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Abstract

Cell-free DNA is a promising biomarker for early cancer detection, as it circulates1

in the blood and can be extracted non-invasively. However, methods of analysing2

the genetic and epigenetic patterns present in cell-free DNA are outdated, and3

fail to fully capture the wealth of biological information contained within these4

molecules. We present a Transformer based deep learning model that combines the5

three distinct modalities contained within cell-free DNA: epigenetic information6

in the form of DNA methylation patterns, genetic sequence, and cell-free DNA7

fragment length. After training on publicly available data, we demonstrate our8

model can accurately distinguish liver cancer patients using cell-free DNA samples9

alone. We demonstrate model generalisability by accurate classification of liver10

cancer patients from entirely distinct patient cohorts. Finally, we show that the11

vector embeddings of cell-free DNA learnt by this multimodal deep-learning model12

are biologically informative, and may help shed light on the origins and aetiology13

of this elusive bio-molecule.14

1 Introduction15

DNA is released from somatic cells undergoing apoptosis, and circulates in the peripheral bloodstream,16

contributing to what is known as the cell-free DNA (cfDNA) pool. Cell-free DNA molecules carry17

three distinct information modalities, all of which vary with cancer status: genomic sequence, a18

methylation pattern and the fragment length (as in Figure 1). This molecule can be extracted non-19

invasively from blood plasma, following routine blood draws. In cancer, cell cycle dysregulation20

leads to increased rates of cell turnover, which causes downstream fluctuations to tumour-specific21

cfDNA concentrations detected in the blood.22

These changes are subtle, but if reliably detected they provide a route to early and non-invasive cancer23

diagnosis. Methylation sequencing methods are needed to detect these tissue-specific changes in24

cfDNA release, because genomic sequence is identical in all somatic cells whereas DNA methylation25

is tissue-specific. Recently, methods have been developed to simultaneously capture methylation,26

sequence and fragment length information of cfDNA with high fidelity and depth of coverage,27

resulting in a rich dataset describing the genome-wide cell-free DNA state of cancer patients.28

Current clinical methods of analysing cfDNA are outdated in three important ways. Firstly, they were29

designed for low quality, low-depth genomic sequencing data, so tend to aggregate information across30

all cfDNA fragments at each genomic locus, disregarding the unique information each individual31

bio molecule may contain. Secondly, classification models of cfDNA have relied on manual feature32

extraction at known risk loci, which limits research to current genomic hypotheses and scales poorly.33

Automated feature extraction methods are more suitable to explore this relatively unknown bio34

molecule and its role in cancer aetiology at scale.35

Finally, there is no way current way to combine the distinct data modalities of cfDNA sequence,36

methylation and fragment length. Clinical biomarker tests that rely on cfDNA tend to focus on just37

one of these modalities. In doing so, they neglect not only the additional information that could38
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Figure 1: A schematic of cell-free DNA fragments found in peripheral blood, aligned to a gene
of interest. These fragments contain three distinct modalities of information: DNA sequence,
methylation pattern (shown here on CpGs) and their variable fragment length.

be gleaned from this molecule, but also the potential to better understand a key question in cfDNA39

biogenesis: what is the interplay between genomic sequence, methylation status and fragment length?40

Are certain sequence motifs prone more to aberrant methylation during tumourigenesis, and are more41

highly methylated fragments typically shorter? As a result, despite garnering considerable interest as42

an early cancer biomarker, the dynamics and mechanisms of cfDNA fragmentation and release into43

the blood are poorly understood.44

Here we present a Transformer model that classifies each individual cfDNA fragment, incorporating45

methylation state, genomic sequence and fragment length simultaneously into a single, multimodal46

classifier. We use this model to accurately distinguish liver cancer patients from healthy controls47

across patient cohorts.48

2 Results49

We encode each individual cfDNA molecule as a variable length vector, where numbers 1-4 represent50

each of the possible nucleotide bases at each position. Methylated cytosine is encoded as a 5, to51

distinguish it from unmethylated cytosine. These encoded molecules are then passed to a Transformer52

deep learning model (standard architecture (Vaswani et al 2017; Tay et al 2022) with a binary53

classification final layer, whose task is to predict fragment origin: Healthy or Cancer. This model was54

trained on public data, which consisted of billions of individual reads from either Healthy cfDNA55

samples or Hepatocellular Carcinoma tumour samples.56

For any given cancer patient or healthy control, each individual cfDNA fragment is assigned a57

probability of originating from cancer, as shown in Figure 2. As shown, the probability distribution58

over all fragments is largely similar between healthy and cancer cfDNA samples. This is to be59

expected: cell-free DNA is thought to be released from most healthy somatic tissues, with the60

majority contribution coming from healthy lymphocytes. In cancer patients, only a small subset of61

cfDNA fragments actually originate from the tumour, and even this circulating tumour DNA fraction62

varies considerably with cancer stage and cancer type. A small bump in the probability distribution63

around P=0.9 is seen in cancer cfDNA samples (red) but not in healthy cfDNA samples (green), and64

can be attributed to cfDNA originating from the tumour.65

We aggregate fragment scores to develop a patient-level risk score, which we then use to classify66

patients. This model is still in active development, and we are currently seeking to improve model67

architecture and hyperparameter selection. Patient cfDNA data collection is also ongoing, but we68

have thus far evaluated the model on the following three datasets:69

1. The held-out test set of unseen cfDNA samples, but taken from the same cohort as the70

training dataset. All patients in the test cohort of this dataset (n=24) are correctly classified.71

2. A separate publicly available dataset of cfDNA samples from liver cancer patients and72

healthy controls (n=8). All of these patients are also correctly classified by the model,73

demonstrating its generalisability to new patient cohorts.74

3. A third dataset of cfDNA samples from liver cancer patients and healthy controls generated75

in-house (n=53). A subset of patients in this cohort have early stage liver cancer, and are76
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incorrectly classified as healthy by our model, most likely due to insufficient cfDNA material77

originating from cancer. Taking these misclassifications into account, we observe an overall78

AUC of 0.81 for this patient cohort, and late-stage disease is still detected.79

Figure 2: The distribution of cfDNA fragment scores across healthy controls (green) and liver cancer
patients (red) in the test set. Each line represents the distribution over all scores for a single patient’s
cfDNA sample, where the score for a single fragment is the probability that fragment originated from
cancer. This data is from patient cohort 1 and 2.

By obtaining classifications for each individual fragment in a patient’s cfDNA population, we can80

begin to untangle the relationship between methylation state, genomic sequence and fragmentation81

length of individual cfDNA fragments, and how this affects the predicted origin of the fragment. For82

example in Figure 3, we can see that shorter fragments are assigned a lower cancer score on average.83

We can also see that as cfDNA fragment methylation rate decreases, the assigned probability that84

fragment originates from cancer increases.85

Population-level cancer screening tests must be non-invasive, and liquid biopsy is the most promising86

pan-cancer non-invasive test. As cfDNA-based liquid biopsy diagnostics become clinically adopted,87

we desperately need new methods to make sense of the richly informative cfDNA molecules that88

circulate in our blood. This method details the initial results of an ongoing data collection and89

modelling effort towards this end.90
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Figure 3: The distribution of cfDNA fragment risk scores stratified by fragment length, for a single
liver cancer patient (downsampled for legibility). Methylation state (normalised by fragment length)
is represented by marker color, where a lighter color means higher methylation.
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