative, i.e.
∀k ∈ [M ], 1) Tk is non-singular and 2) either Tk[a, a] >

P(Ã = a|f(X) = k) or Tk[a, a] > Tk[a, a
′],∀a′ ̸= a.

Requirement 4.2 is the prerequisite of getting a feasible
and unique estimate of Tk (Zhu et al., 2021b), where the
non-singular requirement ensures the matrix inverse in The-
orem 4.1 exists and the constraints on Tk[a, a] describes
the worst tolerable performance of g. When M = 2, the
constraints can be simplified as Tk[1, 2]+Tk[2, 1] < 1 (Liu
& Chen, 2017; Liu & Guo, 2020), i.e. g’s predictions are
better than random guess in binary classification. If this
requirement is violated, there might exist more than one
feasible estimates of Tk, making the problem insoluble.

The above requirement is weak. The proxies are merely
required to positively correlate with the true sensitive at-
tributes. We discuss the privacy implication of using weak
proxies shortly after.
Requirement 4.3 (Independence between Proxies).
The noisy attributes predicted by proxy models
g1(X), · · · , gC(X) are independent and identically
distributed (i.i.d.) given A.

Requirement 4.3 ensures the additional two proxy models
provide more information than using only one classifier.
If it is violated, we would still get an estimate but may
be inaccurate. Note this requirement is different from the
conditional independence often assumed in the fairness lit-
erature (Awasthi et al., 2021; Prost et al., 2021; Fogliato
et al., 2020), which is g(X) ⊥⊥ f(X)|A rather than ours
g1(X) ⊥⊥ g2(X) ⊥⊥ g3(X)|A.

The second question (how many proxy models are needed)
has been answered by Theorem 5 in Liu (2022), which we
summarize in the following.
Lemma 4.4. If satisfying Requirements 4.2–4.3, three proxy
models are both sufficient and necessary to identify Tk.

How to Protect Privacy with Weak Proxies. Intuitively,
weak proxies can protect privacy better than strong prox-
ies since the predictions are noisier, i.e. less informative.
We connect weak proxy’s privacy-preserveness to differ-
ential privacy (Ghazi et al., 2021). Assume misclassifica-
tion probability on Ã is bounded across all samples, i.e.
∀a ∈ [M ], a′ ∈ [M ], a ̸= a′:

max
x∈X

P(Ã = a|A = a,X = x) ≤ 1− ϵ0,

min
x∈X

P(Ã = a|A = a′, X = x) ≥ ϵ1.

According to the definition of label differential pri-
vacy (Ghazi et al., 2021), we show that the privacy of the
sensitive attribute A, which is the “label” of proxy models,
satisfies ln( 1−ϵ0

ϵ1
)-DP. See Appendix B.6 for the proof.

In practice, if the above assumption does not hold naturally
by proxies, we can add noise to impose it. When practi-
tioners think proxies are too strong, they can add additional
noise to reduce informativeness, further protecting privacy.
Later we will show in Table 2 that our algorithm is robust in
estimation accuracy when adding noise to proxy predictions.
When we intentionally make the proxies weaker by flipping
predicted sensitive attributes with probability 0.4, resulting
in only 58.45% proxy accuracy, it corresponds to 0.41-DP
(ϵ0 = ϵ1 = 0.4) protection.

4.3. Theoretical Guarantee

We theoretically analyze estimation error on our calibrated
metrics in a similar way as in Section 3. Denote by
∆̂DP(D̃, f) the calibrated DP disparity evaluated on our
calibrated fairness matrix Ĥ . We have:
Theorem 4.5 (Error Upper Bound of Calibrated Metrics).
Denote the estimation error of the calibrated fairness met-
rics by Errcal := |∆̂DP(D̃, f)−∆DP(D, f)|. Then:

Errcal ≤ 2

K

∑
k∈[K]

∥∥Λ−1
p

∥∥
1
∥ΛpH[:, k]∥∞ ε(T̂k, p̂),

where ε(T̂k, p̂) := ∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 + ∥I −

TkT̂
−1
k ∥1 is the error induced by calibration. With a per-

fect estimator T̂k = Tk and p̂k = pk,∀k ∈ [K], we have
Errcal = 0.

Theorem 4.5 shows the upper bound of estimation error
mainly depends on the estimates T̂k and p̂, i.e. the following
two terms in ε(T̂k, p̂):

∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 and ∥I − TkT̂

−1
k ∥1.

When the estimates are perfect, i.e. T̂k = Tk and p̂ = p,
then both terms go to 0 because Λ−1

p̂ Λp = I and TkT̂
−1
k =

I . Together with Lemma 4.4, we can show the optimality
of our algorithm as follows.
Theorem 4.6. When Requirements 4.2–4.3 hold for three
proxy models, the calibrated fairness metrics given by Algo-
rithm 1 with key statistics estimated by Algorithm 2 achieve
zero error, i.e.

|∆̂DP(D̃, f)−∆DP(D, f)| = 0.

Besides, we compare the error upper bound of our method
with the exact error (not its upper bond) in the case of
Corollary 3.3, and summarize the result in Corollary 4.7.
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Corollary 4.7. For a binary classifier f and a binary sen-
sitive attribute A ∈ {1, 2}, when (Ã ⊥⊥ f(X)|A) and
p = [0.5, 0.5]⊤, the proposed calibration method is guaran-
teed to be more accurate than the uncalibrated measurement,
i.e. , Errcal ≤ Errraw, if

ε(T̂k, p̂) ≤ γ := max
k′∈{1,2}

e1 + e2

1 + ∥H[:,k′]∥1

∆DP(D,f)

,∀k ∈ {1, 2}.

Corollary 4.7 shows when the error ε(T̂k, p̂) that is induced
by inaccurate T̂k and p̂ is below the threshold γ, our method
is guaranteed to lead to a smaller estimation error compared
to the uncalibrated measurement under the considered set-
ting. The threshold implies that, adopting our method rather
than the uncalibrated measurement can be greatly beneficial
when e1 and e2 are high (i.e. g is inaccurate) or when the
normalized (true) fairness disparity ∆DP(D,f)

∥H[:,k′]∥1
is high (i.e. f

is highly biased).

4.4. Guidelines for Practitioners

We provide a set of guidelines implied by our theoretical
results.

When to Use Our Algorithm. Corollary 4.7 shows that
our algorithm is preferred over directly using proxies when
1) the proxy model g is weak or 2) the true disparity is large.

How to Best Use Our Algorithm. Section 4.2 implies a
set of principles for selecting proxy models:

i) [Requirement 4.2] Even if proxy models are weak, as
long as they are informative, e.g. in binary case the per-
formance is better than random guess, then it is enough
for estimations.

ii) [Requirement 4.3] We should try to make sure the predic-
tions of proxy models are i.i.d., which is more important
than using more proxy models. One way of doing it is to
choose proxy models trained on different data sources.

iii) [Lemma 4.4] At least three proxy models are prefered.

5. Experiments
Our algorithm is tested on datasets with real-world sensitive
attributes, e.g. gender, race.

5.1. Setup

We test the performance of our method on two real-world
datasets: COMPAS (Angwin et al., 2016) and CelabA (Liu
et al., 2015). We report results on all three group fair-
ness metrics (DP, EOd, and EOp) whose true disparities
(estimated using the ground-truth sensitive attributes) are
denoted by ∆DP(D, f), ∆EOd(D, f), ∆EOp(D, f) respec-
tively. We train the target model f on the dataset without

using A, and use the proxy models downloaded from open-
source projects. The detailed settings are the following:

• COMPAS (Angwin et al., 2016): Recidivism prediction
data. Feature X: tabular data. Label Y : recidivism within
two years (binary). Sensitive attribute A: race (black and
non-black).Target models f (trained by us): decision
tree, random forest, boosting, SVM, logit model, and
neural network (accuracy range 66%–70% for all models).
Three proxy models (g1, g2, g3): racial classifiers given
name as input (Sood & Laohaprapanon, 2018) (average
accuracy 68.85%).

• CelabA (Liu et al., 2015): Face dataset. Feature X:
facial images. Label Y : smile or not (binary). Sensitive
attribute A: gender (male and female). Target models f :
ResNet18 (He et al., 2016) (accuracy 90.75%, trained by
us). We use one proxy model (g1): gender classifier that
takes facial images as input (Serengil & Ozpinar, 2021),
and then use the clusterability to simulate the other two
proxy models (as Line 4 in Algorithm 2). Since the
proxy model g1 is highly accurate (accuracy 92.55%),
which does not give enough privacy protection, we add
noise to g1’s predicted sensitive attributes according to
Requirement 4.3. We generate the other two proxies (g2
and g2) based on g1’s noisy predictions.

Method. We propose a simple heuristic in our algorithm
to stabilize estimation error on T̂k. Specifically, we use a sin-
gle transition matrix T̂ estimated once on the full dataset D̃
as Line 8 of Algorithm 2 to approximate Tk. We name this
heuristic as Global (i.e. Tk ≈ T̂ ) and the original method
(estimated on each data subset D̃k := {(X,Y,A)|f(X) =

k}, i.e. Tk ≈ T̂k) as Local. See Appendix D.4 for details.
We compare with two baselines: the directly estimated met-
ric without any calibration (Base) and Soft (Chen et al.,
2019) which also only uses proxy models to calibrate the
measured fairness by re-weighting metric with the soft pre-
dicted probability from the proxy model.

Evaluation Metric. Let ∆(D, f) be the ground-truth
fairness metric. For a given estimated metric E, we define
three estimation errors:

Raw Error(E) := |E −∆(D, f)|,

Normalized Error(E) :=
Raw Error(E)

∆(D, f)
,

and

Improvement(E) := 1− Raw Error(E)
Raw Error(Base)

,

where Base is the directly measured metric.
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Table 1. Normalized estimation error on COMPAS. True disparity: ∼ 0.2. Average accuracy of weak proxy models: 68.85%.

COMPAS DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Target models f Base Soft Global Local Base Soft Global Local Base Soft Global Local

tree 43.82 61.26 22.29 39.81 45.86 63.96 23.09 42.81 54.36 70.15 13.27 49.49
forest 43.68 60.30 19.65 44.14 45.60 62.85 18.56 44.04 53.83 69.39 17.51 63.62

boosting 43.82 61.26 22.29 44.64 45.86 63.96 23.25 49.08 54.36 70.15 13.11 54.67
SVM 50.61 66.50 30.95 42.00 53.72 69.69 32.46 47.39 59.70 71.12 29.29 51.31
logit 41.54 60.78 16.98 35.69 43.26 63.15 21.42 31.91 50.86 65.04 14.90 26.27
nn 41.69 60.55 19.48 34.22 43.34 62.99 19.30 43.24 54.50 68.50 14.20 59.95

compas score 41.28 58.34 11.24 14.66 42.43 59.79 11.80 18.65 48.78 62.24 5.78 23.80

Table 2. Normalized error on CelebA. We simulate weak proxies by adding noise to predicted attributes according to Requirement 4.3 to
bring down the performance of proxy models. Each row represents the noise magnitude and accuracy of proxy models, e.g. “[0.2, 0.0]
(82.44%)” means T [1, 2] = 0.2, T [2, 1] = 0.0 and accuracy is 82.44%.

CelebA DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
FaceNet512 Base Soft Global Local Base Soft Global Local Base Soft Global Local

[0.2, 0.0] (82.44%) 7.37 11.65 20.58 5.05 25.06 26.99 6.43 0.10 24.69 27.27 11.11 1.07
[0.2, 0.2] (75.54%) 30.21 31.57 24.25 13.10 44.73 46.36 11.26 9.04 37.67 38.77 20.94 27.98
[0.4, 0.2] (65.36%) 51.32 54.56 19.42 10.47 62.90 65.10 11.09 19.15 56.51 58.73 23.86 23.55
[0.4, 0.4] (58.45%) 77.76 78.39 9.41 19.80 79.31 80.10 24.49 8.02 78.35 79.62 10.61 5.71

5.2. Results and Analyses

COMPAS Results. Table 1 reports the normalized error
on COMPAS (See Table 7 in Appendix D.1 for the other two
evaluation metrics). There are two main observations. First,
our calibrated metrics outperform baselines with a big mar-
gin on all three fairness definitions. Compared to Base, our
metrics are 39.6%–88.2% more accurate (Improvement).
As pointed out by Corollary 4.7, this is because the target
models f are highly biased (Table 6) and the proxy models
g are inaccurate (accuracy 68.9%). As a result, Base has
large normalized error (40–60%). Second, Global outper-
forms Local, since with inaccurate proxy models, Require-
ments 4.2–4.3 on HOC may not hold in local dataset, induc-
ing large estimation errors in local estimates. Finally, we
also include the results with three-class sensitive attributes
(black, white, and others) in Appendix D.2.

CelebA Results. Table 2 summarizes the key results
(see Appendix D.3 for the full results). First, our algo-
rithm outperform baselines significantly on all fairness defi-
nitions with all noise rates, which validates Corollary 4.7.
When g becomes less accurate, Base’s DP normalized error
increases by more than 10x while our error (Local) only
increases by 3x. Second, unlike COMPAS, Local now out-
performs Global. This is because we add random noise
following Requirement 4.3 and therefore the estimation er-
ror of Local is not increased significantly. This further
consolidates our theoretical findings. Therefore when Re-
quirement 4.3 is satisfied, using Local can give more accu-

rate estimations than Global (see Appendix D.4 for more
discussions). In practice, practitioners can roughly examine
Requirement 4.3 by running statistical tests like Chi-squared
tests on proxy predictions.

Mitigating Disparity. We further discuss the dispar-
ity mitigation built on our method. The aim is to im-
prove the classification accuracy while ensuring fairness
constraints. Particularly, we choose DP and test on CelebA,
where ∆̂DP(D̃, f) = 0 is the constraint for our method and
∆̃DP(D̃, f) = 0 is the constraint for the baseline (Base).
Recall ∆̂DP(D̃, f) is obtained from Algorithm 1 (Line 8),
and D̃ := {(xn, yn, ãn)|n ∈ [N ]}. Table 3 shows our meth-
ods with popular pre-trained feature extractors (rows other
than Base) can consistently achieve both a lower DP dis-
parity and a higher accuracy on the test data. Besides, our
method can achieve the performance which is close to the
mitigation with ground-truth sensitive attributes. We defer
more details to Appendix D.5.

Guidelines for Practitioners. The above experimental
results lead to the following suggestions:

1) Our algorithm can give a clear advantage over baselines
when the proxy g is weak (e.g. error ≥ 15%) or the target
model f is highly biased (e.g. fairness disparity ≥ 0.1).

2) When using our algorithm, we should prefer Local when
Requirement 4.3 is satisfied, i.e. proxies make i.i.d pre-
dictions; and prefer Global otherwise. In practice, practi-
tioners can use statistical tests like Chi-squared tests to
roughly judge if proxy predictions are independent or not.
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Table 3. Results (averaged by the last 5 epochs) of disparity mit-
igation. Base: Direct mitigation using noisy sensitive attributes.
Ground-Truth: Mitigation using ground-truth sensitive attributes.
Facenet, Facenet 512, etc.: Pre-trained models to generate fea-
ture representations that we use to simulate the other two proxy
models.

CelebA ∆DP(Dtest, f) ↓ Accuracy ↑

Base 0.0578 0.8422
Ground-Truth 0.0213 0.8650

Facenet 0.0453 0.8466
Facenet512 0.0273 0.8557
OpenFace 0.0153 0.8600
ArcFace 0.0435 0.8491

Dlib 0.0265 0.8522
SFace 0.0315 0.8568

6. Related Work

Fairness with Imperfect Sensitive Attributes. Although
fair training may be performed with imperfect sensitive at-
tributes (Yan et al., 2020; Kilbertus et al., 2018; Du et al.,
2021; Wei et al., 2023b;d; Tang et al., 2023), the evaluation
of group fairness still heavily relies on the true ones. Ex-
isting methods of evaluating group fairness with imperfect
sensitive attributes mostly fall into two categories. First,
some assume access to ground-truth sensitive attributes on
a data subset or label them if unavailable, e.g. YouTube
asks its creators to voluntarily provide their demographic
information (Wojcicki, 2021). But it either requires labeling
resources or depends on the volunteering willingness, and
it suffers from sampling bias. Second, some works assume
there exist proxy datasets that can be used to train proxy
models, e.g. Meta (Alao et al., 2021) and others (Elliott et al.,
2009; Awasthi et al., 2021; Diana et al., 2022). However,
they often assume proxy datasets and the target dataset are
i.i.d., and some form of conditional independence can be
violated in practice. In addition, since proxy datasets also
contain sensitive information (i.e. the sensitive labels), it
might be difficult to obtain such training data from open-
source projects. The closest work to ours is (Chen et al.,
2019), which also assumes only proxy models. It is only
applicable to demographic disparity, and we compare it in
the experiments. Note that compared to the prior works, our
algorithm only requires realistic assumptions. Specifically,
we drop many commonly made assumptions in the litera-
ture, i.e. 1) access to labeling resource (Wojcicki, 2021), 2)
access to proxy model’s training data (Awasthi et al., 2021;
Diana et al., 2022), 3) data i.i.d (Awasthi et al., 2021), and 4)
conditional independence (Awasthi et al., 2021; Prost et al.,
2021; Fogliato et al., 2020).

Noisy Label Learning. Label noise comes from various
sources, e.g., human annotation error (Xiao et al., 2015;

Wei et al., 2022d; Agarwal et al., 2016) and model pre-
diction error (Lee et al., 2013; Berthelot et al., 2019; Zhu
et al., 2022b), which can be characterized by transition
matrix on label (Liu, 2022; Bae et al., 2022; Yang et al.,
2021; Zhu et al., 2022a). The undesired effect of noisy
labels can be alleviated by either designing robust loss func-
tions/regularizers (Wei et al., 2020; Cheng et al., 2023; Wei
et al., 2022c; 2023c; Wang et al., 2021a; Zhu et al., 2021a;
Cheng et al., 2021; Wei & Liu, 2021; Wei et al., 2022b)
or cleaning datasets (Zhu et al., 2022a), where the noise
transition matrix is important in designing robust loss func-
tions (Patrini et al., 2017; Liu & Tao, 2015; Xia et al., 2019;
Zhu et al., 2021b). Applying the noise transition matrix
to ensure fairness is emerging (Wang et al., 2021b; Liu &
Wang, 2021; Lamy et al., 2019). There exist two lines of
work for estimating the transition matrix. The first line relies
on anchor points (samples belonging to a class with high
certainty) or their approximations (Liu & Tao, 2015; Scott,
2015; Patrini et al., 2017; Xia et al., 2019; Northcutt et al.,
2021). These works require training a neural network on
the data pairs (X, Ã := g(X)). The second line of work,
which we leverage, is data-centric (Liu & Chen, 2017; Liu
et al., 2020; Zhu et al., 2021b; 2022c) and training-free. The
main idea is to check the agreements among multiple noisy
attributes as discussed in Appendix C.2.

7. Conclusions and Discussions
Although it is appealing to use proxies to estimate fairness
when sensitive attributes are missing, its ethical implications
are causing practitioners to be cautious about adopting this
approach. However simply giving up this practical and pow-
erful solution shuts down the chance of studying fairness
on a large scale. In this paper, we have offered a viable
solution, i.e. by using only weak proxies, we can protect
data privacy while still being able to measure fairness. To
this end, we design an algorithm that, though only based on
weak proxies, can still provably achieve accurate fairness
estimations. We show our algorithm can effectively mea-
sure and mitigate bias, and provide a set of guidelines for
practitioners on how to use proxies properly. We hope our
work can inspire more discussions on this topic since the
inability to access sensitive attributes ethically is currently a
major obstacle to studying and promoting fairness.
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M., and Wallach, H. Improving fairness in machine learn-
ing systems: What do industry practitioners need? In
Proceedings of the 2019 CHI conference on human fac-
tors in computing systems, pp. 1–16, 2019.

Imai, K. and Khanna, K. Improving ecological inference
by predicting individual ethnicity from voter registration
records. Political Analysis, 24(2):263–272, 2016.

Kilbertus, N., Rojas Carulla, M., Parascandolo, G., Hardt,
M., Janzing, D., and Schölkopf, B. Avoiding discrimi-
nation through causal reasoning. In Advances in neural
information processing systems, 2017.

Kilbertus, N., Gascón, A., Kusner, M., Veale, M., Gummadi,
K., and Weller, A. Blind justice: Fairness with encrypted
sensitive attributes. In International Conference on Ma-
chine Learning, pp. 2630–2639. PMLR, 2018.

Lamy, A., Zhong, Z., Menon, A. K., and Verma, N. Noise-
tolerant fair classification. 2019.

Lee, D.-H. et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation
learning, ICML, volume 3, pp. 896, 2013.

Leslie, D. Understanding artificial intelligence ethics and
safety. arXiv preprint arXiv:1906.05684, 2019.

Li, S., Xia, X., Zhang, H., Zhan, Y., Ge, S., and Liu, T.
Estimating noise transition matrix with label correlations
for noisy multi-label learning. In Advances in Neural
Information Processing Systems, 2022.

Liu, T. and Tao, D. Classification with noisy labels by
importance reweighting. IEEE Transactions on pattern
analysis and machine intelligence, 38(3):447–461, 2015.

Liu, Y. Understanding instance-level label noise: Disparate
impacts and treatments. In International Conference on
Machine Learning, pp. 6725–6735. PMLR, 2021.

Liu, Y. Identifiability of label noise transition matrix. arXiv
e-prints, pp. arXiv–2202, 2022.

Liu, Y. and Chen, Y. Machine-learning aided peer predic-
tion. In Proceedings of the 2017 ACM Conference on
Economics and Computation, pp. 63–80, 2017.

Liu, Y. and Guo, H. Peer loss functions: Learning from
noisy labels without knowing noise rates. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML ’20, 2020.

Liu, Y. and Wang, J. Can less be more? when increasing-
to-balancing label noise rates considered beneficial. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Liu, Y., Wang, J., and Chen, Y. Surrogate scoring rules. In
Proceedings of the 21st ACM Conference on Economics
and Computation, pp. 853–871, 2020.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Madaio, M., Egede, L., Subramonyam, H., Wort-
man Vaughan, J., and Wallach, H. Assessing the fairness
of ai systems: Ai practitioners’ processes, challenges, and
needs for support. Number Proc. of CSCW, 2022.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. Learning
adversarially fair and transferable representations. In
International Conference on Machine Learning, pp. 3384–
3393. PMLR, 2018.

Northcutt, C., Jiang, L., and Chuang, I. Confident learn-
ing: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 70:1373–1411, 2021.

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and
Qu, L. Making deep neural networks robust to label noise:
A loss correction approach. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1944–1952, 2017.

Prost, F., Awasthi, P., Blumm, N., Kumthekar, A., Potter,
T., Wei, L., Wang, X., Chi, E. H., Chen, J., and Beutel,
A. Measuring model fairness under noisy covariates: A
theoretical perspective. In Proc. of AIES, 2021.

11



Weak Proxies are Sufficient and Preferable for Fairness

Scott, C. A rate of convergence for mixture proportion
estimation, with application to learning from noisy labels.
In AISTATS, 2015.

Serengil, S. I. and Ozpinar, A. Hyperextended lightface:
A facial attribute analysis framework. In 2021 Interna-
tional Conference on Engineering and Emerging Tech-
nologies (ICEET), pp. 1–4. IEEE, 2021. doi: 10.1109/
ICEET53442.2021.9659697. URL https://doi.
org/10.1109/ICEET53442.2021.9659697.

Sood, G. and Laohaprapanon, S. Predicting race and eth-
nicity from the sequence of characters in a name. arXiv
preprint arXiv:1805.02109, 2018.

Tang, Z., Chen, Y., Liu, Y., and Zhang, K. Tier balancing:
Towards dynamic fairness over underlying causal factors.
arXiv preprint arXiv:2301.08987, 2023.

Twitter. Twitter Response to “Proposal for Iden-
tifying and Managing Bias in Artificial Intelli-
gence”. https://www.nist.gov/system/
files/documents/2021/09/20/20210910_
Twitter%20Response_%20NIST%201270%
20Managing%20Bias%20in%20AI.pdf, 2021.
[Online; accessed 15-Sep-2022].

Veale, M. and Binns, R. Fairer machine learning in the real
world: Mitigating discrimination without collecting sen-
sitive data. Big Data & Society, 4(2):2053951717743530,
2017.

Wang, J., Guo, H., Zhu, Z., and Liu, Y. Policy learning
using weak supervision. Advances in Neural Information
Processing Systems, 34:19960–19973, 2021a.

Wang, J., Liu, Y., and Levy, C. Fair classification with
group-dependent label noise. In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Trans-
parency, pp. 526–536, 2021b.

Wang, J., Wang, X. E., and Liu, Y. Understanding instance-
level impact of fairness constraints. In International Con-
ference on Machine Learning, pp. 23114–23130. PMLR,
2022.

Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M.,
and Jordan, M. Robust optimization for fairness with
noisy protected groups. 2020.

Wei, H., Feng, L., Chen, X., and An, B. Combating noisy
labels by agreement: A joint training method with co-
regularization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
13726–13735, 2020.

Wei, H., Tao, L., Xie, R., and An, B. Open-set label
noise can improve robustness against inherent label noise.
2021.

Wei, H., Xie, R., Cheng, H., Feng, L., An, B., and Li,
Y. Mitigating neural network overconfidence with logit
normalization. 2022a.

Wei, H., Xie, R., Feng, L., Han, B., and An, B. Deep
learning from multiple noisy annotators as a union. IEEE
Transactions on Neural Networks and Learning Systems,
2022b.

Wei, H., Tao, L., Xie, R., Feng, L., and An, B. Mitigating
memorization of noisy labels by clipping the model pre-
diction. In International Conference on Machine Learn-
ing (ICML). PMLR, 2023a.

Wei, J. and Liu, Y. When optimizing $f$-divergence
is robust with label noise. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=WesiCoRVQ15.

Wei, J., Liu, H., Liu, T., Niu, G., and Liu, Y. To smooth or
not? when label smoothing meets noisy labels. In ICML,
2022c.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y.
Learning with noisy labels revisited: A study using real-
world human annotations. In International Conference
on Learning Representations, 2022d. URL https://
openreview.net/forum?id=TBWA6PLJZQm.

Wei, J., Narasimhan, H., Amid, E., Chu, W.-S., Liu, Y., and
Kumar, A. Distributionally robust post-hoc classifiers un-
der prior shifts. In The Eleventh International Conference
on Learning Representations, 2023b.

Wei, J., Zhu, Z., Luo, T., Amid, E., Kumar, A., and Liu, Y.
To aggregate or not? learning with separate noisy labels.
In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2023c.

Wei, J., Zhu, Z., Niu, G., Liu, T., Liu, S., Sugiyama, M.,
and Liu, Y. Fairness improves learning from noisily la-
beled long-tailed data. arXiv preprint arXiv:2303.12291,
2023d.

Wojcicki, S. Letter from Susan: Our 2021 Priorities.
https://blog.youtube/inside-youtube/
letter-from-susan-our-2021-priorities,
2021. [Online; accessed 15-Sep-2022].

Woodworth, B., Gunasekar, S., Ohannessian, M. I., and
Srebro, N. Learning non-discriminatory predictors. In
Conference on Learning Theory, pp. 1920–1953. PMLR,
2017.

Wu, J., Chen, Y., and Liu, Y. Metric-fair classifier deran-
domization. In International Conference on Machine
Learning, pp. 23999–24016. PMLR, 2022.

12

https://doi.org/10.1109/ICEET53442.2021.9659697
https://doi.org/10.1109/ICEET53442.2021.9659697
https://www.nist.gov/system/files/documents/2021/09/20/20210910_Twitter%20Response_%20NIST%201270%20Managing%20Bias%20in%20AI.pdf
https://www.nist.gov/system/files/documents/2021/09/20/20210910_Twitter%20Response_%20NIST%201270%20Managing%20Bias%20in%20AI.pdf
https://www.nist.gov/system/files/documents/2021/09/20/20210910_Twitter%20Response_%20NIST%201270%20Managing%20Bias%20in%20AI.pdf
https://www.nist.gov/system/files/documents/2021/09/20/20210910_Twitter%20Response_%20NIST%201270%20Managing%20Bias%20in%20AI.pdf
https://openreview.net/forum?id=WesiCoRVQ15
https://openreview.net/forum?id=WesiCoRVQ15
https://openreview.net/forum?id=TBWA6PLJZQm
https://openreview.net/forum?id=TBWA6PLJZQm
https://blog.youtube/inside-youtube/letter-from-susan-our-2021-priorities
https://blog.youtube/inside-youtube/letter-from-susan-our-2021-priorities


Weak Proxies are Sufficient and Preferable for Fairness

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and
Sugiyama, M. Are anchor points really indispensable in
label-noise learning? In Advances in Neural Information
Processing Systems, pp. 6838–6849, 2019.

Xia, X., Liu, T., Han, B., Wang, N., Gong, M., Liu, H., Niu,
G., Tao, D., and Sugiyama, M. Part-dependent label noise:
Towards instance-dependent label noise. In Advances in
Neural Information Processing Systems, volume 33, pp.
7597–7610, 2020.

Xia, X., Liu, T., Han, B., Gong, C., Wang, N., Ge, Z.,
and Chang, Y. Robust early-learning: Hindering the
memorization of noisy labels. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Eql5b1_hTE4.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. Learn-
ing from massive noisy labeled data for image classifica-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2691–2699, 2015.

Yan, S., Kao, H.-t., and Ferrara, E. Fair class balancing:
Enhancing model fairness without observing sensitive
attributes. In Proc. of CIKM, 2020.

Yang, S., Yang, E., Han, B., Liu, Y., Xu, M., Niu, G., and
Liu, T. Estimating instance-dependent label-noise transi-
tion matrix using dnns. arXiv preprint arXiv:2105.13001,
2021.

Zhu, Z., Liu, T., and Liu, Y. A second-order approach to
learning with instance-dependent label noise. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10113–10123, 2021a.

Zhu, Z., Song, Y., and Liu, Y. Clusterability as an alter-
native to anchor points when learning with noisy labels.
In International Conference on Machine Learning, pp.
12912–12923. PMLR, 2021b.

Zhu, Z., Dong, Z., and Liu, Y. Detecting corrupted labels
without training a model to predict. In International Con-
ference on Machine Learning, pp. 27412–27427. PMLR,
2022a.

Zhu, Z., Luo, T., and Liu, Y. The rich get richer: Dis-
parate impact of semi-supervised learning. In ICLR,
2022b. URL https://openreview.net/forum?
id=DXPftn5kjQK.

Zhu, Z., Wang, J., and Liu, Y. Beyond images: Label
noise transition matrix estimation for tasks with lower-
quality features. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 27633–27653. PMLR, 17–

23 Jul 2022c. URL https://proceedings.mlr.
press/v162/zhu22k.html.

13

https://openreview.net/forum?id=Eql5b1_hTE4
https://openreview.net/forum?id=Eql5b1_hTE4
https://openreview.net/forum?id=DXPftn5kjQK
https://openreview.net/forum?id=DXPftn5kjQK
https://proceedings.mlr.press/v162/zhu22k.html
https://proceedings.mlr.press/v162/zhu22k.html


Weak Proxies are Sufficient and Preferable for Fairness

Ethics Statement
Our goal is to better study and promote fairness. Without a promising estimation method, given the increasingly stringent
privacy regulations, it would be difficult for academia and industry to measure, detect, and mitigate bias in many real-world
scenarios. However, we need to caution readers that, needless to say, no estimation algorithm is perfect. Theoretically, in
our algorithm, if the transition matrix is perfectly estimated, then our method can measure fairness with 100% accuracy.
However, if Requirements 4.2–4.3 required by our estimator in Algorithm 2 do not hold, our calibrated metrics might have a
non-negligible error, and therefore could be misleading. In addition, the example we use to explain terms in Theorem 3.2 is
based on conclusions from (Angwin et al., 2016). We do not have any biased opinion on the crime rate across different
racial groups. Furthermore, we are fully aware that many sensitive attributes are not binary, e.g. race and gender. We use
the binary sensitive attributes in experiments because 1) existing works have shown that bias exists in COMPAS between
race black and others and 2) the ground-truth gender attribute in CelebA is binary. We also have experiments with three
categories of races (black, white, others) in Appendix D.2. We summarize races other than black and white as others since
their sample size is too small. Finally, all the data and models we use are from open-source projects, and the bias measured
on them do not reflect our opinions about those projects.

Appendix
The Appendix is organized as follows.

• Section A presents a summary of notations, more fairness definitions, and a clear statement of the assumption that is
common in the literature. Note our algorithm does not rely on this assumption.

• Section B presents the full version of our theorems (for DP, EOd, EOp), corollaries, and the corresponding proofs.
• Section C shows how HOC works and analyzes why other learning-centric methods in the noisy label literature may not

work in our setting.
• Section D presents more experimental results.

A. More Definitions and Assumptions
A.1. Summary of Notations

Table 4. Summary of key notations

Notation Explanation

G := {g1, · · · , gC} C proxy models for generating noisy sensitive attributes
X,Y,A, and Ã := g(X) Random variables of feature, label, ground-truth sensitive attribute, and noisy sensitive attributes

xn, yn, an The n-th feature, label, and ground-truth sensitive attribute in a dataset
N,K,M The number of instances, label classes, categories of sensitive attributes

[N ] := {1, · · · , N} A set counting from 1 to N
X , f : X → [K] Space of X , target model

D◦ := {(xn, yn)|n ∈ [N ]} Target dataset
D := {(xn, yn, an)|n ∈ [N ]} D◦ with ground-truth sensitive attributes

D̃ := {(xn, yn, (ã
1
n, · · · , ãCn ))|n ∈ [N ]} D◦ with noisy sensitive attributes

(X,Y,A) ∼ D, (X,Y, Ã) ∼ D̃ Distribution of D and D̃

u ∈ {DP,EOd,EOp} A unified notation of fairness definitions, e.g., EOd, EOp, EOd
∆u(D, f), ∆̃u(D̃, f), ∆̂u(D̃, f) True, (direct) noisy, and calibrated group fairness metrics on data distributions
∆u(D, f), ∆̃u(D̃, f), ∆̂u(D̃, f) True, (direct) noisy, and calibrated group fairness metrics on datasets

H,H[a],H[:, k],H[a, k] Fairness matrix, its a-th row, k-th column, (a, k)-th element
H̃ Noisy fairness matrix with respect to Ã

T , T [a, ã] := P(Ã = ã|A = a) Global noise transition matrix
Tk, Tk[a, ã] := P(Ã = ã|A = a, f(X) = k) Local noise transition matrix

p := [P(A = 1), · · · ,P(A = M)]⊤ Clean prior probability
p̃ := [P(Ã = 1), · · · ,P(Ã = M)]⊤ Clean prior probability
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A.2. More Fairness Definitions

We present the full version of fairness definitions and the corresponding matrix form for DP, EOd, and EOp as follows.

Fairness Definitions. We consider three group fairness (Wang et al., 2020; Cotter et al., 2019; Chen et al., 2022)
definitions and their corresponding measurable metrics: demographic parity (DP) (Calders et al., 2009; Chouldechova,
2017), equalized odds (EOd) (Woodworth et al., 2017), and equalized opportunity (EOp) (Hardt et al., 2016).

Definition 2.1 (Demographic Parity). The demographic parity metric of f on D conditioned on A is defined as:

∆DP(D, f) := 1

M(M − 1)K
·∑

a,a′∈[M ]
k∈[K]

|P(f(X) = k|A = a)− P(f(X) = k|A = a′)|.

Definition A.1 (Equalized Odds). The equalized odds metric of f on D conditioned on A is:

∆EOd(D, f) = 1

M(M − 1)K2

∑
a,a′∈[M ]

k∈[K],y∈[K]

|P(f(X) = k|Y = y,A = a)− P(f(X) = k|Y = y,A = a′)|.

Definition A.2 (Equalized Opportunity). The equalized opportunity metric of f on D conditioned on A is:

∆EOp(D, f) = 1

M(M − 1)

∑
a,a′∈[M ]

|P(f(X) = 1|Y = 1, A = a)− P(f(X) = 1|Y = 1, A = a′)|.

Matrix-form Metrics. To unify three fairness metrics in a general form, we represent them with a matrix H . Each
column of H denotes the probability needed for evaluating fairness with respect to classifier prediction f(X). For DP,
H[:, k] denotes the following column vector:

H[:, k] := [P(f(X) = k|A = 1), · · · ,P(f(X) = k|A = M)]⊤.

Similarly for EOd and EOp, let k ⊗ y := K(k − 1) + y be the 1-d flattened index that represents the 2-d coordinate in
f(X)× Y , H[:, k ⊗ y] is defined as the following column vector:

H[:, k ⊗ y] := [P(f(X) = k|Y = y,A = 1), · · · ,P(f(X) = k|Y = y,A = M)]⊤.

The sizes of H for DP, EOd and EOp are M ×K, M ×K2, and M × 1 respectively. The noise transition matrix related
to EOd and EOp is Tk⊗y , where the (a, ã)-th element is denoted by Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a).

A.3. Common Conditional Independence Assumption in the Literature

We present below a common conditional independence assumption in the literature (Awasthi et al., 2021; Prost et al., 2021;
Fogliato et al., 2020). Note our algorithm successfully drops this assumption.

Assumption A.3 (Conditional Independence). Ã and f(X) are conditionally independent given A (and Y for EOd, EOp):

DP: P(Ã = ã|f(X) = k,A = a) = P(Ã = ã|A = a),∀a, ã ∈ [M ], k ∈ [K].

(i.e.Ã ⊥⊥ f(X)|A).

EOd / EOp: P(Ã = ã|f(X) = k, Y = y,A = a) = P(Ã = ã|Y = y,A = a),∀a, ã ∈ [M ], k, y ∈ [K].

(i.e.Ã ⊥⊥ f(X)|Y,A).
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B. Proofs
B.1. Full Version of Theorem 3.2 and Its Proof

Denote by Ty the attribute noise transition matrix with respect to label y, whose (a, ã)-th element is Ty[a, ã] := P(Ã =
ã|A = a, Y = y). Note it is different from Tk. Denote by Tk⊗y the attribute noise transition matrix when f(X) = k and
Y = y, where the (a, ã)-th element is Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a). Denote by py := [P(A =

1|Y = y), · · · ,P(A = K|Y = y)]⊤ and p̃y := [P(Ã = 1|Y = y), · · · ,P(Ã = K|Y = y)]⊤ the clean prior probabilities
and noisy prior probability, respectively.

Theorem 3.2 (Error Upper Bound of Noisy Metrics) Denote by Errraw
u := |∆u(D̃, f)−∆u(D, f)| the estimation error of

the directly measured noisy fairness metrics. Its upper bound is:

• DP:

Errraw
DP ≤

2

K

∑
k∈[K]

h̄k ∥Λp̃(T
−1Tk − I)Λ−1

p̃ ∥1︸ ︷︷ ︸
cond. indep. violation

+δk ∥ΛpTkΛ
−1
p̃ − I∥1︸ ︷︷ ︸

error of g

 .

where h̄k := 1
M

∑
a∈[M ]

H[a, k], δk := max
a∈[M ]

|H[a, k]− h̄k|.

• EOd:

Errraw
EOd ≤

2

K2

∑
k∈[K],y∈[K]

h̄k⊗y ∥Λp̃y
(T−1

y Tk⊗y − I)Λ−1
p̃y
∥1︸ ︷︷ ︸

cond. indep. violation

+δk⊗y ∥Λpy
Tk⊗yΛ

−1
p̃y
− I∥1︸ ︷︷ ︸

error of g

 .

where h̄k⊗y := 1
M

∑
a∈[M ]

H[a, k ⊗ y], δk⊗y := max
a∈[M ]

|H[a, k ⊗ y]− h̄k⊗y|.

• EOp: We obtain the result for EOp by simply letting k = 1 and y = 1, i.e.,

Errraw
EOp ≤ 2

∑
k=1,y=1

h̄k⊗y ∥Λp̃y
(T−1

y Tk⊗y − I)Λ−1
p̃y
∥1︸ ︷︷ ︸

cond. indep. violation

+δk⊗y ∥Λpy
Tk⊗yΛ

−1
p̃y
− I∥1︸ ︷︷ ︸

error of g

 .

where h̄k⊗y := 1
M

∑
a∈[M ]

H[a, k ⊗ y], δk⊗y := max
a∈[M ]

|H[a, k ⊗ y]− h̄k⊗y|.

Proof. The following proof builds on the relationship derived in the proof for Theorem 4.1. We encourage readers to check
Appendix B.2 before the following proof.

Recall Ty[a, a
′] := P(Ã = a′|A = a, Y = y). Note

Λp̃y1 = T⊤
y Λpy1⇔ (T⊤

y )−1Λp̃y1 = Λpy1.

Denote by
H[:, k ⊗ y] = h̄k⊗y1+ vk⊗y,

where h̄k⊗y := 1
M

∑
a∈[M ] P(f(X) = k|A = a, Y = y). We have

Λpy
H[:, k ⊗ y] = h̄k⊗yΛpy

1+Λpy
vk⊗y = h̄k⊗y(T

⊤
y )−1Λp̃y

1+Λpy
vk⊗y.

We further have

H̃[: k ⊗ y]

=
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
H[:, k ⊗ y] +H[:, k ⊗ y]

=h̄k⊗yΛ
−1
p̃y

T⊤
k⊗y(T

⊤
y )−1Λp̃y

1+Λ−1
p̃y

T⊤
k⊗yΛpy

vk⊗y − h̄k⊗y1− vk⊗y +H[:, k ⊗ y]

=h̄k⊗yΛ
−1
p̃y

(
T⊤
k⊗y(T

⊤
y )−1 − I

)
Λp̃y

1+
(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y +H[:, k ⊗ y].
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Noting |A| − |B| ≤ |A+B| ≤ |A|+ |B|, we have | |A+B| − |B| | ≤ |A|. Therefore,

∣∣∣ ∣∣∣(eã − eã′)⊤H̃[: k ⊗ y]
∣∣∣− ∣∣(eã − eã′)⊤H[: k ⊗ y]

∣∣ ∣∣∣
≤h̄k⊗y

∣∣∣(eã − eã′)⊤Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

1
∣∣∣ (Term 1)

+
∣∣∣(eã − eã′)⊤

(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∣∣∣ . (Term 2)

Term-1 and Term-2 can be upper bounded as follows.

Term 1: With the Hölder’s inequality, we have

h̄k⊗y

∣∣∣(eã − eã′)⊤Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∣∣∣
≤h̄k⊗y ∥eã − eã′∥1

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∥∥∥
∞

≤2h̄k⊗y

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y1

∥∥∥
∞

≤2h̄k⊗y

∥∥∥Λ−1
p̃y

(
T−1
y Tk⊗y − I

)⊤
Λp̃y

∥∥∥
∞

=2h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1

Term 2: Denote by δk⊗y := max
a∈[M ]

|H[a, k ⊗ y] − h̄k⊗y|, which is the largest absolute offset from its mean. With the

Hölder’s inequality, we have

∣∣∣(eã − eã′)⊤
(
Λ−1

p̃y
T⊤
k⊗yΛpy − I

)
vk⊗y

∣∣∣
≤∥eã − eã′∥1

∥∥∥(Λ−1
p̃y

T⊤
k⊗yΛpy − I

)
vk⊗y

∥∥∥
∞

≤2
∥∥∥(Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∥∥∥
∞

≤2δk⊗y

∥∥∥Λ−1
p̃y

T⊤
k⊗yΛpy

− I
∥∥∥
∞

=2δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1

Wrap-up:

∣∣∣ ∣∣∣(eã − eã′)⊤H̃[: k ⊗ y]
∣∣∣− ∣∣(eã − eã′)⊤H[: k ⊗ y]

∣∣ ∣∣∣
≤2h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ 2δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1
.
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Denote by ∆̃ã,ã′

k⊗y := |H̃[ã, k ⊗ y]− H̃[ã′, k ⊗ y]| the noisy disparity and ∆ã,ã′

k⊗y := |H[ã, k ⊗ y]−H[ã′, k ⊗ y]| the clean
disparity between attributes ã and ã′ in the case when f(X) = k and Y = y. We have∣∣∣∆̃EOd(D̃, f)−∆EOd(D, f)

∣∣∣
≤ 1

M(M − 1)K2

∑
ã,ã′∈[M ],k,y∈[K]

∣∣∣∆̃ã,ã′

k⊗y −∆ã,ã′

k⊗y

∣∣∣
≤ 2

M(M − 1)K2

∑
ã,ã′∈[M ],k,y∈[K]

(
h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1

)
=

2

K2

∑
k,y∈[K]

(
h̄k⊗y

∥∥∥Λp̃y

(
T−1
y Tk⊗y − I

)
Λ−1

p̃y

∥∥∥
1
+ δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
1

)
.

The results for DP can be obtained by dropping the dependence on Y = y, and the results for EOp can be obtained by
letting k = 1 and y = 1.

B.2. Full Version of Theorem 4.1 and Its Proof

Recall p, p̃, T and Tk are clean prior, noisy prior, global transition matrix, and local transition matrix defined in Sec. 2.
Denote by Λp̃ and Λp the square diagonal matrices constructed from p̃ and p.

Theorem 4.1 (Closed-form relationship (DP,EOd,EOp)). The relationship between the true fairness vector hu and the
corresponding noisy fairness vector h̃u writes as

hu = (T u⊤Λpu)−1Λp̃uh̃u, ∀u ∈ {DP,EOd,EOp},

where Λp̃u and Λpu denote the square diagonal matrix constructed from p̃u and pu, u unifies different fairness metrics.
Particularly,

• DP (∀k ∈ [K]): pDP := [P(A = 1), · · · ,P(A = M)]⊤, p̃DP := [P(Ã = 1), · · · ,P(Ã = M)]⊤. T DP := Tk, where the
(a, ã)-th element of Tk is Tk[a, ã] := P(Ã = ã|f(X) = k,A = a).

hDP := H[:, k] := [P(f(X) = k|A = 1), · · · ,P(f(X) = k|A = M)]⊤

h̃DP := H̃[:, k] := [P(f(X) = k|Ã = 1), · · · ,P(f(X) = k|Ã = M)]⊤.

• EOd and EOp (∀k, y ∈ [K], u ∈ {EOd,EOp}): ∀k, y ∈ [K]: k ⊗ y := K(k − 1) + y, pu := py := [P(A = 1|Y =

y), · · · ,P(A = M |Y = y)]⊤, p̃u := p̃y := [P(Ã = 1|Y = y), · · · ,P(Ã = M |Y = y)]⊤. T u := Tk⊗y, where the
(a, ã)-th element of Tk⊗y is Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a).

hu := H[:, k ⊗ y] := [P(f(X) = k|Y = y,A = 1), · · · ,P(f(X) = k|Y = y,A = M)]⊤

h̃u := H̃[:, k ⊗ y] := [P(f(X) = k|Y = y, Ã = 1), · · · ,P(f(X) = k|Y = y, Ã = M)]⊤.

Proof. We first prove the theorem for DP, then for EOd and EOp.

Proof for DP. In DP, each element of h̃DP satisfies:

P(f(X) = k|Ã = ã)

=

∑
a∈[M ] P(f(X) = k, Ã = ã, A = a)

P(Ã = ã)

=

∑
a∈[M ] P(Ã = ã|f(X) = k,A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

Recall Tk is the attribute noise transition matrix when f(X) = k, where the (a, ã)-th element is Tk[a, ã] := P(Ã =

ã|f(X) = k,A = a). Recall p := [P(A = 1), · · · ,P(A = M)]⊤ and p̃ := [P(Ã = 1), · · · ,P(Ã = M)]⊤ the clean prior
probabilities and noisy prior probability, respectively. The above equation can be re-written as a matrix form as
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H̃[:, k] = Λ−1
p̃ T⊤

k ΛpH[:, k],

which is equivalent to

H[:, k] = ((T⊤
k )Λp)

−1Λp̃H̃[:, k].

Proof for EOd, EOp. In EOd or EOp, each element of h̃u satisfies:

P(f(X) = k|Y = y, Ã = ã)

=
P(f(X) = k, Y = y, Ã = ã)

P(Y = y, Ã = ã)

=

∑
a∈[M ] P(f(X) = k, Y = y, Ã = ã, A = a)

P(Y = y, Ã = ã)

=

∑
a∈[M ] P(Ã = ã|f(X) = k, Y = y,A = a) · P(Y = y,A = a) · P(f(X) = k|Y = y,A = a)

P(Y = y, Ã = ã)

Denote by Tk⊗y the attribute noise transition matrix when f(X) = k and Y = y, where the (a, ã)-th element is
Tk⊗y[a, ã] := P(Ã = ã|f(X) = k, Y = y,A = a). Denote by py := [P(A = 1|Y = y), · · · ,P(A = K|Y = y)]⊤ and
p̃y := [P(Ã = 1|Y = y), · · · ,P(Ã = K|Y = y)]⊤ the clean prior probabilities and noisy prior probability, respectively.
The above equation can be re-written as a matrix form as

H̃[:, k] = Λ−1
p̃y

T⊤
k⊗yΛpyH[:, k],

which is equivalent to

H[:, k] = (T⊤
k⊗yΛpy )

−1Λp̃yH̃[:, k].

Wrap-up. We can conclude the proof by unifying the above two results with u.

B.3. Proof for Corollary 3.3

Proof. When the conditional independence (Assumption A.3)

P(Ã = a′|A = a, Y = y) = P(Ã = a′|A = a, f(X) = k, Y = y),∀a′, a ∈ [M ]

holds, we have Ty = Tk⊗y and Term-1 in Theorem 3.2 can be dropped. For Term-2, to get a tight bound in this specific
case, we apply the Hölder’s inequality by using l∞ norm on eã − eã′ , i.e.,∣∣∣(eã − eã′)⊤

(
Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∣∣∣
≤∥eã − eã′∥∞

∥∥∥(Λ−1
p̃y

T⊤
k⊗yΛpy

− I
)
vk⊗y

∥∥∥
1

=
∥∥∥(Λ−1

p̃y
T⊤
k⊗yΛpy

− I
)
vk⊗y

∥∥∥
1

≤K · δk⊗y

∥∥∥Λ−1
p̃y

T⊤
k⊗yΛpy

− I
∥∥∥
1

=K · δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
∞
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Therefore, ∣∣∣∆̃EOd(D̃, f)−∆EOd(D, f)
∣∣∣

≤ 1

K

∑
k,y∈[K]

δk⊗y

∥∥∥Λpy
Tk⊗yΛ

−1
p̃y
− I

∥∥∥
∞

=
1

K

∑
k,y∈[K]

δk⊗y

∥∥∥Λpy
TyΛ

−1
p̃y
− I

∥∥∥
∞

=
1

K

∑
k,y∈[K]

δk⊗y

∥∥Ťy − I
∥∥
∞ ,

where Ťy[a, ã] = P(A = a|Ã = ã, Y = y).

Special binary case in DP In addition to the conditional independence, when the sensitive attribute is binary and the label
class is binary, considering DP, we have∣∣∣∆̃DP(D̃, f)−∆DP(D, f)

∣∣∣ ≤ 2δk
∥∥Ť − I

∥∥
∞ ,

where Ťy[a, ã] = P(A = a|Ã = ã). Let Ťy[1, 2] = e1, Ťy[2, 1] = e2, we know

Ť :=

(
1− e2 e1
e2 1− e1

)
and ∣∣∣∆̃DP(D̃, f)−∆DP(D, f)

∣∣∣ ≤ 2δk · (e1 + e2).

Note the equality in above inequality always holds. To prove it, firstly we note

P(f(X) = k|Ã = ã)

=

∑
a∈[M ] P(f(X) = k, Ã = ã, A = a)

P(Ã = ã)

=

∑
a∈[M ] P(Ã = ã|f(X) = k,A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

=

∑
a∈[M ] P(Ã = ã|A = a) · P(A = a) · P(f(X) = k|A = a)

P(Ã = ã)

=
∑

a∈[M ]

P(A = a|Ã = ã) · P(f(X) = k|A = a),

i.e. H̃[:, k] = Ť⊤H[:, k]. Denote by H[:, 1] = [h, h′]⊤. We have (ã ̸= ã′)∣∣∣(eã − eã′)⊤H̃[:, 1]
∣∣∣ = |h− h′| · |1− e1 − e2|,

and ∣∣(eã − eã′)⊤H[:, 1]
∣∣ = |h− h′|.
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Therefore, letting ã = 1, ã = 2, we have∣∣∣∆̃DP(D̃, f)−∆DP(D, f)
∣∣∣

=
1

2

∑
k∈{1,2}

∣∣∣ ∣∣∣(e1 − e2)
⊤H̃[:, k]

∣∣∣− ∣∣(e1 − e2)
⊤H[:, k]

∣∣ ∣∣∣
=
∣∣∣ ∣∣∣(e1 − e2)

⊤H̃[:, 1]
∣∣∣− ∣∣(e1 − e2)

⊤H[:, 1]
∣∣ ∣∣∣

=|h− h′| · |e1 + e2|
=δ · (e1 + e2),

where δ = |P(f(X) = 1|A = 1)− P(f(X) = 1|A = 2)|. Therefore, the equality holds.

B.4. Proof for Theorem 4.5

Theorem 4.5 (Error upper bound of calibrated metrics). Denote the error of the calibrated fairness metrics by Errcal
u :=

|∆̂u(D̃, f)−∆u(D, f)|. It can be upper bounded as:

• DP:

Errcal
DP ≤

2

K

∑
k∈[K]

∥∥Λ−1
p

∥∥
1
∥ΛpH[:, k]∥∞ ε(T̂k, p̂),

where ε(T̂k, p̂) := ∥Λ−1
p̂ Λp − I∥1∥TkT̂

−1
k ∥1 + ∥I − TkT̂

−1
k ∥1 is the error induced by calibration.

• EOd:

Errcal
EOd ≤

2

K2

∑
k∈[K],y∈[K]

∥∥∥Λ−1
py

∥∥∥
1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ε(T̂k⊗y, p̂y),

where ε(T̂k⊗y, p̂y) := ∥Λ−1
p̂y

Λpy − I∥1∥Tk⊗yT̂
−1
k⊗y∥1 + ∥I − Tk⊗yT̂

−1
k⊗y∥1 is the error induced by calibration.

• EOp:

Errcal
EOp ≤ 2

∑
k=1,y=1

∥∥∥Λ−1
py

∥∥∥
1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ε(T̂k⊗y, p̂y),

where ε(T̂k⊗y, p̂y) := ∥Λ−1
p̂y

Λpy − I∥1∥Tk⊗yT̂
−1
k⊗y∥1 + ∥I − Tk⊗yT̂

−1
k⊗y∥1 is the error induced by calibration.

Proof. We prove with EOd.

Consider the case when f(X) = k and Y = y. For ease of notations, we use T̂ to denote the estimated local transition
matrix (should be T̂k⊗y). Denote the noisy (clean) fairness vectors with respect to f(X) = k and Y = y by h̃ (h). The
error can be decomposed by∣∣∣∣∣ ∣∣∣(ea − ea′)⊤

(
Λ−1

p̂y
(T̂⊤)−1Λp̃y

h̃
)∣∣∣− ∣∣∣(ea − ea′)⊤

(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y

h̃
)∣∣∣ ∣∣∣∣∣

=
∣∣∣(ea − ea′)⊤

(
(Λ−1

p̂y
−Λ−1

py
)(T̂⊤)−1Λp̃y h̃

)∣∣∣︸ ︷︷ ︸
Term-1

+

∣∣∣∣∣ ∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T̂⊤)−1Λp̃y

h̃
)∣∣∣− ∣∣∣(ea − ea′)⊤

(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y

h̃
)∣∣∣ ∣∣∣∣∣︸ ︷︷ ︸

Term-2

.

Now we upper bound them respectively.
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Term-1: ∣∣∣(ea − ea′)⊤
(
(Λ−1

p̂y
−Λ−1

py
)(T̂⊤)−1Λp̃y

h̃
)∣∣∣

(a)
=

∣∣∣(ea − ea′)⊤
(
(Λ−1

p̂y
−Λ−1

py
)(Tk⊗yT̂

−1)⊤Λpy
H[:, k ⊗ y]

)∣∣∣
(b)
=

∣∣∣(ea − ea′)⊤
(
(Λ−1

p̂y
Λpy
− I)Λ−1

py
T⊤
δ Λpy

H[:, k ⊗ y]
)∣∣∣

≤2
∥∥∥Λ−1

p̂y
Λpy
− I)

∥∥∥
∞

∥∥∥Λ−1
py

∥∥∥
∞
∥Tδ∥1

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

=2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy
− I)

∥∥∥
∞
∥Tδ∥1

)
,

where equality (a) holds due to

Λp̃y
H̃[:, k ⊗ y] = T⊤

k⊗yΛpy
H[:, k ⊗ y]

and equality (b) holds because we denote the error matrix by Tδ , i.e.

T̂ = T−1
δ Tk⊗y ⇔ Tδ = Tk⊗yT̂

−1.

Term-2: Before preceeding, we introduce the Woodbury matrix identity:

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Let A := T⊤
k⊗y , C = I , V := I , U := T̂⊤ − T⊤

k⊗y . By Woodbury matrix identity, we have

(T̂⊤)−1

=(T̂⊤
k⊗y + (T̂⊤ − T⊤

k⊗y))
−1

=(T⊤
k⊗y)

−1 − (T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)

(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1

Term-2 can be upper bounded as:∣∣∣∣∣ ∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T̂⊤)−1Λp̃y h̃

)∣∣∣− ∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
(a)
=

∣∣∣∣∣
∣∣∣∣(ea − ea′)⊤

(
Λ−1

py

(
(T⊤

k⊗y)
−1 − (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1

)
Λp̃y h̃

)∣∣∣∣
−

∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
≤
∣∣∣∣(ea − ea′)⊤

(
Λ−1

py
(T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

)∣∣∣∣
(b)

≤∥ea − ea′∥1
∥∥∥∥Λ−1

py
(T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

∥∥∥∥
∞

≤2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥(T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)

(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

∥∥∥∥
∞

=2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥(I + (T⊤
k⊗y)

−1(T̂⊤ − T⊤
k⊗y)− I

)(
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

(T⊤
k⊗y)

−1Λp̃y h̃

∥∥∥∥
∞

=2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥[I − (
I + (T⊤

k⊗y)
−1(T̂⊤ − T⊤

k⊗y)
)−1

]
(T⊤

k⊗y)
−1Λp̃y h̃

∥∥∥∥
∞

=2
∥∥Λ−1

py

∥∥
∞

∥∥∥∥(I − Tk⊗yT̂
−1

)⊤
(T⊤

k⊗y)
−1Λp̃y h̃

∥∥∥∥
∞

(c)

≤2
∥∥Λ−1

py

∥∥
∞ ∥I − Tδ∥1

∥∥∥(T⊤
k⊗y)

−1Λp̃y h̃
∥∥∥
∞

(d)
=2

∥∥Λ−1
py

∥∥
∞ ∥I − Tδ∥1

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞ ,

where the key steps are:
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• (a): Woodbury identity.
• (b): Hölder’s inequality.
• (c): T̂ = T−1

δ Tk⊗y and triangle inequality
• (d):

H̃[:, k ⊗ y] = Λ−1
p̃y

T⊤
k⊗yΛpy

H[:, k ⊗ y]

⇔(T⊤
k⊗y)

−1Λp̃y
H̃[:, k ⊗ y] = Λpy

H[:, k ⊗ y].

Wrap-up Combining the upper bounds of Term-1 and Term-2, we have (recovering full notations)∣∣∣∣∣ ∣∣∣(ea − ea′)⊤
(
Λ−1

p̂y
(T̂⊤)−1Λp̃y h̃

)∣∣∣− ∣∣∣(ea − ea′)⊤
(
Λ−1

py
(T⊤

k⊗y)
−1Λp̃y h̃

)∣∣∣ ∣∣∣∣∣
≤2

∥∥∥Λ−1
py

∥∥∥
∞

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy
− I)

∥∥∥
∞
∥Tδ∥1 + ∥I − Tδ∥1

)
=2

∥∥∥Λ−1
py

∥∥∥
∞

∥∥ΛpyH[:, k ⊗ y]
∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy − I)
∥∥∥
∞

∥∥∥Tk⊗yT̂
−1
k⊗y

∥∥∥
1
+

∥∥∥I − Tk⊗yT̂
−1
k⊗y

∥∥∥
1

)
.

Denote by ∆̂ã,ã′

k⊗y := |Ĥ[ã, k ⊗ y]− Ĥ[ã′, k ⊗ y]| the calibrated disparity and ∆ã,ã′

k⊗y := |H[ã, k ⊗ y]−H[ã′, k ⊗ y]| the
clean disparity between attributes ã and ã′ in the case when f(X) = k and Y = y. We have∣∣∣∆̂EOd(D̃, f)−∆EOd(D, f)

∣∣∣
≤ 1

M(M − 1)K2

∑
ã,ã′∈[M ],k,y∈[K]

∣∣∣∆̂ã,ã′

k⊗y −∆ã,ã′

k⊗y

∣∣∣
≤ 2

K2

∑
k,y∈[K]

2
∥∥∥Λ−1

py

∥∥∥
∞

∥∥Λpy
H[:, k ⊗ y]

∥∥
∞

(∥∥∥Λ−1
p̂y

Λpy
− I)

∥∥∥
∞

∥∥∥Tk⊗yT̂
−1
k⊗y

∥∥∥
1
+

∥∥∥I − Tk⊗yT̂
−1
k⊗y

∥∥∥
1

)
.

The above inequality can be generalized to DP by dropping dependency on y and to EOp by requiring k = 1 and y = 1.

B.5. Proof for Corollary 4.7

Proof. Consider DP. Denote by H[:, k = 1] = [h, h′]⊤. We know δ = |h − h′|/2 = ∆DP(D, f)/2. Suppose p ≤ 1/2,∥∥Λ−1
p

∥∥
∞ = 1/p and

∥ΛpH[:, k]∥∞ = max(ph, (1− p)h′).

Recall
ε(T̂k, p̂) := ∥Λ−1

p̂ Λp − I∥1∥TkT̂
−1
k ∥1 + ∥I − TkT̂

−1
k ∥1.

By requiring the error upper bound in Theorem 4.5 less than the exact error in Corollary 3.3, we have (when k = 1)∥∥Λ−1
p

∥∥
∞ ∥ΛpH[:, k]∥∞ ε(T̂k, p̂) ≤ δ · (e1 + e2)

⇔ε(T̂k, p̂) ≤
δ · (e1 + e2)∥∥Λ−1

p

∥∥
∞ ∥ΛpH[:, k]∥∞

⇔ε(T̂k, p̂) ≤
δ · (e1 + e2)

max(h, (1− p)h′/p)
.

If p = 1/2, noting max(h, h′) = (|h+ h′|+ |h− h′|)/2, we further have (when k = 1)

ε(T̂k, p̂) ≤
|h− h′| · (e1 + e2)

|h− h′|+ |h+ h′|
=

e1 + e2

1 + h+h′

|h−h′|
=

e1 + e2

1 + h+h′

∆DP(D,f)

.
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To make the above equality holds for all k ∈ {1, 2}, we have

ε(T̂k, p̂) ≤ max
k′∈{1,2}

e1 + e2

1 + ∥H[:,k′]∥1

∆DP(D,f)

,∀k ∈ {1, 2}.

B.6. Differential Privacy Guarantee

We explain how we calculate the differential privacy guarantee.

Suppose P(Ã = a|A = a,X) ≤ 1− ϵ0 and P(Ã = a|A = a′, X) ≥ ϵ1,∀X, a ∈ [M ], a′ ∈ [M ], a ̸= a′. Then following
the result of Ghazi et al. (2021), we have

P(RandResponse(a) = ã)

P(RandResponse(a′) = ã)
≤ P(Ã = ã|A = a,X)

P(Ã = ã|A = a′, X)
≤ max P(Ã = a|A = a,X)

min P(Ã = a|A = a′, X)
≤ 1− ϵ0

ϵ1
= eε.

Then we know ε = ln( 1−ϵ0
ϵ1

). In practice, if proxies are too strong, i.e. ln( 1−ϵ0
ϵ1

) is too large, we can add additional noise to
reduce their informativeness and therefore better protect privacy. For example, in experiments of Table 2, when we add
40% of random noise and reduce the proxy model accuracy to 58.45%, the the corresponding privacy guarantee is at least
0.41-DP. To get this value, noting the proxy model’s accuracy of individual feature is not clear, we consider a native worst
case that the model has an accuracy of 1 on some feature. Then by adding 40% of the random noise (random response), we
have

ϵ = ln
1− 0.4

0.4
< 0.41,

corresponding to at least 0.41-DP.
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C. More Discussions on Transition Matrix Estimators
In this section, we extend HOCFair to a general form which can be used for EOd and EOp (Appendix C.1). For readers
who are interested in details about HOC, we provide more details in Appendix C.2. We also encourage the readers to read
the original papers (Zhu et al., 2021b; 2022c). For other possible estimators, we briefly discuss them in Appendix C.3.

C.1. HOCFair: A General Form

Due to space limit, we only introduced the HOCFair specially designed for DP(only depending on f(X)) in the main paper.
Now we consider a general fairness metric depending on both f(X) and Y . According to the full Version of Theorem 4.1
in Appendix B.2, we need to estimate Tk⊗y and py, ∀k ∈ [K], y ∈ [K]. We summarize the general form of HOCFair
in Algorithm 3. In this general case, our Global method in experiments adopt Tk⊗y ≈ T̂ and py ≈ p̂y,∀y ∈ [K]. For
example, considering EOp with binary attributes and binary label classes, we will estimate 4 noise transition matrices and 2
clean prior probabilities for Local, and 1 noise transition and 2 clean prior probabilities for Global.

Algorithm 3 StatEstimator: HOCFair (General)

1: Input: Noisy dataset D̃. Target model f .
# Get the number of noisy attributes (i.e. # proxy models)

2: C ← #Attribute(D̃)
# Get 2-Nearest-Neighbors of xn and save their attributes as xn’s attribute

3: if C < 3 then
4: {(xn, yn, (ã

1
n, · · · , ã3Cn ))|n ∈ [N ]}←Get2NN(D̃)

5: D̃ ← {(xn, yn, (ã
1
n, · · · , ã3Cn ))|n ∈ [N ]}

6: end if
# Randomly sample 3 noisy attributes for each instance

7: {(ã1n, ã2n, ã3n)|n ∈ [N ]} ← Sample(D̃)
# Get estimates Tk ≈ T̂ and p ≈ p̂

8: (T̂ , p̂)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N ]})
# Get estimates Tk⊗y ≈ T̂k⊗y , and py = p̂y

9: for y ∈ [K] do
10: (T̂k⊗y, p̂y)← HOC({(ã1n, ã2n, ã3n)|n ∈ [N ], f(xn) = k, Y = y}), ∀k ∈ [K]
11: end for

# Return the estimated statistics
12: Output: T̂ , {T̂k⊗y | k ∈ [K], y ∈ [K]}, {p̂y | y ∈ [K]}

C.2. HOC

HOC (Zhu et al., 2021b) relies on checking the agreements and disagreements among three noisy attributes of one feature.
For example, given a three-tuple (ã1n, ã

2
n, ã

3
n), each noisy attribute may agree or disagree with the others. This consensus

pattern encodes the information of noise transition matrix T . Suppose (ã1n, ã
2
n, ã

3
n) are drawn from random variables

(Ã1, Ã2, Ã3) satisfying Requirement 4.3, i.e.

P(Ã1 = j|A1 = i) = P(Ã2 = j|A2 = i) = P(Ã3 = j|A3 = i) = Tij ,∀i, j.

Specially, denote by
e1 = P(Ã1 = 2|A1 = 1) = P(Ã2 = 2|A2 = 1) = P(Ã3 = 2|A3 = 1),

e2 = P(Ã1 = 1|A1 = 2) = P(Ã2 = 1|A2 = 2) = P(Ã3 = 1|A3 = 2).

Note A1 = A2 = A3. We have:

• First order equations:

P(Ã1 = 1) = P(A1 = 1) · (1− e1) + P(A1 = 2) · e2
P(Ã1 = 2) = P(A1 = 1) · e1 + P(A1 = 2) · (1− e2)
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• Second order equations:

P(Ã1 = 1, Ã2 = 1) = P(Ã1 = 1, Ã2 = 1|A1 = 1) · P(A1 = 1) + P(Ã1 = 1, Ã2 = 1|A1 = 2) · P(A1 = 2)

= (1− e1)
2 · P(A1 = 1) + e22 · P(A1 = 2).

Similarly,

P(Ã1 = 1, Ã2 = 2) = (1− e1)e1 · P(A1 = 1) + e2(1− e2) · P(A1 = 2)

P(Ã1 = 2, Ã2 = 1) = (1− e1)e1 · P(A1 = 1) + e2(1− e2) · P(A1 = 2)

P(Ã1 = 2, Ã2 = 2) = e21 · P(A1 = 1) + (1− e2)
2 · P(A1 = 2).

• Third order equations:

P(Ã1 = 1, Ã2 = 1, Ã3 = 1) = (1− e1)
3 · P(A1 = 1) + e32 · P(A1 = 2)

P(Ã1 = 1, Ã2 = 1, Ã3 = 2) = (1− e1)
2e1 · P(A1 = 1) + (1− e2)e

2
2 · P(A1 = 2)

P(Ã1 = 1, Ã2 = 2, Ã3 = 2) = (1− e1)e
2
1 · P(A1 = 1) + (1− e2)

2e2 · P(A1 = 2)

P(Ã1 = 1, Ã2 = 2, Ã3 = 1) = (1− e1)
2e1 · P(A1 = 1) + (1− e2)e

2
2 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 1, Ã3 = 1) = (1− e1)
2e1 · P(A1 = 1) + (1− e2)e

2
2 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 1, Ã3 = 2) = (1− e1)e
2
1 · P(A1 = 1) + (1− e2)

2e2 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 2, Ã3 = 1) = (1− e1)e
2
1 · P(A1 = 1) + (1− e2)

2e2 · P(A1 = 2)

P(Ã1 = 2, Ã2 = 2, Ã3 = 2) = e31 · P(A1 = 1) + (1− e2)
3 · P(A1 = 2).

With the above equations, we can count the frequency of each pattern (LHS) as (ĉ[1], ĉ[2], ĉ[3]) and solve the equations. See
the key steps summarized in Algorithm 4.

Algorithm 4 Key Steps of HOC
1: Input: A set of three-tuples: {(ã1n, ã2n, ã3n)|n ∈ [N ]}
2: (ĉ[1], ĉ[2], ĉ[3])← CountFreq({(ã1n, ã2n, ã3n)|n ∈ [N ]}) // Count 1st, 2nd, and 3rd-order patterns
3: Find T such that match the counts (ĉ[1], ĉ[2], ĉ[3]) // Solve equations
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C.3. Other Estimators That Require Training

Many estimators (Liu & Tao, 2015; Scott, 2015; Patrini et al., 2017; Northcutt et al., 2021; Li et al., 2022; Xia et al., 2020)
require extra training with target data and proxy model outputs, which introduces extra cost. Moreover, it brings a practical
challenge in hyper-parameter tuning given we have no ground-truth sensitive attributes. For example, the model may become
over-confident (Liu, 2021) and need calibration (Wei et al., 2022a; 2023a; Xia et al., 2021). We tried such approaches but
failed to get good results.

These estimators mainly focus on training a new model to fit the noisy data distribution. The intuition is that the new model
has the ability to distinguish between true attributes and wrong attributes. In other words, they believe the prediction of
new model is close to the true attributes. It is useful when the noise in attributes are random. However, this intuitions is
hardly true in our setting since we need to train a new model to learn the noisy attributes given by an proxy model, which
are deterministic. One caveat of this approach is that the new model is likely to fit the proxy model when both the capacity
of the new model and the amount of data are sufficient, leading to a trivial transition matrix estimate that is an identity
matrix, i.e., T = I . In this case, the performance is close to Base. We reproduce (Northcutt et al., 2021) follow the setting
in Table 9 (no additional random noise) and summarize the result in Table 5, which verifies that the performance of this kind
of approach is close to Base.

Table 5. Normalized error (×100) of a learning-centric estimator.

Method DP Global DP Local EOd Global EOd Local EOp Global EOp Local

Base 15.33 / 4.11 / 2.82 /
(Northcutt et al., 2021) 15.37 15.49 4.07 4.02 2.86 2.95
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D. Full Experimental Results
D.1. Full Results on COMPAS

We have two tables in this subsection.

• Table 6 shows the raw disparities measured on the COMPAS dataset.
• Table 7 is the full version of Table 1.

Table 6. Disparities in the COMPAS dataset

COMPAS True Uncalibrated Noisy
DP EOd EOp DP EOd EOp

tree 0.2424 0.2013 0.2541 0.1362 0.1090 0.1160
forest 0.2389 0.1947 0.2425 0.1346 0.1059 0.1120

boosting 0.2424 0.2013 0.2541 0.1362 0.1090 0.1160
SVM 0.2535 0.2135 0.2577 0.1252 0.0988 0.1038
logit 0.2000 0.1675 0.2278 0.1169 0.0950 0.1120
nn 0.2318 0.1913 0.2359 0.1352 0.1084 0.1073

compas score 0.2572 0.2217 0.2586 0.1511 0.1276 0.1324

Table 7. Performance on the COMPAS dataset. The method with minimal normalized error is bold.

COMPAS DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Base Soft Global Local Base Soft Global Local Base Soft Global Local

tree 43.82 61.26 22.29 39.81 45.86 63.96 23.09 42.81 54.36 70.15 13.27 49.49
forest 43.68 60.30 19.65 44.14 45.60 62.85 18.56 44.04 53.83 69.39 17.51 63.62

boosting 43.82 61.26 22.29 44.64 45.86 63.96 23.25 49.08 54.36 70.15 13.11 54.67
SVM 50.61 66.50 30.95 42.00 53.72 69.69 32.46 47.39 59.70 71.12 29.29 51.31
logit 41.54 60.78 16.98 35.69 43.26 63.15 21.42 31.91 50.86 65.04 14.90 26.27
nn 41.69 60.55 19.48 34.22 43.34 62.99 19.30 43.24 54.50 68.50 14.20 59.95

compas score 41.28 58.34 11.24 14.66 42.43 59.79 11.80 18.65 48.78 62.24 5.78 23.80

DP Raw Disparity ↓ EOd Raw Disparity ↓ EOp Raw Disparity ↓
tree 0.1362 0.0939 0.1884 0.1459 0.1090 0.0726 0.1548 0.1151 0.1160 0.0759 0.2204 0.1283

forest 0.1345 0.0948 0.1919 0.1334 0.1059 0.0723 0.1586 0.1090 0.1120 0.0743 0.2001 0.0882
boosting 0.1362 0.0939 0.1884 0.1342 0.1090 0.0726 0.1545 0.1025 0.1160 0.0759 0.2208 0.1152

SVM 0.1252 0.0849 0.1750 0.1470 0.0988 0.0647 0.1442 0.1123 0.1038 0.0744 0.1822 0.1255
logit 0.1169 0.0784 0.1660 0.1286 0.0950 0.0617 0.1316 0.1140 0.1120 0.0797 0.1939 0.1680
nn 0.1352 0.0915 0.1867 0.1525 0.1084 0.0708 0.1544 0.1086 0.1073 0.0743 0.2024 0.0945

compas score 0.1510 0.1072 0.2283 0.2195 0.1276 0.0891 0.1955 0.1803 0.1324 0.0976 0.2436 0.1970

DP Raw Error ↓ EOd Raw Error ↓ EOp Raw Error ↓
tree 0.1062 0.1485 0.0540 0.0965 0.0923 0.1288 0.0465 0.0862 0.1381 0.1782 0.0337 0.1257

forest 0.1043 0.1440 0.0469 0.1054 0.0888 0.1224 0.0361 0.0858 0.1306 0.1683 0.0425 0.1543
boosting 0.1062 0.1485 0.0540 0.1082 0.0923 0.1288 0.0468 0.0988 0.1381 0.1782 0.0333 0.1389

SVM 0.1283 0.1685 0.0785 0.1064 0.1147 0.1488 0.0693 0.1012 0.1538 0.1833 0.0755 0.1322
logit 0.0831 0.1215 0.0340 0.0714 0.0724 0.1057 0.0359 0.0534 0.1159 0.1482 0.0339 0.0598
nn 0.0966 0.1404 0.0452 0.0793 0.0829 0.1205 0.0369 0.0827 0.1286 0.1616 0.0335 0.1414

compas score 0.1062 0.1500 0.0289 0.0377 0.0941 0.1325 0.0261 0.0413 0.1261 0.1609 0.0150 0.0615

DP Improvement (%) ↑ EOd Improvement (%) ↑ EOp Improvement (%) ↑
tree 0.00 -39.79 49.15 9.15 0.00 -39.48 49.65 6.64 0.00 -29.05 75.60 8.96

forest 0.00 -38.05 55.01 -1.06 0.00 -37.83 59.30 3.42 0.00 -28.89 67.47 -18.18
boosting 0.00 -39.79 49.15 -1.87 0.00 -39.48 49.30 -7.04 0.00 -29.05 75.89 -0.57

SVM 0.00 -31.40 38.83 17.02 0.00 -29.72 39.57 11.78 0.00 -19.12 50.93 14.05
logit 0.00 -46.30 59.12 14.08 0.00 -45.98 50.47 26.24 0.00 -27.87 70.70 48.35
nn 0.00 -45.23 53.27 17.93 0.00 -45.34 55.47 0.23 0.00 -25.69 73.94 -10.01

compas score 0.00 -41.33 72.77 64.48 0.00 -40.92 72.20 56.04 0.00 -27.59 88.15 51.21
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D.2. Experiments on COMPAS With Three-Class Sensitive Attributes

We experiment with three categories of sensitive attributes: black, white, and others, and show the result in Table 8. Table 8
shows our proposed algorithm with global estimates is consistently and significantly better than the baselines, which is also
consistent with the results from Table 1.

Table 8. Normalized estimation error on COMPAS. Each row is a different target model f .

COMPAS DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
True disparity: ∼ 0.2 Base Soft Global Local Base Soft Global Local

tree 24.87 59.98 13.84 25.16 30.15 63.13 13.11 27.84 42.42 68.50 4.46 43.54
forest 23.94 58.67 10.00 26.64 29.19 61.66 11.61 33.85 41.53 67.50 1.77 45.03

boosting 24.87 59.98 13.84 25.44 30.15 63.13 15.74 33.20 42.42 68.50 6.19 47.85
SVM 40.37 67.02 25.96 34.73 49.57 71.56 29.33 42.91 56.55 73.66 17.69 37.74
logit 16.71 58.46 7.39 22.17 17.23 60.64 7.02 25.38 22.24 59.77 13.48 26.13
nn 18.60 58.05 5.38 16.58 22.91 61.42 5.90 22.63 33.55 65.23 0.94 45.84

compas score 29.00 59.17 10.02 31.32 33.43 62.05 12.15 36.03 39.93 65.31 4.38 44.82

D.3. Full Results on CelebA

We have two tables in this subsection.

• Table 9 is the full version of Table 2.
• Table 10 is similar to Table 9, but the error metric is changed to Improvement defined in Section 5.1.

Table 9. Normalized Error on CelebA with different noise rates

CelebA DP Normalized Error (%) ↓ EOd Normalized Error (%) ↓ EOp Normalized Error (%) ↓
Base Soft Global Local Base Soft Global Local Base Soft Global Local

Facenet [0.0, 0.0] 15.33 12.54 22.17 10.89 4.11 6.46 7.54 0.26 2.82 0.34 12.22 2.93
Facenet [0.2, 0.0] 7.39 11.65 20.75 10.82 25.05 26.99 9.87 6.63 24.69 27.27 11.55 2.77
Facenet [0.2, 0.2] 30.24 31.57 24.27 8.45 44.71 46.36 15.10 3.99 37.67 38.77 21.79 16.73
Facenet [0.4, 0.2] 51.37 54.56 20.12 20.66 62.94 65.10 3.45 3.67 56.53 58.73 15.75 2.70
Facenet [0.4, 0.4] 77.82 78.39 8.76 21.94 79.36 80.10 51.32 148.05 78.39 79.62 71.38 146.20

Facenet512 [0.0, 0.0] 15.33 12.54 21.70 7.26 4.11 6.46 4.85 0.52 2.82 0.34 11.80 3.24
Facenet512 [0.2, 0.0] 7.37 11.65 20.58 5.05 25.06 26.99 6.43 0.10 24.69 27.27 11.11 1.07
Facenet512 [0.2, 0.2] 30.21 31.57 24.25 13.10 44.73 46.36 11.26 9.04 37.67 38.77 20.94 27.98
Facenet512 [0.4, 0.2] 51.32 54.56 19.42 10.47 62.90 65.10 11.09 19.15 56.51 58.73 23.86 23.55
Facenet512 [0.4, 0.4] 77.76 78.39 9.41 19.80 79.31 80.10 24.49 8.02 78.35 79.62 10.61 5.71
OpenFace [0.0, 0.0] 15.33 12.54 10.31 9.39 4.11 6.46 10.43 5.03 2.82 0.34 0.56 0.93
OpenFace [0.2, 0.0] 7.39 11.65 8.93 6.60 25.05 26.99 9.86 13.01 24.69 27.27 1.08 10.96
OpenFace [0.2, 0.2] 30.24 31.57 13.32 21.46 44.74 46.36 7.56 15.88 37.69 38.77 5.90 7.40
OpenFace [0.4, 0.2] 51.39 54.56 10.66 25.16 62.96 65.10 6.47 24.94 56.55 58.73 6.11 47.12
OpenFace [0.4, 0.4] 77.84 78.39 1.60 117.27 79.38 80.10 34.00 19.47 78.41 79.62 37.42 31.99
ArcFace [0.0, 0.0] 15.33 12.54 19.59 9.69 4.11 6.46 5.72 0.23 2.82 0.34 11.16 3.85
ArcFace [0.2, 0.0] 7.39 11.65 17.74 7.74 25.05 26.99 6.18 1.82 24.69 27.27 8.81 3.37
ArcFace [0.2, 0.2] 30.19 31.57 21.77 8.97 44.77 46.36 12.12 18.91 37.69 38.77 21.19 17.99
ArcFace [0.4, 0.2] 51.32 54.56 17.33 44.52 62.91 65.10 14.66 29.74 56.53 58.73 24.39 4.92
ArcFace [0.4, 0.4] 77.79 78.39 8.38 84.37 79.34 80.10 8.31 165.03 78.39 79.62 16.98 62.34

Dlib [0.0, 0.0] 15.33 12.54 15.09 5.30 4.11 6.46 4.87 4.25 2.82 0.34 9.74 2.32
Dlib [0.2, 0.0] 7.35 11.65 14.39 1.06 25.07 26.99 3.78 2.63 24.69 27.27 7.09 2.36
Dlib [0.2, 0.2] 30.23 31.57 16.78 1.95 44.77 46.36 9.50 11.28 37.72 38.77 15.88 22.43
Dlib [0.4, 0.2] 51.40 54.56 12.83 17.69 62.96 65.10 10.34 11.47 56.57 58.73 18.90 11.17
Dlib [0.4, 0.4] 77.84 78.39 0.46 96.58 79.38 80.10 7.99 86.36 78.41 79.62 8.45 14.78

SFace [0.0, 0.0] 15.33 12.54 17.00 4.77 4.11 6.46 4.04 3.91 2.82 0.34 9.36 3.28
SFace [0.2, 0.0] 7.41 11.65 15.18 1.94 25.04 26.99 3.31 8.82 24.69 27.27 7.24 13.05
SFace [0.2, 0.2] 30.22 31.57 18.16 20.95 44.72 46.36 4.58 20.93 37.67 38.77 11.55 34.72
SFace [0.4, 0.2] 51.35 54.56 14.72 48.96 62.92 65.10 2.95 68.93 56.51 58.73 15.22 68.85
SFace [0.4, 0.4] 77.78 78.39 3.37 31.25 79.33 80.10 21.56 178.21 78.37 79.62 20.03 86.59

D.4. Discussions on Global

Global is a heuristic to better estimate Tk when Tk cannot be estimated stably. According to Theorem 4.5, when Tks are
accurately estimated, we should always rely on the local estimates as Line 2 of Algorithm 2 to achieve a zero calibration
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Table 10. Improvement on CelebA with different noise rates

CelebA DP Improvement (%) ↑ EOd Improvement (%) ↑ EOp Improvement (%) ↑
Base Soft Global Local Base Soft Global Local Base Soft Global Local

Facenet [0.0, 0.0] 0.00 18.22 -44.58 28.99 0.00 -57.38 -83.62 93.64 0.00 88.05 -333.85 -3.97
Facenet [0.2, 0.0] 0.00 -57.70 -180.88 -46.45 0.00 -7.75 60.60 73.52 0.00 -10.44 53.24 88.80
Facenet [0.2, 0.2] 0.00 -4.39 19.75 72.05 0.00 -3.69 66.22 91.07 0.00 -2.92 42.17 55.58
Facenet [0.4, 0.2] 0.00 -6.20 60.83 59.79 0.00 -3.44 94.51 94.17 0.00 -3.90 72.13 95.23
Facenet [0.4, 0.4] 0.00 -0.73 88.74 71.81 0.00 -0.94 35.33 -86.56 0.00 -1.57 8.94 -86.50

Facenet512 [0.0, 0.0] 0.00 18.22 -41.50 52.65 0.00 -57.38 -18.15 87.29 0.00 88.05 -319.18 -15.09
Facenet512 [0.2, 0.0] 0.00 -58.10 -179.28 31.43 0.00 -7.70 74.32 99.58 0.00 -10.44 54.98 95.68
Facenet512 [0.2, 0.2] 0.00 -4.51 19.72 56.64 0.00 -3.64 74.81 79.78 0.00 -2.92 44.40 25.73
Facenet512 [0.4, 0.2] 0.00 -6.32 62.17 79.60 0.00 -3.50 82.37 69.55 0.00 -3.94 57.78 58.33
Facenet512 [0.4, 0.4] 0.00 -0.81 87.90 74.54 0.00 -1.00 69.12 89.89 0.00 -1.63 86.45 92.71
OpenFace [0.0, 0.0] 0.00 18.22 32.76 38.75 0.00 -57.38 -154.12 -22.45 0.00 88.05 80.03 67.15
OpenFace [0.2, 0.0] 0.00 -57.70 -20.83 10.69 0.00 -7.75 60.65 48.05 0.00 -10.44 95.64 55.62
OpenFace [0.2, 0.2] 0.00 -4.38 55.97 29.06 0.00 -3.62 83.11 64.51 0.00 -2.86 84.35 80.38
OpenFace [0.4, 0.2] 0.00 -6.16 79.25 51.05 0.00 -3.41 89.72 60.39 0.00 -3.86 89.19 16.67
OpenFace [0.4, 0.4] 0.00 -0.71 97.94 -50.65 0.00 -0.92 57.17 75.47 0.00 -1.54 52.28 59.20
ArcFace [0.0, 0.0] 0.00 18.22 -27.78 36.78 0.00 -57.38 -39.45 94.31 0.00 88.05 -296.25 -36.65
ArcFace [0.2, 0.0] 0.00 -57.70 -140.07 -4.72 0.00 -7.75 75.31 92.72 0.00 -10.44 64.32 86.37
ArcFace [0.2, 0.2] 0.00 -4.56 27.91 70.28 0.00 -3.55 72.94 57.76 0.00 -2.86 43.79 52.27
ArcFace [0.4, 0.2] 0.00 -6.31 66.22 13.25 0.00 -3.49 76.69 52.72 0.00 -3.90 56.85 91.29
ArcFace [0.4, 0.4] 0.00 -0.78 89.23 -8.47 0.00 -0.97 89.53 -108.01 0.00 -1.57 78.34 20.47

Dlib [0.0, 0.0] 0.00 18.22 1.56 65.46 0.00 -57.38 -18.55 -3.43 0.00 88.05 -245.95 17.61
Dlib [0.2, 0.0] 0.00 -58.50 -95.79 85.62 0.00 -7.66 84.90 89.53 0.00 -10.44 71.30 90.42
Dlib [0.2, 0.2] 0.00 -4.43 44.49 93.54 0.00 -3.53 78.78 74.80 0.00 -2.80 57.89 40.54
Dlib [0.4, 0.2] 0.00 -6.15 75.03 65.59 0.00 -3.39 83.58 81.78 0.00 -3.82 66.59 80.25
Dlib [0.4, 0.4] 0.00 -0.71 99.41 -24.07 0.00 -0.92 89.94 -8.80 0.00 -1.54 89.22 81.15

SFace [0.0, 0.0] 0.00 18.22 -10.87 68.87 0.00 -57.38 1.61 4.85 0.00 88.05 -232.48 -16.46
SFace [0.2, 0.0] 0.00 -57.31 -104.91 73.84 0.00 -7.79 86.78 64.75 0.00 -10.44 70.66 47.12
SFace [0.2, 0.2] 0.00 -4.45 39.93 30.68 0.00 -3.67 89.76 53.18 0.00 -2.92 69.34 7.82
SFace [0.4, 0.2] 0.00 -6.24 71.34 4.66 0.00 -3.47 95.32 -9.55 0.00 -3.94 73.06 -21.85
SFace [0.4, 0.4] 0.00 -0.78 95.67 59.82 0.00 -0.98 72.82 -124.64 0.00 -1.60 74.44 -10.49

error. However, in practice, each time when we estimate a local T̂k, the estimator would introduce certain error on the T̂k

and the matrix inversion in Theorem 4.1 might amplify the estimation error on T̂k each time, leading to a large overall error
on the metric. One heuristic is to use a single global transition matrix T̂ estimated once on the full dataset D̃ as Line 8 of
Algorithm 2 to approximate Tk. Intuitively, T̂ can be viewed as the weighted average of all T̂k’s to stabilize estimation error
(variance reduction) on T̂k. Admittedly, the average will introduce bias since the equation in Theorem 4.1 would not hold
when replacing Tk with T . The justification is that the error introduced by violating the equality might be smaller than
the error introduced by using severely inaccurately estimates of Tk’s. Therefore, we offer two options for estimating Tk

in practice: locals estimates Tk ≈ T̂k and global estimates Tk ≈ T̂ . Although it is hard to guarantee which option must
be better in reality, we report the experimental results using both options and provide insights for choosing between both
estimates in Sec. 5.2.

D.5. Disparity Mitigation With Our Calibration Algorithm

We apply our calibration algorithm to mitigate disparity during training. Specifically, the local method is applied on the
CelebA dataset. The preprocess of the dataset and generation of noisy sensitive attributes are the same as the experiments in
Table 2. The backbone network is ViT-B 8 (Dosovitskiy et al., 2020). The aim is to improve the classification accuracy
while ensuring DP, where ∆̂(D̃, f) = 0 is the constraint during training. Specifically, the optimization problem is

min
f

N∑
n=1

ℓ(f(xn), yn)

s.t . ∆̂(D̃, f) = 0,

where ℓ is the cross-entropy loss. Recall ∆̂(D̃, f) is obtained from our Algorithm 1 (Line 8), and D̃ := {(xn, yn, ãn)|n ∈
[N ]}. Noting the constraint is not differentiable since it depends on the sample counts, i.e.,

H̃[ã, k] = P(f(X) = k|Ã = ã) ≈ 1

N

N∑
n=1

1(f(xn = k|ãn = ã)).
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To make it differentiable, we use a relaxed measure (Madras et al., 2018; Wang et al., 2022) as follows:

H̃[ã, k] = P(f(X) = k|Ã = ã) ≈ 1

Nã

N∑
n=1,ãn=ã

fxn
[k],

where fxn
[k] is the model’s prediction probability on class k, and Nã is the number of samples that have noisy attribute ã.

The standard method of multipliers is employed to train with constraints (Boyd et al., 2011). We train the model for 20
epochs with a stepsize of 256. Table 3 shows the accuracy and DP disparity on the test data averaged with results from
the last 5 epochs of training. From the table, we conclude that, with any selected pre-trained model, the mitigation based
on our calibration results significantly outperforms the direct mitigation with noisy attributes in terms of both accuracy
improvement and disparity mitigation.
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