
Conditional Bayesian Quadrature

Zonghao Chen1,* Masha Naslidnyk1,* Arthur Gretton2 François-Xavier Briol3

1Department of Computer Science, University College London, London, UK
2Gatsby Computational Neuroscience Unit, University College London, London, UK

3Department of Statistical Science, University College London, London, UK

Abstract

We propose a novel approach for estimating con-
ditional or parametric expectations in the setting
where obtaining samples or evaluating integrands
is costly. Through the framework of probabilis-
tic numerical methods (such as Bayesian quadra-
ture), our novel approach allows to incorporates
prior information about the integrands especially
the prior smoothness knowledge about the inte-
grands and the conditional expectation. As a result,
our approach provides a way of quantifying uncer-
tainty and leads to a fast convergence rate, which
is confirmed both theoretically and empirically on
challenging tasks in Bayesian sensitivity analysis,
computational finance and decision making under
uncertainty.

1 INTRODUCTION

This paper considers the computational challenge of esti-
mating certain intractable expectations which arise in ma-
chine learning, statistics, and beyond. Given a function
f : X × Θ → R, we are interested in estimating condi-
tional expectations (sometimes also called parametric ex-
pectations) I : Θ → R uniformly over the parameter space
Θ, where:

I(θ) = EX∼Pθ
[f(X, θ)] =

∫
X
f(x, θ)Pθ(dx),

and {Pθ}θ∈Θ is a family of distributions on the integration
domain X . We will assume that I(θ) is sufficiently smooth
in θ so that I(θ), I(θ′) are similar given close enough pa-
rameters θ, θ′, but that I is not available in closed-form
and must be approximated through samples and function
evaluations.

The computational challenge of approximating conditional
expectations arises in many fields. It must be tackled when

calculating tail probabilities in rare-event simulation [Tang,
2013], and when computing moment generating, charac-
teristic, or cumulative distribution functions [Giles et al.,
2015, Krumscheid and Nobile, 2018]. It also arises when
computing the conditional value at risk or various valua-
tions of options [Longstaff and Schwartz, 2001, Alfonsi
et al., 2022], for Bayesian sensitivity analysis [Lopes and
Tobias, 2011, Kallioinen et al., 2021], or even more broadly
for scientific sensitivity analysis; see for example Sobol
indices [Sobol, 2001]. Conditional expectations I(θ) are
also often computed as an intermediate quantity. For exam-
ple, given ϕ : R → R and some probability distribution
Q on Θ, we are often interested in the nested expectation
given by Eθ∼Q[ϕ(I(θ))] [Hong and Juneja, 2009, Rainforth
et al., 2018]. This problems comes about when computing
the expected information gain in Bayesian experimental de-
sign [Chaloner and Verdinelli, 1995], and for computing
the expected value of partial perfect information in health
economics [Heath et al., 2017].

Methods for computing I(θ) generally select T parameter
values θ1, · · · , θT ∈ Θ, then simulate N realisations from
each corresponding probability distribution Pθ1 , · · · ,PθT

at which they evaluate the integrand f , leading to a total
of NT evaluations. The usual approach is to use classical
Monte Carlo methods to estimate I(θ1), · · · , I(θT ), but in
many applications we are also interested in estimating either
I(θ) for a fixed θ /∈ {θ1, · · · , θT }, or I(θ) uniformly over
θ ∈ Θ. As a result, a second step combining the estimates
of I(θ1), · · · , I(θT ) is often required to complete the task.

The most straightforward approach to estimating conditional
expectation is importance sampling [Glynn and Igelhart,
1989, Madras and Piccioni, 1999, Tang, 2013, Demange-
Chryst et al., 2022], where I(θ) is estimated by weighting
function evaluations to account for the fact that the sam-
ples were not obtained from Pθ but from the importance
distributions Pθ1 , · · · ,PθT . Unfortunately, this approach is
only applicable when f does not depend on θ (otherwise
new expensive function evaluations are needed), and it is
usually difficult to identify importance distributions that can
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Figure 1: Illustration for conditional Bayesian quadrature (CBQ)
in Section 3. The first stage gives a GP posterior of f(x, θ)
for each θ ∈ {θ1, · · · , θT }, which are then integrated to give
ÎBQ(θ1), · · · , ÎBQ(θT ). The second stage then combines all BQ es-
timates from the first stage to give a GP posterior of I(θ): ÎCBQ(θ).
All shared areas represent Bayesian quantification of uncertainty.

lead to an accurate estimator for small N and T . Alterna-
tively, least-squares Monte Carlo [Longstaff and Schwartz,
2001, Alfonsi et al., 2022] first estimates I(θ1), · · · , I(θT )
through Monte Carlo, then estimates I(θ) through linear
or polynomial regression based on these estimates. These
methods are therefore dependent on the accuracy of the
Monte Carlo estimators and the regression method.

Overall and in addition, there are two main limitations which
all of these existing methods suffer from. Firstly, they are
very sample-intensive; i.e. they require a relatively large
number of function evaluations (i.e. N and T ) to reach a
given level of accuracy, which makes them infeasible if
sampling or evaluating the integrand is expensive. Secondly,
obtaining a finite-sample quantification of uncertainty for
I(θ) is often infeasible. This is a significant limitation for
challenging integration problems, for which we would ide-
ally like to know how accurate our estimator is.

To tackle these limitations, we propose a novel algorithm
called conditional Bayesian quadrature (CBQ). The name
comes from the fact that our approach extends the Bayesian
quadrature algorithm [Diaconis, 1988, O’Hagan, 1991, Ras-
mussen and Ghahramani, 2003, Briol et al., 2019] to the
computation of conditional expectations. As such, CBQ
falls in the line of work on probabilistic numerical methods
[Hennig et al., 2015, Cockayne et al., 2019, Oates and Sulli-
van, 2019, Hennig et al., 2022]. Our algorithm is based on
a hierarchical Bayesian model consisting of two-stages of
Gaussian process regression, and leads to a univariate Gaus-
sian posterior distribution on I(θ) whose mean and variance
are parametrised by θ. See Figure 1 for an illustration.

This approach allows us to mitigate the two main limitations
of existing methods. Firstly, we show both theoretically and
empirically that our method converges rapidly to the true
value and is hence more sample efficient than baselines. This

result holds under mild smoothness conditions on f and I(θ)
whenever the dimension of X and Θ is not too large. As
a result, a desired accuracy can be reached with smaller
N and T , and the method will therefore be preferable for
expensive problems. Secondly, the fact that we have an
entire posterior distribution on I(θ) allows us to provide
finite-sample Bayesian quantification of uncertainty.

The remainder of the paper is structured as follows: In Sec-
tion 2, we review existing methods for computing condi-
tional expectations and Bayesian quadrature. In Section 3,
we formalise our novel conditional Bayesian quadrature
algorithm. In Section 4, we establish the theoretical conver-
gence of our method. In Section 5, we provide empirical
results and compare with baseline methods on challenging
tasks in Bayesian sensitivity analysis, computational finance
and decision making under uncertainty.

2 BACKGROUND

We aim to compute the conditional expectation I(θ) =
EX∼Pθ

[f(X, θ)], where we assume that X ⊆ Rd, Θ ⊆
Rp, and f(·, θ) is in L2(Pθ) := {h : X → R :
EX∼Pθ

[h(X)2] <∞}, the space of square-integrable func-
tions with respect to Pθ for all θ ∈ Θ. The latter is a mini-
mal assumption which ensures that Monte Carlo estimators
satisfy the central limit theorem. Our observations and cor-
responding functional evaluations are:

θ1:T := [θ1, · · · , θT ]⊤ ∈ ΘT ,

xt1:N := [xt1, · · · , xtN ]⊤ ∈ XN ,

f(xt1:N , θt) := [f(xt1, θt), · · · , f(xtN , θt)]⊤ ∈ RN ,

for all t ∈ {1, · · · , T}, where we use square brackets to
indicate vectors. This could straightforwardly be extended
to allow a different number of samples Nt per parameter
value θt, but we do not consider this case in order to simplify
notations throughout. In this section, we will review existing
methods for computing conditional expectations and the
core ingredient for our method: Bayesian quadrature.

2.1 EXISTING METHODS FOR COMPUTING
CONDITIONAL EXPECTATIONS

Existing methods fall into two categories: sampling-based
methods and regression-based methods. Throughout, we
will assume that xt1:N ∼ Pθt for all t ∈ {1, · · · , T}.

Sampling-based Methods We can construct a Monte
Carlo (MC) estimator [Robert et al., 1999] for I(θt) through
ÎMC(θt) := 1

N

∑N
i=1 f(x

t
i, θt). Unfortunately, we cannot

estimate I(θ) for θ /∈ {θ1, · · · , θT }, and we can only use
N rather than NT points to estimate each I(θt), making
MC inappropriate for our task. A more suitable alternative
is importance sampling (IS). Assume Pθ has a Lebesgue
density pθ : X → R which has full support on X for



all θ ∈ Θ, and the integrand does not depend on θ (i.e.
f(x, θ) = f(x)). Then the IS estimator is able to make use
of all NT samples and can estimate I(θ) for any parameter
θ ∈ Θ: ÎIS(θ) :=

1
T

∑T
t=1

∑N
i=1 pθ(x

t
i)/pθt(x

t
i)f(x

t
i). The

choice of importance distributions Pθ1 , · · · ,PθT has been
studied in Glynn and Igelhart [1989], Madras and Piccioni
[1999], Tang [2013], but alternatives beyond this parametric
family of distributions could also be used [Demange-Chryst
et al., 2022].

Regression-based Methods The main regression-
based method is least-squares Monte Carlo (LSMC)
[Longstaff and Schwartz, 2001], which is a two-stage
approach. Stage 1 consists of computing MC estimators
ÎMC(θ1), · · · , ÎMC(θT ), whilst stage 2 consists of estimat-
ing I(θ) through linear or polynomial regression based on
the estimates from stage 1. Other non-parametric regression
method could be used though; for kernel ridge regression
[Han et al., 2009, Hu and Zastawniak, 2020], we will
refer to the algorithm as kernelised least-squares Monte
Carlo (KLSMC). Note that KLSMC is identical to standard
estimators for conditional kernel mean embeddings based
on vector-valued kernel ridge regression and can be
recognised as a generalisation of the kernel mean shrinkage
estimators of Muandet et al. [2016], Chau et al. [2021].
Clearly, both the performance and computational cost of
these estimators will depend on the regression method.
LSMC costs O(TN + p3) with p being the order of
polynomial, whereas KLSMC costs O(TN + T 3). On the
other hand, KLSMC is more flexible and will outperform
LSMC when I(θ) cannot be approximated well by a
low-order polynomial.

Other Related Work Alternative approaches for estimat-
ing I(θ) are based on multi-task or meta- learning [Xi et al.,
2018, Gessner et al., 2020, Sun et al., 2023a,b]. This line of
research tends to assume that several related expectations
need to be computed, and the relationship between these
expectations is encoded through a vector-valued RKHS, or
that they are independent draws from a set of tasks. Notably,
they do not explicitly encode properties of the mapping
θ 7→ I(θ), and will therefore be sub-optimal for our setting.
Multilevel Monte Carlo methods are also popular in esti-
mating expensive expectations, by combining samples from
multiple levels of resolution [Giles et al., 2015]. However,
they are not able to estimate new integrals I(θ∗) or I(θ)
uniformly over θ ∈ Θ.

2.2 BAYESIAN QUADRATURE

In this section, we present Bayesian quadrature, the foun-
dational component of our approach. Consider the expec-
tation I = EX∼P[f(X)] of some function f : X → R,
where we emphasise that neither f nor P depend on θ
in this subsection. In Bayesian quadrature (BQ) [Diaco-

nis, 1988, O’Hagan, 1991, Rasmussen and Ghahramani,
2003, Briol et al., 2019], we begin by positing a Gaus-
sian process (GP) prior on f . We will denote this prior
GP(mX , kX ), where mX : X → R is the mean function
and kX : X ×X → R is the covariance (or reproducing ker-
nel) function. These two functions fully characterise the dis-
tribution, and can be used to encode prior knowledge about
smoothness, periodicity, or sparsity of f . Once a GP prior
has been selected, we condition on noiseless function eval-
uations f(x1:N ) = [f(x1), · · · , f(xN )]⊤ for x1:N ∈ XN .
This leads to a posterior GP on f , which induces a univariate
Gaussian posterior distribution N

(
ÎBQ, σ

2
BQ

)
on I , where:

ÎBQ = EX∼P[mX (X)] + µ(x1:N )⊤
(
kX (x1:N , x1:N )+

λX IdN
)−1(

f(x1:N )−mX (x1:N )
)
,

σ2
BQ = EX,X′∼P [kX (X,X ′)]− µ(x1:N )⊤

(
kX (x1:N , x1:N )

+ λX IdN
)−1

µ(x1:N ).

Here, IdN is an N -dimensional identity matrix and λX ≥ 0
is a regularisation parameter, often called “nugget” or “jit-
ter”, which, although not essential from a statistical view-
point, is often used to ensure the matrix can be numerically
inverted [Ababou et al., 1994, Andrianakis and Challenor,
2012].

The function µ(x) = EX∼P[kX (X,x)] is known as the
kernel mean embedding [Muandet et al., 2017] of the distri-
bution P and EX,X′∼P [kX (X,X ′)] is known as the initial
error. To implement BQ, we need the kernel mean embed-
ding and the initial error to be available in closed-form,
which is a rather strong requirement and does not hold for all
pairs of kernel and distribution. Fortunately, there are mul-
tiple solutions for this problem; see Table 1 in [Briol et al.,
2019], [Nishiyama and Fukumizu, 2016], the ProbNum
package [Wenger et al., 2021], or Stein reproducing ker-
nels [Anastasiou et al., 2023]. A discussion is provided in
Appendix B.1.

The posterior mean ÎBQ provides a point estimate for I
whilst the posterior variance σ2

BQ gives a notion of uncer-
tainty for I which arises due to having only observed f at
N points. For BQ to be well-calibrated and the posterior
variance σ2

BQ to be meaningful, we need to select the GP
prior and all associated hyperparameters carefully; this is
usually achieved through empirical Bayes [Casella, 1985].
A detailed discussion on hyperparameter selection is pro-
vided in Appendix B.2. It is noteworthy that BQ does not
impose restrictions on how x1:N is selected, and as such
does not require independent realisations from P. In fact, a
number of active learning approaches have proven popular,
see Gunter et al. [2014], Gessner et al. [2020].

The convergence rate of the BQ estimator has been studied
extensively [Briol et al., 2019, Kanagawa and Hennig, 2019,
Wynne et al., 2021] and is particularly fast for low- to mid-
dimensional smooth integrands. This has to be contrasted



with the computational cost, which is inherited from GP re-
gression and is O(N3). For this reason, BQ has principally
been applied to problems where sampling or evaluating
the integrand is very expensive and usually only a small
number of samples are available (i.e. small N ). Examples
range from differential equation solvers [Kersting and Hen-
nig, 2016], neural ensemble search [Hamid et al., 2023],
variational inference [Acerbi, 2018] and simulator-based
inference [Bharti et al., 2023] to applications in computer
graphics [Marques et al., 2013, Xi et al., 2018], cardiac mod-
elling [Oates et al., 2017] and tsunami modelling [Li et al.,
2022]. For cheaper problems, Jagadeeswaran and Hickernell
[2019], Karvonen and Sarkka [2018], Karvonen et al. [2018]
propose BQ methods where the computational cost is much
lower, but these are applicable only with specific point sets
x1:N and distributions P. Hayakawa et al. [2023] also stud-
ies Nyström-type of approximations, whilst Adachi et al.
[2022] studies parallelisation techniques. Finally, several
alternatives with linear cost in N have also been proposed
using tree-based [Zhu et al., 2020] or neural-network [Ott
et al., 2023] models, but these tend to require approximate in-
ference methods such as Laplace approximations or Markov
chain Monte Carlo.

3 METHODOLOGY
Conditional Bayesian quadrature (CBQ) provides a
Bayesian hierarchical model for I(θ∗) for any θ∗ ∈ Θ,
and the posterior mean of this hierarchical model is called
the CBQ estimator. The algorithm falls into the realm of
regression-based methods and can therefore be expressed in
two stages:

• Stage 1: Compute ÎBQ(θ1:T ), σ
2
BQ(θ1:T ) to obtain the

BQ posterior mean and variance on I(θ1), . . . , I(θT ).

• Stage 2: Perform GP regression over I(θ) using the out-
puts of stage 1. The posterior mean ÎCBQ(θ) is the CBQ
estimator for I(θ), and the variance kCBQ(θ, θ) quantifies
uncertainty.

An illustrative figure is provided in Figure 1. This two-stage
algorithm can also be summarised using the directed acyclic
graph in Figure 2, where the first stage corresponds to the
part of the model inside the largest plate, and the second
stage corresponds to the remainder of the graph. The CBQ
posterior mean and covariance are given by

ÎCBQ(θ) := mΘ(θ) + kΘ(θ, θ1:T )
(
kΘ(θ1:T , θ1:T )

+ diag(λΘ + σ2
BQ(θ1:T ))

)−1
(ÎBQ (θ1:T )−mΘ(θ1:T )) ,

kCBQ(θ, θ
′) := kΘ(θ, θ

′)− kΘ(θ, θ1:T )
(
kΘ(θ1:T , θ1:T )

+ diag(λΘ + σ2
BQ(θ1:T ))

)−1
kΘ(θ1:T , θ

′)

where the observations {xt1:N , f(xt1:N , θt)}Tt=1 enters im-
plicitly through ÎBQ(θ1:T ). The terms ÎBQ(θt) and σ2

BQ(θt)
are the BQ posterior mean and variance for I(θt), diag(λΘ+

σ2
BQ(θ1:T ))) is the diagonal matrix with vector λΘ +

σ2
BQ(θ1:T )) on the diagonal and where λΘ ≥ 0 acts as a reg-

ulariser. We also have mΘ : Θ → R and kΘ : Θ×Θ → R
which are the prior mean and covariance for the stage 2 GP.
Similarly to BQ, the “quadrature" terminology is justified
since ÎCBQ(θ) :=

∑T
t=1

∑N
i=1 w

CBQ
i,t f(xti, θt) for some

weights wCBQ
i,t ∈ R when mΘ(θ) = 0.

The first stage corresponds to the BQ procedure high-
lighted in Section 2.2: we model f(·, θt) with independent
GP(mt

X , k
t
X ) priors, condition on observations f(xt1:N , θt),

and consider the posterior distribution on I(θt) for all
t ∈ {1, . . . , T}. We therefore require access to closed-form
expressions for each of the T kernel mean embeddings and
initial errors (see discussion in Appendix B.1 on the pairs of
kernel and distribution that have a closed form kernel mean
embedding). Note that at this stage, we do not share any
samples across the estimators of I(θ1), . . . , I(θT ).

In the second stage, we place a GP(mΘ, kΘ) prior on
I : Θ → R, and assume ÎBQ(θt) are noisy evaluations of
I(θt): ÎBQ(θt) = I(θt)+εt, where the noise terms εt are in-
dependent zero-mean Gaussian noise with variance σ2

BQ(θt)

for all t ∈ {1, . . . , T}. Note that ÎBQ(θt) is a determinis-
tic function of independent samples θt, xt1, · · · , xtN across
t = 1, · · · , T , so ÎBQ(θ1), . . . , ÎBQ(θT ) are also indepen-
dent. As the variance ϵt is input-dependent, this corresponds
to heteroscedastic GP regression [Le et al., 2005]. We now
briefly comment on the choice of prior and likelihood in this
second stage:

• The GP(mΘ, kΘ) prior can be used to encode prior knowl-
edge about how the expectation I(θ) varies with the pa-
rameter θ. Typically, the stronger this prior information,
the faster the CBQ estimator’s convergence rate will be;
this statement will be made formal in Section 4.

• The likelihood for the heteroscedastic GP is directly inher-
ited from the BQ posteriors in the first stage: the posterior
on I(θt) is a univariate normal with mean ÎBQ(θt) and
variance σ2

BQ(θt). As expected, when the number of sam-
ples N grows, the BQ variance σ2

BQ(θt) will decrease,
indicating that we are more certain about I(θt). This is
then directly taken into account in stage 2. Note that het-
eroscedasticity has previously been shown to be common
in practice for LSMC [Fabozzi et al., 2017].

CBQ is closely related to LSMC and KLSMC as it simply
corresponds to different choices for the two stages. The
main difference is in stage 1, where we use BQ rather than
MC. This is where we expect the greatest gains for our ap-
proach due to the fast convergence rate of BQ estimators
(this will be confirmed in Section 4). For stage 2, we use
heteroscedastic GP regression rather than polynomial or ker-
nel ridge regression. As such, the second stage of KLSMC
and CBQ is identical up to a minor difference in the way in
which the Gram matrix kΘ(θ1:T , θ1:T ) is regularised before
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Figure 2: Illustration of CBQ. Left: Directed acyclic graph representation. Circle nodes indicate random variables and rectangles
correspond to independent replications over indices. Right: BQ and CBQ posteriors on I(θ1:2) = [I(θ1), I(θ2)]

⊤ for θ1 ≈ θ2. Unlike
BQ, the CBQ posterior accounts for the relation between the two quantities.

inversion. Finally, one significant advantage of CBQ over
LSMC and KLSMC is that it is a fully Bayesian model,
meaning that we obtain a posterior distribution on I(θ) for
any θ ∈ Θ.

The total computational cost of our approach is O(TN3 +
T 3) due to the need to compute T BQ estimators in the first
stage and heteroscedastic GP regression in the second stage.
Approximate GP approaches such as Titsias [2009] could
not be used to reduce the cost because they introduce an
additional layer of approximation which will slow down the
convergence rate of CBQ. The cost of CBQ is higher than
the cost of O(TN + p3) or O(TN + T 3) of LSMC and
KLSMC respectively, but as we will see in Section 5, the
higher computational cost of CBQ will be offset competitive
by faster convergence (derived in Theorem 1) and is more
competitive compared to baseline methods (see Section 5).
Additionally in many applications (such as the SIR model in
Section 5), the cost of evaluating the integrand will be much
larger than the cost of estimation methods, so data-efficient
method like CBQ will be more efficient overall.

Interestingly, CBQ also provides us with a joint Gaus-
sian posterior on the expectation at θ∗1 , . . . , θ

∗
TTest

∈ Θ

which has mean vector ÎCBQ(θ
∗
1:TTest

) and covariance ma-
trix kCBQ(θ

∗
1:TTest

, θ∗1:TTest
). This can be computed at an

O(T 2Ttest) cost, and is illustrated in the right plot of Fig-
ure 2 on a synthetic example from Section 5; as observed,
CBQ takes into account of covariances between test points
in that the integral value will be similar for similar parame-
ter values, whereas standard BQ treats each integral value
independently.

A natural alternative would be to place a GP prior directly on
(x, θ) 7→ f(x, θ) and condition on all N × T observations.
The implied distribution on I(θ1), . . . , I(θT ) would also be
a multivariate Gaussian distribution. This approach coin-
cides with the multi-output Bayesian quadrature (MOBQ)
approach of Xi et al. [2018] where multiple integrals are
considered simultaneously. However, the computational cost
of MOBQ is O(N3T 3), due to fitting a GP on NT observa-
tions, and quickly becomes intractable as N or T grow. A
further comparison of BQ and MOBQ can be found in Ap-
pendix C.5. The same holds true if f does not depend on
θ, in which case the task reduces to the conditional mean

process studied in Proposition 3.2 of Chau et al. [2021], and
when T = 1, we recover standard Bayesian quadrature.

Hyperparameters The hyperparameter selection for
CBQ boils down to the choice of GP interpolation hyperpa-
rameters at stage 1 and the choice of GP regression hyperpa-
rameters at stage 2. To simplify this choice, we renormalise
all our function values before performing GP regression and
interpolation. This is done by first subtracting the empirical
mean and then dividing by the empirical standard deviation.
The choice of covariance functions kX and kΘ is made on
a case-by-case basis in order to both encode properties we
expect the target functions to have, but also to ensure that
the corresponding kernel mean is available in closed-form
(see Appendix B.1). Once this is done, we typically still
need to make a choice of hyperparameters for both kernel:
lengthscales lX , ℓΘ and amplitudes AX , AΘ. We also need
to select the regularizer λX , λΘ. λX is fixed to be 0 as sug-
gested by Theorem 1, and the rest of the hyperparameters
are selected through empirical Bayes, which consists of
maximising the log-marginal likelihood. For more details
on hyperparameter selection, please refer to Appendix B.2.

4 THEORETICAL RESULTS

Our main theoretical result in Theorem 1 below guaran-
tees that CBQ is able to recover the true value of I(θ)
when N and T grow. The result of this theorem depends
on the smoothness of the problem. We will say a func-
tion has smoothness s if it is in the Sobolev space Ws,2 of
functions with at least s (weak) derivatives that are square
Lebesgue-integrable [Adams and Fournier, 2003]. For a
multi-index α = (α1, . . . αp) ∈ Np, by Dα

θ f we denote
the |α| = ∑d

i=1 αi order weak derivative of a function f
on Θ. Similarly, we will say a kernel has smoothness s
whenever its corresponding RKHS is a space of functions of
smoothness s. This is for example the case of the Matérn−ν
kernel in dimension d whenever s = ν + d/2, defined
as kν(x, y) = η

Γ(ν)2ν−1 (
√
2ν
l ∥x− y∥2)νKν(

√
2ν
l ∥x− y∥2)

whereKν is the modified Bessel function of the second kind
and η, l > 0 are hyperparameters.

Theorem 1. Let x 7→ f(x, θ) be a function of
smoothness sf > d/2, and θ 7→ f(x, θ) be



a function of smoothness sI > p/2 such that
supθ∈Θ max|α|<sI ∥Dα

θ f(·, θ)∥WsI ,2(X ) < ∞. Suppose
the following assumptions hold:

A1 The domains X ⊂ Rd and Θ ⊂ Rp are open, convex,
and bounded.

A2 The parameters and samples satisfy: θ1:T ∼ Q, and
xt1:N ∼ Pθt for all t ∈ {1, . . . , T}.

A3 Q has density q such that infθ∈Θ q(θ) > 0 and
supθ∈Θ q(θ) < ∞, and Pθ has density pθ such that
θ 7→ pθ(x) is of smoothness sI > p/2, and for
any θ ∈ Θ, it holds that infθ∈Θ,x∈X pθ(x) > 0 and
supθ∈Θ max|α|≤s ∥Dα

θ pθ(x)∥L∞(X ) <∞.
A4 The kernels kX and kΘ are of smoothness sX ∈

(d/2, sf ] and sΘ ∈ (p/2, sI ] respectively.

A5 The regularisers satisfy λX = 0 and λΘ = O(T
1
2 ).

Then, we have that for any δ ∈ (0, 1) there is an N0 > 0
such that for any N ≥ N0 with probability at least 1− δ it
holds that∥∥∥ÎCBQ − I

∥∥∥
L2(Θ)

≤ C0(δ)N
− sX

d +ε + C1(δ)T
− 1

4 ,

for any arbitrarily small ε > 0, and the constants C0(δ) =
O(1/δ) and C1(δ) = O(log(1/δ)) are independent of
N,T, ε.

To prove the result, we represent the CBQ estimator as a
noisy importance-weighted kernel ridge regression (NIW-
KRR) estimator. Then, we extend convergence results for the
noise-free IW-KRR estimator established in Gogolashvili
et al. [2023, Theorem 4] to bound Stage 2 error in terms
of the error in Stage 1, which in turn we bound via results
on the convergence of GP interpolation from Wynne et al.
[2021]. See Appendix A for the detailed proof.

We now briefly discuss our assumptions. Many of these
were simplified to improve readability, in which case we
highlight possible generalisations. A1 is used to guarantee
the points eventually cover the domain, and could straight-
forwardly be generalised to any open and bounded domain
with Lipschitz boundary satisfying an interior cone condi-
tion; see Kanagawa et al. [2020], Wynne et al. [2021]. A2
ensures θ1:T and xt1:N cover X and Θ sufficiently fast in
probability as N and T grow. The assumption on the point
sets could also be straightforwardly generalised to active
learning designs or grids following existing work on BQ
convergence [Kanagawa and Hennig, 2019, Kanagawa et al.,
2020, Wynne et al., 2021]. A3 ensures that the points will
fill X . A4 guarantees that our first and second stage GPs
have the right level of regularity for the problem, although
the range of smoothness values could be significantly ex-
tended following the approach of Kanagawa et al. [2020].
For simplicity, we also implicitly assume that the kernel
hyperparameters (such as lengthscales and amplitudes) are
known, but this could be extended to estimation in bounded
sets; see [Teckentrup, 2020]. Finally, A5 requires λX = 0,

but this could be relaxed at the cost of slowing down con-
vergence (see Appendix A). In contrast, growing λΘ > 0
in T is natural since we work in a bounded domain and
we expect the conditioning of the Gram matrix to become
worse as T → ∞.

We are now ready to discuss the implications of the theo-
rem. Firstly, the result is expressed in probability to account
for randomness in θ1:T and xt1:N , and provides a rate of
O(T−1/4 +N−sX /d+ε). We can see that growing N will
only help up to some extent (as the second terms approaches
zero fast), but that growing T is essential to ensure con-
vergence. This is intuitive since we cannot expect to ap-
proximate I(θ) uniformly simply by increasing N at some
fixed points in Θ. Despite this, we will see in Section 5 that
increasing N will be essential to improving performance
in practice. The rate in N will typically be very fast for
smooth targets, but is significantly slowed down for large d,
demonstrating that our method is mostly suitable for low-
to mid-dimensional problems, a common feature shared by
Bayesian quadrature based algorithms [Briol et al., 2019,
Frazier, 2018]. There have been some attempts to scale
BQ/CBQ to high dimensions; for example in section 5.4 of
Briol et al. [2019] where the integrand can be decomposed
into a sum of low-dimensional functions, however, this is
only possible in limited settings when the integrand has
certain forms of sparsity.

Although the bound is dominated by a term O(T−1/4) in
T , the proof can be extended to provide a more general
result with rate up to O(T−1/3) under an additional “source
condition” which requires stronger regularity from f ; this is
further discussed in Appendix A. The latter rate is minimax
optimal for any nonparametric regression-based method
[Stone, 1982]. Compared to baselines, we note that we can-
not expect a similar result for IS since IS does not apply
when f depends on θ. For LSMC, we also cannot guarantee
consistency of the algorithm when I(θ) is not a polynomial
(unless p→ ∞; see Stentoft [2004]). Although we are not
aware of any such result, we expect KLSMC to have the
same rate in T as CBQ, and for CBQ to be significantly
faster than KLSMC in N . This is due to the second stage
of KLSMC being essentially the same as that for CBQ, and
KLSMC using MC rather than BQ in the first stage: by No-
vak [1988], the convergence rate of BQ, N−sX /d, is faster
than that of MC, N−1/2, in the case where the function
x→ f(x, θ) is of smoothness at least sX > d/2.

5 EXPERIMENTS

We will now evaluate the empirical performance of CBQ
against baselines including IS, LSMC and KLSMC. For
the first three experiments, we focus on the case where f
does not depend on θ (i.e. f(x, θ) = f(x)), and for the
fourth experiment we focus on the case where f depends
on both x and θ. All methods use θ1:T ∼ Q (Q is specified
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Figure 3: Bayesian sensitivity analysis for linear models. Left: RMSE of all methods when d = 2 and N = 50. Middle: RMSE of all
methods when d = 2 and T = 50. Right: RMSE of all methods when N = T = 100.

individually for each experiment) and xt1:N ∼ Pθt to ensure
a fair comparison, and we therefore use Pθ1 , . . . ,PθT as our
importance distributions in IS. For experiments on nested
expectations, we use standard Monte Carlo for the outer
expectation and use CBQ along with all baseline methods to
compute conditional expectation for the inner expectation.

Detailed descriptions of hyperparameter selection for CBQ
and all baseline methods can be found in Appendix B. De-
tailed experimental settings can be found in Appendix C.1
to Appendix C.4 along with detailed checklists on whether
the assumptions of Theorem 1 can be satisfied in each ex-
periment. We also provide additional experiments in Ap-
pendix C. Appendix C.5 includes experiments which show
MOBQ obtains similar performance to CBQ, but with a com-
putational cost which is between 10 and 100 times larger.
Appendix C.6 includes experiments with quasi-Monte Carlo
points [Hickernell, 1998], which demonstrates that CBQ
is not limited to independent samples. Appendix C.7 in-
cludes ablation studies on various kernels kX and kΘ.
Appendix C.8 demonstrates the calibration of CBQ un-
certainty. The code to reproduce all the results in this
section is available at the following GitHub repository
https://github.com/hudsonchen/cbq.

Synthetic Experiment: Bayesian Sensitivity Analysis for
Linear Models. The prior and likelihood in a Bayesian
analysis often depend on hyperparameters, and determining
the sensitivity of the posterior to these is critical for as-
sessing robustness [Oakley and O’Hagan, 2004, Kallioinen
et al., 2021]. One way to do this is to study how posterior
expectations of interest depend on these hyperparameters, a
task usually requiring the computation of conditional expec-
tations. We consider this problem in the context of Bayesian
linear regression with a zero-mean Gaussian prior with co-
variance θIdd where Idd is identity matrix and θ ∈ (1, 3)d.
Using a Gaussian likelihood, we can obtain a conjugate
Gaussian posterior Pθ on the regression weights. We can
then analyse sensitivity by computing the conditional ex-
pectation I(θ) of some quantity of interest f . For example,
if f(x) = x⊤x, then I(θ) is the second moment of the
posterior, whereas if f(x) = x⊤y∗ for some new observa-

tion y∗, then I(θ) is the predictive mean. In these simple
settings, I(θ) can be computed analytically, making this a
good synthetic example for benchmarking.
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Figure 4: Bayesian linear model sensitivity analysis in d = 2.

Our results in Figure 3 are for the second moment, whilst
the results for the predictive mean are in Appendix C.1.
We measure performance in terms of root mean squared
error (RMSE) and use Q = Unif(1, 3)d. For CBQ, kX is
chosen to be a Gaussian kernel so that the kernel mean
embedding µ has a closed form, and kΘ is a Matérn-3/2
kernel. Figure 3 shows the performance of CBQ against
baselines with varyingN , T and d. LSMC performs well for
this problem, and this can be explained by the fact that I(θ)
is a polynomial in θ. Despite this, the left and middle plots
show that CBQ consistently outperforms all competitors.
Specifically, its rate of convergence is initially much faster in
N than in T , which confirms the intuition from Theorem 1.
The dotted lines also give the performance of baselines
under a very large number of samples N = T = 1000,
and we see that CBQ is either comparable or better than
these even when it has access only to much smaller N
and T . In the right-most panel, we see that the baselines
gradually catch up with CBQ as d grows, which is again
expected since the rate in Theorem 1 is O(N−2sX /d+ε) in
N . Additional experimental results demonstrating these are
consistent conclusions for different values of N,T can be
found in Appendix C.1.

Our last plot is in Figure 4 and studies the calibration of the
CBQ posterior. The coverage is the % of times a credible
interval contains I(θ) under repetitions of the experiment.

https://github.com/hudsonchen/CBQ


The black diagonal line represents perfect calibration, whilst
any curve lying above or below the black line indicates
underconfidence or overconfidence respectively. We observe
that whenN and T are as small as 10, CBQ is overconfident.
When N and T increase, CBQ becomes underconfident,
meaning that our posterior variance is more inflated than
needed from a frequentist viewpoint. Calibration plots for
the rest of the experiments can be found in Appendix C
and demonstrate similar results. It is generally preferable
to be under-confident than overconfident, and CBQ does a
good job most of the time. We expect that overconfidence in
small N and T can be explained by a poor performance of
empirical Bayes, and therefore caution users to not overly
rely on the reported uncertainty in this regime.

Bayesian Sensitivity Analysis for the Susceptible-Infec-
tious-Recovered (SIR) Model. The SIR model is com-
monly used to simulate the dynamics of infectious diseases
through a population [Kermack and McKendrick, 1927]. In
this model, the dynamics are governed by a system of differ-
ential equations parametrised by a positive infection rate and
a recovery rate (see Appendix C.2). The accuracy of the nu-
merical solution to this system typically hinges on the step
size. While smaller step sizes yield more accurate solutions,
they are also associated with a much higher computational
cost. For example, using a step size of 0.1 days for simu-
lating a 150-day period would require a computation time
of 3 seconds for generating a single sample, which is more
costly than running CBQ on N = 40, T = 15 samples. The
cost would become even larger as the step size gets smaller,
as depicted in the middle panel of Figure 5. Consequently,
when performing Bayesian sensitivity for SIR, there is clear
necessity for more data-efficient algorithms such as CBQ.

We perform a sensitivity analysis for the parameter θ of
our Gamma(θ, 10) prior on the infection rate x. The pa-
rameter θ represents the initial belief of the infection rate
deduced from the study of the virus in the laboratory at the
beginning of the outbreak. We are interested in the expected
peak number of infected individuals: f(x) = maxrN

r
I (x),

where Nr
I (x) is the solution to the SIR equations and rep-

resents the number of infections at day r. It is important to
study the sensitivity of I(θ) to the shape parameter θ. The
total population is set to be 106 and Q = Unif (2, 9) and
Pθt = Gamma(θt, 10). We use a Monte Carlo estimator
with 5000 samples as the pseudo ground truth and evaluate
the RMSE across all methods. For CBQ, we employ a Stein
kernel for kX , with the Matérn-3/2 as the base kernel, and
kΘ is selected to be a Matérn-3/2 kernel.

We can see in the left panel of Figure 5 that CBQ clearly
outperforms baselines including IS, LSMC and KLSMC
in terms of RMSE. Although the CBQ estimator exhibits a
higher computational cost compared to baselines, we have
demonstrated in the middle panel of Figure 5 that, due to the
increased computational expense of obtaining samples with

smaller step size, using CBQ is ultimately more efficient
overall within the same period of time. Additional exper-
imental results demonstrating these are consistent conclu-
sions for different values of T can be found in Appendix C.2.

Option Pricing in Mathematical Finance. Financial in-
stitutions are often interested in computing the expected
loss of their portfolios if a shock were to occur in the econ-
omy, which itself requires the computation of conditional
expectations (it is in fact in this context that LSMC and
KLSMC was first proposed). This is typically a challenging
computational problem since simulating from the stock of
interest often requires the numerical solution of stochastic
differential equations over a long time horizon (see Achdou
and Pironneau [2005]), making data-efficient methods such
as CBQ particularly desirable.

Our next experiment is representative of this class of prob-
lems, but has been chosen to have a closed-form expected
loss and to be amenable to cheap simulation of the stock
to enable extensive benchmarking. We consider a butter-
fly call option whose price S(τ) at time τ ∈ [0,∞) fol-
lows the Black-Scholes formula; see Appendix C.3 for
full details. The payoff at time τ can be expressed as
ψ(S(τ)) = max(S(τ) −K1, 0) + max(S(τ) −K2, 0) −
2max(S(τ) − (K1 + K2)/2, 0) for two fixed constants
K1,K2 ≥ 0. We follow the set-up in Alfonsi et al. [2021,
2022] assuming that a shock occurs at time η when the
price is S(η) = θ ∈ (0,∞), and this shock multiplies
the price by 1 + s for some s ≥ 0. As a result, the ex-
pected loss of the option is L = Eθ∼Q[max(I(θ), 0)], where
I(θ) =

∫∞
0
f(x)Pθ(dx), x = S(ζ) is the price at the time

ζ at which the option matures, f(x) = ψ(x)−ψ((1+ s)x),
and Pθ and Q are two log-normal distributions induced from
the Black-Scholes model.

Results are presented in the right-most panel of Figure 5.
We take K1 = 50,K2 = 150, η = 1, s = 0.2 and ζ = 2.
For CBQ, kΘ is selected to be a Matérn-3/2 kernel and
kX is either a Stein kernel with Matérn-3/2 as base kernel
or a logarithmic Gaussian kernel (see Appendix C.3) in
which case kX is too smooth to satisfy the assumption of
our theorem.

As expected, CBQ exhibits much faster convergence in N
than IS, LSMC or KLSMC, and outperforms these base-
lines even when they are given a substantial sample size
of N = T = 1000 (see dotted lines). We can also see that
CBQ with the log-Gaussian kernel or with Stein kernel have
similar performance, despite the log-Gaussian kernel not
satisfying the smoothness assumptions of our theory. Addi-
tional experiments in Appendix C.3 show that these results
are consistent for different values of T .

Uncertainty Decision Making in Health Economics. In
the medical world, it is important to trade-off the costs
and benefits of conducting additional experiments on pa-
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Figure 6: Uncertainty decision making in health economics. We
study RMSE for different estimators of EVPPI.

tients. One important measure in this context is the ex-
pected value of partial perfect information (EVPPI), which
quantifies the expected gain from conducting experiments
to obtain precise knowledge of some unknown variables
[Brennan et al., 2007]. The EVPPI can be expressed as
Eθ∼Q[maxc Ic(θ)]−maxc Eθ∼Q[Ic(θ)] where fc represents
a measure of patient outcome (such as quality-adjusted life-
years) under treatment c among a set of potential treatments
C, θ denotes the additional variables we could measure, and
Ic(θ) =

∫
X fc(x, θ)Pθ(dx) denotes the expected patient

outcome given our measurement of θ. We highlight that for
these applications N and T are often small due to the very
high monetary cost and complexity of collecting patient data
in real world.

We study the potential use of CBQ for this problem using the
synthetic problem of Giles and Goda [2019], where Pθ and
Q are Gaussians (see Appendix C.4). We compute EVPPI
with f1(x, θ) = 104(θ1x5x6 + x7x8x9) − (x1 + x2x3x4)
and f2(x, θ) = 104(θ2x13x14 + x15x16x17) − (x10 +
x11x12x4). The exact practical meanings of x and θ can
be found in Appendix C.4. We draw 106 samples from the
joint distribution to generate a pseudo ground truth, and
evaluate the RMSE across different method. Note that IS
is no longer applicable here because f depends on both x
and θ, so we only compare against KLSMC and LSMC. For
CBQ, kX is a Matérn-3/2 kernel and kΘ is also a Matérn-3/2
kernel. In Figure 6, we can see that CBQ consistently outper-
forms baselines with much smaller RMSE. The results are
also consistent with different values of T ; see Appendix C.4.

6 CONCLUSIONS

We propose CBQ, a novel algorithm which is tailored for
the computation of conditional expectations in the setting
where obtaining samples or evaluating functions is costly.
We show both theoretically and empirically that CBQ ex-
hibits a fast convergence rate, and provides the additional
benefit of Bayesian quantification of uncertainty. Looking
forward, we believe further gains in accuracy could be ob-
tained by developing active learning schemes to N , T , and
the location of θ1:T and xt1:N for all t in an adaptive manner.
Additionally, CBQ could be extended for nested expectation
problems by using a second level of BQ based on the output
of second stage heteroscedastic GP, potentially leading to a
further increase in accuracy.
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APPENDIX A THEORETICAL RESULTS

To validate our methodology, we established a rate at which the CBQ estimator converges to the true value of the conditional
expectation I in the L2(Θ) norm, ∥ICBQ − I∥L2(Θ) =

∫
Θ
(ICBQ(θ)− I(θ))2dθ in Theorem 2. The more specific version

of this result was presented in the main text in Theorem 1. In this section, we prove a more general version of Theorem 1 (as
well as several intermediate results), and expand on the technical background required.

For the duration of the appendix, we will denote by M the total number of points in Θ instead of T , to avoid notation clashes
with the integral operator T . Additionally, we will be explicit on the dependency of the BQ mean IBQ and variance σ2

BQ at
the point θ on the realisations xθ1:N ∼ Pθ, meaning

IBQ(θ;x
θ
1:N ) = µ⊤

θ (x
θ
1:N )

(
kX (xθ1:N , x

θ
1:N ) + λX IdN

)−1
f(xθ1:N , θ)

σ2
BQ(θ;x

θ
1:N ) = EX,X′∼Pθ

[kX (X,X ′)]− µ⊤
θ (x

θ
1:N )

(
kX (xθ1:N , x

θ
1:N ) + λX IdN

)−1
µθ(x

θ
1:N )

Finally, whenever xθt1:N , we will shorten it to xt1:N to avoid bulky notation. The rest of the section in structured as follows.
In Appendix A.1 we present technical assumptions, and state in Theorem 2 the main convergence result the proof of which is
deferred until the necessary Stage 1 and 2 results are proven. In Appendix A.2, we provide the necessary Stage 1 bounds that
will be used in the proof of the main result. In Appendix A.3, we provide the necessary auxiliary results and the bound for
Stage 2 in terms of Stage 1 errors. Finally, in Appendix A.4 we combine the bounds from both stages to prove Theorem 2,
the more general version of Theorem 1.

A.1 MAIN RESULT

Prior to presenting our findings, we present and justify the assumptions we have made. Throughout we use Sobolev spaces
to quantify a function’s smoothness. A Sobolev space Ws,2(X , µ), with s > d/2 and a measure µ on X ⊆ Rd, consists of
functions that satisfy certain conditions: they are square integrable under the measure µ, and all weak derivatives up to and
including order s are also square integrable under µ. Weak derivatives are a generalization of ordinary derivatives, allowing
for functions that are not necessarily differentiable everywhere. We write θ =

[
θ(1) . . . θ(p)

]
for any θ ∈ Θ ⊆ Rp. For a

multi-index α = (α1, . . . αp) ∈ Np, by Dα
θ g we denote the |α| =∑d

i=1 αi order weak derivative Dα
θ g = Dα1

θ(1)
. . . D

αp

θ(p)
g

for a function g on Θ ⊆ Rp. Further, we assume the kernels kΘ, kX are Sobolev kernels, meaning they induce Hilbert spaces
that are norm-equivalent to Sobolev spaces (two normed spaces (X , ∥ · ∥X ), (Y, ∥ · ∥Y) are said to be norm-equivalent when
X = Y as sets, and there are real constants C ′

1, C
′
2 > 0 such that for any x ∈ X it holds that C ′

1∥x∥Y ≤ ∥x∥X ≤ C ′
2∥x∥Y ).

Matérn kernels are important examples of Sobolev kernels. It is well-known that the RKHS of a Matérn kernel of order νΘ
over an open, convex and bounded Θ ⊂ Rp is norm-equivalent to the Sobolev space W 2,νΘ+p/2(Θ) when νΘ + p/2 ∈ Z;
this is proven in [Wendland and Rieger, 2005, Corollary 10.48]. For Θ = Rp, the result can be straightforwardly extended
to fractional order Sobolev-Slobodeckij spaces, νΘ + p/2 ∈ R: by [Wendland and Rieger, 2005, Corollary 10.13] the
RKHS of a Matérn kernel on Rp is norm-equivalent to a Bessel potential space, which in turn is norm-equivalent to
the Sobolev-Slobodeckij space by [Adams and Fournier, 2003, Section 7.62]. Finally, one can use an extension operator
in [DeVore and Sharpley, 1993, Theorems 6.1 and 6.7] to restrict the norm-equivalence result to open, convex and bounded
Θ ⊂ Rp.

The following is a more general form of the assumptions in Theorem 1: specifically, we allow for the case when θ1:T came
from a distribution that doesn’t necessarily have a density, and do not assume λX = 0.

B0 (a) f(x, θ) lies in the Sobolev space Wsf ,2(X ) for any θ ∈ Θ.
(b) f(x, θ) lies in the Sobolev space WsI ,2(Θ) for any x ∈ X .
(c) Mf = supθ∈Θ max|α|<sI ∥Dα

θ f(·, θ)∥WsI ,2(X ) <∞.

B1 (a) X ⊂ Rd is open, convex, and bounded.
(b) Θ ⊂ Rp is open, convex, and bounded.

B2 (a) θt were sampled i.i.d. from some Q, and Q is equivalent to the uniform distribution on Θ, meaning Q(A) = 0 for a
set A ⊂ Θ if and only if Unif(A) = 0.

(b) xt1:N ∼ Pθt for all t ∈ {1, · · · , T}.
B3 Pθ has a density pθ for any θ ∈ Θ, and the densities are such that

(a) infθ∈Θ,x∈X pθ(x) = η > 0 and supθ∈Θ ∥pθ∥L2(X ) = η0 <∞.



(b) pθ(x) lies in the Sobolev space WsI ,2(Θ) for any x ∈ X .
(c) Mp = supθ∈Θ

x∈X
max|α|≤sI |Dα

θ pθ(x)| <∞.

B4 (a) kX is a Sobolev kernel of smoothness sX ∈ (d/2, sf ].
(b) kΘ is a Sobolev kernel of smoothness sΘ ∈ (p/2, sI ].
(c) κ = supθ∈Θ kΘ(θ, θ) <∞.

B5 (a) λΘ = cM1/2, for c > (4/C6)κ log(4/δ) for some C6 ≤ 1.
(b) λX ≥ 0.

Assumption B0 corresponds to conditions specified in the text of Theorem 1 prefacing the list of assumptions. Assump-
tion B0.(b) implies I(θ) ∈ WsI ,2(Θ): f(x, θ)pθ(x) ∈ WsI ,2(Θ) by the product rule for weak derivatives (see, for
instance, Evans [2018, Section 4.2.2]), and the integral lies in WsI ,2(Θ) by WsI ,2(Θ) being a complete space. Assump-
tion B0.(c) ensures the X -Sobolev norm of any weak derivative of θ → f(·, θ) is uniformly bounded across all θ; this will
be satisfied unless f is so irregular said Sobolev norms can get arbitrarily close to infinity. Assumption B3.(c), similarly,
ensures that any weak derivative of θ → pθ(x) is bounded across all θ and x. It is worth pointing out assumption B4.(c),
boundedness of the kernel, follows from assumption B4.(b); however, we keep it separate as some results will only require
that the kernel is bounded, not necessarily that it is Sobolev.

Crucially, in the proofs in the next section we will see that the assumptions imply that the setting of the model in Stage 1
satisfies the assumptions of [Wynne et al., 2021, Theorem 4], and the setting of the model in Stage 2 satisfies the assumptions
necessary to establish convergence of a noisy importance-weighted kernel ridge regression estimator—the two key results
we will use to prove the convergence rate of the estimator.

We now state the main convergence result, which is a version of Theorem 1 for λX ≥ 0. The proof of both this result and
the more specific Theorem 1 are postponed until Section BLAH, as they rely on intermediary results.

Theorem 2 (Generalised Theorem 1). Suppose all technical assumptions in Appendix A.1 hold. Then for any δ ∈ (0, 1)
there is an N0 > 0 such that for any N ≥ N0, with probability at least 1− δ it holds that

∥ICBQ − I∥L2(Θ,Q) ≤
(
1 + c−1M− 1

2

(
λX + C2N

−1+2ε
(
N− sX

d + 1
2+ε + C3λX

)2))
×
(
C7(δ)N

− 1
2+ε

(
N− sX

d + 1
2+ε + C5λX

)
+ C8(δ)M

− 1
4 ∥I∥HΘ

)
for any arbitrarily small ε > 0, constants C2, C3, C5, C7(δ) = O(1/δ) and C8(δ) = O(log(1/δ)) independent of N,M, ε.

A.2 STAGE 1 BOUNDS

Recall that we use the shorthand xt1:N for xθt1:N . In this section, we bound the BQ variance σ2
BQ(θ;x

θ
1:N ) in expectation

in Theorem 3, and the difference between IBQ(θ;x
θ
1:N ) and I in the norm of the RKHS HΘ induced by the kernel kΘ

in Theorem 4. Later in Appendix A.3, the error of the estimator ICBQ will be bounded in terms of these quantities.

Theorem 3. Suppose Assumptions B0.(a), B1.(a), B3.(b), B4.(a), and B5.(b) hold. Then there is a N0 > 0 such that for all
N ≥ N0 it holds that

Eyθ
1:N∼Pθ

σ2
BQ(θ; y

θ
1:N ) ≤ λX + C2N

−1+2ε
(
N− sX

d + 1
2+ε + C3λX

)2
for any θ ∈ Θ, any arbitrarily small ε > 0, and C2, C3 independent of θ,N, ε, λX .

The term N0 quantifies how likely the points yθ1:N are to “fill out” the space X—for any θ. Intuitively speaking, N0 is
smallest when for all θ, the Pθ is uniform.

Proof. Recall

IBQ(θ; y
θ
1:N ) = µθ(y

θ
1:N )⊤

(
kX (yθ1:N , y

θ
1:N ) + λX IdN

)−1
f(yθ1:N , θ),

σ2
BQ(θ; y

θ
1:N ) = EX,X′∼Pθ

[kX (X,X ′)]− µθ(y
θ
1:N )⊤

(
kX (yθ1:N , y

θ
1:N ) + λX IdN

)−1
µθ(y

θ
1:N ).



We seek to bound σ2
BQ(θ; y

θ
1:N ). [Kanagawa et al., 2018, Proposition 3.8] pointed out that the Gaussian noise posterior is the

worst-case error in the HλX
X , the RKHS induced by the kernel kλX

X (x, x′) = kX (x, x′) + λX δ(x, x
′) (where δ(x, x′) = 1 if

x = x′, and 0 otherwise). Through straightforward algebraic manipulations and using the reproducing property, one can
show that for the vector wθ = k(x, yθ1:N )⊤

(
kX (yθ1:N , y

θ
1:N ) + λX IdN

)−1 ∈ RN ,

σ2
BQ(θ; y

θ
1:N )− λX = sup

∥f∥
H

λX
X

≤1

∣∣∣∣wθf(y
θ
1:N )−

∫
X
f(x)Pθ(dx)

∣∣∣∣2 , (A.1)

Since HλX
X is induced by the sum of kernels, kλX

X (x, x′) = kX (x, x′) + λX , it holds that HX ⊆ HλX
X , and ∥f∥HλX

X
≤

∥f∥HX [Aronszajn, 1950, Theorem I.13.IV]. Therefore, the class of functions f for which ∥f∥HX ≤ 1 is larger than that
for which ∥f∥HλX

X
≤ 1, and

sup
∥f∥

H
λX
X

≤1

∣∣∣∣wθf(y
θ
1:N )−

∫
X
f(x)Pθ(dx)

∣∣∣∣ ≤ sup
∥f∥HX ≤1

∣∣∣∣wθf(y
θ
1:N )−

∫
X
f(x)Pθ(dx)

∣∣∣∣ . (A.2)

Next, note that for f̂θ(x) = k(x, yθ1:N )⊤
(
kX (yθ1:N , y

θ
1:N ) + λX IdN

)−1
f(yθ1:N ),∣∣∣∣wθf(y

θ
1:N )−

∫
X
f(x)Pθ(dx)

∣∣∣∣ = ∣∣∣∣∫
X

(
f̂θ(x)− f(x)

)
Pθ(dx)

∣∣∣∣ ≤ ∫
X

∣∣∣f̂θ(x)− f(x)
∣∣∣Pθ(dx)

≤ ∥f̂θ − f∥L2(X )∥pθ∥L2(X ),

(A.3)

where the last inequality is an application of Hölder inequality. By Assumption B3.(b), ∥pθ∥L2(X ) is bounded above by η0.
In order to apply [Wynne et al., 2021, Theorem 4] to bound ∥f̂θ − f∥L2(X ), we show the assumptions of that Theorem hold.

Assumption 1 (Assumptions on the Domain): An open, bounded, and convex X satisfies the assumption, as discussed
in Wynne et al. [2021].

Assumption 2 (Assumptions on the Kernel Parameters) and Assumption 3 (Assumptions on the Kernel Smoothness Range):
Our setting is more specific than the one [Wynne et al., 2021, Theorem 4]: the kernel kX is Matérn, and therefore all
smoothness constants mentioned in Assumptions 2 and 3 have the same value, sX .

Assumption 4 (Assumptions on the Target Function and Mean Function): The target function f was assumed to have higher
smoothness than kX in B0.(a), and B4.(a); the mean function was taken to be zero.

Assumption 5 (Additional Assumptions on Kernel Parameters): By B4.(a) and B0.(a) the smoothness of the true function
sf ≥ sX > d/2, which verifies both statements in the Assumption since all smoothness constants of the kernel are equal to
sX .

Therefore [Wynne et al., 2021, Theorem 4] holds, and for W0,2(X ) = L2(X )

∥f̂θ − f∥L2(X ) ≤ K3∥f∥HX h
d
2

yθ
1:N

(
h
sX− d

2

yθ
1:N

+ λX

)
,

for any N for which the fill distance hyθ
1:N

≤ h0 for some h0, and K3 and h0 that depend on X , sf , sX .1

For yθ1:N ∼ Pθ, we can guarantee that hyθ
1:N

≤ h0 in expectation using [Oates et al., 2019, Lemma 2], which says that
provided the density infx pθ(x) > 0, there is a Cθ such that Ehyθ

1:N
≤ CθN

−1/d+ε for an arbitrarily small ε > 0, for Cθ

that depends on θ through infx pθ(x). The smaller infx pθ(x), the larger Cθ. Since we assumed infx,θ pθ(x) = η > 0 there
is a K4 such that Cθ ≤ K4 for any θ. Therefore, we may take N0 to be the smallest N for which Ehyθ

1:N
≤ K4N

−1/d+ε

holds, and have for all N ≥ N0

Eyθ
1:N∼Pθ

∥f̂θ − f∥L2(X ) ≤ K3K
d
2
4 ∥f∥HXN

− 1
2+ε

(
K

sX− d
2

4 N− sX
d + 1

2+ε + λX

)
(A.4)

1Note that the result in [Wynne et al., 2021, Theorem 4] features ∥f∥WsX ,2(X ), not ∥f∥HX . The bound in terms ∥f∥HX holds since
HX was assumed to be a Sobolev RKHS.



Putting together Equations (A.1) to (A.4) and Assumption B3.(b), we get the result,

Eyθ
1:N∼Pθ

σ2
BQ(θ; y

θ
1:N )− λX = sup

∥f∥
H

λX
X

≤1

Eyθ
1:N∼Pθ

∣∣∣∣wθf(y
θ
1:N )−

∫
X
f(x)Pθ(dx)

∣∣∣∣2

≤ sup
∥f∥HX ≤1

Eyθ
1:N∼Pθ

∣∣∣∣wθf(y
θ
1:N )−

∫
X
f(x)Pθ(dx)

∣∣∣∣2
≤ sup

∥f∥HX ≤1

Eyθ
1:N∼Pθ

∥f̂θ − f∥2L2(X )∥pθ∥2L2(X )

≤ η20K
2
3K

d
4N

−1+2ε
(
K

sX− d
2

4 N− sX
d + 1

2+ε + λX

)2
=: C2N

−1+2ε
(
N− sX

d + 1
2+ε + C3λX

)2
.

Before bounding the error ∥IBQ − I∥HΘ , we give the following general auxiliary result for an arbitrary Sobolev space of
function over some open Ω ⊆ Rd.

Proposition 1. Suppose f, g lie in a Sobolev space Ws,2(Ω) for some of smoothness s, and for all |α| ≤ s the weak
derivative Dαg is bounded. Take M = max|α|≤s ∥Dαg∥L∞(Ω). Then, there is a constant K such that

∥fg∥Ws,2(Ω) ≤ KM∥f∥Ws,2(Ω).

Proof. Recall that the norm in a Sobolev space is defined as

∥fg∥2Ws,2(Ω) =
∑
|α|≤s

∥Dα[fg]∥2L2(Ω). (A.5)

Fix some α such that |α| ≤ s. By the product rule to weak derivatives (see, for instance, Evans [2018, Section 4.2.2]), it
holds that

Dα[fg] =
∑

|α′|≤|α|

∑
|α′′|≤|α|

Cα′,α′′,αD
α′
[f ]Dα′′

[g],

for all α′, α′′ being multi-indices of the same dimension as α, and some real constants Cα′,α′′,α > 0 that only depend on α
and not f or g. Then

∥Dα[fg]∥2L2(Ω) =

∥∥∥∥∥∥
∑

|α′|≤|α|

∑
|α′′|≤|α|

Cα′,α′′,αD
α′
[f ]Dα′′

[g]

∥∥∥∥∥∥
2

L2(Ω)

(A)

≤

 ∑
|α′|≤|α|

∑
|α′′|≤|α|

Cα′,α′′,α∥Dα′
[f ]Dα′′

[g]∥L2(Ω)

2

(B)

≤ 2

(
d
|α|

) ∑
|α′|≤|α|

∑
|α′′|≤|α|

Cα′,α′′,α∥Dα′
[f ]Dα′′

[g]∥2L2(Ω)

(C)

≤ 2M2

(
d
|α|

) ∑
|α′|≤|α|

∑
|α′′|≤|α|

Cα′,α′′,α∥Dα′
[f ]∥2L2(Ω)

≤ 2M2

(
d
|α|

) ∑
|α′|≤|α|

∑
|α′′|≤|α|

Cα′,α′′,α∥f∥2Ws,2(Ω),

where (A) holds by triangle inequality, (B) holds as, by Cauchy-Schwartz, (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i for

any real ai, and as the number of multi-indices in Nd of size at most α is “d choose |α|”, and (C) by



the definition M = max|α|≤s ∥Dαg∥L∞(Ω). Substituting this into Equation (A.5), we get that for
√
K =

2
∑

|α|<s

(
d
|α|

)∑
|α′|≤|α|

∑
|α′′|≤|α| Cα′,α′′,α,

∥fg∥2Ws,2(Ω) ≤ K2M2∥f∥2Ws,2(Ω).

With the Sobolev norm bound in place, we are ready to give the bound on ∥IBQ − I∥HΘ .

Theorem 4. Suppose Assumptions B0.(a), B0.(c), B1.(a), B2.(b), B3.(b), B3.(c), B4.(a), B4.(b) and B5.(b) hold. Then there
is a N0 > 0 such that for all N ≥ N0 with probability at least 1− δ/2 it holds that

∥IBQ − I∥HΘ ≤ 2

δ
C4N

− 1
2+ε

(
N− sX

d + 1
2+ε + C5λX

)
.

for any arbitrarily small ε > 0, and C4, C5 independent of N, ε, λX .

Proof. Recall that, as HΘ is a Sobolev RKHS (meaning kΘ is a Sobolev kernel) of smoothness sΘ, it holds that
C ′

1∥g∥WsΘ,2(Θ) ≤ ∥g∥HΘ
≤ C ′

2∥g∥WsΘ,2(Θ) for some constants C ′
1, C

′
2 > 0 and any g ∈ HΘ. Take f̂(x, θ) =

k(x, xθ1:N )⊤
(
kX (xθ1:N , x

θ
1:N ) + λX IdN

)−1
f(xθ1:N , θ). Then,

∥IBQ − I∥2HΘ
= ⟨IBQ − I, IBQ − I⟩HΘ

=

〈∫
X

(
f̂(x, θ)− f(x, θ)

)
pθ(x)dx,

∫
X

(
f̂(x′, θ)− f(x′, θ)

)
pθ(x

′)dx′
〉

HΘ

≤
∫
X

∫
X

〈(
f̂(x, θ)− f(x, θ)

)
pθ(x),

(
f̂(x′, θ)− f(x′, θ)

)
pθ(x

′)
〉
HΘ

dxdx′

(A)

≤
(∫

X

∥∥∥(f̂(x, θ)− f(x, θ)
)
pθ(x)

∥∥∥
HΘ

dx

)2

(B)

≤ C ′
2
2
K2M2

p

(∫
X

∥∥∥f̂(x, θ)− f(x, θ)
∥∥∥
WsΘ,2(Θ)

dx

)2

,

where (A) holds by the Cauchy-Schwarz, (B) by Proposition 1 and HΘ being a Sobolev RKHS. As for the remaining term,∫
X

∥∥∥f̂(x, θ)− f(x, θ)
∥∥∥2
WsΘ,2(Θ)

dx =
∑

|α|≤sΘ

∫
X

∫
Θ

(
Dα

θ f̂(x, θ)−Dα
θ f(x, θ)

)2
dθdx

=
∑

|α|≤sΘ

∫
Θ

∫
X

(
Dα

θ f̂(x, θ)−Dα
θ f(x, θ)

)2
dxdθ

=
∑

|α|≤sΘ

∫
Θ

∥∥∥Dα
θ f̂(x, θ)−Dα

θ f(x, θ)
∥∥∥2
L2(X )

dθ

Since Dα
θ f̂(x, θ) = k(x, xθ1:N )⊤

(
kX (xθ1:N , x

θ
1:N ) + λX IdN

)−1
Dα

θ f(x
θ
1:N , θ), and the X -smoothness of Dα

θ f is the same
as that of f , we may use Wynne et al. [2021, Theorem 4] to bound ∥Dα

θ f̂(x, θ)−Dα
θ f(x, θ)∥L2(X ) identically to the proof

of Theorem 3. Then, we have that

Exθ
1:N∼Pθ

∥Dα
θ f̂(x, θ)−Dα

θ f(x, θ)∥L2(X ) ≤ K3K
d
2
4 ∥Dα

θ f∥HXN
− 1

2+ε
(
K

sX− d
2

4 N− sX
d + 1

2+ε + λX

)
(A)

≤ K3K
d
2
4 C

′
2MfN

− 1
2+ε

(
K

sX− d
2

4 N− sX
d + 1

2+ε + λX

)
,

where (A) holds by Assumption B0.(c), and kX being a Sobolev kernel and C ′
2 being a norm equivalence constant. Define

By Markov’s inequality, for any δ/2 ∈ (0, 1) it holds with probability at least 1− δ/2 that

∥Dα
θ f̂(x, θ)−Dα

θ f(x, θ)∥L2(X ) ≤
2

δ
K3K

d
2
4 C

′
2MfN

− 1
2+ε

(
K

sX− d
2

4 N− sX
d + 1

2+ε + λX

)



Lastly, the number of α such that |α| < sΘ is the combination “p select sΘ”. Then,

∥IBQ − I∥2HΘ
≤ C ′

2
2
K2M2

p

(
p
sΘ

)(
2

δ
K3K

d
2
4 C

′
2MfN

− 1
2+ε

(
K

sX− d
2

4 N− sX
d + 1

2+ε + λX

))2

=:
4

δ2

√
C4N

−1+2ε
(
N− sX

d + 1
2+ε + C5λX

)2
.

A.3 STAGE 2 BOUNDS

In this section, we establish convergence of the estimator ICBQ to the true function I in the norm L2(Θ,Q), first in terms of
the error ∥IBQ(·;xθ1:N )− I(·)∥HΘ in Theorem 5, and additionally in the variance σ2

BQ(θ;x
θ
1:N ) in Corollary 1. To do so,

we represent the CBQ estimator as

ICBQ(θ) = kΘ(θ, θ1:M )

(
kΘ(θ1:M , θ1:M ) + diag

[
Mλ

w(θ1:M ) + ε(θ1:M ;x1:M1:N )

])−1

IBQ(θ1:M ;x1:M1:N ). (A.6)

for vector notation ε(θ1:M ;x1:M1:N ) = [ε(θ1;x
1
1:N ), . . . , ε(θM ;xM1:N )]⊤ ∈ RM , and λ, the weight w : Θ → R and the noise

term ε : Θ → R given by

λ = λΘM
−1

w(θ) = Eyθ
1:N∼Pθ

λΘ
λΘ + σ2

BQ(θ; y
θ
1:N )

,

ε(θ;xθ1:N ) =
λΘ

λΘ + σ2
BQ(θ;x

θ
1:N )

− Eyθ
1:N∼Pθ

λΘ
λΘ + σ2

BQ(θ; y
θ
1:N )

.

(A.7)

The equality to the CBQ estimator given in the main text can be easily seen, as the term under the diag is

Mλ

w(θ1:M ) + ε(θ1:M ;x1:M1:N )
=

MλΘM
−1

λΘ

λΘ+σ2
BQ(θ;xθ

1:N )

= λΘ + σ2
BQ(θ;x

θ
1:N ).

If the noise term in Equation (A.6) were absent (meaning, equal to zero), the estimator would become the importance-
weighted kernel ridge regression (IW-KRR) estimator. The convergence of the IW-KRR estimator was studied in Gogolashvili
et al. [2023, Theorem 4]. In this section, we extend their results to the case of noisy weights (ε ̸≡ 0), which are additionally
correlated with the noise in IBQ(θi;x

i
1:N ) (through the shared datapoints xi1:N ).

Note that, while we only provide results specific for ICBQ, the proof can be extended with minor modifications to the more
general case of arbitrary noisy IW-KRR with weights that satisfy conditions in Gogolashvili et al. [2023], and zero-mean
weight noise.

The convergence results for the noisy importance-weighted kernel ridge regression estimator in Appendix A.3.3 will rely on
a representation of ICBQ in terms of a sample-level version of a certain weighted integral operator. Then, we bound the gap
between ICBQ and I in terms of (1) the gap between the sample-level version of said operator, and the population-level
version, and (2) the gap between IBQ and I . Next, we define said operator, and additional notation used in the proofs.

A.3.1 Notation

We will be working on positive, bounded, self-adjoint HΘ → HΘ operators

T [g](θ) =

∫
Θ

kΘ(θ, θ
′)g(θ′)w(θ′)Q(dθ′) T̂ [g](θ) =

1

M
kΘ(θ, θ1:M ) diag

[
w(θ1:M ) + ε(θ1:M ;x1:M1:N )

]
g(θ1:M ).

(A.8)
for the weight function w and noise term ε as defined in Equation (A.7). We will denote HS to be the Hilbert space of
Hilbert-Schmidt operators HΘ → HΘ, ∥ · ∥HS to be the Hilbert-Schmidt norm, and ∥ · ∥op to be the operator norm. As is
customary, we will write T + λ to mean the operator T + λIdHΘ

, where IdHΘ
is the identity operator HΘ → HΘ.



A.3.2 Auxiliary results

The results given in this section are key to proving the main Stage 2 result, Theorem 5. The following result bounds
the Hilbert-Schmidt norm on the “gap” between the population-level T and the sample-level T̂ , when their difference is
“sandwiched” between (T + λ)−1/2. With some manipulation, this term will appear in the proof of Theorem 5.

Lemma 1 (Modified Lemma 18 in Gogolashvili et al. [2023]). Suppose Assumptions B2.(b), B4.(c) hold, and the operators
T, T̂ be as defined in Appendix A.3.1. Then, with probability greater than 1− δ/2,

S1 := ∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2∥HS ≤ 4κ

λ
√
M

log(4/δ).

Additionally, if λ
√
M > (4/C6)κ log(4/δ) for some C6 ≤ 1, it holds that S1 < C6 ≤ 1.

The fact that S1 is strictly less than 1 will be important in the proof of the main Stage 2 result, Theorem 5, as it will allow us
to apply Neumann series expansion to ∥(Id− (T + λ)−1/2(T − T̂ )(T + λ)−1/2)−1∥op.

Proof. Denote a feature function φθ(·) := kΘ(θ, ·). Let ξ, ξ1, . . . , ξM be random variables in HS defined as

ξ = (T + λ)−1/2(w(θ) + ε(θ;xθ1:N ))φθ⟨φθ, ·⟩HΘ
(T + λ)−1/2

ξi = (T + λ)−1/2(w(θi) + ε(θi;x
i
1:N ))φθi⟨φθi , ·⟩HΘ(T + λ)−1/2

First, note that as (θ, x1:N ), (θ1, x
1
1:N ), . . . , (θN , x

N
1:N ) are i.i.d., it follows that ξ, ξ1, . . . , ξN are i.i.d. random variables in

HS. Further, as Exθ
1:N∼Pθ

ε(θ;xθ1:N ) = 0, it holds that

Eθ∼Q Exθ
1:N∼Pθ

ξ = Eθ∼Q

[
(T + λ)−1/2w(θ)φθ⟨φθ, ·⟩HΘ(T + λ)−1/2

]
= (T + λ)−1/2T (T + λ)−1/2,

where the last equality, Eθ∼Q w(θ)φθ⟨φθ, ·⟩HΘ
= T , holds since Eθ∼Q [w(θ)φθ⟨φθ, ·⟩HΘ

] g(θ′) = Eθ∼Q w(θ)k(θ, θ
′)g(θ)

for any g ∈ HΘ. Therefore

S1 =

∥∥∥∥∥ 1

M

M∑
i=1

ξi − Eθ∼Q Exθ
1:N∼Pθ

ξ

∥∥∥∥∥
HS

.

Then, by the Bernstein inequality for Hilbert space-valued random variables [Caponnetto and De Vito, 2007, Proposition 2],
the claimed bound on S1 holds if there exist L > 0, σ > 0 such that

Eθ∼Q Exθ
1:N∼Pθ

[
∥ξ − Eθ∼Q Exθ

1:N∼Pθ
ξ∥mHS

]
≤ 1

2
m!σ2Lm−2

holds for all integer m ≥ 2. We will show the condition holds. For convenience, denote Eξ f(ξ) := Eθ∼Q Exθ
1:N∼Pθ

f(ξ).
First, suppose ξ′ is an independent copy of ξ. Identically to the proof of Gogolashvili et al. [2023, Lemma 18], it holds that

Eξ [∥ξ − Eξ ξ∥mHS]
(A)

≤ Eξ Eξ′ [∥ξ − ξ′∥mHS]
(B)

≤ 2m−1 Eξ Eξ′ [∥ξ∥mHS + ∥ξ′∥mHS] = 2m Eξ ∥ξ∥mHS

where (A) holds by Jensen inequality, and (B) uses the fact that |a+ b|m ≤ 2m−1(|a|m + |b|m). Next, observe that

Eξ ∥ξ∥mHS = Eθ∼Q Exθ
1:N∼Pθ

∥(T + λ)−1/2(w(θ) + ε(θ;xθ1:N ))φθ⟨φθ, ·⟩HΘ
(T + λ)−1/2∥mHS

(A)
= Eθ∼Q

[
Exθ

1:N∼Pθ

[
(w(θ) + ε(θ;xθ1:N ))m

]
∥(T + λ)−1/2φθ⟨φθ, ·⟩HΘ(T + λ)−1/2∥mHS

]
(B))

≤ Eθ∼Q

[
∥(T + λ)−1/2φθ⟨φθ, ·⟩HΘ(T + λ)−1/2∥mHS

]
(C)

≤ κmλ−m

=
1

2
m!σ2Lm−2



where L = σ = κλ−1, (A) holds by linearity of norms as w(θ) + ε(θ;xθ1:N ) ∈ R, (B) holds since σ2
BQ(θ;x

θ
1:N ) ≥ 0, so

(
w(θ) + ε(θ;xθ1:N )

)m
=

(
λΘ

λΘ + σ2
BQ(θ;x

θ
1:N )

)m

≤ 1.

To show (C) holds, take {ej}∞j=1 to be some orthonormal basis of HΘ. Then,

∥(T + λ)−1/2φθ⟨φθ, ·⟩HΘ
(T + λ)−1/2∥2HS =

∞∑
j=1

∥(T + λ)−1/2φθ⟨φθ, ·⟩HΘ
(T + λ)−1/2ej∥2HΘ

=

∞∑
j=1

∥(T + λ)−1/2φθ⟨φθ, (T + λ)−1/2ej⟩HΘ
∥2HΘ

≤ ∥(T + λ)−1/2φθ∥2HΘ

∞∑
j=1

⟨φθ, (T + λ)−1/2ej⟩2HΘ

= ∥(T + λ)−1/2φθ∥2HΘ

∞∑
j=1

⟨(T + λ)−1/2φθ, ej⟩2HΘ

(A)

≤ ∥(T + λ)−1/2φθ∥2HΘ
∥(T + λ)−1/2φθ∥2HΘ

= ⟨(T + λ)−1φθ, φθ⟩2HΘ

≤ κ2λ−2,

where (A) holds by Bessel’s inequality. Then by the Bernstein inequality in Caponnetto and De Vito [2007, Proposition 2],
it holds that

S1 ≤ 2κ

λ
√
M

(
1√
M

+ 1

)
log(4/δ) ≤ 4κ

λ
√
M

log(4/δ),

with probability at least 1− δ/2. Finally as λ
√
M > (16/3)κ log(4/δ), S1 < 3/4.

Next, we bound another relevant term that also quantifies the “gap” between T and T̂ . Unlike S1, we will not require it to be
upper bounded by 1—as it will only appear in Theorem 5 as a bounding term to the error.

Lemma 2. Suppose Assumptions B2.(b), B4.(c) hold, and the operators T, T̂ be as defined in Appendix A.3.1. Then, with
probability greater than 1− δ/2,

S2 := ∥(T + λ)−1/2(T − T̂ )∥HS ≤ 4κ√
λM

log(4/δ).

Additionally, if λ
√
M > (4/C6)κ log(4/δ), it holds that S2 < C6

√
λ.

Proof. The proof is identical to that of Lemma 1.

The last auxiliary result we need is a simple bound on the following operator norm.

Lemma 3. Let T : HΘ → HΘ be a positive operator. Then,

∥T (T + λ)−1∥op ≤ 1.

Proof. Since T is positive, for any f ∈ HΘ it holds that ∥Tf∥HΘ
≤ ∥(T +λ)f∥HΘ

. Therefore, by taking f = (T +λ)−1g,
we get that

∥T (T + λ)−1∥op = sup
g∈HΘ

∥g∥HΘ
=1

∥T (T + λ)−1g∥HΘ
≤ sup

g∈H
∥g∥HΘ

=1

∥(T + λ)(T + λ)−1g∥HΘ
= 1.



A.3.3 Convergence of the noisy IW-KRR estimator

With the auxiliary results in place, we now extend Gogolashvili et al. [2023, Theorem 4] to the case of noisy weights. We
start by establishing convergence in L2(Θ,Qw), where Qw is the measure defined as Qw(A) =

∫
A
w(θ)Q(dθ) that must be

finite and positive. By [Fremlin, 2000, Proposition 232D], for Qw(A) to be a finite positive measure, it is sufficient for w(θ)
to be continuous and bounded. By their definition in Equation (A.7),

w(θ) = Eyθ
1:N∼Pθ

λΘ
λΘ + σ2

BQ(θ; y
θ
1:N )

the weights are bounded by 1, and are continuous in θ if pθ is continuous in θ (as the dependance of σ2
BQ(θ; y

θ
1:N ) on θ

for a fixed yθ1:N is, again, only through pθ appearing under integrals and in polynomials). The continuity of pθ holds as,
by B0.(b), B4.(b), pθ lies in a Sobolev space of smoothness over p/2, and therefore by Sobolev embedding theorem [Adams
and Fournier, 2003, Theorem 4.12] pθ is continuous in θ.

Theorem 5. Suppose Assumptions B0.(b), B1.(b), B2.(a), B2.(b), and B4.(c) hold, and λ
√
M > (4/C6)κ log(4/δ) for some

C6 ≤ 1. Then,

∥ICBQ − I∥L2(Θ,Qw) ≤ (1− C6)
−1
(
C6

√
λ+ 1

)
∥IBQ − I∥HΘ +

(
8(1− C6)

−1κ√
λM

log(4/δ) +
√
λ

)
∥I∥HΘ .

Proof. First, note that ICBQ(θ) = (T̂ + λ)−1T̂ [IBQ], which can be checked easily by seeing that (T̂ + λ)ICBQ(θ) =

T̂ [IBQ] for the weighted operator T̂ as defined in Appendix A.3.1 and ICBQ as defined in Equation (A.6). Then, for
Iλ = (T + λ)−1T [I], by triangle inequality the error is bounded as

∥ICBQ − I∥L2(Θ,Qw) ≤ ∥ICBQ − Iλ∥L2(Θ,Qw) + ∥Iλ − I∥L2(Θ,Qw) (A.9)

The second term, ∥Iλ − I∥2L2(Θ,Qw), can be bounded in terms of λ as

∥Iλ − I∥L2(Θ,Qw) = ∥λ(T + λ)−1[I]∥L2(Θ,Qw)

= ∥λT 1/2(T + λ)−1[I]∥HΘ

(A)

≤ λ∥T (T + λ)−1∥1/2op ∥(T + λ)−1/2∥op∥I∥HΘ

≤
√
λ∥I∥HΘ

, (A.10)

where (A) holds by Lemma 3 and T being a positive operator. Next, the L2(Θ,Qw) norm between ICBQ − Iλ can be
bounded as

∥ICBQ − Iλ∥L2(Θ,Qw) = ∥T 1/2(ICBQ − Iλ)∥HΘ
= ∥T 1/2((T̂ + λ)−1T̂ [IBQ]− (T + λ)−1T [I])∥HΘ

(A)

≤ ∥T (T + λ)−1∥1/2op ∥(Id− (T + λ)−1/2(T − T̂ )(T + λ)−1/2)−1∥op
×
(
∥(T + λ)−1/2(T̂ [IBQ]− T [I])∥HΘ

+ ∥(T + λ)−1/2(T − T̂ )(T + λ)−1T [I]∥HΘ

)
(B)

≤ ∥T (T + λ)−1∥1/2op ∥(Id− (T + λ)−1/2(T − T̂ )(T + λ)−1/2)−1∥op
×
(
∥(T + λ)−1/2T̂ [IBQ − I]∥HΘ

+ ∥(T + λ)−1/2(T − T̂ )[I]∥HΘ

+ ∥(T + λ)−1/2(T − T̂ )(T + λ)−1T [I]∥HΘ

)
=: U0 × U1 × (U2 + U3 + U4),

where ∥ · ∥op denotes the operator norm, (A) holds by Gogolashvili et al. [2023, Lemma 17], and (B) is an application of
triangle inequality,

∥(T + λ)−1/2(T̂ [IBQ]− T [I])∥HΘ
≤ ∥(T + λ)−1/2T̂ [IBQ − I]∥HΘ

+ ∥(T + λ)−1/2(T − T̂ )[I]∥HΘ
.



We will bound the terms U0, U1, U2, U3, U4, and the result will follow. First, we have that U0 = ∥T (T + λ)−1∥1/2op ≤ 1 by
Lemma 3. To upper bound U1 = ∥(Id− (T + λ)−1/2(T − T̂ )(T + λ)−1/2)−1∥op we may expand it as Neumann series,
provided ∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2)−1∥op < 1. This condition holds as

∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2∥op
(A)

≤ ∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2∥HS

(B)
< C6 ≤ 1,

where (A) holds as the operator norm is bounded by the Hilbert-Schmidt norm, and (B) by Lemma 1. Therefore,

∥∥∥(Id− (T + λ)−1/2(T − T̂ )(T + λ)−1/2)−1
∥∥∥
op

(A)
=

∥∥∥∥∥
∞∑
i=0

(
(T + λ)−1/2(T − T̂ )(T + λ)−1/2

)i∥∥∥∥∥
op

(B)

≤
∞∑
i=0

∥∥∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2
∥∥∥i
op

(C)

≤
∞∑
i=0

∥∥∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2
∥∥∥i
HS

(D)
=
(
1−

∥∥∥(T + λ)−1/2(T − T̂ )(T + λ)−1/2
∥∥∥
HS

)−1

(E)

≤ (1− C6)
−1,

where (A) holds by the Neumann series expansion, (B) by the triangle inequality, and the fact that operator norm is
sub-multiplicative for bounded operators, (C) since the operator norm is bounded by the Hilbert-Schmidt norm, (D) by the
geometric series, and (E) by Lemma 1.

To bound U2 = ∥(T + λ)−1/2T̂ [IBQ − I]∥HΘ
, observe that

U2 = ∥(T + λ)−1/2T̂ [IBQ − I]∥HΘ
≤ ∥(T + λ)−1/2T̂∥op∥IBQ − I∥HΘ

≤
(
∥(T + λ)−1/2(T − T̂ )∥op + ∥(T + λ)−1/2T∥op

)
∥IBQ − I∥HΘ

(A)

≤ (S2 + 1) ∥IBQ − I∥HΘ ,

where (A) holds by Lemmas 2 and 3.

Both U3 and U4 are upper bounded by the S2 term in Lemma 2, as

U3 = ∥(T + λ)−1/2(T − T̂ )[I]∥HΘ ≤ ∥(T + λ)−1/2(T − T̂ )∥op∥I∥HΘ = S2∥I∥HΘ ,

U4 = ∥(T + λ)−1/2(T − T̂ )(T + λ)−1T [I]∥HΘ
≤ ∥(T + λ)−1/2(T − T̂ )∥op∥(T + λ)−1T∥op∥I∥HΘ

(A)

≤ S2∥I∥HΘ
,

where (A) holds by Lemma 3. Putting the upper bounds on U0, U1, U2, U3, U4 together, we get

∥ICBQ − Iλ∥L2(Θ,Qw) ≤ U0 × U1 × (U2 + U3 + U4) ≤ 4 ((S2 + 1)∥IBQ − I∥HΘ + 2S2∥I∥HΘ) .

By applying the union bound, we get that that with probability at least 1− δ,

∥ICBQ − Iλ∥L2(Θ,Qw) ≤ U0 × U1 × (U2 + U3 + U4)

≤ (1− C6)
−1 ((S2 + 1)∥IBQ − I∥HΘ + 2S2∥I∥HΘ)

(A)

≤ (1− C6)
−1

((
C6

√
λ+ 1

)
∥IBQ − I∥HΘ

+
8κ√
λM

log(4/δ)∥I∥HΘ

)
,

where (A) holds by Lemma 2. Inserting this and the bound in Equation (A.10) into Equation (A.9) gives

∥ICBQ − I∥L2(Θ,Qw) ≤ (1− C6)
−1
(
C6

√
λ+ 1

)
∥IBQ − I∥HΘ

+

(
8(1− C6)

−1κ√
λM

log(4/δ) +
√
λ

)
∥I∥HΘ

.



Finally, we use the L2(Θ,Qw) bound in Theorem 5 to establish a bound in L2(Θ,Q) in terms of the BQ variance.

Corollary 1. Suppose Assumptions B0.(b), B1.(b), B2.(a), B2.(b), and B4.(c), and λ
√
M > (4/C6)κ log(4/δ) for some

C6 ≤ 1. Then

∥ICBQ − I∥L2(Θ,Q) ≤
(
1 +

1

c
√
M

sup
θ∈Θ

Eyθ
1:N∼Pθ

σ2
BQ(θ; y

θ
1:N )

)
×
(
(1− C6)

−1
(
C6

√
λ+ 1

)
∥IBQ − I∥HΘ

+

(
8(1− C6)

−1κ√
λM

log(4/δ) +
√
λ

)
∥I∥HΘ

)
Proof. Observe that for any g ∈ L2(Θ,Q), it holds that ∥g∥2L2(Θ,Qw) ≥ (infθ∈Θ w(θ))× ∥g∥2L2(Θ,Q). Then, since

w(θ) = Eyθ
1:N∼Pθ

λΘ
λΘ + σ2

BQ(θ; y
θ
1:N )

≥ λΘ
λΘ + Eyθ

1:N∼Pθ
σ2
BQ(θ; y

θ
1:N )

=
1

1 + λ−1
Θ Eyθ

1:N∼Pθ
σ2
BQ(θ; y

θ
1:N )

,

the bound in Theorem 5, the definition of λ in Equation (A.7), and Assumption B5.(a) give the desired statement.

A.4 PROOF OF THEOREM 1

We are now ready to prove our main convergence result, which is a version of Theorem 1 for λX ≥ 0. We start by restating
it for the convenience of the reader.

Restatement of Theorem 2. Suppose all technical assumptions in Appendix A.1 hold. Then for any δ ∈ (0, 1) there is an
N0 > 0 such that for any N ≥ N0, with probability at least 1− δ it holds that

∥ICBQ − I∥L2(Θ,Q) ≤
(
1 + c−1M− 1

2

(
λX + C2N

−1+2ε
(
N− sX

d + 1
2+ε + C3λX

)2))
×
(
C7(δ)N

− 1
2+ε

(
N− sX

d + 1
2+ε + C5λX

)
+ C8(δ)M

− 1
4 ∥I∥HΘ

)
for any arbitrarily small ε > 0, constants C2, C3, C5, C7(δ) = O(1/δ) and C8(δ) = O(log(1/δ)) independent of
N,M, ε.

Proof of Theorem 2. By inserting Theorems 3 and 4 into Corollary 1 and applying the union bound, we get that the result
holds with probability at least 1− δ and

C7(δ) = (1− C6)
−1
(
C6c

1
2 + 1

)
C4(2/δ),

C8(δ) =
(
8c−

1
2 (1− C6)

−1κ log(4/δ) + c
1
2

)
.

As discussed in the main text, convergence is fastest when the regulariser λX is set to 0; λX > 0 ensures greater stability
at the cost of a lower speed of convergence. For clarity we show how Theorem 1 in the main text follows from the more
general Theorem 2 by setting λX = 0.

Proof of Theorem 1. In Theorem 2, take λX = 0. Then

∥ICBQ − I∥L2(Θ,Q) ≤
(
1 + c−1M− 1

2C2N
− 2sX

d +ε
)
×
(
C7(δ)N

− sX
d +ε + C8(δ)M

− 1
4 ∥I∥HΘ

)
.

As Q was assumed equivalent to the uniform distribution in Assumption B2.(a), the error in uniform measure is bounded by
the error in Q. Therefore, the result holds for

C0(δ) =
(
1 + c−1C2

)
C7(δ) = O(1/δ),

C1(δ) =
(
1 + c−1C2

)
∥I∥HΘ

C8(δ) = O(log(1/δ)).



APPENDIX B PRACTICAL CONSIDERATIONS FOR CONDITIONAL BAYESIAN
QUADRATURE

We now discuss important practical considerations which can have significant impact on the performance of CBQ. Firstly, in
Appendix B.1 we discuss how to ensure a closed-form expression for kernel mean embeddings and initial errors of BQ
estimators. Then, we discuss the selection of all kernel hyperparameters in Appendix B.2.

B.1 TRACTABLE KERNEL MEANS

In the main text, we discussed the requirement for both BQ and CBQ that the kernel mean embedding µ and its integral
(called initial error) are known in closed-form. A list of well-known pair can be found in Table 1 in [Briol et al., 2019] or the
ProbNum package [Wenger et al., 2021]. However, even when none of these pairs are appropriate for the problem at hand,
there are still multiple solutions:

• First, for a fixed k, when the embedding of P is intractable but the embedding of some other distribution Q is known,
we can use the ‘importance sampling trick’ which consists of writing the integral as I = EX∼P[f(X)] = EX∼Q[g(X)]
where g(x) = f(x)p(x)/q(x) and p, q are the densities of P,Q. This allows us to use BQ on the integral of g, which is
tractable by construction.

• Secondly, again for a fixed k and assuming that we know the quantile function Φ−1 of the distribution P and that the
embedding of the uniform distribution is available, we can use the ‘inverse transform trick’ which consists of writing
I = EX∼P[f(X)] = EU∼U[g(U)] where g(u) = f(Φ−1(u)) and U is a uniform distribution on some hypercube. Once
again, BQ can now be applied to the transformed problem.

• Finally, for any distribution P whose density is known up to the normalisation constant (for example most posterior
distributions), then specialised kernels with closed-form embeddings can be constructed. This is true of Stein repro-
ducing kernels Anastasiou et al. [2023]. Suppose we have a distribution P with density p : X → R+ and a function
f : X → R with the property that limx→∞ p(x)f(x) = 0. The Langevin Stein kernel k : X × X → R [Anastasiou
et al., 2023] is given by:

kp(x, x
′) := ∇x log p(x)

⊤k(x, x′)∇x′ log p(x′) +∇x log p(x)
⊤∇x′k(x, x′)

+∇x′ log p(x′)⊤∇xk(x, x
′) +∇x · ∇x′k(x, x′),

where ∇x = (∂/∂x1, · · · , ∂/∂xd)⊤ and ∇x · ∇x′k(x, x′) =
∑d

i=1
∂k(x,x′)
∂xi∂x′

i
.

The main advantage of using Stein kernel is that the mean embedding µ(x′) =
∫
X kp(x, x

′)p(x)dx = 0 by construction.
However, this means our GP prior on f encodes beliefs that the function has mean zero. To weaken this, we can add a
constant c ∈ R; i.e k̃p(x, x′) = kp(x, x

′) + c, so that the kernel mean embedding becomes µ(x′) = c. The constant c
can then be treated as a kernel hyperparameter and estimated alongside all other parameters.

B.2 MODEL AND HYPERPARAMETER SELECTION

We now discuss our approach for model and hyperparameter selection for CBQ and baseline methods.

Conditional Bayesian quadrature The hyperparameter selection for CBQ boils down to the choice of GP interpolation
hyperparameters at stage 1 and the choice of GP regression hyperparameters at stage 2. To simplify this choice, we
renormalise all our function values before performing GP regression and interpolation. This is done by first subtracting the
empirical mean and then dividing by the empirical standard deviation. All of our experiments then use prior mean functions
mΘ and mX which are zero functions, a reasonable choice given the function was renormalised using the empirical mean.
This choice is made for simplicity, and we might expect further improvements in accuracy if more information is available.

The choice of covariance functions kX and kΘ is made on a case-by-case basis in order to both encode properties we
expect the target functions to have, but also to ensure that the corresponding kernel mean is available in closed-form (as
per the previous section). Once this is done, we typically still need to make a choice of hyperparameters for both kernel:
lengthscales lX , ℓΘ and amplitudes AX , AΘ. We also need to select the regularizer λX , λΘ. λX is fixed to be 0 as suggested



by Theorem 1. The rest of the hyperparameters are selected through empirical Bayes, which consists of maximising the
log-marginal likelihood. For stage 1, the log-marginal likelihood can be written as [Rasmussen and Williams, 2006]:

L(lX , AX ) = −1

2
log |kX (x1:N , x1:N ; lX , AX )| − N

2
log(2π)

− 1

2
(f(x1:N )−mX (x1:N ))⊤ (kX (x1:N , x1:N ; lX , AX ) + λX IdN )

−1
(f(x1:N )−mX (x1:N )),

where | · | denotes the determinant of the matrix, and we write kX (x1:N , x1:N ; lX , AX ) to emphasise the hyperparameters
used to compute the Gram matrix. The optimisation is implemented through a grid search over [1.0, 10.0, 100.0, 1000.0] for
the amplitude AX and a grid search over [0.1, 0.3, 1.0, 3.0, 10.0] for the lengthscale lX .

If kX is a Stein reproducing kernel, we have an extra hyperparameter cX . In this case, we use stochastic gradient descent on
the log-marginal likelihood to find the optimal value for cX , lX , AX , which is implemented with JAX autodiff library [Brad-
bury et al., 2018]. The reason we are using gradient based optimization instead of grid search for Stein kernel is that Stein
kernel requires an accurate estimate of cX to work well. In order to return accurate results, grid search would require finer
grid which is very expensive, while gradient based methods would require good initialization to avoid getting stuck in local
minima. Fortunately, since cX indicates the mean of functions in the RKHS, we know that cX = 0 is a good initialisation
point since we have subtracted the empirical mean when normalising.

Additionally, it is important to note that we could technically use T different kernels k1X , · · · , kTX for each integral in
stage 1. However, the hyperparameters of each kernel ktX would need to be selected using empirical Bayes under the
observations xt1:N , which means we would need to repeat the above optimization T times. In practice, when performing
initial experiments, we observed that the estimated hyperparameters were very similar. Our strategy is therefore to select
the hyperparameters of k1X and subsequently reuse them across all T integrals in stage 1. This is done for computational
reasons, and we expect CBQ to show better performances if hyperparameters are optimised separately.

For the kernel kΘ, we also select the hyperparameters by maximising the log-marginal likelihood:

L(lΘ, AΘ) = −1

2
log |kΘ(θ1:T , θ1:T ; lΘ, AΘ)| −

T

2
log(2π)

− 1

2
(IBQ(θ1:T )−mΘ(θ1:T ))

⊤ (kΘ(θ1:T , θ1:T ; lΘ, AΘ) +
(
λΘ + σ2

BQ(θ1:T )
)
IdT
)−1

(IBQ(θ1:T )−mΘ(θ1:T )).

Similar to above, we also do a grid search over [1.0, 10.0, 100.0, 1000.0] for amplitude AΘ, a grid search over
[0.1, 0.3, 1.0, 3.0, 10.0] for lengthscale lΘ and a grid search over [0.01, 0.1, 1.0] for λΘ, so we select the value that gives the
largest log-marginal likelihood.

Least-squares Monte Carlo LSMC implements Monte Carlo in the first stage and polynomial regression in the second
stage. In the second stage, the hyperparameters include the regularisation coefficient λΘ and the order of the polynomial
p ∈ {1, 2, 3, 4}. These hyperaparameters are also selected with grid search to give the lowest RMSE on a separate held out
validation set.

Kernel least-squares Monte Carlo KLSMC implements Monte Carlo in the first stage and kernel ridge regression in the
second stage. In the second stage, the hyperparameters are analogous to the hyperparameters in the second stage of CBQ,
namely AΘ, lΘ, λΘ. These hyperaparameters are selected with grid search to give the lowest RMSE on a separate held out
validation set.

Importance sampling For IS, there are no hyperparameters to select.

APPENDIX C ADDITIONAL EXPERIMENTS

We now provide detailed description of all experiments in the main text, as well as further results and ablation studies. All
figures reported in the paper are created using the median values obtained from 20 separate runs with different random seeds.
Standard error is shown as shaded area around the median.
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Figure 7: Bayesian sensitivity analysis for linear models. First Row: Dimension d = 2 with fixed N = 10, 50, 100 and increasing T .
Second Row: Dimension d = 2 with fixed T = 10, 50, 100 and increasing N . The intergral is f(x) = x⊤x.

C.1 SYNTHETIC EXPERIMENT: BAYESIAN SENSITIVITY ANALYSIS FOR LINEAR MODELS

C.1.1 Experimental Setting

In this synthetic experiment, we do sensitivity analysis on the hyperparameters in Bayesian linear regression. The obser-
vational data for the linear regression are Y ∈ Rm×d, Z ∈ Rm with m being the number of observations and d being the
dimension. We use x to denote the regression weight; this is unusual but is done so as to keep the notation consistent with the
main text. By placing a N (x; 0, θIdd) prior on the regression weights x ∈ Rd with θ ∈ (1, 3)

d, and assuming independent
N (0, η) observation noise for some known η > 0, we can obtain (via conjugacy) a multivariate Gaussian posterior Pθ

whose mean and variance have a closed form expression [Bishop, 2006].

Pθ = N (m̃, Σ̃), Σ̃−1 =
1

θ
Idd + ηY ⊤Y, m̃ = ηΣ̃Y ⊤Z.

We can then analyse sensitivity by computing the conditional expectation I(θ) =
∫
X f(x)Pθ(dx) of some quantity of

interest f . For example, if f(x) = x⊤x, then I(θ) is the second moment of the posterior and the results are already reported
in the main text. If f(x) = x⊤y∗ for some new observation y∗, then I(θ) is the predictive mean. In these simple settings, I(θ)
can be computed analytically, making this a good synthetic example for benchmarking. We sample parameter values θ1:T
from a uniform distribution Q = Unif(Θ) where Θ = (1, 3)d, and for each such parameter θt, we obtain N observations
xt1:N from Pθt . In total, we have N × T samples.

For conditional Bayesian quadrature (CBQ), we need to carefully choose two kernels kΘ and kX . Firstly, we choose the
kernel kX to be an isotropic Gaussian kernel: k(x, x′) = AX exp(− 1

2l2X
(x−x′)⊤(x−x′)) for the purpose that the Gaussian

kernel mean embedding has a closed form under the Gaussian posterior Pθ:

µθ(x) = AX

∣∣∣Idd + l−2
X Σ̃

∣∣∣−1/2

exp

(
−1

2
(x− m̃)⊤(Σ̃ + l2X Idd)

−1(x− m̃)

)
(C.11)

In addition, the integral of the kernel mean embedding µθ (known as the initial error) also has a closed form∫
X µθ(x)Pθ(dx) = AX lX /

√
|l2X Idd + 2Σ̃|.

This leaves us with a choice for kΘ. In this synthetic setting, we know that I(θ) is infinitely times differentiable, but we
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Figure 8: Bayesian sensitivity analysis for linear models. First Row: Dimension d = 2 with fixed N = 10, 50, 100 and increasing T .
Second Row: Dimension d = 2 with fixed T = 10, 50, 100 and increasing N . The intergral is f(x) = x⊤y∗.

opt for Matérn-3/2 kernel kΘ(θ, θ′) = AΘ(1 +
√
3|θ − θ′|/lΘ) exp(−

√
3|θ − θ′|/lΘ) to encode a more conservative prior

information on the smoothness of I(θ).

C.1.2 Assumptions from Theorem 1

We would like to check whether the assumptions made in Theorem 1 hold in this experiment.

• A1: Although X = R is not a compact domain, Pθ is a Gaussian distribution so the probability mass outside a large
compact subset of X decays exponentially. Θ = (1, 3)

d is a compact domain. A1 is therefore approximately satisfied.

• A2: A2 is satisfied due to the sampling mechanism of θ1:T and {xt1:N}Tt=1.

• A3: Q is a uniform distribution so its density q is constant and hence upper bounded and strictly positive. Pθ is a
Gaussian distribution so its density pθ is strictly positive on a compact and large domain with finite second moment.
A3 is approximately satisfied.

• A4: Both f(x) and I(θ) are infinitely times differentiable, so sI = sf = ∞. Although kX is Gaussian kernel which
does not satisfy the assumption of Theorem 1, we have ablation study in Appendix C.7 showing similar performance
when kX is Matérn-3/2 kernel so sX = 3

2 + d
2 , and kΘ is Matérn-3/2 kernel so sΘ = 3

2 + d
2 , where d is the dimension.

A4 is satisfied.

• A5: λX is picked to be 0 and λΘ is found via grid search among {0.01, 0.1, 1.0}. A5 is satisfied.

C.1.3 Additional Experimental Results

We now provide additional experimental results for Bayesian sensitivity analysis in linear models. Figure 7 provides the
result when the integrand is chosen to be f(x) = x⊤x so I(θ) represents the posterior second moment, and Figure 8
provides the result when the integrand is chosen to be f(x) = x⊤y∗ so I(θ) represents the predictive mean. We can see that
CBQ has demonstrated consistent smaller RMSE for both tasks under the same number of samples and faster convergence
rate compared to all other baseline methods. The conclusions that we draw from the main text also hold for different values
of N and T . By comparing the performance of CBQ and KLSMC, where the second stage of both methods are identical,
and the main difference lies in the first stage, we believe that CBQ shows better performances mainly due to using Bayesian
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Figure 9: Bayesian sensitivity analysis for SIR model. T = 15, 25, 35 and increasing N .

quadrature instead of Monte Carlo in the first stage. Also by comparing the first and second row in both Figure 7 and
Figure 8, we can confirm the theory we proved in Appendix A that CBQ has a faster convergence rate in N than in T .

In general, CBQ is more computationally expensive than baselines (KLSMC, LSMC and IS), so in this simple setting it is
more efficient to spend more budget on obtaining more samples. Nonetheless, in scenarios where the expense of sample
collection constitutes a significant fraction of the computational budget, or when the evaluation of the integrand proves to be
highly costly, it becomes more cost-effective to spend a larger share of the budget towards CBQ. For example, sampling
can become expensive easily when the prior and likelihood are not conjugate, so Markov chain Monte Carlo methods are
needed to sample from unnormalized posterior. Also, we show in the next section Appendix C.2 a real world example when
sampling is particularly costly and hence using CBQ is overall more efficient.

C.2 BAYESIAN SENSITIVITY ANALYSIS FOR SUSCEPTIBLE-INFECTIOUS-RECOVERED (SIR) MODEL

C.2.1 Experimental Setting

The SIR model is commonly used to simulate the dynamics of infectious diseases through a population Kermack and
McKendrick [1927]. It divides the population into three sections. Susceptibles (S) represents people who are not infected but
can be infected after getting contact with an infectious individual. Infectious (I) represents people who are currently infected
and can infect susceptible individuals. Recovered (R) represents individuals who have been infected and then removed from
the disease, either by recovering or dying. The dynamics are governed by a system of ordinary differential equations (ODE)
as below.

dS

dr
= −xSI, dI

dr
= xSI − γI,

dR

dr
= γI

with x being the infection rate, γ being the recovery rate and r is the time. The solution to the SIR model would be a vector
of (Nr

I , N
r
S , N

r
R) representing the number of infectious, susceptibles and recovered at day r.

In this experiment, we assume that the recovery rate γ is fixed and we place a Gamma prior distribution on x; i.e.
Pθ = Gamma(θ, ξ) where θ represents the initial belief of the infection rate deduced from the study of the virus in the
laboratory at the beginning of the outbreak, and ξ represents the amount of uncertainty on the initial belief. We fix the
parameter ξ = 10, the total population is set to be 106 and the recovery rate γ = 0.05. The target of interest is the expected
peak number of infected individuals under the prior distribution on x:

I(θ) = Ex

[
max

r
Nr

I (x) | θ
]
=

∫
X
max

r
Nr

I (x)Pθ(dx)

with the integrand f(x) = maxrN
r
I (x). We are interested in the sensitivity analysis of the shape parameter θ to the final

estimate of the expected peak number of infected individuals. The initial belief of the infection rate θ1:T are sampled from
the uniform distribution Q = Unif (2, 9) and then N number of xt1:N are sampled from Pθt = Gamma(θt, ξ). In this
setting, sampling x is very expensive as it necessarily involves solving the system of SIR ODEs, which can be very slow as
the discretization step gets finer. In the middle panel of Figure 5, we have shown that obtaining one sample from SIR ODEs
under discretization time step τ = 0.1 takes around 3.0s, whereas running the whole CBQ algorithm takes 1.0s, not to



mention that sampling from SIR ODEs need to be repeated N × T times. Therefore, using CBQ is ultimately more efficient
overall within the same period of time.

For CBQ, we need to carefully choose two kernels kΘ and kX . First we choose kX , we use Matérn-3/2 as the base kernel
and then apply a Langevin Stein operator to both arguments of the base kernel to obtain kX . The reason we use a Langevin
Stein kernel is that Stein kernel gives an RKHS which is a subset on the Sobolev space with one order less smoothness than
the base kernel, and since the smoothness of the integrand f(x) = maxrN

r
I (x) is unknown, using a Stein kernel enforces

weaker prior information than Matérn-3/2. Furthermore, the kernel mean embedding of a Stein kernel µ(x) is a constant c
by construction as per the discussion in Appendix B. The initial error is also a constant c by construction. Then we choose
kΘ. Since I(θ) represents the peak number of infections so I(θ) is expected to be smooth and continuous, and hence we
choose kΘ as Matérn-3/2 kernel. All hyperparameters in kX and kΘ are selected according to Appendix B.2. We use a MC
estimator with 5000 samples as the pseudo ground truth and evaluate the RMSE across all methods.

C.2.2 Assumptions from Theorem 1

We would like to check whether the assumptions made in Theorem 1 hold in this experiment.

• A1: Although X = R+ is not a compact domain,Pθ is a Gamma distribution so the probability mass outside a large
compact subset of X around the origin decays exponentially. Θ = (2, 9)

d is a compact domain. A1 is approximately
satisfied.

• A2: A2 is satisfied due to the sampling mechanism of θ1:T and {xt1:N}Tt=1.

• A3: Q is a uniform distribution so its density q is constant and hence upper bounded and strictly positive. Pθ is a
Gamma distribution so its density pθ is strictly positive within a large compact subset of X and has finite second
moment. A3 is approximately satisfied.

• A4: f(x) = maxrN
r
I (x) is the maximum number of infections so f(x) is not necessarily smooth. I(θ) represents the

peak number of infections with varying initial estimate of the infection rate, so I(θ) is smooth and continuous with
sI ≤ 1. kX is Stein kernel with Matern-3/2 kernel as the base, so the corresponding RKHS will have functions which
are rough (i.e. of smoothness 1/2) but is only a subset of a Sobolev space. In addition, kΘ is Matern-3/2 kernel so
sΘ = 3

2 + 1
2 = 2. It is therefore unclear if A4 is satisfied.

• A5: λX is picked to be 0 and λΘ is found via grid search among {0.01, 0.1, 1.0}. A5 is satisfied.

C.2.3 Additional Experimental Results

We report more results in Figure 9 with fixed T = 15, 25, 35 and increasing N , to showcase that CBQ consistently exhibits
smaller RMSE than baseline methods. The conclusions that we draw from the main text also hold for different values of N
and T for this experiment.

C.3 OPTION PRICING IN MATHEMATICAL FINANCE

C.3.1 Experimental Setting

In this experiment, we consider specifically an asset whose price S(τ) at time τ follows the Black-Scholes formula
S(τ) = S0 exp

(
σW (τ)− σ2τ/2

)
for τ ≥ 0, where σ is the underlying volatility, S0 is the initial price and W is the

standard Brownian motion. The financial derivative we are interested in is a butterfly call option whose payoff at time τ can
be expressed as ψ(S(τ)) = max(S(τ)−K1, 0) + max(S(τ)−K2, 0)− 2max(S(τ)− (K1 +K2)/2, 0).

In addition to the expected payoff, insurance companies are interested in computing the expected loss of their portfolios if
a shock would occur in the economy. We follow the setting in Alfonsi et al. [2021, 2022] assuming that a shock occur at
time η, at which time the option price is S(η) = θ, and this shock multiplies the option price by 1 + s. The option price at
maturity time ζ is denoted as S(ζ) = x. The expected loss caused by the shock can be expressed as

L = E[max(I(θ), 0)], I(θ) =

∫ ∞

0

ψ(x)− ψ ((1 + s)x)Pθ(dx)

So the integrand is f(x) = ψ(x)− ψ((1 + s)x).
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Figure 10: Option pricing in mathematical finance. T = 10, 20, 30 and increasing N .

Following the setting in Alfonsi et al. [2021, 2022], we consider the initial price S0 = 100, the volatility σ = 0.3, the strikes
K1 = 50,K2 = 150, the option maturity ζ = 2 and the shock happens at η = 1 with strength s = 0.2. The option price
at which the shock occurs are θ1:T sampled from the log normal distribution deduced from the Black-Scholes formula
θ1:T ∼ Q = Lognormal(logS0 − σ2

2 η, σ
2η). Then xt1:N are sampled from another log normal distribution also deduced

from the Black-Scholes formula xt1:N ∼ Pθt = Lognormal(log θt − σ2

2 (ζ − η), σ2(ζ − η)).

For CBQ, we need to carefully choose two kernels kX and kΘ. First we choose the kernel kX to be a log-Gaussian
kernel for the purpose that the log-Gaussian kernel mean embedding has a closed form under log-normal distribution
Pθ = Lognormal(m̄, σ̄2) with m̄ = log θ − σ2

2 (ζ − η) and σ̄2 = σ2(ζ − η). The log Gaussian kernel is defined as
kX (x, x′) = AX exp(− 1

2l2X
(log x− log x′)2) and the kernel mean embedding has the form

µθ(x) =
AX√
1 + σ̄2

l2X

exp

(
−m̄

2 + (log x)2

2(σ̄2 + l2X )

)
x

m̄

σ̄2+l2X

The initial error, which is the integral of kernel mean µθ(x) does not have a closed form expression, so we use the empirical
average as an approximation. Then, we choose the kernel kΘ to be a Matérn-3/2 kernel.

For this experiment, we also implement CBQ with Langevin Stein reproducing kernel. We use Matérn-3/2 as the base kernel
and then apply the Langevin Stein operator to both arguments of the base kernel to obtain kX . The reason we use a Stein
kernel is that Stein kernels have an RKHS whose functions have one order less smoothness than the base kernel, and since
the integrand has very low smoothness (due to the maximum function), we do not want to use an overly smooth kernel. The
kernel mean embedding of a Stein kernel is a constant c by construction as per the discussion in Appendix B. The kernel kΘ
is selected as Matérn-3/2 kernel. All hyperparameters in kX and kΘ for CBQ and hyperparameters for baseline methods are
selected according to Appendix B.2.

C.3.2 Assumptions from Theorem 1

We would like to check whether the assumptions made in Theorem 1 hold in this experiment.

• A1: Although X = R+ is not a compact domain, Pθ is a lognormal distribution so the probability mass outside a
large compact subset of X decays super exponentially. A similar argument can be made for Θ as well. A1 is therefore
approximately satisfied.

• A2: A2 is satisfied due to the sampling mechanism of θ1:T and {xt1:N}Tt=1.

• A3: Q is a lognormal distribution so its density q is upper bounded and strictly positive within a large compact subset
of Θ. Pθ is also a lognormal distribution so its density pθ is strictly positive within a large compact subset of X and has
finite second moment. A3 is approximately satisfied.

• A4: f(x) is a combination of piecewise linear functions so sf = 1 and I(θ) is infinitely times differentiable so sf = ∞.
When kX is Stein kernel with Matern-3/2 kernel as the base, the functions in the corresponding RKHS have smoothness
1/2, whereas when kX is the log Gaussian kernel, the functions are infinitely differentiable. Neither of these choices



satisfy the assumption, although Stein kernel contain many (but not necessarily all) function of smoothness 1/2. kΘ is
Matern-3/2 kernel so sΘ = 3

2 + 1
2 = 2. It is therefore unclear if A4 is satisfied.

• A5: λX is picked to be 0 and λΘ is found via grid search among {0.01, 0.1, 1.0}. A5 is satisfied.

C.3.3 More Experimental Results

We report more results in Figure 10 with fixed T = 10, 20, 30 and increasing N , to showcase that CBQ consistently exhibits
smaller RMSE than baseline methods. The conclusions that we draw from the main text also hold for different values of N
and T for this experiment. The performance of CBQ is similar between kX being Stein kernel and kX being log Gaussian
kernel. It would be interesting to further investigate the performance of CBQ in estimating the future price of other financial
derivatives, and we leave it for future work.

C.4 UNCERTAINTY DECISION MAKING IN HEALTH ECONOMICS

C.4.1 Experimental Settings

In the medical world, it is important to compare the cost and the relative advantages of conducting extra medical experiments.
The expected value of partial perfect information (EVPPI) quantifies the expected gain from conducting extra experiments
to obtain precise knowledge of some unknown variables [Brennan et al., 2007]:

EVPPI = E
[
max

c
Ic(θ)

]
−max

c
E
[
Ic(θ)

]
, Ic(θ) =

∫
X
fc(x, θ)Pθ(dx)

where c ∈ C is a set of potential treatments and fc measures the potential outcome of treatment c. Our method is applicable
for estimating the conditional expectation Ic(θ) of the first term.

We adopt the same experimental setup as delineated in Giles and Goda [2019], wherein x and θ have a joint 19-dimensional
Gaussian distribution, meaning that Pθ is a Gaussian distribution. The specific meanings of all x and θ are outlined in
Table 1. All these variables are independent except that θ1, θ2, x6, x14 are pairwise correlated with a correlation coefficient
0.6. The observations θ1:T are sampled from the marginal Gaussian distribution Q and then N observations of xt1:N are
sampled from Pθt .

We are interested in a binary decision-making problem (C = {1, 2}) with f1(x, θ) = 104(θ1x5x6+x7x8x9)−(x1+x2x3x4)
and f2(x, θ) = 104(θ2x13x14 + x15x16x17)− (x10 + x11x12x4). In computing EVPPI, we estimate Ic(θ) with CBQ and
baselines, and then use standard MC for the rest of the expectations. We draw 106 samples from the joint distribution to
generate a pseudo ground truth, and evaluate the RMSE across different methods. Note that IS is no longer applicable here
because fc now depends on both x and θ, so we only comparing CBQ against KLSMC and LSMC.

For CBQ, we need to carefully choose two kernels. First, we take kX to be a Matérn-3/2 to ensure that the kernel mean
embedding under a Gaussian distribution Pθ = N (µ̃, Σ̃) has a closed form if we use the ’inverse transform trick’ as outlined
in Appendix B. Specifically speaking, we initially sample u from N (0, Idd), then calculate x = m̃+ L⊤u where L is the
lower triangular matrix derived from the Cholesky decomposition of the covariance matrix Σ̃. The integral now becomes

Ic(θ) =

∫
Rd

f(x)N (x; m̃, Σ̃)dx =

∫
Rd

f(m̃+ L⊤u)N (u; 0, Idd)du (C.12)

The closed form expression of kernel mean embedding for a Matérn-3/2 kernel and isotropic Gaussian can be found in the
Appendix S.3 of Ming and Guillas [2021]. Then we pick kΘ. We know there is a high chance that Ic(θ) is infinitely times
differentiable, but we opt for Matérn-3/2 kernel to encode a more conservative prior information on the smoothness of Ic(θ)
because we do not have a closed form of it. All hyperparameters in kX and kΘ are selected according to Appendix B.2.

C.4.2 Assumptions from Theorem 1

We would like to check whether the assumptions made in Theorem 1 hold in this experiment.

• A1: Although X = R is not a compact domain, but Pθ is a Gaussian distribution so the probability mass outside a large
compact subset of X decays exponentially. Similarly, Θ = R is not a compact domain, but Q is a Gaussian distribution
so the probability mass outside a large compact subset of Θ decays exponentially. A1 is approximately satisfied.
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Figure 11: Uncertainty decision making in health economics. T = 10, 30, 50 and increasing N .

Variables Mean Std Meaning

X1 1000 1.0 Cost of treatment
X2 0.1 0.02 Probability of admissions
X3 5.2 1.0 Days of hospital
X4 400 200 Cost per day
X5 0.3 0.1 Utility change if response
X6 3.0 0.5 Duration of response
X7 0.25 0.1 Probability of side effects
X8 -0.1 0.02 Change in utility if side effect
X9 0.5 0.2 Duration of side effects
X10 1500 1.0 Cost of treatment
X11 0.08 0.02 Probability of admissions
X12 6.1 1.0 Days of hospital
X13 0.3 0.05 Utility change if response
X14 3.0 1.0 Duration of response
X15 0.2 0.05 Probability of side effects
X16 -0.1 0.02 Change in utility if side effect
X17 0.5 0.2 Duration of side effects
θ1 0.7 0.1 Probability of responding
θ2 0.8 0.1 Probability of responding

Table 1: Variables in the health economics experiment.

• A2: A2 is satisfied due to the sampling mechanism of θ1:T and {xt1:N}Tt=1.

• A3: Q is also a Gaussian distribution so its density q is upper bounded and strictly positive on a compact and large
domain. Pθ is a Gaussian distribution so its density pθ is strictly positive on a compact and large domain with finite
second moment. A3 is approximately satisfied.

• A4: Both the integrand f and the conditional expectation Ic(θ) are infinitely times differentiable, so sf = sI = ∞.
On the other hand, due to the choice of Matérn-3/2 kernels, sΘ = 3/2 + 1/2 = 2 and sX = 3/2 + 9/2 = 6. A4 is
therefore satisfied.

• A5: λX is picked to be 0 and λΘ is found via grid search among {0.01, 0.1, 1.0}. A5 is satisfied.

C.4.3 Additional Experimental Results

We report more results in Figure 11 with fixed T = 10, 30, 50 and increasing N, to showcase that CBQ consistently exhibits
smaller RMSE than baseline methods. The conclusions that we draw from the main text also hold for different values of N
and T for this experiment.
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Figure 12: Comparison of CBQ and MOBQ in terms of RMSE (first row) and computational time (second row). Left (a): Bayesian
sensitivity analysis for linear models. Middle (b): Option pricing in mathematical finance. Right (c): Uncertainty decision making in
health economics.

C.5 COMPARISON OF CONDITIONAL BAYESIAN QUADRATURE AND MULTI-OUTPUT BAYESIAN
QUADRATURE

In Section 3 in the main text, we mentioned a comparison of CBQ and multi-output Bayesian quadrature Xi et al. [2018]
(MOBQ) in terms of their computational complexity. For T parameter values θ1, · · · , θT and N samples from each
probability distribution Pθ1 , . . . ,PθT , the computational cost is O(TN3 + T 3) for CBQ and O(N3T 3) for MOBQ. We
now give a more thorough comparison of CBQ and MOBQ in this section.

When the integrand f only depends on x (Bayesian sensitivity analysis for linear models, option pricing in mathematical
finance), MOBQ only requires one kernel kX .

IMOBQ(θ
∗) =

(∫
X
kX (x, x1:NT )Pθ∗(dx)

)(
kX (x1:NT , x1:NT ) + λX IdNT

)−1

f(x1:NT )

where x1:NT ∈ RNT is a concatenation of x11:N , · · · , xT1:N . When the integrand f depends on both x and θ (uncertainty
decision making in health economics), MOBQ requires two kernels kX and kΘ.

IMOBQ(θ
∗) =

(∫
X
kX (x, x1:NT )⊙ kΘ(θ

∗, θ1:NT )Pθ∗(dx)
)

(
kX (x1:NT , x1:NT )⊙ kΘ(θ1:NT , θ1:NT ) + λX IdNT

)−1

f(x1:NT )

where ⊙ denotes element-wise product, and θ1:NT = [θ1, · · · , θ1, · · · , θT , · · · , θT ] ∈ RNT . From the above two equations,
we can see that the computation cost of O(N3T 3) mainly comes from the inversion of a NT × NT kernel matrix.
All the MOBQ hyperparameters in kX and kΘ are selected by empirical Bayes in the same way as CBQ outlined in
Appendix B.2. It’s crucial to note that the MOBQ computational cost is significantly higher for Stein reproducing kernel
during hyperparameter selection (an approach analogous to the “vector-valued control variates” of Sun et al. [2023a]), as
evaluating the log marginal likelihood at every iteration would require the inversion of a NT ×NT matrix. Therefore, we
do not include the experiment of Bayesian sensitivity analysis for the SIR model in this section. All the hyperparameters for
CBQ are reused as in Appendix C.

For Bayesian sensitivity analysis in linear models, the integrand is f(x) = x⊤x, the dimension is fixed d = 2 and T = 50.
In Figure 12a, we can see that MOBQ indeed achieves lower RMSE at the beginning, but CBQ catches up when N grows
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Figure 13: Left: Comparison of all methods with standard i.i.d. sampling and Quasi-Monte Carlo samples. Middle and Right: Ablation
study for CBQ with different kΘ and kX kernels in Bayesian sensitivity analysis for linear models.

higher. For option pricing in mathematical finance, we only compare MOBQ and CBQ when kX is the log Gaussian kernel
and T = 20. For uncertainty decision making in health economics, we compare MOBQ and CBQ when T = 50. In
Figure 12b and Figure 12c, we can see that CBQ and MOBQ achieves similar performances in terms of RMSE. Additionally,
in the second row of Appendix C.4.3, we compare the computational cost of MOBQ and CBQ, where we can see that the
computational time of MOBQ is much larger than CBQ as N grows across all settings, due to the complexity of O(N3T 3)
for MOBQ.

Additionally, as the main computational bottleneck of MOBQ is the inversion of the kernel matrix, so it would be interesting
to see if MOBQ combined with scalable GP methods can reduce the computational time while still preserving the same
level of accuracy. The scalable approximation method used here is Nyström approximation Williams and Seeger [2000]. We
report the performance of MOBQ (Nyström) in both Figure 12a and Figure 12b, and we can see that MOBQ (Nyström)
performs worse than CBQ in terms of RMSE. The reason of worse performance of MOBQ (Nyström) is that the use of
scalable GP methods would introduce an extra layer of approximation that slows down the convergence rate. Additionally,
most scalable GP methods are used in the “regression” setting, while quadrature methods like BQ or CBQ belong to the
“interpolation" setting Kanagawa et al. [2018], so the quadrature problem will be more sensitive to the approximation error
introduced.

C.6 QUASI MONTE CARLO

Quasi Monte Carlo (QMC) is another line of research on improving the precision of approximating intractable integrals.
While quadrature methods like BQ and CBQ aim at finding a smart way to combine the function values, QMC aims to
find samples that can more uniformly cover the integration domain than random sampling [Niu et al., 2023, Hickernell,
1998, Gerber and Chopin, 2015]. In the development of CBQ, we don’t make any assumptions about the sampling of
observations; specifically, we don’t mandate i.i.d sampling. Therefore, it would be interesting to see whether combining
quadrature algorithms with QMC could further improve the accuracy for estimating conditional expectation.

For a fair comparison in the experiment of Bayesian sensitivity analysis for linear models, we implement QMC sampling
for all methods including CBQ and baseline methods. The samples xt1:N are generated from a Sobol sequence which is
a low-discrepancy sequence commonly used in QMC to cover the multidimensional space more uniformly than random
sequences. We follow the technique introduced in randomized QMC Lemieux [2004] to shift the Sobol sequence by a
random amount.

It can be observed in Figure 13a that replacing random sampling with QMC significantly enhances the performance of
baseline methods, such as LSMC and KLSMC, while subtly improves the performance of CBQ. The limited degree of
improvement seen in CBQ with QMC sampling can be attributed to the fact that CBQ already yields a remarkably low
RMSE. Consequently, the margin of improvement offered by QMC sampling is not as evident in CBQ as in the baseline
methods. We have only studied the effect of combining QMC and CBQ in the experiment of Bayesian sensitivity analysis in
linear models. It would be interesting to see if combining QMC and CBQ would result in higher accuracy in other settings,
and we leave it for future work.
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Figure 14: Calibration plots. Top Left: Bayesian sensitivity analysis in linear models. Top Right: Bayesian sensitivity analysis for SIR
model. Bottom Left: Option pricing in mathematical finance. Bottom Right: Uncertainty decision making in health economics.

C.7 ABLATIONS ON KERNELS

We present an ablation study evaluating the impact of distinct kernel choices kX and kΘ within the framework of Bayesian
sensitivity analysis in linear models. The integrand is f(x) = x⊤x, the dimension d = 2 and N = T = 50. First, we choose
kΘ to be Matérn-3/2 kernel and Gaussian kernel. Figure 13b shows that the performance of CBQ remains consistent across
different kΘ kernels.

Subsequently, we opt for Matérn-3/2 kernel, Gaussian kernel and Stein kernel (with Matérn-3/2 as the base kernel) as
choices for kX . When kX is Gaussian kernel, the formula for kernel mean embedding µθ(x) is presented in Equation (C.11).
When kX is Matérn-3/2 kernel, a closed form expression for the kernel mean embedding does not exist for the non-isotropic
Gaussian distribution N (m̃, Σ̃), but the ’inverse transform trick’ can be employed as in Equation (C.12). When kX is
Stein kernel, we choose Matérn-3/2 as the base kernel and then apply Stein operator on both arguments of kernel k0. All
hyperparameters are selected according to Appendix B.2. From Figure 13c, we can see that CBQ performs best when kX
is Matérn-3/2 kernel, and we know that kX being Matérn-3/2 kernel satisfies the assumptions of Theorem 1. When kX is
Gaussian RBF kernel or Stein kernel, whether the assumptions of Theorem 1 still hold is unknown, but in this ablation study,
CBQ under both kernels have shown good performances in terms of RMSE. The ablation study is only implemented in this
very simple setting, so we encourage practitioners to be careful in the selection of kernels in real world applications.

C.8 CALIBRATION

CBQ falls in the area of probabilistic numeric algorithms that can provide finite-sample Bayesian quantification of uncertainty,
where the uncertainty arises from having access to only a finite number of function values of the integrand. Since CBQ is a
two-stage hierarchical Gaussian process method in nature, and the final estimate ICBQ is treated as Gaussian distributed,
so the standard deviation σ2

CBQ is a measure of uncertainty Kendall and Gal [2017]. The calibration plots in Figure 14 are
obtained by altering the width of the credible interval and then computes the percentage of times a credible interval contains
the true value I(θ) under repetitions of the experiment. The black diagonal line represents the ideal case, with any curve
lying above the black line indicating underconfidence and any curve lying below indicating overconfidence. It is generally
regarded more preferable to be underconfident than overconfident.

In Figure 14a, we show the calibration of the CBQ posterior for the integrand f(x) = x⊤x when dimension d = 2. We
observe that when the number of samples is as small as 10, CBQ is overconfident, which can be explained by the poor
performance of using empirical Bayes to select hyperparameters in the small sample regime. On the other hand, when N
and T increase, CBQ becomes underconfident, meaning that our posterior variance is more inflated than needed from a
frequentist viewpoint. The calibration plots for other experiments are all demonstrated in Figure 14, and the conclusions are
consistent across different experiments.
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