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ABSTRACT

The success of score-based models largely stems from the idea of denoising a dif-
fusion process given by a collection of time-indexed score fields. While diffusion-
based models have achieved impressive results in sample generation, leveraging
them for sound probabilistic inference—particularly for sampling from arbitrary
conditionals of the approximate data distribution—remains challenging. Briefly,
this difficulty arises because conditioning information is only observed for clean
data and not available for higher noise levels, which would be required for gener-
ating exact conditional samples. In this paper, we introduce an effective approach
to DIffusion-free SCOre matching (DISCO), which sidesteps the need for time-
dependent score fields altogether. Our method is based on a principled objective
that, while reminiscent of diffusion-based training, estimates only the score of the
(slightly perturbed) data distribution. In our experiments, score models learned
with DISCO are competitive with state-of-the-art diffusion models in terms of
sample quality. More importantly, DISCO yields a more faithful representation
of the underlying data distribution and—crucially—enables accurate sampling
from arbitrary conditional distributions, outperforming standard heuristics sam-
plers. This capability opens the door to sound and flexible probabilistic reasoning
with score-based models.

1 INTRODUCTION

Generative modeling via score matching learns the score function rather than the density (Hyvärinen
& Dayan, 2005), avoiding the intractable normalization constant. A classical connection to auto-
encoders leads to effective learning via denoising score matching (Vincent, 2011), which, however,
fits the score only close to the data manifold, effectively ignoring low-density regions.1 This funda-
mental limitation, that leads to brittle sampling routines, has been addressed by generative modeling
through reversing a diffusion process (Sohl-Dickstein et al., 2015; Song et al., 2020), ensuring the
model is fit on a large support, achieving unprecedented sample quality in diffusion-based score
models.

Yet this success in sample generation masks a critical limitation: by augmenting the single data
distribution with a family of noisy copies, diffusion models fundamentally struggle as probabilis-
tic reasoners. While they excel at producing visually compelling samples, probability theory is
really a rigorous framework for reasoning under uncertainty (Jaynes, 1995; Pearl, 1988). Comput-
ing marginals and conditionals are fundamental operations in probabilistic reasoning (Ghahramani,
2015), lying at the core of Bayesian methods, inverse problems and optimal decision making. This
raises the pivotal question: Can we develop score-based models that serve as sound probabilis-
tic reasoners, providing access to exact marginals and conditionals? Here, we focus on drawing
faithful samples from arbitrary marginals or conditionals—a capability essential for Monte Carlo-
based inference and principled uncertainty quantification.

For marginals, the answer is straightforward: one can draw samples from the joint distribution and
discard the marginalized variables. Sampling from conditionals, however, exposes the fundamental
inadequacy of diffusion models for probabilistic reasoning: exact conditional sampling would re-
quire conditioning the entire diffusion process on the available observations, which is intractable.

1This is even true when using an actually normalized density as score model, as score matching does not
directly incentivize to “pull probability mass towards the data”.
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Figure 1: Conditional sampling in a low-dimensional setting. We train an energy-based diffusion
model and DISCO model on samples of a 2-dimensional Gaussian mixture model (pd, left). We
produce conditional samples from the learned models, x2 ∼ pθ(x2 |x1 = 1.75), and compare these
with ground truth conditional samples derived via rejection sampling (right). For the diffusion model
we use Gradient Guidance (Ho et al., 2022), the Replacement Heuristic (Song et al., 2020) and
the Twisted Diffusion Sampler (TDS) (Wu et al., 2023), for which the produced samples follow
a substantially different distribution than the ground truth. In contrast, conditional samples from
DISCO (this paper) using tempered SMC follow the ground truth distribution faithfully.

Existing approaches are either ad-hoc heuristics (Song et al., 2020; Ho et al., 2022; Kawar et al.,
2022) or provide only asymptotic guarantees (Wu et al., 2023). As demonstrated in Figure 1, these
methods fail to produce unbiased conditional samples—even on elementary toy problems, revealing
the brittleness of diffusion-based probabilistic reasoning.

We introduce DIffusion-free SCOre matching (DISCO), which addresses the probabilistic reasoning
problem by eliminating the need for diffusion-based training altogether. By starting from a mixture
of generalized Fisher divergences, specified by an array of “noisy” proposal distributions, we arrive
at a principled score matching objective. This objective, albeit reminiscent to diffusion training,
only fits the (slightly perturbed) data distribution rather than a full diffusion process, while taking
care that the score field is also fit outside the data manifold. This approach makes conditioning
de-facto trivial: one simply fixes observed variables in the learned score field and samples only the
unobserved variables—enabling asymptotically exact probabilistic inference.

Our experiments demonstrate that DISCO not only matches state-of-the-art diffusion models in sam-
ple quality—achieving competitive FID scores on FFHQ-64 and CIFAR-10—but dramatically out-
performs them in probabilistic fidelity. DISCO provides a faithful representation of the underlying
data distribution and delivers accurate conditional sampling across both low- and high-dimensional
problems, where diffusion-based methods systematically struggle. This enables principled proba-
bilistic reasoning with score-based models, unlocking their potential for rigorous uncertainty quan-
tification, Bayesian inference, and scientific modeling.

2 BACKGROUND

2.1 SCORE-BASED MODELING AND SAMPLING

In generative modeling, we are given i.i.d. samples {x(i) ∈ RD}Ni=1 from a data distribution
pd(x), and aim to learn a parametric model pθ that approximates pd well. Score-based model-
ing (Hyvärinen & Dayan, 2005) circumvents the challenge of normalization by learning the score of
the data density, defined as ∇x log pd(x), which is invariant to the normalizing constant. The idea
is to use a neural network sθ : RD → RD to represent the model score and minimize the Fisher
divergence:

F(pd ∥ sθ) := Ex∼pd

[
∥∇x log pd(x)− sθ(x)∥22

]
(1)
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Alternatively, one can define a score model via an energy-based model, giving rise to a proper density
pθ(x) := exp(−Eθ(x))/Zθ, where the score ∇x log pθ(x) = −∇xEθ(x) can be computed using
automatic differentiation. Energy-based models define a valid distribution and enable asymptotically
unbiased sampling via Monte Carlo methods such as Hamiltonian Monte Carlo (HMC) (Neal et al.,
2011).

In this paper, we consider both unconstrained score fields and energy-based models. However, since
our focus is on probabilistic reasoning, energy-based models are preferable, as they define a valid
distribution and enable asymptotically unbiased sampling via Monte Carlo methods.

2.2 DENOISING SCORE MATCHING

Since the Fisher divergence in (1) involves the unknown score ∇x log pd(x), it is generally unsuit-
able for direct optimization. This motivates the use of alternative objectives that do not require
explicit access to ∇x log pd(x). A particularly popular variant is denoising score matching (DSM),
which approximates the score of a perturbed data distribution pσ(x̃) =

∫
pd(x) q(x̃ |x) dx, where

q(x̃ |x) := N (x̃ |x, σ2I) is a Gaussian perturbation kernel with fixed noise level σ. Concretely,
minimizing the objective

LDSM(θ) := Ex∼pd(x),x̃∼q(x̃ |x)
[
∥∇x̃ log q(x̃ |x)− sθ(x̃)∥22

]
(2)

is equivalent to minimizing Fisher divergence, as ∇θLDSM(θ) = ∇θF(pσ ∥ sθ) for all θ (Vincent,
2011). This objective and its gradients can be efficiently estimated using data samples, as it only
depends on the score of the perturbation kernel, given by ∇x̃ log q(x̃ |x) = (x− x̃)/σ2.

In (2), one chooses the fixed noise level σ to be small so that the perturbed distribution pσ closely
approximates the data distribution pd. However, this implies that the score is mainly learned near the
data manifold, even though pσ formally has full support on RD. In regions far from the manifold,
pσ almost never samples points, so the learned score is essentially arbitrary there. Since sampling
methods are generally initialized far from the data manifold, inaccurate score estimates in these low-
density regions cause the sampler to drift toward arbitrary directions, producing poor samples (Song
& Ermon, 2019).

2.3 DIFFUSION MODELS

Diffusion models address the limitations of naı̈ve DSM by learning a multitude of score vector
fields, each corresponding to a different noise level applied to the data distribution (Sohl-Dickstein
et al., 2015; Song et al., 2020). Formally, let the clean data be denoted by x0 ∼ pd, and define the
conditional distribution pt(xt |x0) via the forward diffusion process:

xt = α(t)x0 + σ(t)ε, ε ∼ N (0, I) (3)

where t ∈ [0, T ] for some T > 0. In this work, we focus primarily on the variance-exploding
(VE) formulation (Song et al., 2020), where α(t) = 1 and only the noise scale σ(t) varies over
time. This process defines a family of progressively noisier distributions {pt(xt)}t∈[0,T ], where
pt(xt) =

∫
qt(xt |x0) pd(x0) dx0 and qt(xt |x0) = N (xt |x0, σ(t)

2I).

A time-dependent score network is then trained to approximate the score function sθ(x, t) ≈
∇x log pt(x) for all x ∈ RD and t ∈ [0, T ], by minimizing

LDM(θ) = Et,x0,xt

[
λ(t) ∥∇xt

log pt(xt |x0)− sθ(xt, t)∥22
]
, (4)

where t ∼ p(t), x0 ∼ pd(x0), and xt ∼ qt(xt |x0). Here p(t) is some distribution over [0, T ] and
λ(t) is a positive weighting function. Note that (4) is basically an extension of (2) to a time-indexed
family of score fields {∇x log pt(xt)}t∈[0,T ], approximated by a shared score network sθ(xt, t).

After training, the score network sθ is used for sample generation, aiming to approximate draws
from p0. Popular approaches are numerical integration of the reverse-time SDE (Song et al., 2020)
and ancestral sampling (Ho et al., 2020). A key advantage of diffusion models over standard DSM
is that, due to training across multiple noise levels, the score network is also informed in low-density
regions. Empirically, this leads to high-quality samples and has established diffusion models as the
current state of the art in generative modeling.
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3 DIFFUSION-FREE SCORE MATCHING

Although diffusion models enable high-quality sample generation, they introduce the overhead of
an entire family of score functions, where only the approximate data score at t = 0 is of actual
interest. Even though {xt}t>0 are merely “noisy copies” of x0 = x, they are strictly speaking
latent variables which make conditional sampling—a fundamental operation for probabilistic infer-
ence (Ghahramani, 2015)—highly challenging. Specifically, when splitting the data variable x into
unobserved variables xu and conditioned variables xc, the goal is to sample xu ∼ p(xu |xc). When
dealing with only a single score field ∇x log p(x), conditioning becomes straightforward, since the
conditional score is simply the joint score with clamped xc:

∇xu log p(xu,xc) = ∇xu log p(xu |xc) +

=0︷ ︸︸ ︷
∇xu log p(xc) (5)

However, drawing conditional samples with diffusion models requires ∇xt
log pt(xt |xc

0) for each
t > 0, which is intractable to compute. While much work has been devoted to derive conditional
samples from diffusion models (Song et al., 2020; Ho et al., 2022; Kawar et al., 2022; Wu et al.,
2023), this task remains challenging.

In this paper, we reconsider the assumption that diffusion-based learning is strictly necessary for
learning expressive score-based models. Instead, we aim to learn just a single score field, which
allows us to sample any conditional according to (5). To this end, we start with a slight modification
of the Fisher divergence:
Definition 1. q-Weighted Fisher Divergence. Let pd and q be probability densities over RD whose
supports satisfy supp(pd) ⊆ supp(q). We define the q-weighted Fisher divergence as

Fq(pd ∥ sθ) := Ex∼q

[
∥∇x log pd(x)− sθ(x)∥22

]
. (6)

Like the Fisher divergence F in Equation (1), also Fq measures the score-mismatch between pd and
the model sθ, but in expectation over a proposal distribution q rather than pd. It is easy to show that
Fq(pd ∥ sθ) = 0 implies F(pd ∥ sθ) = 0, hence Fq is a principled divergence.

Next, we adopt from diffusion models the idea of using a family of Gaussian perturbed distributions
where

qt(xt |x) := N (xt |x, σ(t)2I) is a Gaussian perturbation kernel indexed by t ∈ [0, T ] (7)
pt(xt,x) = qt(xt |x) pd(x) is the joint of a data sample x and a perturbed version xt (8)

pt(xt) =

∫
pt(xt,x) dx is the marginal distribution of xt derived from (8) (9)

Below we will further need the posterior over the data sample x conditional on a perturbed version
xt, given as

pt′(x |xt) =
pt′(xt,x)

pt′(xt)
. (10)

Note that we adopted the parameter t from diffusion models, which in our case does not signify time
but just indexes noise levels σ(t), monotonously increasing with t. We further introduce, similar
as in diffusion models, a prior distribution p(t) over t ∈ [0, T ] and a continuous positive weighting
function λ(t).

Unlike as in diffusion models, we do not aim to approximate the pt(xt)’s for t > 0, but use them
merely as proposals for Fq . We propose to minimize a weighted mixture of q-weighted Fisher
divergences:

Fmix(pd ∥ sθ) = Et∼p(t) [λ(t)Fpt
(pd ∥ sθ)] (11)

= Et∼p(t)

[
λ(t)Ext∼pt

[
∥∇xt

log pd(xt)− sθ(xt)∥22
]]

. (12)

Also Fmix is a principled objective, since, as λ(t) is positive and Fpt is non-negative,
Fmix(pd ∥ sθ) = 0 implies that Fpt(pd ∥ sθ) = 0 for almost all t ∈ [0, T ].

Fmix requires the true data score ∇x log pd(x) which is not available. Hence, we adopt a similar
approach as in (Vincent, 2011) and replace pd with a slightly Gaussian-perturbed version p′d(x) :=
p0(x), i.e. the perturbed data distribution (9) at the lowest noise level. Given that σ(0) is small,
fitting p′d instead of pd is a worthwhile goal. With this modification, we are able to derive the
following principled objective, the DIffusion-free SCOre matching loss (DISCO loss):

4
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Theorem 1. Let pd be the true data distribution, p(t) a distribution over [0, T ], and λ(t) a positive
weighting function. Further, let qt(x′ |x), pt(xt) and pt(x |xt) be defined as in (7), (9), and (10),
respectively. Let q(t,x,xt) := p0(x |xt) pt(xt) p(t). The DISCO loss

LDISCO(θ) := Eq(t,x,xt)

[
λ(t) ∥∇xt

log q0(xt |x)− sθ(xt)∥22
]

(13)

has the same parameter gradients as Fmix(p
′
d ∥ sθ).

The proof can be found in Appendix A.1. From Theorem 1 it follows that, given that sθ has sufficient
capacity, the global minimizer of LDISCO will learn the true score of p′d. In (13) it can be seen that
LDISCO shares features from both LDSM (2) and LDM (4): Like in DSM, the DISCO objective only
fits a single score model corresponding to a slightly perturbed data distribution. In particular, note
that sθ does not need to depend on t. Furthermore, similar as in (2), we only require the score of
the (smallest) perturbation kernel, given as ∇xt

log q0(xt |x) = (x − xt)/σ(0)
2. Like in diffusion

models, (13) computes a weighted expectation over various noisy data distributions, making sure
that sθ gets informed far from the data manifold. Crucially, comparing the DISCO loss to diffusion
training, we re-interpret the diffused distributions pt for t > 0 merely as proposal distributions in
q-weighted Fisher divergences and do not learn their score fields.

DISCO Training. Estimating LDISCO for training is straightforward, except for one part. In order
to sample from q(t,x,xt), we first sample t ∼ p(t). Subsequently, we sample xt ∼ pt(xt), by first
sampling some (intermediate) data sample x′ ∼ pd and then its perturbed version xt ∼ qt(xt |x′).
The challenging part is then to sample p0(x |xt).2 However, as we usually have only finitely many
training data points D = {x(i)}Ni=1, the data distribution is the empirical distribution pd(x) =

pemp(x) :=
1
N

∑N
i=1 δ(x

(i) −x) where δ(·) denotes the Dirac-delta function. From Bayes’ law, we
obtain

p0(x |xt) =
q0(xt |x) pemp(x)

p0(xt)

which induces a probability mass function over D. Thus, we compute p0(x
(i) |xt) ∝ q0(xt |x(i))

for each x(i) ∈ D and sample x from the normalized mass function. If |D| is large, we can draw an
approximate posterior sample by either (1) constructing the probability mass function using a mini-
batch of data B ⊂ D, or (2) using special data structures that allow finding the k nearest neighbors of
xt quickly, which can be used to approximate p0(x |xt). A more detailed discussion can be found
in Appendix B.

Masked DISCO Training. During conditional sampling, the model must have learned the score
at points (xu,xc) where xc is “clean”, and xu is “noisy”. While in theory, minimizing LDISCO

learns the true score also at these points, we observe that in high dimensions, the model does not
learn accurate scores at these points. Therefore, we introduce a variant of the DISCO loss that
keeps the global minimum unchanged, but facilitates learning the score at these points. Specif-
ically, consider a distribution p(m) over binary masks m ∈ {0, 1}D and let xt,m and xt,m̄ de-
note the coordinates of xt where the mask is 1 and 0, respectively. Let Pm̄ denote the pro-
jection on the coordinates where m is 0 and let qt again denote the Gaussian perturbation ker-
nel. With pt(xt,m̄,xm) =

∫
qt(xt,m̄ |xm̄) pd(xm̄,xm) dxm̄, we define q(t,m,xt,m̄,xm,xm̄) =

p(t)p(m)pt(xt,m̄,xm)p0(xm̄ |xt,m̄,xm) and

Lmask
DISCO(θ) := LDISCO(θ) + γLDISCO

mask (θ) with (14)

LDISCO
mask (θ) := Eq(t,m,xt,m̄,xm,xm̄)

[
λ(t) ∥∇xt,m̄ log q0(xt,m̄ | xm̄)− Pm̄sθ(xt,m̄,xm)∥22

]
(15)

where γ > 0. In other words, we put Gaussian noise only on a subset of variables and only care
about the network’s predictions for these noisy variables. Whenever m ̸= 0, sampling from the
posterior p0(xm̄ |xt,m̄,xm) amounts to just taking the previously sampled xm̄. We prove the fact
that the global minimum of Lmask

DISCO is the same as that of LDISCO in Appendix A.3.

2Note the asymmetry in this principle, where xt is generated by a perturbation at “high” noise levels, but
the posterior p0(x |xt) is over clean data “assuming xt had been generated by p0 (lowest noise level).” In
particular, the intermediate sample x′ which was used to produce xt does not necessarily have high probability
under p0(x |xt), especially for large σ(t).
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Masked Diffusion Model Training. To provide a baseline for the masked DISCO training, we
analagously define a masked diffusion model training objective:

Lmask
DM (θ) := LDM(θ) + γLDM

mask(θ) with (16)

LDM
mask(θ;m) = Ep(t)p(m)pd(x)qt(xt,m̄|xm̄)

[∥∥∇xt,m̄ log qt(xt,m̄ | xm̄)− Pm̄sθ(xt, t,m)
∥∥2
2

]
(17)

where xt = (xt,m̄,xm) and γ > 0. For the empty mask m = 0, the global optimum of Lmask
DM

is s∗θ(xt, t,m = 0) = ∇xt log pt(xt). For other m, the global optimum is Pm̄s∗θ(xt, t,m) =
∇xt,m̄ log pt(xt,m̄ | xm). Note that this is merely circumventing the problem of probabilistic infer-
ence by directly trying to learn the otherwise intractable quantities. Therefore, we have no guarantee
that the conditionals we learn are consistent, i.e., that there exists a joint distribution whose condi-
tionals coincide with the learned ones. Clearly, this breaks sound probabilistic reasoning, and hence,
these models should also be considered a heuristic baseline, rather than a principled approach.

4 RELATED WORK

Time-Independence in Score-Based Models. Most similar in spirit to DISCO is the work by Li
et al. (Li et al., 2023), who share the idea of only learning ∇x log p0(x) using a score-matching
objective. However, they do not minimize LDISCO, but a variant which they term multiscale
denoising score matching (MDSM), which is LDISCO when (incorrectly) setting q(t,x,xt) :=

p(t)pd(x)pt(xt |x) in (13). This objective in fact learns s∗θ(xt) = Ep(t |xt)

[
σ(t)2

σ(0)2∇xt
log pt(xt)

]
,

i.e. a posterior average over pt scores, where the posterior over noise levels is reweighted. Thus, the
claim of (Li et al., 2023) that s∗θ only learns the score of p0 is erroneous (see Appendix A.2). Their
main motivation is also not conditional sampling but on analyzing diffusion training.

A key property in DISCO is that the score network is independent of t, while diffusion-based mod-
els inherently rely on a notion of time. Yet, there have been attempts to minimize LDM with
neural networks where (1) time enters in a simple way, or (2) time does not enter into the net-
work sθ(x) at all. Song & Ermon (2020) proposed to model sθ(x, t) := εθ(x)/σ(t) where εθ
is a time-independent neural network. However, it is easy to see that the true scores of differ-
ent noise levels are not just scaled versions of another, i.e., there exists no constant c such that
∇x log pt1(x) = c · ∇x log pt2(x) ∀x, t1 ̸= t2, except for the trivial case where p0 is Gaussian.
Thus, even with infinite capacity in εθ, we cannot learn the true scores. In fact, one can interpret this
parameterization as learning a single distribution whose tempered versions try to match the diffused
distributions pt. Recently, Sun et al. (2025) studied the effect of minimizing LDM with a time-
independent network sθ(x). Doing so results in a minimizer s∗θ(xt) = Ep(t |xt) [∇xt

log pt(xt)],
which learns to average the scores of pt over the posterior distribution of noise levels (see Ap-
pendix A.4). Sun et al. (2025) argue that in high dimensions, p(t |xt) is close to δ(t − txt), where
xt = x0 + txtε, ε ∼ N (0, I), and hence, s∗θ(xt) ≈ ∇xt log ptxt

(xt). However, this work is clearly
distinct to DISCO, as we try to regress ∇x log p0(x) only.

Conditional Sampling in Diffusion Models. Many approximations to the true conditional
p0(x

u
0 |xc

0) have been proposed: Song et al. (2020) introduce the replacement method, a popular
heuristic that estimates the conditional score at time t as

∇xu
t
log pt(x

u
t |xc

0) ≈ ∇xu
t
log pt(x

u
t | x̂c

t) (18)

where x̂c
t is drawn from the known distribution pt(x

c
t |xc

0) = N (xc
t ;α(t)x

c
0, σ(t)

2I). This ap-
proximation enjoys no theoretical guarantees and often fails to produce samples coherent with the
conditioning information (Ho et al., 2022).

Gradient guidance (Ho et al., 2022) relies on the fact that ∇xt
log pt(xt |xc

0) =
∇xt

log pt(x
c
0 |xt) + ∇xt

log pt(xt). While ∇xt
log pt(xt) is known via sθ, the intractable quan-

tity pt(x
c
0 |xt) is approximated, often by N (xc

0; Ω(x̂θ(xt, t)), σ(t)
2I), where x̂θ(x, t) = x +

σ(t)2sθ(x, t) is the “denoised” input, and Ω(x) returns only the observed coordinates in x. At each
noise level t, the approximation of the conditional score ∇xt

log pt(x
u
t |xc

t) is used to perform sam-
pling. Note that computing ∇xt

logN (xc
0; Ω(x̂θ(xt, t)), σ(t)

2I) involves backpropagating through
the neural network, making this approximation computationally expensive. Again, this heuristic
provides unreliable estimates (Zhang et al., 2023) and comes with no theoretical guarantees.
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Figure 2: Qualitative Results on 2D Distributions: Comparison of the L2 norms of the scores of
the ground truth empirical distribution, an energy-based DISCO model, an energy-based diffusion
model (DM) that is independent of t (i.e., trained on LDM but Eθ(x) has no access to t, as in Sun
et al. (2025)), and an energy-based DM at t = 0. Samples from p′d are shown on the very left
(training data). Only DISCO estimates the magnitudes of the true scores faithfully.

Table 1: Quantitative Evaluation on 2D Distributions: Model Fit (joint) estimates the
Wasserstein-1 distance W1 (p

′
d(x), pθ(x)) by sampling from the Diffusion Model via 100 steps of

ancestral sampling, and sampling from DISCO using our tempered SMC sampler. Inference Quality
forms a Monte Carlo estimate of Ep′

d(x1) [W1 (pθ(x2 |x1), p̂θ(x2 |x1))], where we sample from the
true model conditional pθ(x2 |x1) via rejection sampling, and we use popular heuristics to draw
approximate conditional samples, whose law is denoted as p̂θ(x2 |x1). DISCO is on-par or better
in terms of model fit, while allowing for almost error-free conditional inference. All shown results
are the mean ± two standard deviations over independent runs.

Method Moons Checkerboard Rings

Model Fit (joint) Diffusion Model 0.062 ± 0.009 0.057± 0.004 0.081± 0.003
DISCO 0.068± 0.022 0.029 ± 0.008 0.066 ± 0.026

Inference Quality

Replacement 0.363± 0.409 0.141± 0.129 0.099± 0.074
Grad. Guidance 0.417± 0.487 0.165± 0.129 0.117± 0.077
TDS 0.326± 1.016 0.120± 0.165 0.082± 0.067
DISCO 0.024 ± 0.025 0.015 ± 0.012 0.042 ± 0.040

(Wu et al., 2023) introduced the twisted diffusion sampler (TDS), which uses gradient guidance in
a twisted sequential Monte Carlo (SMC) procedure as an approximation to the (unknown) optimal
twisting function. Due to this, the sampler will not produce exact samples for any finite number
of simulated particles. In contrast, DISCO guarantees asymptotically exact samples, even when
simulating a single particle.

5 EXPERIMENTS

5.1 LOW-DIMENSIONAL SETTING

To experimentally validate DISCO in a low-dimensional setting, we train both a regular energy-
based diffusion model and an energy-based DISCO model on various 2D distributions (Gaussian
Mixture Model, Moons, Checkerboard, Rings). and compare the quality of samples from the condi-
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Figure 3: Qualitative Inpainting Results: Comparison of inpainting methods on FFHQ-64. Best
viewed zoomed in. More results can be found in Appendix E.

FFHQ Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
Method LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑

EDM Masked 0.104 0.797 0.016 0.960 0.048 0.880 0.022 0.942 0.158 0.692 0.433 0.242
Replacement 0.192 0.673 0.048 0.916 0.410 0.562 0.106 0.851 0.218 0.595 0.502 0.150
Grad. Guidance 0.140 0.749 0.027 0.941 0.114 0.797 0.037 0.914 0.178 0.665 0.481 0.186
RePaint 0.136 0.767 0.027 0.942 0.107 0.820 0.057 0.903 0.184 0.670 0.491 0.211
TDS 0.142 0.786 0.028 0.951 0.136 0.829 0.059 0.916 0.189 0.697 0.488 0.209

DISCO 0.119 0.772 0.027 0.944 0.068 0.838 0.026 0.926 0.166 0.675 0.450 0.210

CIFAR-10 Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
Method LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑

EDM Masked 0.146 0.792 0.018 0.965 0.091 0.835 0.048 0.906 0.215 0.648 0.510 0.192
Replacement 0.255 0.658 0.064 0.916 0.431 0.516 0.187 0.767 0.296 0.549 0.607 0.094
Grad. Guidance 0.203 0.732 0.036 0.943 0.196 0.727 0.082 0.860 0.262 0.600 0.581 0.125
RePaint 0.225 0.732 0.078 0.914 0.339 0.676 0.184 0.806 0.285 0.593 0.627 0.140
TDS 0.232 0.760 0.053 0.937 0.255 0.746 0.124 0.857 0.308 0.623 0.630 0.230

DISCO 0.163 0.789 0.018 0.970 0.119 0.832 0.052 0.902 0.231 0.626 0.541 0.161

Table 2: Quantitative Inpainting Results: On both FFHQ-64 and CIFAR-10, DISCO outperforms
all inpainting heuristics that rely on a pre-trained model, and is very close to the best model that was
trained on all conditionals, EDM Masked, while providing (1) conditional distributions consistent
with the learned joint, and (2) better unconditional samples on FFHQ-64 (see Table 3).

tional distribution pθ(x2 |x1), using various sampling techniques. Note that in all cases, the base-
lines correspond to exact conditional samples from the respective models, not from the ground truth
distribution, as we aim to evaluate each model’s ability to generate conditional samples consistent
with its own learned joint distribution. These exact samples are obtained via rejection sampling, i.e.,
by drawing from the joint model x ∼ pθ(x1, x2) and retaining only those samples that satisfy the
condition on x1 (up to a small numerical threshold ϵ).

The qualitative results in Figure 1 demonstrate that conditional samples are faithful only in the
DISCO model, while all other methods fail to preserve the relative weights of the Gaussian compo-
nents. Moreover, Figure 2 shows that only DISCO is able to accurately learn the scores of the true
empirical distribution, while the t = 0 diffusion model heavily underestimate the score magnitudes,
especially far from the training data. This is to be expected, as the diffusion formalism does not even
strive to represent a single data score, but “distributes” the generative process over a hierarchy of
time-dependent score-fields. To ablate this effect, we also train a time-independent diffusion model
(as in (Sun et al., 2025)), which tries to learn a posterior average of pt scores, and thus again fails to
match ∇x log p0(x).

Finally, the quantitative results in Table 1 make it clear that our time-independent DISCO model per-
forms just as well as the diffusion models in terms of model fit, while offering asymptotically—and
practically—exact conditional samples. More experimental details, including model architectures
and sampler hyperparameters, are provided in Appendix C.

5.2 IMAGE DATASETS

To demonstrate that DISCO performs well in high-dimensional generative modeling tasks, we train
an unconstrained score model with DISCO on both the CIFAR-10 dataset (Krizhevsky et al., 2009)

8
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Table 3: FID scores on unconditional image generation. Qualitative examples can be found in
Appendix E.

Dataset EDM EDM Masked DISCO

CIFAR-10 1.97 2.59 3.58
FFHQ-64 2.39 5.71 2.65

and on FFHQ-64 (Karras et al., 2019). To this end, we use the popular EDM implementation (Karras
et al., 2022) which defines a denoising network Dθ(x), where the score network is then given as

sθ(x) :=
Dθ(x)− x

σ(0)2
(19)

Since ∇xt
log q0(xt |x0) = (x0 − xt)/σ(0)

2, it follows that LDISCO then simplifies to

LDISCO(θ) = σ(0)−4 Eq(t,x,xt)

[
λ(t)∥x−Dθ(xt)∥22

]
(20)

where we simply drop σ(0)−4 because it is a constant factor w.r.t. θ. Karras et al. (2022) model
their time-dependent denoiser as

Dθ(x, t) := cskip(t)x+ cout(t)Fθ(cin(t)x, cnoise(t)) (21)

where Fθ(·, ·) is the direct output of the neural network, and cskip, cout, cin, cnoise are scalar-valued
functions. Since we model a time-independent denoiser, we do not use cnoise and let the network Fθ

predict both cskip and cout via a linear layer with a sigmoid activation at the output. Finally, we train
Dθ(x) by minimizing Lmask

DISCO with γ = 0.5, using the mini-batch approximation to sample from
the posterior p0(x |xt) (see Section 3). As a baseline, we train EDM Masked, which is equivalent
to the original EDM implementation, except that it minimizes Lmask

DM with γ = 0.5 instead of LDM.
Our mask distribution p(m) includes randomly sized patches, and factorized Bernoulli distributions
for the mask variables.

We note that we do not tailor our method specifically towards image inpainting—it is merely one
application of conditional inference. Therefore, we benchmark against the same general purpose
heuristics as in the low-dimensional case, with the addition of RePaint (Lugmayr et al., 2022): It
uses the replacement heuristic, but introduces “resampling” steps that take an intermediate state xt,
diffuses it back to xt+1 (using the forward process), and denoises it again (Lugmayr et al., 2022)
(see Appendix C for more details).

To sample unconditionally and conditionally from DISCO or EDM Masked, we use the second-
order Heun sampler with 18 steps (i.e., NFE = 35) in all CIFAR-10 experiments, and 40 steps
(i.e., NFE = 79) in all FFHQ-64 experiments (Karras et al., 2022). Inpainting results are reported
both qualitatively in Figure 3, and quantitatively in Table 2: We evaluate inpainting quality using
both the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and the Structural
Similarity Index Measure (SSIM) (Wang et al., 2004). Unconditional sample quality is reported in
Table 3, which demonstrates that directly learning a single score vector field can lead to high visual
sample quality.

6 CONCLUSION

In this paper, we challenge the prevailing belief that diffusion processes are essential for training
effective score-based generative models. We introduce DISCO, a diffusion-free score matching
framework that avoids time-indexed score fields in favor of learning a single, time-independent
score function. Our results demonstrate that this approach is not only viable but also competi-
tive with diffusion models in terms of visual sample quality. More importantly, DISCO provides
a principled foundation for exact conditional sampling, which has remained elusive for traditional
diffusion-based models. This ability opens the door to using such models as sound probabilistic
reasoners, positioning DISCO as powerful tool for a wide array of tasks in probabilistic model-
ing, beyond mere sample generation. For example, our method might be beneficial for designing
molecular structures that satisfy target binding affinities or for sampling physically plausible protein
conformations conditioned on partial structural constraints.

9
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Ethical Statement. DISCO provides a principled and practical alternative to diffusion-based train-
ing for generative modeling, with the added benefit of enabling exact conditional sampling. This has
the potential to broaden the applicability of score-based models in domains where precise probabilis-
tic reasoning is critical—such as scientific discovery, computational biology, and decision-making
under uncertainty. At the same time, as with other generative models, there is a risk of misuse in
the automated generation of misleading or harmful content. However, given that DISCO empha-
sizes controllable and interpretable sampling over raw visual fidelity, its potential for direct mis-
use in areas like misinformation or content generation appears limited. Still, any deployment of
DISCO-based models should consider the reliability of conditional constraints, dataset biases, and
domain-specific safety requirements—especially in sensitive fields like healthcare or public policy.

Reproducibility Statement. Upon acceptance, we will make both our code and trained models
publicly available, such that all experiments can be reproduced with little effort. Moreover, we have
detailed the experimental setup both in the main text and in the appendix (see Section C).
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A PROOFS

For notational convenience, we will refer to the Gaussian perturbation kernel qt(xt |x) as pt(xt |x)
throughout the appendix.

A.1 DISCO OBJECTIVE

Let p(t) be a prior distribution over a “time” parameter3 t ∈ [0, T ], let pd denote the data distri-
bution, and let α : [0, T ] → R>0 and σ : [0, T ] → R>0 be positive functions of time. Given
the distributions p(t,x,xt) := p(t)pd(x)pt(xt |x) with pt(xt |x) := N (xt;α(t)x, σ(t)

2I) and
q(t,x,xt) := p(t)pt(xt)p0(x |xt) with pt(xt) =

∫
pt(xt |x)pd(x) dx and

p0(x |xt) =
p0(xt |x)pd(x)

p0(xt)
,

we will show that the DISCO Loss

LDISCO(θ) := Eq(t,x,xt)

[
λ(t)∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(22)

is equivalent to

Fmix(p0 ∥ sθ) = Ep(t) [λ(t)Fpt
(p0 ∥ sθ)] = Ep(t)Ept(xt)

[
λ(t)∥∇xt

log p0(xt)− sθ(xt)∥22
]

(23)

up to an additive constant independent of θ. As defined above, p0(x) is the slightly Gaussian-
perturbed version of pd and is also called p′d in the main text.

Proof. We see that

LDISCO(θ) = Eq(t,x,xt)

[
λ(t)∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

= Ep(t)pt(xt)

[
λ(t)Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]]

We have

Ep0(x |xt)

[
∥∇xt log p0(xt |x)− sθ(xt)∥22

]
= Ep0(x |xt)

[
∥∇xt

log p0(xt |x)∥22 − 2∇xt
log p0(xt |x)⊤sθ(xt) + ∥sθ(xt)∥22

]
= c1 − 2Ep0(x |xt) [∇xt log p0(xt |x)]⊤ sθ(xt) + ∥sθ(xt)∥22
= c2 + ∥Ep0(x |xt) [∇xt

log p0(xt |x)]− sθ(xt)∥22
where c1, c2 are constants w.r.t. θ. We notice that

Ep0(x |xt) [∇xt
log p0(xt |x)] =

∫
p0(x |xt)∇xt

log p0(xt |x) dx

=

∫
p0(x |xt)

∇xt
p0(xt |x)

p0(xt |x)
dx

=

∫
p0(xt |x)p0(x)

p0(xt)

∇xtp0(xt |x)
p0(xt |x)

dx

=

∫
p0(x)∇xt

p0(xt |x)
p0(xt)

dx

=
1

p0(xt)

∫
p0(x)∇xtp0(xt |x) dx

=
1

p0(xt)
∇xt

∫
p0(x)p0(xt |x) dx

=
1

p0(xt)
∇xt

p0(xt)

= ∇xt
log p0(xt)

3We want to stress that it has only the meaning of time in diffusion models, while in DISCO it indexes a
family of successively noisier proposal distributions.
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and hence,

∥Ep0(x |xt) [∇xt
log p0(xt |x)]− sθ(xt)∥22 = ∥∇xt

log p0(xt)− sθ(xt)∥22
which implies that

LDISCO(θ) = Ep(t)pt(xt)

[
λ(t)Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]]

+ const.

= Ep(t)pt(xt)

[
λ(t) ∥∇xt

log p0(xt)− sθ(xt)∥22
]
+ const.

= Ep(t) [λ(t)Fpt(p0 ∥ sθ)] + const.

which concludes the proof.

A.2 MULTISCALE DENOISING SCORE MATCHING

We show that the multiscale denoising score matching (MDSM) (Li et al., 2023) objective

LMDSM(θ) = Ep(t)pd(x)pt(xt |x)
[
λ(t) ∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(24)

has the minimizer s∗θ(xt) = Ep(t |xt)

[
σ(t)2

σ(0)2∇xt log pt(xt)
]

when λ(t) = 1 and α(t) = 1 for all t
(variance exploding).

Proof. For convenience, we assume λ(t) = 1, as this can always be subsumed into the prior
p(t) without affecting the minimizer. Moreover, we assume α(t) = 1. With p(t,x,xt) =
p(t)pd(x)pt(xt |x), we denote with p(xt) the marginal over xt (not to be confused with pt(xt),
which conditions on t). We have

LMDSM(θ) = Ep(t)pd(x)pt(xt |x)
[
∥∇xt log p0(xt |x)− sθ(xt)∥22

]
(25)

= Ep(xt)p(t |xt)pt(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(26)

= Ep(xt)p(t |xt)

[
∥Ept(x |xt) [∇xt

log p0(xt |x)]− sθ(xt)∥22
]
+ const. (27)

where the last step follows the same argument as in Section A.1. With R(xt, t) :=
Ept(x |xt) [∇xt

log p0(xt |x)] and repeating this argument, we see that

Ep(xt)p(t |xt)

[
∥R(xt, t)− sθ(xt)∥22

]
= Ep(xt)

[
∥Ep(t |xt) [R(xt, t)]− sθ(xt)∥22

]
+ const. (28)

where clearly, the minimizer is

s∗θ(xt) = Ep(t |xt) [R(xt, t)] (29)

= Ep(t |xt)pt(x |xt) [∇xt
log p0(xt |x)] . (30)

Expanding ∇xt
log p0(xt |x) = (x− xt)/σ(0)

2, we get

s∗θ(xt) = Ep(t |xt)pt(x |xt)

[
x− xt

σ(0)2

]
= Ep(t |xt)

[Ept(x |xt) [x]− xt

σ(0)2

]
(31)

Via Tweedie’s formula, we can express the posterior mean as Ept(x |xt) [x] = xt +

σ(t)2∇xt
log pt(xt), and thus,

s∗θ(xt) = Ep(t |xt)

[
xt + σ(t)2∇xt

log pt(xt)− xt

σ(0)2

]
= Ep(t |xt)

[
σ(t)2

σ(0)2
∇xt

log pt(xt)

]
(32)

which concludes the proof.

This shows that the claim made in Li et al. (2023) that s∗θ(x) only learns ∇x log p0(x) is incorrect.

A.3 MASKED DISCO TRAINING

We prove that the global minimum of Lmask
DISCO(θ) is the same as that of LDISCO(θ).
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Proof. Recall that
Lmask
DISCO(θ) = LDISCO(θ) + γLDISCO

mask (θ) (33)
where

LDISCO
mask (θ) = Eq(t,m,xt,m̄,xm,xm̄)

[
λ(t) ∥∇xt,m̄ log p0(xt,m̄ | xm̄)− Pm̄sθ(xt,m̄,xm)∥22

]
(34)

and q(t,m,xt,m̄,xm,xm̄) = p(t)p(m)pt(xt,m̄,xm)p0(xm̄ |xt,m̄,xm).

Let s∗θ denote the global minimizer of LDISCO(θ). From Proof A.1, we know that
s∗θ(xt) = ∇xt log p0(xt) (35)

We now show that s∗θ also minimizes LDISCO
mask (θ), for any γ ≥ 0. Analogously to Proof A.1, we

have that

LDISCO
mask (θ) = Eq(t,m,xt,m̄,xm,xm̄)

[
λ(t) ∥∇xt,m̄ log p0(xt,m̄ | xm̄)− Pm̄sθ(xt,m̄,xm)∥22

]
= Ep(t)p(m)pt(xt,m̄,xm)

[
λ(t) ∥Ep0(xm̄ |xt,m̄,xm)

[
∇xt,m̄ log p0(xt,m̄ | xm̄)

]
− Pm̄sθ(xt,m̄,xm)∥22

]
+ const.

Note that the perturbation only acts on the coordinates where m̄ is 1 (i.e., the masked coordinates),
and hence,

p0(xt,m̄,xm̄,xm) = p0(xm̄,xm) p0(xt,m̄ | xm̄). (36)
Using this fact, we have

Ep0(xm̄|xt,m̄,xm)

[
∇xt,m̄ log p0(xt,m̄ | xm̄)

]
=

∫
p0(xm̄ | xt,m̄,xm)∇xt,m̄ log p0(xt,m̄ | xm̄) dxm̄

=

∫
p0(xt,m̄,xm̄,xm)

p0(xt,m̄,xm)
·
∇xt,m̄p0(xt,m̄ | xm̄)

p0(xt,m̄ | xm̄)
dxm̄

=
1

p0(xt,m̄,xm)

∫
p0(xm̄,xm)∇xt,m̄p0(xt,m̄ | xm̄) dxm̄

=
1

p0(xt,m̄,xm)
∇xt,m̄

∫
p0(xm̄,xm) p0(xt,m̄ | xm̄) dxm̄

=
1

p0(xt,m̄,xm)
∇xt,m̄p0(xt,m̄,xm) = ∇xt,m̄ log p0(xt,m̄ | xm)

which shows that the projection Pm̄sθ(xt,m̄,xm) regresses the conditional score
∇xt,m̄ log p0(xt,m̄ | xm).

Since s∗θ obeys
Pm̄s∗θ(xt,m̄,xm) = ∇xt,m̄ log p0(xt,m̄,xm) = ∇xt,m̄ log p0(xt,m̄ | xm) (37)

for any mask m, this implies that s∗θ also minimizes LDISCO
mask (θ).

A.4 TIME-INDEPENDENT DIFFUSION MODELS

We show that minimizing LDM with a time-independent score model sθ(xt), i.e.,
LDM(θ) = Et,x0,xt

[
λ(t) ∥∇xt

log pt(xt |x0)− sθ(xt)∥22
]
, (38)

leads to a minimizer s∗θ(xt) = Ep(t |xt) [∇xt log pt(xt)] when λ(t) = 1 and α(t) = 1 for all t.

Proof. As the proof looks almost identical to Proof A.2, we will only briefly sketch it and refer the
reader to Sun et al. (2025) for more details. With R(xt, t) := Ept(x |xt) [∇xt

log pt(xt |x)], we
again have that

s∗θ(xt) = Ep(t |xt) [R(xt, t)] = Ep(t |xt)pt(x |xt)

[
x− xt

σ(t)2

]
(39)

Again via Tweedie’s formula, we obtain

s∗θ(xt) = Ep(t |xt)

[
xt + σ(t)2∇xt

log pt(xt)− xt

σ(t)2

]
= Ep(t |xt) [∇xt

log pt(xt)] (40)

which concludes the proof.
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B POSTERIOR SAMPLING

When optimizing LDISCO, we need to draw samples from the t = 0 posterior

p0(x |xt) =
q0(xt |x) pd(x)

p0(xt)
.

When we set pd(x) = pemp(x), we can draw exact samples from p0(x |xt): Given xt ∈ RD,
we compute q(xt |x(i)) for each x(i) ∈ D, and sample x from the normalized mass function over
elements in D. Intuitively, since the perturbation kernel q(xt |x(i)) is an isotropic Gaussian, it will
assign more probability mass to points x(i) that are close to x(i). This is distinct but reminiscent
of the popular (minibatch) optimal transport techniques in the flow matching literature (Tong et al.,
2023).

Sampling from the posterior in this way needs O(ND) operations, where N = |D|. In our low-
dimensional experiments (N = 100, 000 and D = 2) we draw exact posterior samples and do
not observe any significant slowdown during model training. In our high-dimensional experiments
(CIFAR-10, FFHQ-64), we draw approximate posterior samples by using minibatches of size 224.

Future work may explore utilizing techniques like Locality Sensitive Hashing (Gionis et al., 1999)
or k-d Trees to efficiently get the k nearest neighbors of xt, and then compute the mass function
over just these neighbors. If σ(0) is sufficiently small, this will be a good approximation to the true
posterior mass function over all elements in D.

C EXPERIMENTAL DETAILS

C.1 LOW-DIMENSIONAL SETTING

DISCO Samples. As discussed in Section 2.1, we might use unconstrained or energy-based score
models for training DISCO, which influences our options for sampling. For unconstrained scores,
we might use Unadjusted Langevin Algorithm (ULA) to draw samples from our model. However,
since it is well known that Langevin algorithms suffer from slow mixing times if the target distri-
bution is multimodal, we employ tempering strategies (Neal, 1996) by considering a sequence of
distributions {pβi

}ni=0 with
pβi

(x) ∝ pθ(x)
βi (41)

where 0 = β0 < · · · < βn = 1 is a schedule of inverse temperature parameters. As β → 0, pβ
approaches a uniform distribution, and as β → 1, we recover the original model pθ. Tempering
simply scales the score, i.e., ∇x log pβ(x) = β∇x log pθ(x). In the same way, we can also temper
any conditional distribution of pθ given by (5).

For sampling from the DISCO model, we use BlackJAX (Cabezas et al., 2024) and apply tempered
sequential Monte Carlo (SMC) (Naesseth et al., 2019; Doucet et al., 2001; Chopin et al., 2020;
Del Moral et al., 2006) with an adaptive schedule for the inverse temperatures βi, using an ESS
target of 0.75. We perform systematic resampling after 2 Hamiltonian Monte Carlo (HMC) steps,
using 3 leapfrog integration steps each. Since β0 = 0, we initialize the SMC sampler with the
uniform distribution between −2.5 and 2.5.

Wasserstein-1 Distance. To evaluate model fit, we sample from the model 10, 000 times, sample
from p′d 10, 000 times, and compute (discrete) W1 distance between them. We repeat this 30 times
and report mean ± two times the standard deviation. To evaluate inference quality, we draw 106

samples from the (joint) model. We then sample 30 times from p′d(x1) and for each x1, we use
rejection sampling (with ϵ = 0.02) to slice out the conditional samples from the joint samples. We
then sample from the conditional model (e.g. using a heuristic) and again compute W1 between
these sets. Finally, we report the mean W1 distance ± two times the standard deviation.

Diffusion Model Samples. To sample from the (joint) diffusion model, we use the ancestral sam-
pling scheme with 100 steps. This is roughly equivalent in terms of computational cost than sam-
pling from the DISCO model.
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Weighting Function. In all low-dimensional experiments, we let log(t) ∼
U(log(σ(0)), log(σ(T ))) and use λ(t) = 1 for all t.

Network Architecture. The network architectures of the diffusion models and DISCO models are
identical, except that the diffusion models receive the noise level σ(t) as input, while the DISCO
models do not. In the former case, we use a simple positional embedding for σ(t), which we
concatenate to the input. Moreover, following Tancik et al. (2020), we also use the same positional
embedding for each coordinate in the input x. The remainder of the MLP consists of 4 blocks (with
residual connections), where each block contains 2 affine layers followed by leaky ReLU activations,
and normalization layers at the start of each block, after the first affine layer (InstanceNorm++
introduced in Song & Ermon (2019)). All affine layers in these blocks are maps RK → RK , where
we choose K = 128 when D = 2. The final block is followed by the same normalization and
activation layers, and a final affine layer mapping from RK to RD. When parameterizing the score
directly, we use the output of the final hidden layer z as our score approximation. When building an
energy-based model, we follow Du et al. (2023) and compute the energy Eθ as −∥z∥22.

C.2 HIGH-DIMENSIONAL SETTING

Training. To train both DISCO and the EDM Masked model, we follow the EDM repos-
itory4 and use the same training hyperparameters of edm-cifar10-32x32-cond-vp and
edm-ffhq-64x64-uncond-vp, respectively—except for the following changes: We set the
Adam hyperparameter β2 = 0.95 and use a batch size of B = 448 (CIFAR) and B = 224 (FFHQ).
Each batch is constructed by sampling B/2 clean images, and using the same images for both the
unmasked and the masked loss (sampling fresh masks every time).

Unconditional Sampling. We follow Karras et al. (2022) and their repository and use the same
sampling settings for both CIFAR and FFHQ, except that we set ρ = 2.5 (for time discretization) in
the DISCO CIFAR samples.

Inpainting. We use the same sampling setup as in unconditional sampling, except for the follow-
ing changes: Sampling from the CIFAR-10 DISCO model, we use ρ = 1.5 for Narrow and Wide
masks, ρ = 1.8 for Altern. Lines and Super-Resolve 2x, and ρ = 7 for Half and Expand. In the
FFHQ DISCO model, we use ρ = 103 for Super-Resolve 2x, ρ = 106 for Narrow, Half, Altern.
Lines, and ρ = 7 for Wide and Expand.

The RePaint heuristic uses a jump size of 1 and 4 resampling steps, while adjusting the outer loop
iteration count such that the total number of function evaluations is the same.

D LLM USAGE

We have used LLMs to aid in the writing of this paper, including summarizing paragraphs, format-
ting tables, and refactoring notation. In no way have LLMs played a significant role in research
ideation and writing that the LLM could be regarded as a contributor.

E ADDITIONAL HIGH-DIMENSIONAL QUALITATIVE RESULTS

4https://github.com/NVlabs/edm
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Figure 4: Unconditional samples from the DISCO model trained on FFHQ-64.
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Figure 5: Unconditional samples from the diffusion model trained on FFHQ-64.
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Figure 6: Qualitative inpainting results on FFHQ-64.
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Figure 7: Qualitative inpainting results on FFHQ-64.
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Figure 8: Unconditional samples from the DISCO model trained on CIFAR-10.
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Figure 9: Unconditional samples from the diffusion model trained on CIFAR-10.
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