
PyVision: Agentic Vision with Dynamic Tooling

Shitian Zhao1,§,∗ Haoquan Zhang1,3,* Shaoheng Lin1,* Ming Li1,* Qilong Wu4,*

Kaipeng Zhang1,5,† Chen Wei2,†

1Shanghai AI Lab 2Rice University 3CUHK 4NUS 5SII

Project Page Inference Code PyVision Demo

Which circle in the middle is bigger？

This is another example of the Ebbinghaus illusion.

The orange circles are again the same size physical.

However, the left one appears larger than the right one.

👋 Model without Tool Using

🔧 Model with Dynamic Tool Generation (Ours)

Let's first get the RGB value of the
orange circle in the middle

</> Coding ...

Execute

Image shape: (852, 1380, 3) Sample
pixel values (center and around):
Left center: [255 255 255]
Right center: [217 95 47]

The right central circle's color is [217, 95, 47].
The left central circle should be similar.

Create a mask for orange pixels.

</> Coding ...

Number of orange regions found: 2
Areas of orange regions:
[np.int64(124805),
 np.int64(12824)]

Reflection:
- The mask correctly highlights the two orange circles.
- Two regions with areas: 124,805 and 12,824 pixels.
- The much larger area corresponds to the right circle.
Final Reasoning:
- The right central circle is significantly larger than the left
central circle.
- This confirms that the right circle in the middle is bigger.

❌ Wrong

✅ Correct

Figure 1: Overcoming Illusory Heuristics with Code. This visual puzzle mimics the well-known
Ebbinghaus illusion [19], but with a twist: it reverses the typical size context, making the correct an-
swer visually obvious to humans. Yet, a standard MLLM [35] mistakenly recalls the well-documented
illusion template to answer “same size”. In contrast, PyVision behaves agentically, probing pixel
values, segmenting objects, and computing the actual sizes via on-the-fly Python code to reach the
correct answer. This example highlights how dynamic tooling enables adaptive, grounded, verifiable
visual reasoning beyond superficial pattern matching.

∗Joint First Author; §Project Lead; †Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.

https://agent-x.space/pyvision/
https://github.com/agents-x-project/PyVision
https://huggingface.co/spaces/Agents-X/PyVision

Abstract

LLMs are increasingly deployed as agents, systems capable of planning, reason-
ing, and dynamically calling external tools. However, in visual reasoning, prior
approaches largely remain limited by predefined workflows and static toolsets.
In this report, we present PyVision, an interactive, multi-turn framework that
enables MLLMs to autonomously generate, execute, and refine Python-based tools
tailored to the task at hand, unlocking flexible and interpretable problem-solving.
We develop a taxonomy of the tools created by PyVision and analyze their usage
across a diverse set of benchmarks. Quantitatively, PyVision achieves consistent
performance gains, boosting GPT-4.1 by +7.8% on V* and Claude-4.0-Sonnet by
+31.1% on VLMsAreBlind-mini. These results point to a broader shift: dynamic
tooling allows models not just to use tools, but to invent them, advancing toward
more agentic visual reasoning.

1 Introduction

The idea of AI agents, systems that can autonomously plan and execute tasks, is rapidly gaining
traction in modern AI research. Large language models (LLMs), originally built for text generation,
have quickly evolved into capable agents that can formulate plans, interact with environments, and
call external tools or functions to solve complex problems with minimal human oversight [34, 33,
32, 28, 40, 30, 29, 16, 14, 4, 27, 1]. But beyond simply using tools, the more profound leap lies in
an agent’s ability to invent them, such as dynamically generating code snippets tailored to its task
or environment. This capacity to create problem-solving tools on the fly is not just powerful, but
foundational to intelligence. As Benjamin Franklin remarked, “Man is a tool-making animal”.

Interestingly, the idea of using external computational modules for complex reasoning is not new,
particularly in the vision domain. Early works such as Neural Module Networks [2] introduced
a parser that orchestrated a set of predefined functions, embracing a neuro-symbolic approach to
visual reasoning. This line of work inspired a series of influential successors (Tab. 1). Unlike end-to-
end models, these systems explicitly represent each reasoning step and producing transparent and
inspectable intermediate outputs, offering a promising path for tackling complex and compositional
visual reasoning.

However, prior works typically rely on predefined workflows and static toolsets within single-turn
frameworks, limiting the flexibility, creativity, and adaptability that modern LLM agents can achieve
through dynamic tooling. With the growing coding and reasoning capabilities of today’s MLLMs, we
can now move beyond these constraints in visual reasoning: models can dynamically generate code
snippets in a multi-turn setup, building tools on the fly that are tailored to the task at hand.

Recent developments like OpenAI’s “Thinking with Images” [37] highlight this potential, but they
offer limited visibility into how this process actually works. In this report, we present and analyze
how advanced MLLMs with strong coding abilities, in our case, GPT-4.1 [35] and Claude-4.0-
Sonnet [3], can dynamically create and leverage Python-based visual tools. We introduce PyVision,
an interactive framework in which the model autonomously generates, executes, and iteratively refines
Python code in response to multimodal user queries. To support this dynamic tooling loop, we build
on Python’s rich ecosystem of mature libraries and carefully engineer both the system prompts and
the runtime environment to enable seamless, multi-turn interaction between the MLLM and Python
interpreter.

We then analyze the tools generated by PyVision in depth. To do so, we construct a taxonomy that
classifies the tools into four broad categories: basic image processing, advanced image processing,
visual prompting and sketching, and numerical and statistical analysis, alongside a long tail of creative,
task-specific operations (Fig. 1). This framework enables us to examine how different benchmarks
and domains elicit distinct patterns of tool usage. For instance, perception-heavy tasks often trigger
operations like cropping and contrast enhancement, while math and logic benchmarks rely more
on visual sketching and numerical analysis. These findings highlight the power of dynamic tool

2

Methods Dynamic Workflow Dynamic Tool Generation Multi-Turn Framework

NMN [2] × × ×
IEP [20] × × ×
VisProg [12] × × ×
Visual ChatGPT [51] × × ✓
ViperGPT [47] × × ×
MM-REACT [56] × × ×
HuggingGPT [42] × × ×
Image-of-Thought [61] × × ×
Visual Sketchpad [18] ✓ × ✓
VAT [24] × × ×

PyVision ✓ ✓ ✓

Table 1: Comparison between PyVision and previous tool-using methods for visual reasoning.

generation: it equips the model with the flexibility to adapt its strategy to the unique demands of each
task and domain.
Results across major benchmarks reveal that PyVision consistently improves the performance of
strong backend models. Notable improvements include a +7.8% boost on V* [52] with PyVision-
GPT-4.1, an +8.3% gain on Visual Puzzles [43], and a dramatic leap on VLMsAreBlind-mini [41],
where PyVision-Claude-4.0-Sonnet improves from 48.1% to 79.2%, marking a remarkable +31.1%
increase. Our results suggest that PyVision acts as an amplifier of the backend model’s innate
strengths: gaining more at perception tasks when paired with perceptually strong models like GPT-
4.1, and at abstract reasoning when paired with Claude-4.0-Sonnet. In short, dynamic tooling does
not override model capabilities. It unlocks them.

Ultimately, the agentic PyVision with dynamic tooling not only provides practical performance
benefits, it also signals a broader shift in multimodal reasoning. By empowering models to invent
new computational tools on the fly, we move closer to versatile, autonomous, and genuinely creative
AI systems capable of adapting in real-world visual reasoning scenarios.

2 Related Work

Multi-Modal Tool Using. To solve the compositional Visual Question Answering (VQA) task in
a more transparent and interpretable fashion, early work NMN [2] use a heuristic method while
IEP [20] train an LSTM network as the program generator. In the era of LLMs, a pretrained LLM,
e.g., GPT-4, is used to generate programs.

Visual ChatGPT [51], MM-REACT [56], HuggingGPT [42], Image-of-Thought [61], and VAT [24]
design workflows to process VQA inputs and produce final answers. In VisProg [12] and
ViperGPT [47], researchers predefine a static toolset for specific vision tasks and prompt the LLMs
or MLLMs to generate programs that invoke these tools to support reasoning. As LLMs’ coding
abilities improve, Visual Sketchpad [18] predefines a toolset and prompts the LLM to program and
execute code on the fly, offering more flexibility. These prior works rely on a static toolset containing
various visual parsers [10], e.g., detection models (GroundingDINO [25]) and segmentation models
(SAM [21]), which limits generality across vision tasks and makes the external models a bottleneck.
In contrast, PyVision uses Python as the sole primitive tool. With the advanced coding and multi-
modal understanding abilities of today’s MLLMs, e.g., Claude-4.0 [3] and GPT-4.1 [35], they can
write Python code to construct and execute complex tools on the fly, enabling more general and
flexible reasoning.

Thinking with Images. In o3’s [37] blog, thinking with images is presented as an attractive feature.
CoGCoM [39] synthesizes program-integrated data and teaches the MLLM to use predefined tools
during inference. DeepEyes [60], Pixel Reasoner [44], OpenThinkIMG [46, 45], and Chain-of-
Focus [58] incentivize MLLMs to develop the ability to “think with images using predefined tools”
through reinforcement learning. In PyVision, we support thinking with images by using Python as
the tool creation interface, enabling the MLLM to self-generate more complex and adaptive tools
based on varying scenarios.

3

MLLM

AnswerInput Runtime Environment

code_block_0 mm_clue_0 code_block_1 mm_clue_1 code_block_n mm_clue_n······

Figure 2: PyVision, an interactive and multi-turn framework capable of dynamic tool generation,
designed for multimodal reasoning. In an inference session, PyVision performs n+1 interaction
turns with the Python interpreter. In the figure, code_block_i refers to the generated Python code
by the MLLM in the i-th turn, and mm_clue_i the executed multi-modal outputs by the Python
interpreter. This loop continues until the MLLM outputs a final answer.

3 PyVision

We propose PyVision, an interactive, multi-turn framework for multimodal reasoning. PyVision
empowers an MLLM with the ability to dynamically generate and execute Python code during
inference. In each session, the MLLM receives an input, generates Python code in response, and
executes it within an isolated Python runtime. The resulting output—textual, visual, or both—is fed
back into the MLLM’s context, allowing it to iterate and refine its reasoning over multiple turns until
it produces a final answer.

Unlike prior approaches that rely on a fixed toolset, such as detection [25] or segmentation [21]
models, PyVision provides only Python as building blocks for tools. This design leverages Python’s
rich ecosystem of scientific and vision libraries, for example, OpenCV [7], Pillow [8], NumPy [13],
Pandas [31], Scikit-learn [38], and Scikit-image [48]. With access to such a versatile ecosystem, the
model can generate highly adaptive tools tailored to diverse tasks.

System Prompt Design. To guide the MLLM’s reasoning and code generation, PyVision uses
a carefully constructed system prompt in addition to user queries. The system prompts encode
operational instructions that specify how to access input images, structure code, and return final
answers. Key components include:

• Encouraging the MLLM to generate code to solve the task.

• Input images or video frames are pre-loaded as variables named image_clue_i, where i
denotes the image index. This allows the model to reference the images without additional
loading code. We also provide image resolution that helps operations like cropping.

• Output from the code is expected via specific functions: print() for textual results and
plt.show() for image visualizations.

• Each generated code block is wrapped in a <code> tag to enable reliable parsing.

• Final answers are enclosed in a <answer> tag for consistent evaluation.
With this design, the two MLLMs we experiment with, GPT-4.1 [35] and Claude-4.0-Sonnet [3], can
reliably generate parsable and executable code blocks that rarely crash. The full system prompt is
included in appendix A.

Multi-Turn Interaction between Runtime and the MLLM. As illustrated in Fig. 2, PyVision
operates as a multi-turn agentic loop between the MLLM and an isolated Python runtime. In the i-th
turn, the MLLM generates a code block code_block_i, which is executed to produce multimodal
results mm_clue_i. These results are appended to the MLLM’s context, enabling it to update its
reasoning in the next turn. This loop continues until the MLLM automatically decides to output a
final boxed answer.

To support robust and effective multi-turn interaction between the MLLM and the runtime environment
of Python, PyVision incorporates several design principles:

• Process isolation: Each code snippet is executed in a subprocess dynamically spawned by
the main process, ensuring that crashes or side effects in one execution do not impact the
overall inference session.

4

• Cross-turn persistence: The runtime environment retains variables and state across turns.
This allows the model to reuse or modify intermediate Python code execution results in
previous turns, e.g., first cropping an image, then applying filters, and finally computing
geometric features to complete a task.

• File-system safe I/O: Communication between the runtime and the MLLM is handled
through structured variable passing [9, 53, 11], guided by system prompts. This avoids
direct dependencies on the host file system.

Together, these mechanisms enable PyVision to serve as a flexible, secure, and powerful platform
for dynamic tool generation in multi-modal reasoning tasks.

4 Results on Versatile Benchmarks

Baselines. To evaluate PyVision’s effectiveness on diverse multi-modal scenarios, we test it on
versatile benchmarks with MLLMs including GPT-4.1 [35] and Claude-4.0-Sonnet [3] as the backend.
We use plain chain-of-thought prompting [50, 22] as our baseline. The inference parameter settings
and the prompt details are in appendix A.

MathVista MathVision-mini MMMU VisualPuzzles VLMsAreBlind-mini V*

GPT-4o 61.4 – 68.7 41.1 – 73.9
o1 71.8 – 77.6 51.8 – 69.7
o3 86.8 – 82.9 54.0 – 95.7

GPT-4.1 69.9∗ 46.4 71.9∗ 44.9 67.1 68.1

PyVision-GPT-4.1 71.7
+1.8

48.7
+2.3

74.3
+2.4

47.4
+2.5

69.7
+2.6

75.9
+7.8

Claude-4.0-Sonnet 71.4 48.0 74.4 42.7 48.1 56.5

PyVision-Claude 76.2
+4.8

51.3
+3.3

74.6
+0.2

51.0
+8.3

79.2
+31.1

56.8
+0.3

Table 2: Performance on six benchmarks. Improvements over each base model appear beneath
the scores. We highlight a +7.8% gain on V* by PyVision-GPT-4.1, +8.3% on VisualPuzzles and
+31.1% on VLMsAreBlind-mini by PyVision-Claude. *GPT-4.1 results are self-collected with plain
chain-of-though prompting (appendix A.2) in June 2025.

Results. Tab. 2 highlights how adding PyVision’s dynamic tooling consistently boosts two strong
back-end models across a diverse benchmark suite. For GPT-4.1, PyVision yields uniform gains on
every dataset, from modest improvements on math-centric tasks: +1.8% on MathVista and +2.4%
on MMMU, to a sizeable +7.8% on the fine-grained visual-search benchmark V*. Claude-4.0-
Sonnet shows a sharper pattern: while math and general-reasoning tasks improve by roughly +3%
to +5%, symbolic-vision performance on VLMsAreBlind-mini soars by +31.1%. In short, dynamic
tool generation delivers broad, task-dependent gains, which also depends on the backend model’s
capability, discussed next.

PyVision Amplifies What the Backend MLLM Does Best, Reasoning or Perception. To better
understand the relationship between PyVision’s performance gains and the inherent strengths
of backend models, we focus on two representative benchmarks: MathVision-mini [49], which
emphasizes abstract reasoning, and V* [52], which highlights perception ability. Claude-4.0-Sonnet,
stronger in abstract reasoning as shown by its higher MathVision-mini performance (48.0% vs.
46.4% for GPT-4.1), experiences a larger boost from PyVision (+3.3%) compared to GPT-4.1’s
more modest gain (+2.3%). Conversely, GPT-4.1, superior in perceptual tasks like V* (68.1% vs.
Claude-4.0-Sonnet’s 56.5%), achieves a significantly greater improvement with PyVision (+7.8% vs.
only +0.3%). This complementary pattern suggests that the effectiveness of dynamic tooling provided
by PyVision depends critically on the backend model’s foundational reasoning and perception
strengths.

Further supporting this hypothesis, experiments with Qwen2.5-VL-72B [6] yield similar findings:
weaker abstract reasoning capabilities (18.4% on MathVision-mini) lead to limited improvement
(+1.7%), while stronger perceptual performance (67.0% on V*) translates into substantial gains
(+10.0%). These insights underline that PyVision amplifies existing backend model strengths,

5

Figure 3: Multi-Turn Interaction Patterns Across Tasks and Backend Models. The histograms
show the distribution of the number of generated code blocks per query across six benchmarks.
PyVision-GPT-4.1 (blue) and PyVision-Claude-4.0-Sonnet (red) exhibit distinct interaction pat-
terns, with Claude consistently generating code more frequently and with more turns. The legend in
each subplot indicates the percentage of samples that involved at least one code block.

making the interplay of reasoning and perception crucial for unlocking the full potential of dynamic
multimodal tooling.

How Often and How Much MLLMs Generate Code? Fig. 3 shows the distribution of the number
of code blocks generated per user query across six benchmarks, comparing PyVision backed by
GPT-4.1 and Claude-4.0-Sonnet. Each subplot visualizes how frequently the model uses code during
multi-turn inference, with the legend indicating the percentage of query sessions that include any code
generation. We observe that Claude-4.0-Sonnet consistently generates more code than GPT-4.1 across
all domains, often with longer toolchains per query and reaching 100% code coverage. Conversely,
GPT-4.1 tends to use fewer code blocks. These trends suggest a difference in agentic behavior,
reflecting underlying differences in how each MLLM parses complexity and utilizes code to support
reasoning.

5 Dynamically Generated Tools

Examples in Different Tasks and Domains. We start our analysis by presenting examples of
PyVision across diverse tasks and domains in Figs. 6 to 10. These examples illustrate how PyVision
autonomously creates task-specific and domain-specific tools tailored to each unique challenge,
emerging voluntarily from PyVision’s multi-turn code generation and execution.

5.1 Tooling Taxonomy

To better understand the types of tools generated by PyVision, we construct a taxonomy based on
the code it produces across various tasks and domains (Sec. 4). Specifically, we collect the generated
code snippets from inference sessions, embed them using text-embedding-3-large [36] via
OpenAI’s API, and cluster the embeddings to identify emergent tool categories. By inspecting and
interpreting the resulting clusters, we identify four major classes of tools: (1) basic image processing,
(2) advanced image processing, (3) visual prompting and sketching, (4) numerical and statistical
analysis, and (5) long-tailed operations. We detail each below.

6

Basic Image Processing. These tools serve as the foundation for visual manipulation and perception.
They enable the model to clean, align, and highlight image content in ways that improve downstream
reasoning.

• Cropping: For high-resolution or cluttered inputs, PyVision often crops and zooms into
regions of interest. By selecting coordinates through reasoning, it effectively performs soft
object detection, focusing attention where it matters most. (Fig. 5)

• Rotation: Misaligned images (e.g., rotated maps, skewed documents) can confuse even
strong models. PyVision rotates inputs to canonical orientations, making text, spatial
layouts, or directional cues easier to interpret.

• Enhancement: In visually subtle domains like medical imaging, PyVision applies contrast
adjustments and other enhancements to make latent structures more salient. (Fig. 6)

Advanced Image Processing. These tools reflect PyVision’s ability to perform mid to high-level
vision tasks, but designed and executed dynamically, on demand.

• Segmentation: By isolating specific regions via thresholding or edge detection, PyVision
can extract foreground objects from background noise.

• Detection: PyVision generates bounding boxes or edge detection to localize objects in the
scene. This supports follow-up operations like counting or measuring. (Fig. 7)

• OCR: Without relying on external APIs, PyVision extract textual content (e.g., signage,
labels) by itself, enabling hybrid visual-linguistic reasoning. (Fig. 5)

Visual Prompting and Sketching. In some tasks, it is not enough to perceive the image—the model
must “think visually” [55, 15, 5, 59]. To help itself reason, PyVision annotates the image with
auxiliary markings, essentially creating visual notes or sketches.

• Rendering Marks: In object counting or enumeration task, PyVision often marks items
with dots or symbols. This external memory acts as a tallying aid, helping it keep track of
what’s been counted. (Fig. 8)

• Rendering Lines: In geometric or spatial tasks (e.g., mazes), PyVision draws auxiliary
lines to assist reasoning, such as showing the moving directions in a maze.

Numerical and Statistical Analysis. To go beyond perception and into interpretation, PyVision
invokes tools for quantitative reasoning over visual inputs.

• Image Histogram: By plotting pixel intensity distributions, PyVision can analyze lighting,
contrast, and more, critical for domains where histogram carry meaning. (Fig. 6)

• Numerical Analysis: When solving visual math problems or compare quantities, PyVision
writes scripts to compute areas, lengths, or other metrics for symbolic reasoning. (Fig. 7)

Long-Tail Operations. PyVision also invents novel tools not easily classified. These one-off
operations showcase its ability to reason creatively under novel constraints. For example, to solve
a “spot the difference” task, PyVision directly subtracts pixel values between two images and
visualizes the result. (Fig. 9) This kind of zero-shot problem decomposition and tool synthesis reflects
both the power and flexibility of dynamic tooling for visual reasoning.

Video Reasoning with Agentic Tooling. Video understanding poses unique challenges compared
to static image tasks. PyVision demonstrates strong potential in this setting by treating video not
as a monolithic input but as a sequence of decision points. Rather than exhaustively analyzing all
frames, PyVision dynamically selects and processes only those frames containing distinct types
of tables. (Fig. 10) It then extracts visual evidence and support reasoning. This agentic, multi-step
workflow enables PyVision to operate more like a human analyst: skimming, sampling, and refining
its understanding based on intermediate results.

5.2 Analyzing Tooling Patterns Across Tasks and Domains

Benchmarks. To evaluate the effectiveness of PyVision on versatile benchmarks and domains, we
select six benchmarks. The details are listed as follows:

• Multi-Modal Math: MathVista [26] and MathVision [49] challenge models with math
problems that combine visual perception and numerical reasoning.

• Domain and Logic Reasoning: MMMU [57] tests subject-specific reasoning across disci-
plines using multi-modal input, often requiring college-level knowledge. VisualPuzzles [43]
focuses on logic, with tasks covering algorithmic, analogical, deductive, inductive, and
spatial reasoning, minimizing domain dependency while maximizing abstraction.

7

Figure 4: Taxonomy Distribution Across Benchmarks and Domains. Tool usage varies signifi-
cantly across different tasks and domains.

For math- and logic-related benchmarks, e.g., MathVision [49], MathVista [26], MMMU [57], Visu-
alPuzzles [43], numerical and statistical tools constitute a major portion of the usage and visual
prompts are used relatively more often. In the symbolic vision task VLMsAreBlind [41], advanced
image processing tools dominate. For visual search in V* [52], PyVision primarily relies on
cropping to facilitate detailed visual querying, which takes over 83% of all tools used.

Tooling preferences are also domain-sensitive: On medical images [17], contrast-enhancement
tools are frequently invoked. In remote sensing [23], segmentation tools are more common.

These observations highlight the importance of flexible and dynamic tooling to support the diverse
demands of real-world vision tasks.

8

• Symbolic Vision: VLMs Are Blind [41] consists of designed symbolic visual puzzles,
probing the limits of parsing and reasoning over abstract, structured visual primitives.

• Fine-Grained Visual Search: V* [52] features 191 high-resolution samples that require
pinpointing subtle visual details based on nuanced queries, making it a strong testbed for
attention and spatial reasoning.

We also evaluate two special domains, Medical Imaging VQA [17] and Remote Sensing VQA [23] to
probe the tooling patterns in different domains.

Distribution of Tools. To understand how PyVision adapts its tooling to different problems, we
analyze the distribution of tool categories across benchmarks and domains in Fig. 4.

The results reveal strong task- and domain-specific preferences. In math and logic-heavy benchmarks
like MathVista [26], MathVision [49], MMMU [57], and VisualPuzzles [43], PyVision frequently
generates numerical and statistical tools to support symbolic and quantitative reasoning. These are
often accompanied by visual prompting and sketching that help ground abstract logic in visual
cues. In symbolic visual tasks such as VLMsAreBlind [41], advanced image processing tools are
predominant, reflecting the need for structure extraction and visual parsing. For fine-grained visual
search tasks like V* [52], cropping overwhelmingly dominates, accounting for over 83% of all tools,
as the model focuses attention on localized regions.

Domain also plays a significant role: on medical images [17], contrast enhancement is commonly
used to reveal subtle visual patterns, while in remote sensing [23], segmentation tools help delineate
objects in large-scale scenes.

These results underscore the importance of dynamic tool generation, allowing the model to flexibly
tailor its strategy to the task at hand.

6 Conclusion
We propose PyVision, an agentic framework enabling MLLMs to generate and execute Python code
on the fly. Different from previous visual programming works [47, 12, 18], PyVision needs no
visual parsers and predefined static toolset, it generates tools dynamically from the specific query and
visual input. We evaluate its effectiveness and flexibility on various benchmarks and visual reasoning
scenarios, e.g., medical, multi-modal math problems, remote sensing and visual puzzles. It shows
significant performance improvement on versatile benchmarks.

References
[1] M. AI. Kimi k2: Open agentic intelligence, 2025.

[2] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Deep compositional question answering
with neural module networks. arXiv:1511.02799, 2015.

[3] Anthropic. Introducing claude 4, 2025.

[4] A. Backlund and L. Petersson. Vending-bench: A benchmark for long-term coherence of
autonomous agents. arXiv preprint arXiv:2502.15840, 2025.

[5] H. Bai, Y. Zhou, J. Pan, M. Cemri, A. Suhr, S. Levine, and A. Kumar. Digirl: Training
in-the-wild device-control agents with autonomous reinforcement learning. NeurIPS, 2024.

[6] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, et al.
Qwen2.5-vl technical report. arXiv:2502.13923, 2025.

[7] G. Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional
Programmer, 2000.

[8] A. Clark et al. Pillow (pil fork) documentation. readthedocs, 2015.

[9] J. Feng, S. Huang, X. Qu, G. Zhang, Y. Qin, B. Zhong, C. Jiang, J. Chi, and W. Zhong. Retool:
Reinforcement learning for strategic tool use in llms. arXiv:2504.11536, 2025.

[10] R. Girshick. The parable of the parser, 2024.

9

[11] Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, M. Huang, N. Duan, and W. Chen. Tora: A tool-
integrated reasoning agent for mathematical problem solving. arXiv preprint arXiv:2309.17452,
2023.

[12] T. Gupta and A. Kembhavi. Visual programming: Compositional visual reasoning without
training. In CVPR, 2023.

[13] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. Array programming with numpy. Nature, 2020.

[14] S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin,
L. Zhou, et al. Metagpt: Meta programming for multi-agent collaborative framework. arXiv
preprint arXiv:2308.00352, 2023.

[15] W. Hong, W. Wang, Q. Lv, J. Xu, W. Yu, J. Ji, Y. Wang, Z. Wang, Y. Dong, M. Ding, et al.
Cogagent: A visual language model for gui agents. In CVPR, 2024.

[16] M. Hu, Y. Zhou, W. Fan, Y. Nie, B. Xia, T. Sun, Z. Ye, Z. Jin, Y. Li, Q. Chen, et al. Owl:
Optimized workforce learning for general multi-agent assistance in real-world task automation.
arXiv preprint arXiv:2505.23885, 2025.

[17] Y. Hu, T. Li, Q. Lu, W. Shao, J. He, Y. Qiao, and P. Luo. OmniMedVQA: A new large-scale
comprehensive evaluation benchmark for medical lvlm. In CVPR, 2024.

[18] Y. Hu, W. Shi, X. Fu, D. Roth, M. Ostendorf, L. Zettlemoyer, N. A. Smith, and R. Krishna.
Visual sketchpad: Sketching as a visual chain of thought for multimodal language models. In
NeurIPS, 2024.

[19] T. Jaeger and K. Klahs. The ebbinghaus illusion: New contextual effects and theoretical
considerations. Perceptual and motor skills, 2015.

[20] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, and R. B.
Girshick. Inferring and executing programs for visual reasoning. In ICCV, 2017.

[21] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything, 2023.

[22] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. NeurIPS, 2022.

[23] K. Kuckreja, M. S. Danish, M. Naseer, A. Das, S. Khan, and F. S. Khan. Geochat: Grounded
large vision-language model for remote sensing. In CVPR, 2024.

[24] D. Liu, Z. Wang, M. Ruan, F. Luo, C. Chen, P. Li, and Y. Liu. Visual abstract thinking empowers
multimodal reasoning. arXiv:2505.20164, 2025.

[25] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, Q. Jiang, C. Li, J. Yang, H. Su, J. Zhu, and
L. Zhang. Grounding dino: Marrying dino with grounded pre-training for open-set object
detection. In ECCV, 2024.

[26] P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi, H. Cheng, K.-W. Chang, M. Galley, and
J. Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts.
arXiv:2310.02255, 2023.

[27] P. Lu, B. Chen, S. Liu, R. Thapa, J. Boen, and J. Zou. Octotools: An agentic framework with
extensible tools for complex reasoning. arXiv preprint arXiv:2502.11271, 2025.

[28] M. Luo, N. Jain, J. Singh, S. Tan, A. Patel, Q. Wu, A. Ariyak, C. Cai, S. Z. Tarun Venkat,
B. Athiwaratkun, M. Roongta, C. Zhang, L. E. Li, R. A. Popa, K. Sen, and I. Stoica. Deepswe:
Training a state-of-the-art coding agent from scratch by scaling rl, 2025. Notion Blog.

[29] MainFunc. Meet genspark super agent, 2025.

[30] Manus. Leave it to manus, 2025.

10

[31] W. McKinney et al. pandas: a foundational python library for data analysis and statistics. Python
for high performance and scientific computing, 2011.

[32] MiniMax. Minimax-agent, 2025.

[33] OpenAI. Computer-using agent, 2025.

[34] OpenAI. Introducing codex, 2025.

[35] OpenAI. Introducing gpt-4.1 in the api, 2025.

[36] OpenAI. New embedding models and api updates, 2025.

[37] OpenAI. Thinking with images, 2025.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. the
Journal of machine Learning research, 2011.

[39] J. Qi, M. Ding, W. Wang, Y. Bai, Q. Lv, W. Hong, B. Xu, L. Hou, J. Li, Y. Dong, and J. Tang.
Cogcom: A visual language model with chain-of-manipulations reasoning. In ICLR, 2025.

[40] J. Qiu, X. Qi, T. Zhang, X. Juan, J. Guo, Y. Lu, Y. Wang, Z. Yao, Q. Ren, X. Jiang, et al. Alita:
Generalist agent enabling scalable agentic reasoning with minimal predefinition and maximal
self-evolution. arXiv preprint arXiv:2505.20286, 2025.

[41] P. Rahmanzadehgervi, L. Bolton, M. R. Taesiri, and A. T. Nguyen. Vision language models are
blind. In ACCV, 2024.

[42] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang. Hugginggpt: Solving ai tasks with
chatgpt and its friends in hugging face. In NeurIPS, 2023.

[43] Y. Song, T. Ou, Y. Kong, Z. Li, G. Neubig, and X. Yue. Visualpuzzles: Decoupling multimodal
reasoning evaluation from domain knowledge. arXiv:2504.10342, 2025.

[44] A. Su, H. Wang, W. Ren, F. Lin, and W. Chen. Pixel reasoner: Incentivizing pixel-space
reasoning with curiosity-driven reinforcement learning, 2025.

[45] Z. Su, L. Li, M. Song, Y. Hao, Z. Yang, J. Zhang, G. Chen, J. Gu, J. Li, X. Qu, et al. Open-
thinkimg: Learning to think with images via visual tool reinforcement learning. arXiv preprint
arXiv:2505.08617, 2025.

[46] Z. Su, P. Xia, H. Guo, Z. Liu, Y. Ma, X. Qu, J. Liu, Y. Li, K. Zeng, Z. Yang, et al. Thinking with
images for multimodal reasoning: Foundations, methods, and future frontiers. arXiv preprint
arXiv:2506.23918, 2025.

[47] D. Surís, S. Menon, and C. Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In ICCV, 2023.

[48] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager,
E. Gouillart, and T. Yu. scikit-image: image processing in python. PeerJ, 2014.

[49] K. Wang, J. Pan, W. Shi, Z. Lu, H. Ren, A. Zhou, M. Zhan, and H. Li. Measuring multimodal
mathematical reasoning with math-vision dataset. NeurIPS, 2024.

[50] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models. NeurIPS, 2022.

[51] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan. Visual chatgpt: Talking, drawing and
editing with visual foundation models. arXiv:2303.04671, 2023.

[52] P. Wu and S. Xie. V*: Guided visual search as a core mechanism in multimodal llms. In CVPR,
2024.

[53] Z. Xue, L. Zheng, Q. Liu, Y. Li, Z. Ma, and B. An. Simpletir: End-to-end reinforcement
learning for multi-turn tool-integrated reasoning, 2025. Notion Blog.

11

[54] J. Yang, S. Yang, A. Gupta, R. Han, L. Fei-Fei, and S. Xie. Thinking in Space: How Multimodal
Large Language Models See, Remember and Recall Spaces. arXiv:2412.14171, 2024.

[55] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes
extraordinary visual grounding in gpt-4v, 2023.

[56] Z. Yang, L. Li, J. Wang, K. Lin, E. Azarnasab, F. Ahmed, Z. Liu, C. Liu, M. Zeng, and L. Wang.
Mm-react: Prompting chatgpt for multimodal reasoning and action. arXiv:2303.11381, 2023.

[57] X. Yue, Y. Ni, K. Zhang, T. Zheng, R. Liu, G. Zhang, S. Stevens, D. Jiang, W. Ren, Y. Sun, et al.
Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for
expert agi. In CVPR, 2024.

[58] X. Zhang, Z. Gao, B. Zhang, P. Li, X. Zhang, Y. Liu, T. Yuan, Y. Wu, Y. Jia, S.-C. Zhu, and
Q. Li. Chain-of-focus: Adaptive visual search and zooming for multimodal reasoning via rl,
2025.

[59] B. Zheng, B. Gou, J. Kil, H. Sun, and Y. Su. Gpt-4v(ision) is a generalist web agent, if grounded,
2024.

[60] Z. Zheng, M. Yang, J. Hong, C. Zhao, G. Xu, L. Yang, C. Shen, and X. Yu. Deepeyes:
Incentivizing "thinking with images" via reinforcement learning, 2025.

[61] Q. Zhou, R. Zhou, Z. Hu, P. Lu, S. Gao, and Y. Zhang. Image-of-thought prompting for visual
reasoning refinement in multimodal large language models. arXiv:2405.13872, 2024.

12

Appendix Contents

A. Additional Evaluation Details . 13

A.1. System Prompt Details . 13

A.2. Evaluation Parameters Details . 14

B. Examples of Generated Tools . 14

B.1. Code Snippet of CROP Tool . 14

B.2. Code Snippet of ROTATE Tool . 14

B.3. Code Snippet of ENHANCE CONTRAST Tool . 14

B.4. Code Snippet of SEGMENTATION Tool . 15

B.5. Code Snippet of DETECTION Tool . 16

B.6. Code Snippet of OCR Tool . 16

B.7. Code Snippet of RENDER MARKS Tool . 16

B.8. Code Snippet of RENDER AUXILIARY LINES Tool . 17

B.9. Code Snippet of VISULIZE IMAGE HISTOGRAM Tool . 17

B.10. Code Snippet of NUMERICAL ANALYSIS Tool . 18

C. Related Work . 19

D. Case Study of PyVision . 20

13

A Additional Evaluation Details

A.1 System Prompt Details

System Prompt Template of PyVision

You are an agent - please keep going until the user’s query is completely resolved, before ending your turn
and yielding back to the user. Only terminate your turn when you are sure that the problem is solved.

Solve the following problem step by step. You now have the ability to selectively write executable Python
code to enhance your reasoning process. The Python code will be executed by an external sandbox.

You MUST plan extensively before each function call, and reflect extensively on the outcomes of
the previous function calls. DO NOT do this entire process by making function calls only, as this can impair
your ability to solve the problem and think insightfully.

For all the provided images, in order, the i-th image has already been read into the global vari-
able "image_clue_i" using the "PIL.Image.open()" function. When writing Python code, you can
directly use these variables without needing to read them again.

Since you are dealing with the vision-related question answering task, you MUST use the python
tool (e.g., matplotlib library) to analyze or transform images whenever it could improve your understanding
or aid your reasoning. This includes but is not limited to zooming in, rotating, adjusting contrast, computing
statistics, or isolating features.

Note that when you use matplotlib to visualize data or further process images, you need to use
"plt.show()" to display these images; there is no need to save them. Do not use image processing
libraries like cv2 or PIL. If you want to check the value of a variable, you MUST use "print()" to check it.

The output (wrapped in "<interpreter>output_str</interpreter>") can be returned to aid
your reasoning and help you arrive at the final answer. The Python code should be complete scripts,
including necessary imports.
Each code snippet is wrapped with:
<code>
python code snippet
</code>

The last part of your response should be in the following format:
<answer>
\boxed{"The final answer goes here."}
</answer>

image resolution:
Image Width: {width}; Image Height: {height}
user question:
Answer the following Problem with an image provided and put the answer in the format of \boxed{answer}
{"query"}

Remember to place the final answer in the last part using the format:
<answer>
\boxed{"The final answer goes here."}
</answer>

A.2 Evaluation Details

Inference Parameters. In the evaluation stage, we set the temperature to 0.6. Here is the chain-of-
thought prompt template used for evaluation.

14

Chain-of-Thought Prompt Template

You are a helpful assistant. And you are dealing with the VQA tasks. Solve the visual questions step by step
and give the correct answer. Note: put your answer in the format of "\boxed{the right answer here}"
user question: {query}

Illustration of GPT-4.1’s result in Tab. 2. To keep the consistent evaluation setting with Claude-
4.0-Sonnet, we evaluated GPT-4.1 on MathVista [26] and MMMU [57] by ourselves with the
above-mentioned CoT prompt.

Illustration of Qwen2.5-VL-72B’s result in Sec. 4. When evaluating Qwen2.5-VL-72B on V* [52]
and MathVision-testmini [49], to keep the consistent evaluation setting with other models, e.g.,
GPT-4.1 and Claude-4.0-Sonnet, we wrap the visual question with the above-mentioned CoT prompt
template as input. Since Qwen2.5-VL-72B was not specifically optimized for CoT reasoning [6], the
results with CoT prompt may be damaged.

B Examples of Generated Tools

B.1 Code Snippet of CROP Tool

The board is towards the center -right.
Based on the apparent position , let’s crop the region centered at (

center -right), roughly:
x: 900 -1050, y: 520 -700 (after visually inspecting the source image

proportions)
cropped = image_clue_0.crop ((900 , 520, 1050, 700))

plt.imshow(cropped)
plt.title(’Zoom on Advertising Board’)
plt.axis(’off’)
plt.show()

Listing 1: A code snippet example of generated CROP tool. In this example, PyVision was
queried to answer the type of the shop based on the advertising board’s information. It generated
CROP tool to focus on the board area.

B.2 Code Snippet of ROTATE Tool

import matplotlib.pyplot as plt
import pytesseract
from PIL import Image

Step 1: Rotate the image 180 degrees to correct orientation
rotated_image = image_clue_0.rotate (180)

Display the rotated image to verify orientation
plt.imshow(rotated_image)
plt.axis(’off’)
plt.show()

Listing 2: A code snippet example of generated ROTATE tool. In this example, PyVision was
queried to answer what is written on an upside-down image. It generated ROTATE tool to make the
image rotate 180 degree.

B.3 Code Snippet of ENHANCE CONTRAST Tool

#Visualize the Image - Display the original image and enhance contrast
to check for subtle abnormalities.

15

#Let’s write code to visualize and enhance the image to better inspect
for abnormalities.

def enhance_contrast(img):
arr = np.asarray(img)
enhanced = np.zeros_like(arr)
for i in range (3): # For R, G, B channels

channel = arr[..., i]
hist , bins = np.histogram(

channel.flatten (), 256, [0 ,256])
cdf = hist.cumsum ()
cdf_normalized = (cdf * hist.max() / cdf.max())
cdf_m = np.ma.masked_equal(cdf , 0)
cdf_m = ((cdf_m - cdf_m.min())*255/

(cdf_m.max()-cdf_m.min()))
cdf = (np.ma.filled(cdf_m ,0).astype(’uint8’))
enhanced [..., i] = cdf[channel]

return enhanced

Listing 3: A code snippet example of the generated ENHANCE CONTRAST tool. In this example,
PyVision was queried to identify retinal abnormalities in a fundus image. It generated the
ENHANCE CONTRAST tool to increase image contrast, making subtle pathological features more
visible.

B.4 Code Snippet of SEGMENTATION Tool

import matplotlib.pyplot as plt
import numpy as np
from skimage.filters import threshold_otsu
from scipy.ndimage import label , binary_opening , binary_closing

Convert to grayscale
image = image_clue_0
gray = np.array(image.convert(’L’))

Otsu’s thresholding on grayscale
otsu_thresh = threshold_otsu(gray)
binary_otsu = gray > otsu_thresh

Let’s apply morphological operations and count the number of
buildings.

Morphological operations to clean up the mask
cleaned = binary_opening(binary_otsu , structure=np.ones ((5 ,5)))
cleaned = binary_closing(cleaned , structure=np.ones ((7,7)))

Label connected components
labeled , num_features = label(cleaned)

print("Number of detected buildings:", num_features)

Calculate area of each region
region_sizes = np.bincount(labeled.flatten ())
min_building_area = 1000 # Adjust as needed for urban scale

Ignore the background (label 0)
num_buildings = np.sum(region_sizes [1:] > min_building_area)

print("Number of buildings (filtered by area):", num_buildings)

Listing 4: A code snippet example of generated SEGMENTATION tool. In this example, PyVision
was queried to count the number of buildings in a satelite remote sensing image. The entire python
tool chain (merged into a single python code snippet for conciseness) generated by PyVisionachieved
a similar functionality as segmentation models by thresholding, clustering and filtering step by step.

16

B.5 Code Snippet of DETECTION Tool

The table is roughly at the center , estimate the coordinates to crop
Image size: 1920x930 , table is roughly between (700, 250) and (1200,

700)
left , top , right , bottom = 700, 250, 1200, 700
table_area = image_clue_0.crop((left , top , right , bottom))

Listing 5: A code snippet example of generated DETECTION tool. In this example, PyVision
was queried to recognize a small cup of water in the image. It generated DETECTION tool to help
cropping.

B.6 Code Snippet of OCR Tool

import easyocr
import numpy as np

Convert rotated PIL image to numpy array for easyocr
img_np = np.array(rotated_img)

Initialize EasyOCR reader
reader = easyocr.Reader ([’en’])

Perform OCR
result = reader.readtext(img_np , detail =0)

Print the recognized text
print(result)

Listing 6: A code snippet example of generated OCR tool. In this example, PyVision was queried
to answer what is the text on the image. It generated OCR tool , using EasyOCR to recognize the
text on the image.

B.7 Code Snippet of RENDER MARKS Tool

Based on my visual analysis , I can identify the following people in
solid red shirts:

Let me mark them with circles and numbers

Person 1: Far left , standing person in bright red shirt
plt.plot(45, 140, ’yo’, markersize =15, markeredgecolor=’yellow ’,

markeredgewidth =3)
plt.text(45, 120, ’1’, fontsize =16, color=’yellow ’, fontweight=’bold’,

ha=’center ’)

Person 2: Left side , sitting person in red top
plt.plot (110, 195, ’yo’, markersize =15, markeredgecolor=’yellow ’,

markeredgewidth =3)
plt.text (110, 175, ’2’, fontsize =16, color=’yellow ’, fontweight=’bold’

, ha=’center ’)

Person 3: Center -right area , person in red shirt sitting
plt.plot (380, 200, ’yo’, markersize =15, markeredgecolor=’yellow ’,

markeredgewidth =3)
plt.text (380, 180, ’3’, fontsize =16, color=’yellow ’, fontweight=’bold’

, ha=’center ’)

plt.axis(’off’)
plt.show()

Listing 7: A code snippet example of generated RENDER MARKS tool. In this example, PyVision
was queried to count the people wearing solid red shirts. It generated a RENDER MARKS tool, labeling
the people wearing red shirts.

17

B.8 Code Snippet of RENDER AUXILIARY LINES Tool

import matplotlib.pyplot as plt
import matplotlib.patches as patches

Load image
img = image_clue_0

Set up plot
fig , ax = plt.subplots(figsize =(8, 6))
ax.imshow(img)

Green square location (col , row): (2, 4) in 0-based grid (counting
from top left)

Move left 1 step: (1, 4)
start_col , start_row = 2, 4
end_col , end_row = start_col - 1, start_row

Convert to image coordinates
Each cell: width = 640/5 = 128, height = 480/5 = 96
cell_w , cell_h = 128, 96

Center of starting cell
start_x = start_col * cell_w + cell_w // 2
start_y = start_row * cell_h + cell_h // 2
Center of ending cell
end_x = end_col * cell_w + cell_w // 2
end_y = end_row * cell_h + cell_h // 2

Draw arrow from green square to left
ax.arrow(start_x , start_y , end_x - start_x , end_y - start_y ,

head_width =20, head_length =20, fc=’red’, ec=’red’,
length_includes_head=True)

Add annotation at end point
ax.text(end_x , end_y , ’HERE’, color=’red’, fontsize =16, fontweight=’

bold’, ha=’center ’, va=’center ’)

plt.axis(’off’)
plt.show()

Listing 8: A code snippet example of generated RENDER AUXILIARY LINES tool. In this
example, PyVision was queried to answer what is the position after the next step. It generated
RENDER AUXILIARY LINES tool to help grounding the position via sketching.

B.9 Code Snippet of VISULIZE IMAGE HISTOGRAM Tool

Plot the histogram of pixel values
img_array = np.array(image_clue_0)
plt.figure(figsize =(6,4))
plt.hist(img_array.ravel(), bins =256, color=’gray’)
plt.title(’Pixel Value Histogram ’)
plt.xlabel(’Pixel Intensity ’)
plt.ylabel(’Frequency ’)
plt.show()

Listing 9: A code snippet example of generated VISULIZE IMAGE HISTOGRAM tool. In
this example, PyVision was queried to if there is some specific pattern. It generated
VISULIZE IMAGE HISTOGRAM tool to help detect the pattern.

B.10 Code Snippet of NUMERICAL ANALYSIS Tool

18

import numpy as np

Convert the glass area to a numpy array
glass_np = np.array(glass_area)

Calculate mean RGB values
mean_rgb = glass_np.mean(axis=(0, 1))
print("Mean RGB values of the glass area:", mean_rgb)

Listing 10: A code snippet example of generated NUMERICAL ANALYSIS tool. In this example,
PyVision was queried to answer the the color of the specific area in the image. It generated
NUMERICAL ANALYSIS tool to help analysis the color.

19

C Case Study of PyVision

import matplotlib.pyplot as plt

Coordinates determined by
visual estimation:
(left, upper, right, lower)

The board is in the middle right
by the wall,
so let's crop generously
crop_box = (1700, 1700, 2100, 2050)
board_crop = image_clue_0.crop(crop_box)

plt.imshow(board_crop)
plt.axis('off')
plt.show()

First Turn - Reasoning, Coding & Execution

Let's plan the steps to solve the problem:

Plan
1. Locate the advertising board in the image. It appears to be near the building wall in the middle distance.

2. Zoom in on the advertising board to enhance its text for readability.

3. Analyze the text using OCR (if needed) or visually inspect to determine what type of shop it is.

4. Match the clues in the text with the provided answer choices.

5. Conclude and box the final answer.

Step 1: Locate and Zoom in on the Advertising Board
The board is to the right side of the walkway, near the center of the image, against the building wall.

Step 2: Crop and Zoom
Let's crop a region around the board and display it for better inspection.

It appears the crop region was incorrect; it captured part of the walkway and not
the advertising board. The advertising board is actually further up and closer to the
building wall, not the plants.

Let's reassess the approximate coordinates. The board is roughly halfway up the
image height, and closer to the right edge. Let's try a crop from around (2600, 1200)
to (3050, 1600).

Let's visualize this crop to check if it captures the advertising board.

Adjust crop box to focus on the board near the wall
crop_box = (2600, 1200, 3050, 1600)
board_crop = image_clue_0.crop(crop_box)

plt.imshow(board_crop)
plt.axis('off')
plt.show()

Second Turn - Reasoning, Coding & Execution

Forth Turn - Reasoning (Answer)

Now we have a clear image of the advertising board.
From visual inspection, the board says:

- "Corepower YOGA"
- "LIVE YOUR POWER"
- "Find us UP STAIRS"
- "1 FREE WEEK"
- "corepoweryoga.com"

The repeated mention of "YOGA" and "Corepower
Yoga" makes it clear that this is a yoga studio.
Final Answer: \boxed{'The shop is a yoga studio.'}

User Query

From the advertising board,
what is the type of this shop?

System Prompt G
PT 4.1

The crop is still incorrect—it captured the trellis and plants, not the advertising
board. Let's carefully reassess the spatial layout:

- The board is on the walkway, close to the wall, roughly at the vertical center, and
slightly left of the right edge.

- Let's try cropping from (1900, 1400) to (2200, 1700).

Let's visualize this region to see if we get the advertising board.

crop_box = (1900, 1400, 2200, 1700)
board_crop = image_clue_0.crop(crop_box)

plt.imshow(board_crop)
plt.axis('off')
plt.show()

Third Turn - Reasoning, Coding & Execution

First Turn - Execution

Figure 5: Case Study: Visual Search requires language-based world knowledge, vision-based
contextual understanding, and iterative refinement to precisely locate specific visual elements. In this
case from V* [52], the agent must identify text on a small advertising board in a complex outdoor
scene. The target occupies a minimal image area, requiring adaptive cropping. This showcases how
dynamic tool generation enables flexible spatial reasoning.

The agent generates custom Python codes across three iterative turns, refining coordinate-based
cropping tools based on visual feedback, and eventually isolating the advertising board required by
the user query. The agent then performs OCR and extracts key text such as “YOGA" and correctly
identifies the business as a yoga studio.

†Data source: https://www.jabobaby.com/blog/posts/photo-hunt

20

https://www.jabobaby.com/blog/posts/photo-hunt

import matplotlib.pyplot as plt
import numpy as np
Show the original image
plt.figure(figsize=(8, 8))
plt.imshow(image_clue_0)
plt.title("Original Fundus Image")
plt.axis('off')
plt.show()
Enhance contrast using histogram
equalization (on each channel)
def enhance_contrast(img):
 arr = np.asarray(img)
 enhanced = np.zeros_like(arr)
 for i in range(3): # For R, G, B channels
 channel = arr[..., i]
 hist, bins = np.histogram(
 channel.flatten(), 256, [0,256])
 cdf = hist.cumsum()
 cdf_normalized = (cdf * hist.max() / cdf.max())
 cdf_m = np.ma.masked_equal(cdf, 0)
 cdf_m = ((cdf_m - cdf_m.min())*255/
 (cdf_m.max()-cdf_m.min()))
 cdf = (np.ma.filled(cdf_m,0).astype('uint8'))
 enhanced[..., i] = cdf[channel]
 return enhanced
enhanced_img = enhance_contrast(image_clue_0)
plt.figure(figsize=(8, 8))
plt.imshow(enhanced_img)
plt.title("Contrast Enhanced Fundus Image")
plt.axis('off')
plt.show()

Reflection:

- The original and contrast-enhanced images show a clear view of the retinal

blood vessels, optic disc (left), and macula (center).

- There are no visible signs of vessel occlusion (blockage), hemorrhage, or

exudates.

- The vessels are continuous, with no abrupt cut-offs, whitening, or signs of

blood clots.

- There is no evidence of infection, such as cotton wool spots, flame

hemorrhages, or pus.

- The optic disc appears normal, with clear margins.

- The macula appears normal, without edema or hemorrhage.

Next Step:

- To be thorough, let's check the intensity histogram to see if there are any

subtle abnormalities (e.g., localized bright or dark spots that may have been

missed visually).

Second Turn - Reasoning, Coding & Execution

User Query

Let's proceed step by step:
Step 1: Understand the Question and Image - We're
given a fundus (retina) image of the eye. - The question
asks for the specific type of abnormality shown in the
image, with four options.
Step 2: Plan the Approach - Analyze the image for any
signs of abnormality: - Blockage in blood vessels (look
for vessel occlusions, whitening, or dropout) - Infection
(look for exudates, hemorrhages, or unusual patterns) -
Blood clot (look for localized hemorrhages or vascular
occlusion) - No abnormalities (normal optic disc,
vessels, and macula) - Use matplotlib to enhance
contrast and zoom into key areas (optic disc, macula,
blood vessels).
Step 3: Visualize the Image - Display the original image
and enhance contrast to check for subtle
abnormalities.
Let's write code to visualize and enhance the image
to better inspect for abnormalities.

First Turn - Reasoning, Coding & Execution

Analyze the intensity histogram
to look for abnormalities

gray_img = np.mean(
 np.asarray(image_clue_0), axis=2)
plt.figure(figsize=(6,4))
plt.hist(gray_img.flatten(),
 bins=50, color='gray')
plt.title("Grayscale Intensity "
 "Histogram")
plt.xlabel("Intensity")
plt.ylabel("Pixel Count")
plt.show()

Reflection on Histogram:
- The intensity histogram shows the majority of pixel values
are within a normal range for a fundus image.
- There are no abnormal peaks or distributions suggesting
abnormal bright or dark regions (e.g., large hemorrhages
or exudates).

Summary of Findings:
- Vessel structure is continuous and normal.
- No visible blood clots, blockages, or infection signs.
- No abnormal intensity regions. - The image appears to be
a healthy retina.

Conclusion:
- The correct answer is: B. There are no specific
abnormalities observed in this image.

 Third Turm - Reasoning (Answer)

What is the specific type of abnormality shown in this image?
A.The abnormality shown in this image is a blockage in the
 blood vessels.
B.There are no specific abnormalities observed in
 this image.
C.The abnormality shown in this image is an infection.
D.The abnormality shown in this image is a blood clot.

System Prompt

 GPT 4.1

1

2 3

Figure 6: Case Study: Medical Imaging Analysis often requires high visual sensitivity and domain-
specific reasoning to solve subtle medical problems. This case from OmniMedVQA [17] involves
identifying a specific abnormality in a fundus image of the retina. PyVision is tasked with diagnosing
the image without prior domain-specific modules.

To begin, PyVision generates a visualization tool that applies histogram equalization to enhance
contrast in key regions, a standard technique in medical imaging analysis. It then creates a second
tool to plot the intensity histogram, confirming the absence of abnormal peaks. Within a few
iterations, PyVision constructs a custom diagnostic pipeline from scratch, correctly concluding that
no specific abnormalities are present. This highlights PyVision’s ability to generate interpretable,
domain-adapted tools for complex medical tasks.

21

Sorted perimeters of
contours:
4557.131370849898
4456.525483399593
3185.1313708498983
3084.5254833995937
2157.1313708498988
2056.5254833995937
1385.1313708498988
1282.5254833995937
807.1313708498985
704.5254833995938

import numpy as np
from skimage.color import rgb2gray
from skimage.filters import threshold_otsu
from skimage.measure import find_contours
from PIL import Image

Convert to grayscale and numpy array
img = image_clue_0.convert('L')
img_np = np.array(img)

Binarize image using Otsu's threshold
thresh = threshold_otsu(img_np)
binary = img_np < thresh
Squares are black (low value)

Find contours
contours = find_contours(binary, 0.8)
print(f"Number of contours found: {len(contours)}")

Visualize contours
fig, ax = plt.subplots()
ax.imshow(binary, cmap=plt.cm.gray)

for contour in contours:
 ax.plot(contour[:, 1], contour[:, 0], linewidth=2)
plt.title('Detected Contours')
plt.axis('off')
plt.show()

The contour detection step found 10 contours, which is double the
number of visible squares. This is because for each square, both the
inner and outer edges of the thick line are detected as separate
contours.

Reflection:
- Each visible square consists of two contours (inner and outer
edge).
- Therefore, the number of visible squares is half the number of
detected contours.

Let's verify this by printing the approximate area or perimeter of
each contour and grouping them by similarity. If the contours come
in pairs (one slightly larger than the other), this would confirm our
hypothesis.

Second Turn - Reasoning, Coding & Execution

User Query

To confirm, let's process the image to detect the contours and
count the number of squares programmatically. We'll convert
the image to grayscale, binarize it, and use

`skimage.measure.findcontours` to find the outlines. We'll then
count the number of contours that correspond to squares.

Here's the plan:
- Convert the image to grayscale.

- Threshold the image to binary.
- Use `skimage.measure.findcontours` to find all closed
contours.

- Count the number of contours that are roughly square-
shaped.

Let's proceed.

First Turn - Reasoning, Coding & Execution

Calculate and print the perimeter of each contour\
perimeters = []
for contour in contours:
 diff = np.diff(contour, axis=0)
 dist = np.sqrt(np.sum(diff**2, axis=1))
 perimeter = np.sum(dist)
 perimeters.append(perimeter)
perimeters_sorted = sorted(perimeters, reverse=True)
print("Sorted perimeters of contours:")
for p in perimeters_sorted:
 print(p)

The perimeters of the contours, when sorted,
clearly form pairs with close values:

- 4557.13 & 4456.53
- 3185.13 & 3084.53
- 2157.13 & 2056.53
- 1385.13 & 1282.53
- 807.13 & 704.53

Each pair represents the outer and inner edge
of the same visible square. There are 5 pairs,
so there are 5 visible squares.

 Third Turm - Reasoning (Answer)

How many grids are there in total?

System Prompt

 GPT 4.1

1

2 3

Figure 7: Case Study: Symbolic Visual Puzzles require precise spatial reasoning and the recognition
of overlapping or closely positioned geometric primitives, a task that is simple for humans, yet
surprisingly difficult for powerful MLLMs when asked directly [41]. In contrast, the regular structure
of such puzzles makes them well-suited to code-based solutions.

This is a nested squares counting task from VLMsAreBlind [41]. First, PyVision applies edge
detection using skimage.measure.find_contours and identifies ten contours. Then, it infers that
the number of contours corresponds to five nested squares, as each square contributes an inner and
outer edge. To validate this, the model performs numerical analysis and prints the sorted perimeters
of the detected contours. In the third stage, it performs a double-check and confidently confirms the
correct answer: five nested squares.

22

Let me also create a clearer visualization to show exactly how the
seating works for 4 tables:

Second Turn - Reasoning, Coding & Execution

User Query

Now I can see the image shows a square table with 4 seats - one on
each side of the square. Let me analyze this systematically:

First Turn - Reasoning, Coding & Execution

The key insight is that when square tables are pushed
together in a row: - Each table contributes seating on the
top and bottom sides (2 seats per table) - Only the first
table provides seating on the left end (1 seat) - Only the
last table provides seating on the right end (1 seat)
- The connection points between adjacent tables
eliminate potential seating positions

For 4 tables: 2(4) + 2 = 10 people maximum.

\boxed{10}

 Third Turn - Reasoning (Answer)

Four people can be seated at a
square table. How many people
at most could be seated if we
pushed four tables of this kind
together in one row?

System Prompt Claude 4.0
Sonnet

Let's think about this step by step
Let's visualize this with a simple diagram
fig, axes = plt.subplots(2, 2, figsize=(12, 8))

Four tables in a row
ax4 = axes[1, 1]
ax4.set_xlim(-5, 5)
ax4.set_ylim(-2, 2)

Draw four tables
for i in range(4):
 square = plt.Rectangle((-4 + i*2, -1), 2, 2,
 fill=False,
 edgecolor='black',
 linewidth=2)
 ax4.add_patch(square)......

Create a detailed visualization for 4 tables specifically
fig, ax = plt.subplots(1, 1, figsize=(14, 6))
Colors for different tables
colors = ['lightblue', 'lightgreen',
 'lightcoral', 'lightyellow']
table_labels = ['Table 1', 'Table 2',
 'Table 3', 'Table 4']
Draw four tables
for i in range(4):
 x_pos = -4 + i*2
 square = plt.Rectangle((x_pos, -1), 2, 2,
 fill=True, facecolor=colors[i],
 edgecolor='black', linewidth=2,
 alpha=0.7)
 ax.add_patch(square)

1

2 3

Figure 8: Case Study: Visual Sketching is a valuable strategy for humans to solve scientific
problems, including those in mathematics and physics. It can also enhance AI model performance by
enabling precise numerical calculations and visual reasoning [18].

In this example from MathVision [49], PyVision is asked to compute how many people can sit
around a row of four tables. The model first sketches the table arrangement, rendering marks to
represent four connected tables and people sitting around them. From the sketch, it infers that ten
people can be seated. In a second turn, PyVision generates a schematic diagram to explain and
validate the seating logic, identifying positions that are unsuitable for seating.

The input image is already loaded as image_clue_0
img = image_clue_0

Convert the image to numpy array for processing
img_np = np.array(img)
h, w, c = img_np.shape

Split the image into left and right halves
left_img = img_np[:, :w//2, :]
right_img = img_np[:, w//2:, :]

Make both halves the same width
min_width = min(left_img.shape[1], right_img.shape[1])
left_img_cropped, right_img_cropped = left_img[:, :min_width, :], right_img[:, :min_width, :]

Show the two images side by side
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
axs[0].imshow(left_img_cropped)
axs[0].set_title('Left Image')
axs[1].imshow(right_img_cropped)
axs[1].set_title('Right Image')
plt.show()

Compute the absolute difference for highlighting
diff = np.abs(left_img_cropped.astype(int) - right_img_cropped.astype(int)).astype(np.uint8)
plt.imshow(diff)
plt.title('Difference')
plt.show()

First Turn - Reasoning & Coding

Find all the differences between the
left and the right image.

System Prompt

 GPT 4.1

User Query

Let's plan:

Restate the Problem: The task is to identify all the differences between the two side-by-side
images provided.

Initial Analysis: The images are simple drawings, likely from a spot-the-difference puzzle.
Differences can be additions, removals, or alterations of objects.

Approach: A side-by-side visual inspection is the primary method. To ensure no differences are
missed, we will computationally generate a "difference image" that highlights all pixel-level changes
between the two pictures.

Method:

1. Separate the single input image into its left and right halves.
2. Calculate the absolute pixel-by-pixel difference between the left and right images.
3. Display the left image, the right image, and the resulting difference image.
4. Use the highlighted areas in the difference image to systematically list all discrepancies.

First Step: Let's start by splitting the image and generating the difference map to guide our visual
inspection.

First Turn - Execution

Left Image Right Image Difference

Second Turn - Reasoning (Answer)

Now that we've visually inspected the left and right images, as well as the difference image, let's analyze and
enumerate the differences.

Upon rechecking, it appears the main differences are:

The most prominent difference areas are at the bottom (near the plants, flowers, and butterfly), on the fence,
and possibly in the sheep and clouds.

Final Answer:

\boxed{'1. Butterfly present only in the right image.
2. Mushroom present only in the left image.
3. Extra yellow flower on the left plant only in the left image.
4. Rightmost yellow flower missing from the right plant in the right image.
5. Center sheep has horns in the right image but not in the left.
6. Fence post on the far left is missing in the right image.
7. Top left cloud is larger in the left image.
8. The house has an extra window in the left image.'}.

1

1 2

Figure 9: Case Study: Spot-the-Difference showcases structured visual comparison. Given a
side-by-side image pair, PyVision is asked to identify all visual discrepancies.

PyVision first plans a multi-step strategy: it splits the image into left and right halves, computes
the absolute pixel-level difference, and generates a difference map to highlight changes. It then
displays both original images alongside the computed difference visualization to aid analysis. Based
on this, PyVision proceeds to enumerate the identified differences. Although the final answers
are not completely correct, the model’s initiative to employ pixel-level differencing and organize a
reasoning pipeline is notable. This example illustrates both the creative potential of agentic visual
reasoning and the ongoing challenge of mitigating hallucinations.†

23

Second Turn - Reasoning (Answer)

User Query

Let's proceed step by step.

First, let's identify all tables in the room. Tables can be of different types:
dining tables, coffee tables, side tables, or desks.

From an initial scan of the images: - image_clue_14, image_clue_27,
image_clue_17, and image_clue_29 show tables. - There seems to be a
small round dining table (image_clue_14, image_clue_27). - There is a
glass coffee table (image_clue_29). - There is a desk/console table under
the TV with a DVD player on top (image_clue_17, image_clue_14,
image_clue_16). - There is a small side table next to the sofa
(image_clue_31, image_clue_33).

To accurately count, let's visually confirm and count each table by
zooming in on the relevant images.

Let's start by displaying these images side by side for clarity.

First Turn - Reasoning, Coding

From the images shown:

1. There is a round dining table (image_clue_14, also visible in image_clue_27).
2. There is a rectangular glass coffee table (image_clue_29).
3. There is a desk/console table under the TV with a DVD player on it (image_clue_17, also visible in
image_clue_14 and image_clue_16).
4. There is a small glass side table next to the sofa (image_clue_31 and image_clue_33).

None of the kitchen counters/islands should be counted as tables, as they are built-in cabinetry.

Let's confirm there are no duplicates: - The desk/console table and the side table are distinct (different size,
position, and purpose). - The round dining table is distinct from the coffee table and desk.

Therefore, the total number of tables in this room is 4.

\boxed{4}

How many table(s) are in this
room?

System Prompt GPT-4.1

import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()

axes[0].imshow(image_clue_14)
axes[0].set_title('image_clue_14 (Dining table & desk)')
axes[1].imshow(image_clue_29)
axes[1].set_title('image_clue_29 (Coffee table)')
axes[2].imshow(image_clue_17)
axes[2].set_title('image_clue_17 (Desk/console table)')
axes[3].imshow(image_clue_31)
axes[3].set_title('image_clue_31 (Side table)')

for ax in axes:
 ax.axis('off')

plt.tight_layout()
plt.show()

1

2First Turn - Execution1

Figure 10: Case Study: Video Understanding benefits from an agentic pipeline that integrates
reasoning across frames and targeted frame selection. In this example from VSI-Bench [54], a
3-minute egocentric video of an indoor scene is presented, and PyVision is tasked with identifying
the number of tables in the room.

PyVision begins by analyzing the video to detect candidate frames containing tables. It then selects
and displays key frames, each showing a different table, including dining table, desk, coffee table,
and side table, to support its reasoning. By synthesizing visual evidence and textual inference across
multiple views, PyVision concludes there are four distinct tables in the room.

24

	Introduction
	Related Work
	PyVision
	Results on Versatile Benchmarks
	Dynamically Generated Tools
	Tooling Taxonomy
	Analyzing Tooling Patterns Across Tasks and Domains

	Conclusion
	Additional Evaluation Details
	System Prompt Details
	Evaluation Details

	Examples of Generated Tools
	Code Snippet of Crop Tool
	Code Snippet of Rotate Tool
	Code Snippet of Enhance Contrast Tool
	Code Snippet of Segmentation Tool
	Code Snippet of Detection Tool
	Code Snippet of OCR Tool
	Code Snippet of Render Marks Tool
	Code Snippet of Render Auxiliary Lines Tool
	Code Snippet of Visulize Image Histogram Tool
	Code Snippet of Numerical Analysis Tool

	Case Study of PyVision

