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ABSTRACT

Modeling single-cell gene expression across diverse biological and technical condi-
tions is crucial for characterizing cellular states and simulating unseen scenarios.
Existing methods often treat genes as independent tokens, overlooking their high-
level biological relationships and leading to poor performance. We introduce
SAVE, a unified generative framework based on conditional Transformers for
multi-condition single-cell modeling. SAVE leverages a coarse-grained represen-
tation by grouping semantically related genes into blocks, capturing higher-order
dependencies among gene modules. A flow-matching mechanism and condition-
masking strategy further enhance flexible simulation and enable generalization to
unseen condition combinations. We evaluate SAVE on a range of benchmarks, in-
cluding conditional generation, batch effect correction, and perturbation prediction.
SAVE consistently outperforms state-of-the-art methods in generation fidelity and
extrapolative generalization, especially in low-resource or combinatorially held-out
settings. Overall, SAVE offers a scalable and generalizable solution for modeling
complex single-cell data, with broad utility in virtual cell synthesis and biological
discovery.

1 INTRODUCTION

The rapid expansion of high-throughput single-cell RNA sequencing (scRNA-seq) technologies
provides unprecedented opportunities to computationally model and simulate diverse cellular states
under complex experimental conditions Kolodziejczyk et al. (2015); Svensson et al. (2018); Jovic
et al. (2022). Generative models that can predict gene expression profiles under unseen combinations
of covariates—such as cell type, disease state, and perturbation—can greatly reduce experimental
costs and accelerate biological discovery.

Variational Autoencoders (VAEs) have become the foundation of many generative frameworks in
single-cell omics, with scVI Lopez et al. (2018) being a notable example. While effective in learning
latent representations and enabling batch correction and imputation, such models typically assume
simple architectures and are limited in their ability to model complex, combinatorial interactions
among multiple external conditions. Addressing this limitation is crucial for simulating realistic
cellular responses in multi-conditional settings Luecken et al. (2024).

To model condition-dependent gene expression patterns at scale, recent approaches have adopted
Transformer-based architectures, representing cells as gene token sequences and conditions as
condition tokens Cui et al. (2024); Bian et al. (2024). These so-called “foundation models” rely on
masked modeling objectives to capture the relationships between genes and covariates. However, they
face several fundamental challenges: (1) they assume a flat, token-level view of genes, neglecting
biological structures such as gene modules or pathways; (2) they fail to model the global expression
distribution, focusing primarily on non-zero values and ignoring the informative zero inflation inherent
in scRNA-seq data Qiu (2020); and (3) they are typically not integrated into a generative framework
capable of sampling from the learned conditional distribution.

We draw inspiration from masked generative modeling in computer vision, such as Chang et al.
(2022), which demonstrates that unordered data can be effectively modeled using coarse-grained
representations like image patches. Gene expression data shares key properties with images in
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this context—it is high-dimensional, sparse, and inherently unordered. This suggests that a similar
coarse-graining strategy, modeling at the level of ’gene blocks’ rather than individual genes, could
prove highly effective.

However, a key challenge arises: unlike pixels, which are grouped by spatial proximity, genes lack a
natural local structure. To overcome this, we propose forming blocks based on semantic similarity.
We leverage Large Language Models (LLMs), pre-trained on extensive text corpora, to extract rich
features from the comprehensive gene descriptions in the NCBI database. Genes exhibiting high
semantic similarity are then aggregated into blocks. These blocks serve as coarser-grained tokens,
upon which we apply an attention mechanism to learn the complex relationships among them.

In this work, we propose SAVE (Single cell Gene Block Attention-based Variational autoEncoder
with Flow Matching), a unified framework for conditional single-cell data generation and integration.
SAVE integrates the latent space structure of VAEs with a coarse-grained Transformer that attends
over meaningful gene blocks, effectively capturing high-order dependencies. To enhance conditional
generation, SAVE employs a Flow matching , enabling simulation under complex, unseen condition
combinations.

Our main contributions are summarized as follows:

• We introduce Gene Block Attention, a attention mechanism that captures high-order rela-
tionships among blocks of genes.

• We develop masked modeling strategy on Flow Matching and VAE to enhance SAVE’s
ability to learn the conditional distribution of cell states.

• We demonstrate that SAVE achieves state-of-the-art performance on multiple tasks, in-
cluding batch alignment, perturbation prediction, and simulation under unseen condition
combinations.

2 RELATED WORK

2.1 GENERATIVE MODELING FOR SINGLE-CELL DATA

Variational Autoencoders (VAEs) have been widely adopted for modeling single-cell RNA-seq data.
Notably, scVI Lopez et al. (2018) introduces a zero-inflated negative binomial (ZINB) likelihood
and encodes covariates into the latent space for tasks like batch correction and imputation. However,
traditional VAE-based models primarily focus on representation learning rather than flexible data
generation across complex conditions Xiong et al. (2022). To improve generative capabilities,
recent models have explored more expressive architectures. CFGen Palma et al., a flow-based
model, applies optimal transport-guided diffusion and classifier-free guidance to model conditional
distributions. Similarly, scDiffusion Luo et al. (2024) combines latent diffusion with a pre-trained
autoencoder Heimberg et al. (2025) and integrates condition labels via gradient-based classifier
guidance. While these approaches support conditional generation, they rely on fine-grained diffusion
processes and often struggle with interpretability and scalability across diverse biological contexts.

2.2 CONDITIONAL TRANSFER IN SINGLE-CELL ANALYSIS

Predicting gene expression under unseen conditions—such as novel drug perturbations or disease
states—is a central goal in single-cell analysis Wu et al. (2024). scGen Lotfollahi et al. (2019)
addresses this using a latent shift strategy in an autoencoder framework, assuming linear transitions
in the latent space. trVAE Lotfollahi et al. (2020) applies Maximum Mean Discrepancy (MMD)
for alignment and decodes data conditioned on state labels. These methods, however, are typically
limited to a single type of condition. scDisInFact Zhang et al. (2024) extends to multi-factor
settings by employing multiple encoders to disentangle condition-specific and condition-invariant
components. Nonetheless, such designs require predefined factor separation and often lack scalability
to combinatorial condition spaces.
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Figure 1: Framework of SAVE model.

2.3 TRANSFORMER MODELS IN SINGLE-CELL LEARNING

Transformer-based models have recently gained traction in single-cell omics, mostly for representation
learning. scGPT Cui et al. (2024), scBERT Yang et al. (2022), and Geneformer Theodoris et al. (2023)
tokenize gene expression using rank or discretized values, often sacrificing fine-grained quantitative
information. GeneCompass Yang et al. (2024) improves upon this by combining rank and absolute
expression with regression loss. Some methods directly project expression values into continuous
space, with additional strategies to handle zero inflation. TOSICA Chen et al. (2023) uses gene
networks to filter unreliable zeros, while scFoundation Hao et al. (2024) introduces special tokens
to mask them. CellPLM Wen et al. (2023) models inter-cell relationships via a VAE-Transformer
hybrid, treating entire cells as tokens. Despite this progress, most Transformer-based methods
focus on encoding rather than generation, and there is little agreement on how best to represent
gene expression in tokenized form. Incorporating biological structure (e.g., gene sets) and enabling
conditional generation remain open challenges.

3 METHODOLOGY

We present SAVE, a unified Latent Flow Matching (LFM) framework for conditional simulation
and status transformation of scRNA-seq data. To model complex gene expression profiles, SAVE
introduces a Gene Block Attention backbone to capture long-range transcriptional dependencies.
Furthermore, it incorporates rich contextual information, such as cell type or disease state, through
Adaptive Layer Normalization (AdaLN).

The architecture comprises three core components: (1) A VAE Encoder with Gene Block Attention
to learn robust latent cell representations from transcriptional patterns. (2) A Condition-aware Flow
Matching module that leverages AdaLN to generate gene expression profiles precisely guided by
condition embeddings. (3) A Condition Mask-based Training strategy that unifies generation and
transfer tasks by masking conditions for either the Flow Matching module or the VAE encoder,
respectively. An overview is shown in Figure 1.

3.1 GENE BLOCK ATTENTION FOR SCRNA-SEQ MODELING

Gene Block Processing. The cluster algorithm iteratively partitions a set of G gene embeddings
xi into L clusters (i.e., gene blocks). At each iteration t, it first establishes a cost matrix C

based on the squared Euclidean distance to the current centroids, Cij = ∥xi − c
(t)
j ∥22. Subse-

quently, it solves the optimal transport problem T∗ = argminT
∑

i,j TijCij subject to constraints
T1L = a and TT1G = b, where the use of uniform marginals (ai = 1/G, bj = 1/L) en-
forces the cluster balance. The resulting transport plan determines the new cluster assignments
via label(xi) = argmaxj T

∗
ij . Finally, centroids are updated as the mean of their new members,
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c
(t+1)
j = |C(t)

j |−1
∑

xi∈C
(t)
j

xi, and the process repeats until convergence. Then we partition the

input scRNA-seq data X ∈ RN×G into non-overlapping gene blocks, resulting in L = G/K gene
blocks per cell. The transformed dataset becomes X ∈ RN×L×K .

Transformer Block. Each gene block is first projected into an m-dimensional hidden space via a
learnable MLP W in. SAVE applies standard Transformer blocks to this representation using the
following formulation:

h0 = XW in, h0 ∈ RN×L×m

ht′ = ht + Attention(LayerNorm(ht))

ht+1 = ht′ + FeedForward(LayerNorm(ht′))

(1)

Here, ht denotes the input to the t-th Transformer block. Layer normalization is applied before
Attention and FeedForward layers to enhance training stability and convergence.

3.2 CONDITION INJECTION VIA ADAPTIVE LAYER NORMALIZATION

To incorporate condition-specific information, we encode all conditioning variables (e.g., batch,
cell type, disease stage) into a matrix C ∈ RN×c, where c is the number of condition types. Each
categorical condition is assigned a unique index value, and we apply a learnable embedding to obtain
CE ∈ RN×c×e with embedding dimension e = 256.

We employ Adaptive Layer Normalization (AdaLN) Xu et al. (2019) to inject condition-specific
signals into the Transformer blocks. The parameters for AdaLN are derived from CE as follows:

α1,β1, γ1, α2, β2, γ2 = CEWC , α, β, γ ∈ Rn×e

ht′ = ht + α1 · Attention(AdaLN(ht, γ1, β1))

ht+1 = ht′ + α2 · FeedForward(AdaLN(ht′ , γ2, β2))

AdaLN(h, γ, β) =
h− E[h]√
Var[h] + ϵ

· γ + β

(2)

Here, α, β, γ act as learnable scaling factors, modulating the influence of condition embeddings on
the sequence representation.

3.3 SINGLE-CELL GENERATION VIA VARIATIONAL ATTENTION AUTOENCODER

Attention Encoder with Gaussian Prior. The encoder’s final output hi is flattened and projected to
estimate the parameters of the latent distribution:

µ = (h)Wµ, µ ∈ RN×d (3)

σ2 = (h)Wσ, σ2 ∈ RN×d (4)

To regularize the latent space, we apply a Kullback–Leibler divergence penalty:

Lp = DKL(N (µ, σ2)||N (0, 1)) =
1

2

(
− log(σ2) + σ2 + µ2 − 1

)
(5)

Latent codes z are sampled using the reparameterization trick.

Attention Decoder for Latent Tokens. The decoder mirrors the encoder structure. The latent
vector z ∈ RN×d is reshaped into z ∈ RN×Ll×Kl with latent block size Kl = 8. We apply a linear
projection WDin to obtain hD

0 , the initial hidden state:

hD
0 = zWDin, h = Decoder(h0), X̂ = hW out (6)

The reconstruction loss is defined as:

Lrecon = − logL(X̂|X) (7)

4
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3.4 FLOW MATCHING FOR CONDITIONAL GENERATION

The core idea of Flow Matching is to learn a time-dependent vector field vt(x) that generates a
probability path pt(x)connecting a simple prior distribution p0 (e.g., a standard Gaussian) to the data
distribution p1. The generation process is then described by the probability flow ODE: dxt

dt = vt(xt).

Instead of learning the complex marginal vector field vt directly, Flow Matching regresses a simpler
conditional vector field ut that maps a specific noise sample x0 ∼ p0 to a specific data sample
x1 ∼ p1. This is achieved by defining a probability path between them.

We utilizes a simple yet effective Affine Probability Path, which corresponds to a linear interpolation
between the noise and the data. Given a random time step t ∈ [0, 1], a point xt on the path is defined
as:

xt = (1− t)x0 + tx1 (8)
This formulation defines where a particle starting at x0 should be at time t to reach x1 at time t = 1.

The training objective is to teach a neural network, vθ(x, t, y) , to predict the instantaneous velocity
of the particle along the path. For the affine path, this velocity, or the target vector field ut, is simply
the time derivative of xt :

ut =
dxt

dt
=

d

dt
((1− t)x0 + tx1) = x1 − x0 (9)

The network vθ takes the perturbed data xt, the timestep t, and optional conditioning information
c as input. It is trained to approximate ut by minimizing the Flow Matching objective, which is a
Mean Squared Error (MSE) loss between the predicted vector and the ground-truth vector. The loss
function is formulated as:

LFM (θ) = Et∼U [0,1],p0(x0),p1(x1)

[
∥vθ(xt, t, c)− ut∥2

]
(10)

Once the model vθ is trained, it can generate new samples. The generation process reverses the flow,
starting from a random noise sample and evolving it toward the data distribution. This is achieved by
solving the probability flow ODE from t = 0 to t = 1, using the learned network vθ as the velocity
field function. The ODE is defined as:

dxt

dt
= vθ(xt, t, c) (11)

with the initial condition being a sample from the prior, x0 ∼ p0(x). To generate a sample, we solve
this initial value problem. The solution at t = 1, denoted as x1, is a new sample from the learned
data distribution.

We also implements Classifier-Free Guidance (CFG), a technique to enhance the influence of the
conditioning signal y. The effective vector field during inference becomes a weighted combination of
a conditional and an unconditional prediction:

v̂θ(xt, t, c) = (1− w) · vθ(xt, t) + w · vθ(xt, t, c) (12)

where w is the guidance weights. This allows for controlling the trade-off between sample diversity
and fidelity to the conditioning information.

3.5 MASK MODELING STRATEGY

To enhance the model’s ability to generalize to unseen conditions, we introduce a two-level masking
strategy.

Condition Masking. Each element in the condition matrix C is masked independently with a fixed
probability p, replaced by a dedicated [MASK] token:

Cij =

{
[MASK] with probability p

Cij with probability 1− p
, ∀i ∈ {1, ..., N}, j ∈ {1, ..., t} (13)

This masking strategy helps the model learn robust representations by simulating missing information
during flow matching.
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4 RESULTS

In this section, we comprehensively evaluate SAVE across multiple tasks. In Section 4.1, we begin
with the introduction of the experiment setting and the implementation details. In Section 4.2, we
compare it with baseline models on both single-condition and multi-condition generation across five
datasets, using distributional visualization for qualitative assessment and distance-based metrics to
quantify similarity between real and generated cells. We then assess SAVE’s performance on two
classical benchmarks: batch effect removal (Section 4.3) and out-of-sample perturbation prediction
(Section 4.4). Finally, we conduct ablation and robustness studies (Section 4.5) to evaluate the
contribution of each model component.

4.1 EXPERIMENT SETUP

Following standard bioinformatics protocols Wolf et al. (2018), the expression values for each cell
were normalized to a total of 104 counts and then log-transformed. Before being input into the neural
network, the scRNA-seq data underwent max-absolute normalization, scaling all values to the range
[0, 1]. The SAVE model was configured with a gene block size of K = 40 and a latent set size
of Kl = 8. The condition masking ratio was set to 0.6. For latent token masking, the minimum
and maximum masking probabilities were set to pmin = 0.2 and pmax = 0.4, respectively. Model
optimization was performed using the AdamW optimizer with a learning rate of 1 × 10−4 and a
weight decay of 2.5× 10−5. All experiments were conducted on a GeForce RTX 3090 24GB GPU.
The same set of hyperparameters was used for all experimental settings. A detailed list of model
parameters is provided in Appendix Table 8.

4.2 CONDITIONAL GENERATION PERFORMANCE

scVI scDiffusion SAVECFGen

Generated
Ground truth

D1
D2
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D7

D11
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Smooth_muscle_cells
Ventricular_Cardiomyocyte
doublets

Figure 2: UMAP visualization of generative model outputs on the Heart dataset. The top row
illustrates the discrepancy between the generated and real data distributions, the middle row highlights
different batches, and the bottom row denotes cell types.

Table 1: Single conditional generation performance.

Method PBMC3K Dentate gyrus Tabula Muris
WD (↓) MMD (↓) WD (↓) MMD (↓) WD (↓) MMD (↓)

scVI 17.66 0.94 22.61 1.15 9.76 0.26
scDiffusion 22.41 1.27 22.56 1.22 7.89 0.24
CFGen 16.94 0.85 21.55 1.12 7.39 0.19
SAVE 19.14 1.80 9.16 0.17 10.86 0.04

Conditional generation scenarios are categorized into three types: single-condition, dual-condition
multi-platform sequencing data, and large-scale datasets with diverse expert annotations (e.g., cellx-
gene Megill et al. (2021)). We compared our model with scVI, CFGen, and scDiffusion.

Performance on single condition datasets. We first conducted comparative experiments on datasets
each containing a single condition, including PBMC3K conditioned on cell type, Dentate gyrus
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Table 2: Dual condition generation performance.

Method Heart PBMC Lung Atlas
WD (↓) MMD (↓) WD (↓) MMD (↓) WD (↓) MMD (↓)

scVI 19.18 1.19 17.75 0.95 22.20 2.27
CFGen 12.57 0.66 17.41 0.65 28.02 1.76
scDiffusion 20.82 0.94 11.38 0.48 13.89 1.71
SAVE 8.30 0.63 5.37 0.29 4.37 1.14

conditioned on clusters, and Tabula Muris conditioned on tissue, with the data volumes increasing
in turn. As shown in Table 1, SAVE consistently demonstrated superior performance across both
Wasserstein Distance (WD) and Maximum Mean Discrepancy (MMD) metrics, indicating generated
data closest to the real distribution. CFGen’s performance improved with increasing data size,
while scVI’s simpler architecture limited its ability to learn more accurate distributions from larger
datasets. scDiffusion consistently ranked second. Compared to scDiffusion, which employs a
backbone of residual linear layers, SAVE achieves superior performance with a comparable number
of parameters. This demonstrates the effectiveness of adopting gene block attention for capturing the
overall distribution of cellular data.

Performance on dual-condition dataset. Table 2 presents the performance of SAVE and other gener-
ative models on five more complex multi-platform datasets (Mouse endocrinogenesis Lotfollahi et al.
(2023), Pancreas Luecken et al. (2022), Lung Atlas Luecken et al. (2022), Heart Luecken et al. (2022),
PBMC Fischer et al. (2021). These datasets are all conditioned on both batch and cell type, requiring
the models to simultaneously learn the influence of these two conditions on the data distribution.
Similar trends were observed for data with two simultaneous conditions. SAVE consistently exhibited
leading performance across datasets, suggesting good scalability. scDiffusion showed slightly inferior,
yet second-best, results. CFGen, despite employing advanced flow matching within its simpler VAE
framework, yielded the worst performance on the Pancreas and Lung Atlas datasets, performing
similarly to scVI under dual-condition settings. UMAP visualizations of generative models on the
Heart dataset are presented in Figure 2. While CFGen and scDiffusion demonstrate good fitting for
the overall data distribution, they exhibit relatively disorganized distributions for the multi-batch
Ventricular Cardiomyocyte population. In contrast, scVI’s generated distribution significantly deviates
from the real data. Our method, SAVE, effectively distinguishes batch differences within this cell
type, enabling more accurate modeling.

Multi-cond generation performance: To evaluate the fitting of complex multi-conditional dis-
tributions, we utilized a lung cancer dataset Salcher et al. (2022) characterized by five conditions:
sequencing protocol, developmental stage, cancer status, cancer stage, and cell type. These conditions
were mapped to 27 discrete types (see Appendix Table 9). Conditions 13 and 24, representing
relatively smaller data subsets, were selected as the test set, while the remaining conditions formed
the training set. As shown in Table 3, SAVE demonstrates excellent performance in fitting the data
distribution. The results on the test data, evaluated through conditional extrapolation, further confirm
SAVE’s ability to generalize the conditional effects learned from the training data.

Figure 3 illustrates the performance of generative models on training and test data across two cases.
Figure 3(a) demonstrates that even with limited training data, CFGen and scDiffusion generate data
distributions that deviate significantly from the real data, whereas SAVE produces a more accurate
distribution. Figure 3(b) highlights a key property of SAVE’s generated data: its overall distribution
is closer to that of the real data, as evidenced by a lower WD score.

bronchus fibroblast of lung
fibroblast of lung
macrophage
malignant cell
pericyte
smooth muscle cell
vein endothelial cell

CD4-positive, alpha-beta T cell
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natural killer cell
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Figure 3: UMAP visualization of generative model performance on the Lung Cancer dataset. Panel (a)
illustrates results on the seen conditions, and panel (b) shows performance on the unseen conditions.
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Table 3: Quantitative evaluation of generative model performance on the Lung Cancer dataset. WD
and MMD for seen and unseen conditions are averaged.

Method Seen Unseen
WD (↓) MMD (↓) WD (↓) MMD (↓)

CFGen 16.94 ± 4.19 1.49 ± 1.80 23.67 ± 3.08 2.76 ± 2.64
scDiffusion 5.27 ± 2.14 1.06 ± 1.59 5.29 ± 2.03 1.87 ± 2.31
SAVE 3.10 ± 0.96 1.06 ± 1.48 4.63 ± 0.95 2.11 ± 2.11

Table 4: Batch effect correction performance of SAVE model.

Method Lung Atlas Heart PBMC
Bio. (↑) Batch (↑) scIB (↑) Bio. (↑) Batch (↑) scIB (↑) Bio. (↑) Batch (↑) scIB (↑)

Scanorama 0.70 0.88 0.77 0.72 0.82 0.76 0.71 0.93 0.80
Harmony 0.65 0.93 0.76 0.76 0.89 0.81 0.71 0.95 0.80
scVI 0.58 0.83 0.68 0.66 0.81 0.72 0.47 0.78 0.59
trVAE 0.69 0.90 0.78 0.75 0.83 0.78 0.75 0.91 0.82
SAVE 0.73 0.93 0.81 0.76 0.86 0.80 0.75 0.95 0.83

4.3 BATCH EFFECT CORRECTION

Batch effect correction is commonly employed to align multiple sequencing datasets, mitigating its
impact on downstream analyses such as differential gene expression and gene regulatory network
inference. Its effectiveness is typically assessed using metrics such as the biological conservation score
(Bio.) and the batch correction score (Batch). The scIB score provides a comprehensive evaluation
by jointly considering both biological preservation and batch mixing performance. We systematically
evaluated SAVE on three multi-platform scRNA-seq datasets (used in dual-condition generation task)
and compared its batch correction performance against four established methods: Scanorama Hie et al.
(2019), Harmony Korsunsky et al. (2019), scVI, and trVAE. Across all datasets, SAVE consistently
achieved the best overall integration quality, attaining the top biological conservation score in three
datasets and the best batch correction score in two, shown in Table 4. Traditional methods like
Harmony remained competitive, ranking top in batch correction for Mouse endocrinogenesis and
showing stable performance overall. In contrast, deep learning methods exhibited trade-offs: scVI
often underperformed in biological conservation, while trVAE achieved strong batch correction but
at the cost of biological fidelity. These results highlight SAVE’s ability to effectively disentangle
biological variation from technical noise, particularly in complex or heterogeneous tissue datasets.

4.4 PERTURBATION PREDICTION PERFORMANCE
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Figure 4: Performance comparison between predicted and stimulated (real perturbed) data. The
top row presents UMAP visualizations comparing each method’s predictions to the real perturbed
condition (yellow), where closer proximity indicates better prediction accuracy. The bottom row
shows violin plots of the expression distributions for the most significant differentially expressed
genes predicted by each method.

Drug perturbation prediction typically involves learning the effects of drug perturbations on various
cell types from training data and generalizing to novel cell types. We evaluate our approach on
predicting IFN-β drug perturbation data from PBMC-IFN dataset Haber et al. (2017). As shown in
Figure 4, SAVE produces predictions that most closely match the true stimulated (real perturbed)
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conditions, substantially outperforming other models. scGEN ranks second in performance. In
contrast, trVAE’s outputs tend to resemble the control condition, suggesting limited capacity to model
perturbation-specific effects. Meanwhile, scDisInFact exhibits significant deviation, likely due to
its emphasis on latent space alignment at the expense of accurately capturing the observed data
distribution. The violin plot depicts the overall distribution of highly variable genes, and similar
conclusions can be drawn.

From the perspective of quantitative analysis in Table 5, SAVE achieves a PCC correlation exceeding
0.91, outperforming the baseline scGEN. trVAE shows the second-best performance, while scDis-
InFact performs worst, with its predictions exhibiting correlations inferior to even the correlation
between control and perturbed data. We observe that for cell types with significant differences
between control and perturbed conditions, such as CD14+Mono and FCGR3A+Mono, SAVE yields
superior prediction performance. Similar conclusions are drawn from the R2 metric, indicating that
SAVE is able to capture more conditional effects on expression values.

Table 5: Quantitative evaluation of perturbation prediction methods on the PBMC-IFN dataset.

Method CD8T CD14+Mono FCGR3A+Mono B CD4T Dendritic NK Average
PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑)

control 0.94 0.88 0.75 0.32 0.78 0.38 0.91 0.81 0.94 0.87 0.79 0.51 0.93 0.84 0.86 0.66
trVAE 0.98 0.96 0.82 0.39 0.83 0.32 0.90 0.78 0.97 0.94 0.83 0.46 0.97 0.92 0.90 0.68
scDisInFact 0.85 0.43 0.77 0.47 0.71 0.43 0.84 0.45 0.85 0.43 0.76 0.47 0.79 0.44 0.80 0.45
scGEN 0.96 0.88 0.95 0.80 0.93 0.77 0.91 0.83 0.92 0.85 0.96 0.89 0.93 0.84 0.94 0.84
MFM 0.78 0.60 0.77 0.53 0.56 0.08 0.70 0.49 0.70 0.49 0.72 0.51 0.72 0.51 0.71 0.46
CellOT 0.99 0.97 0.99 0.98 0.77 0.02 0.95 0.89 0.97 0.94 0.96 0.88 0.96 0.90 0.94 0.80
SAVE 0.98 0.97 0.97 0.89 0.91 0.53 0.97 0.94 0.96 0.97 0.96 0.81 0.96 0.90 0.96 0.86

4.5 ABLATION

Ablation of gene block attention module.

As reported in Table 6, removing this component led to a consistent drop in performance, especially
in terms of WD, suggesting that gene block attention plays a critical role in capturing structured
relationships among genes. The inclusion of this module significantly improves the model’s ability to
learn biologically meaningful representations.

Hyperparameter sensitivity. Table 7 present the impact of hyperparameter selection for gene block
and latent block attention on generation performance. Specifically, a suitable gene block size is
beneficial for the MMD, WD and training efficiency.

Table 6: Ablation study of Attention module.

Setting WD (↓) MMD (↓)
SAVE w/o Att. 8.89 0.65
SAVE 8.30 0.63

5 CONCLUSION

We present SAVE, a unified generative framework for multi-condition single-cell modeling. By
integrating a generative model with a conditional Transformer and incorporating knowledge-inspired
gene block attention with masked condition modeling, SAVE can generate realistic cell profiles across
diverse—even unseen—conditions. Experiments on public datasets show that SAVE consistently
outperforms existing methods in conditional generation, batch correction, and perturbation prediction,

Table 7: Ablation study of gene block size.

Gene Block Size Num Blocks WD MMD
600 32 9.70 0.66

1600 12 9.64 0.65
2400 8 8.64 0.62
3200 6 8.30 0.63
4000 5 8.37 0.63
5600 4 8.41 0.63
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with strong generalization in low-data and novel-condition settings. Overall, SAVE provides a versa-
tile tool for virtual cell synthesis and single-cell analysis, advancing generalizable and biologically
grounded generative modeling.
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A CODE OF SAVE MODEL

The main code is available at the anonymous repository: https://anonymous.4open.science/r/submit-
code-3E75

B CONSTRUCTION OF LLM EMBEDDINGS

To construct the gene blocks, we adopted the GenePTChen & Zou (2024) protocol by utilizing
text descriptions sourced specifically from the ’Summary’ section of the NCBI Gene database.
After removing non-informative elements like hyperlinks and timestamps, we employed OpenAI’s
text-embedding-ada-002 model. This produced 1,536-dimensional embeddings from the curated
summaries (averaging 73 words), capturing robust biological context from the text.

C FUNCTIONAL VALIDATION THROUGH CONDITION-MODULATED BLOCK
ATTENTION
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Model Attention Heatmap: Cell Type vs. Batch

Dominant Pathway
Not Observed (Missing Data)
Block 0: Regulation of DNA-templated Transcription (Transcriptional Control)
Block 1: Fatty Acid Beta-Oxidation (Metabolism)
Block 2: Broad/General Cellular Functions (No single dominant pathway enriched)
Block 3: Establishment of Protein Localization to Plasma Membrane (Structural/Transport)
Block 4: Adenylate Cyclase-Activating G Protein-Coupled Receptor Signaling (Signaling)

Figure 5: Condition-Modulated Attention Heatmap across Cell Types and Batches.

To ensure the creation of balanced semantic groups, we initialized our approach by selecting 16,000
highly variable genes (HVGs) from the Heart dataset. These were partitioned into five distinct blocks,
each having a fixed size of 3,200 genes. To rigorously define the biological identity of each block, we
identified the top-50 "centroid genes" (those closest to the embedding cluster center) and performed
Gene Ontology (GO) enrichment analysis. As shown in Table 1, this partitioning successfully resulted
in blocks corresponding to distinct and specific biological pathways, ranging from Metabolism (Block
1) to GPCR Signaling (Block 4).

To further validate that the model dynamically leverages these defined biological meanings, we
analyzed the condition-modulated attention mechanism within the Flow Matching transformer.
Specifically, we extracted and averaged the attention weights from the final layer across all four heads
to pinpoint the gene block that was "most attended" under specific biological conditions.

The resulting attention heatmap (Figure 5) reveals that our model transcends simple statistical fitting
and successfully captures canonical biological semantics:

• Physiological Alignment: The model accurately identifies the distinct metabolic signature
of Cardiomyocytes (both Atrial and Ventricular) by exclusively attending to Block 1 (Fatty
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Acid Beta-Oxidation). This mirrors the heart’s well-established reliance on lipids as its
primary energy source.

• Functional Specificity: In cell types requiring extensive environmental interaction and
signaling—such as Endothelial cells and Fibroblasts—the attention dynamically shifts to
Block 4 (GPCR Signaling) and Block 3 (Protein Localization), aligning precisely with their
known roles in transducing extracellular signals.

• Biological Filtering: Most critically, Block 2 (Broad/General Cellular Functions) is univer-
sally suppressed across the entire heatmap. This demonstrates that the attention mechanism
acts as an effective biological filter, autonomously learning to ignore uninformative gene
groups while prioritizing functional modules for accurate generation.

D HYPERPARAMETER OF SAVE MODEL

Table 8: Model Hyperparameter Configuration

Training

optimizer AdamW
lr 1e-4

batch size 1024
weight decay 2.5e-5

epoch 200
warmup epoch 50

Model gene block size 3200
m 256
e 512
d 128

num_dec_block 3
num_enc_block 3
attention head 4

E DETAILED CONDITION DEFINITION FOR THE LUNG CANCER DATASET

Table 9: Detailed conditions of the Cancer dataset in the multi-condition experiment. "count"
represents the number of cells for each corresponding condition.The Cyan background indicates the
test conditions.

index assay development_stage disease uicc_stage count

0 10x 3’ v2 55-year-old human stage chronic obstructive pulmonary disease non-cancer 5177
1 GEXSCOPE technology 55-year-old human stage lung adenocarcinoma III or IV 965
2 Smart-seq2 55-year-old human stage lung adenocarcinoma IV 2240
3 10x 3’ v2 55-year-old human stage non-small cell lung carcinoma II 11151
4 10x 3’ v2 55-year-old human stage normal non-cancer 3143
5 BD Rhapsody Whole Transcriptome Analysis 55-year-old human stage squamous cell lung carcinoma III 8179
6 GEXSCOPE technology 55-year-old human stage squamous cell lung carcinoma III or IV 180
7 10x 3’ v2 60-year-old human stage chronic obstructive pulmonary disease non-cancer 2418
8 Smart-seq2 60-year-old human stage lung adenocarcinoma IV 54
9 10x 3’ v2 60-year-old human stage non-small cell lung carcinoma I 10660
10 10x 3’ v2 60-year-old human stage squamous cell lung carcinoma I 4497
11 BD Rhapsody Whole Transcriptome Analysis 60-year-old human stage squamous cell lung carcinoma I 3663
12 GEXSCOPE technology 60-year-old human stage squamous cell lung carcinoma III or IV 4722
13 10x 3’ v2 65-year-old human stage chronic obstructive pulmonary disease non-cancer 355
14 10x 3’ v2 65-year-old human stage lung adenocarcinoma I 10130
15 BD Rhapsody Whole Transcriptome Analysis 65-year-old human stage lung adenocarcinoma I 2090
16 10x 3’ v2 65-year-old human stage lung adenocarcinoma III 6102
17 GEXSCOPE technology 65-year-old human stage lung adenocarcinoma III or IV 1394
18 10x 3’ v2 65-year-old human stage normal non-cancer 7825
19 GEXSCOPE technology 65-year-old human stage squamous cell lung carcinoma III or IV 2592
20 10x 3’ v2 70-year-old human stage chronic obstructive pulmonary disease non-cancer 2064
21 10x 3’ v2 70-year-old human stage lung adenocarcinoma I 9
22 BD Rhapsody Whole Transcriptome Analysis 70-year-old human stage lung adenocarcinoma II 13604
23 BD Rhapsody Whole Transcriptome Analysis 70-year-old human stage squamous cell lung carcinoma I 9056
24 Smart-seq2 70-year-old human stage squamous cell lung carcinoma I 507
25 10x 3’ v1 70-year-old human stage squamous cell lung carcinoma II 956
26 Smart-seq2 70-year-old human stage squamous cell lung carcinoma III 867
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F PERTURBATION PREDICTION PROCEDURE AND EVALUATION

We obtained data for evaluating perturbation prediction using a Python script available at
https://github.com/theislab/scgen-reproducibility/blob/master/
code/DataDownloader.py, with parameters ‘pbmc’. The training and validation datasets for
PBMC IFN-β were merged for our evaluation.

For perturbation prediction, we employed a leave-one-out approach where each cell type was
iteratively selected as the test set, with the remaining cell types serving as training data. SAVE
was trained on this data, with the perturbation condition input into the AdaCond module. Post-
training, SAVE predicted the stimulated test data for comparison with the true stimulated data. We
assessed the similarity between average gene expressions using Coefficient of determination R2,
Mean Squared Error (MSE), and Pearson Correlation Coefficient (PCC). R2 and MSE were calculated
using scikit-learn, while PCC was computed using SciPy.

We compared SAVE with trVAE, scDisInFact, and scGEN.

• scGEN: Utilizes vector arithmetic in the latent space of its autoencoder for perturbation
response prediction. We followed the tutorial at https://scgen.readthedocs.io/
en/stable/tutorials/scgen_perturbation_prediction.html.

• trVAE: Employs its network.predict() function with the perturbation condition to predict
perturbation responses.

• scDisInFact: A deep learning method that disentangles latent factors to generate gene
expression data. We implemented it following the tutorial at https://github.com/
ZhangLabGT/scDisInFact.

G EVALUATION OF BATCH EFFECT CORRECTION

We conducted batch effect correction experiments using five multi-batch datasets: Mouse, PBMC,
Pancreas, Heart, Lung. These datasets were obtained from the following sources:

• Mouse: https://drive.google.com/file/d/
1lJ1AdHsfdiQHDaaO6eG9F95USmMBXOkW/view?usp=sharing

• PBMC: https://drive.google.com/file/d/1oKpcxQSm238SMNY77TAR5bzKUMIqgGU_
/view?usp=sharing

• Pancreas: https://doi.org/10.6084/m9.figshare.12420968.v8

• Heart: https://github.com/YosefLab/scVI-data/blob/master/hca_
subsampled_20k.h5ad

• Lung Atlas: https://doi.org/10.6084/m9.figshare.12420968.v8

To evaluate batch effect correction, we compared SAVE with four methods: Harmony, Scanorama,
scVI, trVAE. We followed the default pipelines for each method to perform integration across all
datasets. The implementation details for each method are as follows:

• scVI: The integrated molecular space profile was obtained using the
SCVI.get_normalized_expression() function.

• Harmony: We utilized the Python package available at https://github.com/
slowkow/harmonypy. Harmony employs a fast and effective algorithm to project
various batch data into a common space.

• Scanorama*: We employed the same function used for latent integration,
scanorama.correct_scanpy(adatas, return_dimred=True). The corrected adatas.X
was used as the integrated molecular space profile.

• trVAE: We utilized the network.predict() function to transfer the input scRNA-seq data to a
specific batch. For scIB evaluation, we applied this function to transfer input data to each
batch and calculated the average of transferred scIB scores as the final scIB score.
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Table 10: Ablation of condition mask on VAE perturbation prediction.

Method CD8T CD14+Mono FCGR3A+Mono B CD4T Dendritic NK Average
PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑) PCC (↑) R2 (↑)

SAVE w/o cond mask 0.91 0.82 0.92 0.70 0.92 0.72 0.89 0.78 0.89 0.77 0.91 0.71 0.86 0.72 0.90 0.75
SAVE 0.98 0.97 0.97 0.89 0.91 0.53 0.97 0.94 0.96 0.97 0.96 0.81 0.96 0.90 0.96 0.86

Table 11: Training times use different gene block size, block size 1 means naive attention.

Gene Block Size Num Blocks Time (min)
1 19112 2391.2

1600 12 16.4
3200 6 12.5
5600 4 9.0

For visualization, we employed the UMAP algorithm using default parameters from the Python
package ScanpyWolf et al. (2018). Clustering results were annotated with the cell type and batch
information from the raw data. We utilized the 50-dimensional PCA features of the corrected data for
clustering.

The batch effect correction performance are evaluated using 10 well-established metrics from the
scIB package with default parametersLuecken et al. (2022). We used the overall score, which is the
average of batch correction and bio-information conservation performance, as the final evaluation
metric.

H ABLATION OF CONDITIONAL MASK MODELING.

To test the effectiveness of conditional mask modeling, we ablated this component by directly
feeding condition labels without masking. As shown in Table 10, this led to a marked decrease in
generalization performance on unseen condition combinations. The results suggest that conditional
masking acts as a regularizer, encouraging the model to learn more transferable condition embeddings,
which in turn improves extrapolation.

I EFFICIENCY OF GENE BLOCK SIZE

We present a detailed ablation study on the gene block size K in Table 11. Experiments were
conducted on the Heart dataset, which contains 2000 genes. We trained the models under various
settings on an NVIDIA GeForce RTX 3090 GPU with 24GB of memory. For K=1, where all
gene information is utilized, we observe that the Wasserstein Distance (WD) and Maximum Mean
Discrepancy (MMD) show negligible differences compared to K=40 (our primary setting). However,
K=1 incurs substantially higher training costs. The results from varying K values indicate that while
the choice of gene block size does not significantly affect the fitting of the overall distribution, it can
markedly improve training efficiency.

J GENERATION PERFORMANCE

J.1 GENE LEVEL PERFORMANCE

Table 12: Quantitative evaluation of different models across three datasets (Best: bold, Second best:
underline).

Model PBMC3k Dentate Muris

MSE PCC R2 MSE PCC R2 MSE PCC R2

scVI 0.07 ± 0.14 0.93 ± 0.12 0.87 ± 0.22 0.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.07 ± 0.03 0.98 ± 0.01 0.30± 0.32
CFGen 0.09± 0.17 0.91 ± 0.14 0.82 ± 0.26 0.00 ± 0.00 0.99 ± 0.01 0.97 ± 0.02 0.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01
scDiffusion 0.11± 0.12 0.86± 0.10 0.73± 0.17 0.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.01 ± 0.01 0.99 ± 0.01 0.94 ± 0.09
SAVE 0.08 ± 0.18 0.93 ± 0.12 0.84 ± 0.27 0.00 ± 0.00 0.99 ± 0.01 0.97 ± 0.02 0.00 ± 0.00 0.99 ± 0.01 0.95 ± 0.05
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Table 13: Quantitative evaluation of different models across three new datasets (Best: bold, Second
best: underline).

Model Heart PBMC Lung

MSE PCC R2 MSE PCC R2 MSE PCC R2

scVI 0.07± 0.09 0.84± 0.14 −0.65± 1.45 0.05± 0.05 0.87 ± 0.12 0.70± 0.20 0.08± 0.07 0.87 ± 0.17 −0.57± 0.96
CFGen 0.04± 0.09 0.87 ± 0.18 0.75 ± 0.32 0.06± 0.06 0.87 ± 0.08 0.75± 0.15 0.14± 0.15 0.58± 0.20 0.17± 0.52
scDiffuion 0.02 ± 0.04 0.87 ± 0.14 0.79 ± 0.22 0.03 ± 0.03 0.93± 0.06 0.86 ± 0.10 0.03 ± 0.02 0.65± 0.14 0.35 ± 0.24
SAVE 0.01 ± 0.02 0.88 ± 0.13 0.63± 0.26 0.02 ± 0.02 0.98 ± 0.03 0.95 ± 0.07 0.01 ± 0.01 0.91 ± 0.11 0.84 ± 0.18

Table 14: Quantitative evaluation of models on Seen and Unseen datasets (Best: bold, Second best:
underline).

Model Seen Unseen

MSE PCC R2 MSE PCC R2

CFGen 0.28± 0.25 0.73± 0.17 0.48± 0.33 0.62± 0.41 0.56± 0.16 0.20± 0.30
scDiffusion 0.03 ± 0.03 0.85 ± 0.14 0.72 ± 0.27 0.05 ± 0.05 0.81 ± 0.14 0.63 ± 0.27
SAVE 0.01 ± 0.02 0.94 ± 0.07 0.88 ± 0.14 0.04 ± 0.03 0.85 ± 0.08 0.70 ± 0.14

J.2 VISUALIZATION OF SINGLE CONDITION PERFORMANCE

Figures 6, 7, and 8 show the UMAP visualizations of the generative model on the single-condition
datasets PBMC3K https://satijalab.org/seurat/articles/pbmc3k_tutorial.
html, Dentate Gyrus La Manno et al. (2018), and Tabula Muris Consortium et al. (2018), respectively.

UMAP1

U
M
AP
2

type

UMAP1

U
M
AP
2

cell_type

UMAP1

type

UMAP1

cell_type

UMAP1

type

UMAP1

cell_type

UMAP1

type

Generated
Ground Truth

UMAP1

cell_type

B cells
CD4 T cells
CD8 T cells
CD14+ Monocytes
Dendritic cells
FCGR3A+ Monocytes
Megakaryocytes
NK cells

scVI CFGen scDiffusion SAVE

Figure 6: Generation results of the generative models on the PBMC3K dataset, visualized using
UMAP.

J.3 VISUALIZATION OF DUAL CONDITION PERFORMANCE

Figures 9, 10, 11 and 12 show the UMAP visualizations of the generative model on the dual-condition
datasets Mouse endocrinogenesis, PBMC, Pancreas and Lung Atlas, respectively.

J.4 MULTI-CONDITION GENERATION PERFORMANCE

Setup. For the Lung Cancer dataset Salcher et al. (2022), we selected samples corresponding to devel-
opmental ages from 55 to 75 years, at 5-year intervals. These samples were divided into 27 categories,
each containing heterogeneous cell types, yielding a total of 618 unique conditions. We designated
conditions 13 and 24, characterized by smaller data volumes, as the test set, while the remaining
data served as the training set. Five condition categories were utilized: assay, development_stage,
disease, uicc_stage, and cell type. Given that scVI is not designed to handle unknown conditions, our
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Figure 7: Generation results of the generative models on the Dentate gyrus dataset, visualized using
UMAP.
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Figure 8: Generation results of the generative models on the Tabula Muris dataset, visualized using
UMAP.
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Figure 9: Generation results of the generative models on the Mouse endocrinogenesis dataset,
visualized using UMAP.
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Figure 10: Generation results of the generative models on the PBMC dataset, visualized using UMAP.
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Figure 11: Generation results of the generative models on the Pancreas dataset, visualized using
UMAP.
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Figure 12: Generation results of the generative models on the Lung Atlas, visualized using UMAP.
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Table 15: Performance of generative models for each condition on the Lung Cancer dataset.

CFGen scDiffusion SAVECondition WD (↓) MMD (↓) WD (↓) MMD (↓) WD (↓) MMD (↓)
0 20.89 1.34 4.87 0.63 2.66 0.67
1 15.36 1.86 5.33 1.45 3.24 1.5
2 16.08 1.04 10.31 1.2 2.54 0.75
3 13.29 0.68 3.76 0.37 2.56 0.52
4 17.97 1.5 8.47 1.24 6.47 0.97
5 16.09 1.03 4.97 0.66 2.97 0.77
6 15.65 2.51 6.95 2.12 4.1 1.97
7 23.28 1.27 4.38 0.46 2.66 0.59
8 14.49 2.13 11.76 2.38 3.35 1.68
9 12.8 0.53 4.51 0.31 2.59 0.43

10 13.36 0.83 4.43 0.55 2.54 0.69
11 16.75 1.49 4.68 1.04 2.85 1.12
12 19.6 2.73 7.91 2.22 3.42 1.97
13 24.15 2.83 5.39 1.9 4.6 2.15
14 13.34 1.67 4.12 1.28 2.88 1.36
15 14.96 1.26 4.87 0.89 2.8 0.98
16 14.51 0.73 4.63 0.44 2.8 0.55
17 18.47 3.53 5.87 2.76 3.31 2.67
18 21.02 1.51 5 0.77 2.67 0.83
19 20.83 2.43 6.55 1.77 3.05 1.68
20 22.28 2.00 5.03 1.19 2.94 1.21
21 18.83 5.8 5.13 4.7 4.28 4.72
22 16 1.04 3.74 0.6 2.8 0.75
23 15.32 0.72 4.65 0.4 2.75 0.51
24 20.89 2.38 4.7 1.68 3.36 1.86
25 14.01 2.12 5.07 1.69 2.79 1.68
26 20.12 0.58 4.21 0.2 2.16 0.32

Average 17.42 1.76 5.60 1.29 3.15 1.29

comparison here is restricted to CFGen, scDiffusion, and SAVE. CFGen uses classifier-free guidance
for condition combination, whereas scDiffusion employs classifier guidance.

Results. We showcase the performance of the generative model on the multi-condition lung cancer
dataset in Table 15. We also provide comparisons with ablation studies that omit the attention
mechanism and the latent mask. The SAVE model consistently demonstrates superior performance
over other compared methods.

K BATCH EFFECT CORRECTION

In this section, we present detailed metrics for batch effect correction. These encompass bi-
ological information preservation metrics Adjusted Rand Index (ARI) Normalized mutual in-
formation (NMI), Average silhouette width (ASW) and batch effect removal metrics ASW
batch, Principal component regression score (PCR), Graph Connectivity (graph conn). De-
tailed metrics can be found at https://scib.readthedocs.io/en/latest/api.html#
batch-correction-metrics. SAVE demonstrates good performance across all these metrics.
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Table 16: Detailed scIB scores for batch effect correction methods on the PBMC dataset.

NMI_cluster/label ARI_cluster/label ASW_label ASW_label/batch PCR_batch graph_conn avg_bio avg_batch scib_score
Scanorama 0.8053 0.7521 0.5838 0.8989 0.5067 0.9577 0.7138 0.9283 0.7996
Harmony 0.8008 0.7605 0.5541 0.9243 0.6959 0.9686 0.7051 0.9464 0.8016
scVI 0.5614 0.2905 0.5594 0.7678 - 0.7855 0.4704 0.7767 0.5929
trVAE 0.8276 0.8312 0.6051 0.8487 0.6322 0.9779 0.7546 0.9133 0.8181
SAVE 0.8637 0.7952 0.5958 0.9128 0.4996 0.9868 0.7516 0.9498 0.8309

Table 17: Detailed scIB scores for batch effect correction methods on the Lung Atlas dataset.

NMI_cluster/label ARI_cluster/label ASW_label ASW_label/batch PCR_batch graph_conn avg_bio avg_batch scib_score
Scanorama 0.7856 0.6977 0.6159 0.8241 0 0.9305 0.6997 0.8773 0.7708
Harmony 0.7727 0.5973 0.5741 0.9039 0.3605 0.9472 0.648 0.9255 0.759
scVI 0.7338 0.4599 0.5478 0.7851 0.0557 0.8846 0.5805 0.8348 0.6822
trVAE 0.7942 0.6462 0.6355 0.8265 0.4414 0.9826 0.6919 0.9046 0.777
SAVE 0.8285 0.7340 0.6395 0.8693 0.2134 0.9926 0.7340 0.9309 0.8128

L PERTURBATION PREDICTION PERFORMANCE

L.1 WD AND MMD OF PERTURBATION PERFORMANCE

L.2 MSE AND DISTRIBUTION OF TOP 5 DEGS ON PBMC IFN-β

In Table 20, we present the Mean Squared Error (MSE) between the gene expression of predictions
from perturbation prediction methods and those of the ground truth on PBMC IFN-β. In Figure 13,
we show the distribution of the top 5 differentially expressed genes (DEGs) predicted by perturbation
prediction methods. On both evaluation metrics, SAVE’s prediction is closest to the ground truth.

Table 18: Detailed scIB scores for batch effect correction methods on the Heart dataset.

NMI_cluster/label ARI_cluster/label ASW_label ASW_label/batch PCR_batch graph_conn avg_bio avg_batch scib_score
Scanorama 0.7538 0.7391 0.6653 0.796 0.2708 0.8438 0.7194 0.8199 0.7596
Harmony 0.8121 0.843 0.6126 0.8837 0.4392 0.9015 0.7559 0.8926 0.8106
scVI 0.7248 0.6574 0.5975 0.79 0.063 0.8361 0.6599 0.813 0.7212
trVAE 0.7829 0.804 0.6521 0.8169 0.1098 0.8487 0.7463 0.8328 0.7809
SAVE 0.7999 0.8146 0.6579 0.8576 0.2554 0.8615 0.7574 0.8596 0.7983
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Figure 13: Violin plots of the top 5 differentially expressed genes (DEGs) predicted by perturbation
prediction methods on PBMC IFN-β.
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Table 19: Comparison of Wasserstein Distance (WD) and Maximum Mean Discrepancy (MMD)
across different cell types and methods (Lower is better: best value in bold, second best underlined).

Method CD8T CD14+Mono FCGR3A+Mono B CD4T Dendritic NK Average
WD MMD WD MMD WD MMD WD MMD WD MMD WD MMD WD MMD WD MMD

control 4.61 0.07 9.94 0.54 9.09 0.44 4.86 0.10 3.91 0.07 8.66 0.36 5.47 0.10 6.65 0.24
trVAE 4.33 0.26 9.05 0.58 8.73 0.57 5.28 0.41 3.67 0.50 8.43 0.46 5.17 0.30 6.38 0.44
scDisInFact 20.63 1.40 23.76 1.49 22.71 1.37 18.53 1.31 19.78 1.36 21.36 1.18 19.42 1.35 20.88 1.35
scGEN 4.56 0.19 6.43 0.19 6.50 0.20 4.82 0.32 4.17 0.28 5.74 0.12 5.37 0.14 5.37 0.21
MFM 13.63 0.47 12.34 0.51 14.39 0.64 14.92 0.56 14.00 0.53 13.90 0.52 15.60 0.57 14.11 0.54
CellOT 3.91 0.07 4.54 0.05 9.56 0.54 4.52 0.18 3.49 0.12 6.13 0.13 4.98 0.13 5.30 0.17
SAVE(ours) 4.01 0.11 5.03 0.09 7.01 0.22 4.40 0.17 3.98 0.11 6.55 0.17 5.07 0.09 5.15 0.14

Table 20: Mean Squared Error (MSE) across different cell types (Lower is better: best value in bold,
second best underlined).

MSE CD8T CD14+Mono FCGR3A+Mono B CD4T Dendritic NK mean

control 0.00 0.04 0.03 0.01 0.00 0.02 0.01 0.02
trVAE 0.00 0.03 0.03 0.01 0.00 0.02 0.00 0.01
scDisInFact 0.20 0.26 0.23 0.16 0.18 0.20 0.17 0.20
scGEN 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01
MFM 0.02 0.04 0.07 0.03 0.03 0.05 0.04 0.04
CellOT 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.01
SAVE(ours) 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
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